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Abstract: We study the initial value problem for the Whitham averaged system
which is important in determining the KdV zero dispersion limit. We use the hodo-
graph method to show that, for a generic non-trivial monotone initial data, the
Whitham averaged system has a solution within a region in the x-t plane for all time
bigger than a large time. Furthermore, the Whitham solution matches the Burgers
solution on the boundaries of the region. For hump-like initial data, the hodograph
method is modified to solve the non-monotone (in x) solutions of the Whitham av-
eraged system. In this way, we show that, for a hump-like initial data, the Whitham
averaged system has a solution within a cusp for a short time after the increasing
and decreasing parts of the initial data begin to interact. On the cusp, the Whitham
and Burgers solutions are matched.

1. Introduction

In this paper, we study the Whitham averaged system:

&, + MA,feft)fe = 0, ί = l , 2 , 3 , (1.1)

where

sK(s)

& +ft)+ 4(ft-ft)-

and
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K(s) and E(s) are complete elliptic integrals of the first and second kind. Equation
(1.1) was first found by Whitham [17], and its hierarchy was found independently
by Lax and Levermore [7, 8], and Flaschka, Forest and McLaughlin [3].

The zero dispersion limit of the KdV equation can be determined by an initial
value problem of the Whitham averaged system (1.1) and its hierarchy [7, 8, 16].
This initial data is the same as the KdV initial data. Solutions of the different
systems of the hierarchy are matched naturally on the phase transition boundaries.
In particular, the Whitham solution of ( 1 . 1 ) would match the solution of the Burgers
equation:

βt + 6ββx = 0

on the boundaries separating the Whitham and Burgers solutions. The Burgers equa-
tion and the Whitham averaged system (1.1) are the first and second members of
the Whitham hierarchy, respectively.

The investigation of the initial value problem of the Whitham averaged system
began with Gurevich and Pitaevskii [4], They solved the initial value problem of
system (1.1) for step initial data, and studied numerically the case of cubic ini-
tial data. However, the structure of system (1.1) and its hierarchy was understood
only during the last decade. Dubrovin and Novikov [1, 2] developed a geometric-
Hamiltonian theory for the hierarchy. Based on this theory, Tsarev [15] was able
to prove that each member of the hierarchy can be solved by a hodograph method.
This method was put into an algebro-geometric setting by Krichever [5]. Using the
Tsarev-Krichever approach, Potemin [10] and Wright [18] managed to solve the
initial value problem of system (1.1) for cubic and cubic like initial data, respec-
tively.

Another way to make use of Tsarev' s hodograph method is to further transform
system (1.1) into a linear overdetermined system of Euler-Poisson-Darboux type
[H.12,13],

8β. 3β> ~ ' ' >

q(β,β9β)=f(β), I Φ 7 , (1.3)

where x = f(u) is the KdV initial data. Part of this result was also obtained by
Kudashev and Sharapov [6]. All the other members of the Whitham hierarchy are
also connected with higher dimensional linear overdetermined systems of Euler-
Poisson-Darboux type [14].

System (1.3) has a unique solution, and its solution can be written down expli-
citly. This explicit expression of solution to system (1.3) enabled the author [11, 12]
to solve the initial value problem for decreasing initial data with only one inflection
point.

In this paper, we consider the initial value problem for the Whitham averaged
system for generic decreasing and hump-like initial data. We show that for a generic
decreasing initial data, the initial value problem for system (1.1) has a solution for
t bigger than a large time. Tsarev' s hodograph method is modified to solve system
(1.1) for hump-like initial data. We show that the Whitham averaged system has a
solution for a short time after the increasing and decreasing parts of the hump-like
initial data begin to interact.

This paper is organized as follows. In Sect. 2, we describe in detail the initial
value problem and the hodograph method. The Whitham averaged system in the
case of generic decreasing initial data is solved in Sect. 3 for large time. In the last
section, we solve the initial value problem for hump-like initial data.
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2. A Hodograph Method
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In this section, we describe the initial value problem of the Whitham averaged
system, and introduce the hodograph method. Properties of system (1.1) will be
discussed, and some known results will be presented.

Consider a horizontal motion of an initial curve u = UQ(X). Each point on the
curve has a different speed. Initially, the curve is expressed by a single valued
function u = β(x,t)9 and the motion of each point is given by the Burgers equation:

βt + 6ββx = 0 ,

At a later time, the evolving curve can only, in general, be given by a multi-valued
function with an odd number of branches: u = βk(x,t\k = 1,2,...,2g+ 1, where
ft0+ι < ftg < < βi These branches move according to the (g + l)th system
in the Whitham hierarchy. In this paper, we concentrate on the three branch case.
Therefore, the motion of ft, ft and ft is governed by the Whitham averaged system
(1.1).

Within the multivalued region, ft,ft and ft satisfy system (1.1) while outside
it, the single branch β is given by the Burgers equation (2.1). The Whitham and
Burgers solutions are matched naturally on the boundaries.

a) At the trailing edge:

β\ = the Burgers solution defined outside the region.

ft = ft (2.2)

b) At the leading edge:

βl=h

ft = the Burgers solution defined outside the region . (2.3)

The initial value problem of the Whitham averaged system is to determine the
multibranches ft,ft and ft with boundary conditions (2.2) and (2.3) from the
initial curve u = UQ(X).

Complete elliptic integrals K(s) and E(s) have some well-known properties. As
— 1 < s < 1, we have:

βι(x,t)

Fig. 1.
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while, as 1 — s <C 1, we have:

Furthermore,

ί/£(s) _£(s)-(l-£)£(£)

ds ~~ 2^(1-5)
(̂5) _ E(s) - K(s)
ds ~ 2s '

It immediately follows from (2.4) and (2.5) that:

1
, for 0 < s < 1 .

1 - f E(s) 1 -

Using (2.10) in (1.2), we obtain: for β\ > β2 > &,

λι -2(βι + 02 + β3) > 0,

β2
0,
0.

By (1.2) and (2.4H2.7), we find that Λι,A 2 and λ3 have behavior:

1) At )S2 = ft:

A2(ft,ft,ft) = = 1203 - 60, .

2) At 0! = 02:

λϊ(βι,βϊ,β3)=k(βι>βι,β3) = 401 +203 ,

Aι(0ι,01,03)=603.

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.13)

The Whitham averaged system (1.1) is a strictly hyperbolic and genuinely non-
linear system. In fact, we have [9]:

Lemma 2.1. For 0ι > 02 > 0s,

i) Strict hyperbolicity:
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λl(01,/?2,j»3) > Mβl.fah) > Mβl.fak) (2-14)

ii) Genuine nonlineariίy:

Wκfe.fe) > 0; i = w. (2ιl5)

^Pi-

Other results are given in the next lemma [11, 12].

Lemma 2.2. For β\ > β2 > ft,

dλ$ 3 λi — λ$ ΰλi

dft < 2ft~^ft < Wi'

The most remarkable feature about the Whitham averaged system is that it can
be solved by a hodograph method. More precisely, we have [15]:

Theorem 2.3. Ifwi(βι,β29β3Ys solve the following linear overdetermined system:

^=%(ft,ft,ft)[w*-wy], 1,7 = 1,2,3 ίΦ7, (2.16)
Opj

where
dλi_

(2.17)
/ — y

the solution ( β ι ( x 9 t ) 9 β 2 ( x 9 t ) 9 β ^ ( x , t ) ) of the hodograph transformation:

X = λi(βl9β2,β3)t + wi(βl9β2,β3), i = 1,2,3 (2.18)

satisfies system (1.1). Conversely, any solution (β\9β2,β3) of system (1.1) cαw
fte obtained in this way in the neighborhood of (xo,to) at which βix's are not
vanishing.

We shall use the hodograph transform (2.18) to construct the Whitham solution
satisfying boundary conditions (2.2) and (2.3). First, system (2.16) needs to be
solved for w^βi,/^,/^)^. In this respect, we want to understand what kinds of
boundary conditions should be imposed on w/(/?ι,/?2,/?3)'s.

Clearly, the Burgers solution of (2.1) outside the multivalued region satisfies
the characteristics equation:

x = 6βt + f(β), (2.19)

where f(u) is the inverse function of the decreasing initial data u = UQ(X).

By (2.2), (2.3), (2.12), (2.13), (2.18) and (2.19), we see:

At the trailing edge:

ft,/f3) (2.20)

Similar conditions hold at the leading edge:

(2.21)
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Motivated by the above observation, we consider system (2.16) with boundary
conditions (2.20) and (2.21). We shall explicitly construct all the solutions to this
boundary value problem. This is carried out in the next two theorems [11, 12].

Theorem 2.4. If #(ft,ft,ft) is a solution of:

dq d« -

q(β,β,β)=f(β), z Φ y , (2.23)

then (wι,w>2,W3) given by:

w,(ft,ft,ft) = to - 2(ft + ft + ft)] - + * ί = 1,2,3 (2.24)
2 dft

r/ze boundary value problem (2.16), (2.20) and (2.21). Conversely, every
solution o/(2.16), (2.20) and (2.21) can be obtained in this way.

Theorem 2.5. The boundary value problem (2.22) and (2.23) has a unique solution.
This solution is symmetric, and is given by:

J7 - - /n V ΐ 2, - dμdv . (2.25)
_ι_ι ι/(l - μ)(l - v2)

The hodograph transform (2.18) with w, 's given by (2.24) and (2.25) needs
to be solved to produce the solution to system (1.1). More precisely, we have
[11, 12]:

Theorem 2.6. Consider a decreasing initial data x = f(u). Suppose that f(u) has
only one inflection point and that f'"(u) < 0 beyond this inflection point. Then
the hodograph transform (2.18) with w, 's given by (2.24) and (2.25) can be solved
for ft, ft and ft within a cusp in the x-t plane for all time after the breaking
time of the Burgers solution of (2.1). Furthermore, these ft, ft and ft satisfy
boundary conditions (2.2) and (2.3) on the cusp.

Theorems 2.3 and 2.6 immediately establish [11, 12]:

Theorem 2.7. Under the conditions of Theorem 2.6, the Whitham averaged system
(1.1) has a solution (ft, ft, ft) within a cusp in the x-t plane for all time after the
breaking time of the Burgers solution of (2.1). Furthermore, this solution satisfies
boundary conditions (2.2) and (2.3) on the cusp.

Local conditions on f(u) will give short time results [11, 12].

Theorem 2.8. Consider a decreasing initial data x = f(u). Suppose that u* is
the inflection point that causes the breaking in the Burgers solution of (2.1), and
that f'"(u) < 0 locally in a deleted neighborhood of u = u*. Then the Whitham
averaged system (1.1) has a solution (ft, ft, ft) within a cusp in the x-t plane for
a short time after the breaking time of the Burgers solution of(2Λ). Furthermore,
this solution satisfies boundary conditions (2.2) and (2.3) on the cusp.

A hump-like initial data can be decomposed into a decreasing and an increasing
data. It is known that the decreasing part causes the Burgers solution of (2.1) to
blow up, while the increasing one does not. These two data would not interact
with each other for a short time after the breaking of the Burgers solution. As a
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consequence, a short time result similar to Theorem 2.8 holds for a hump-like initial
data [11, 12].

Theorem 2.9. For a hump-like initial data whose decreasing part satisfies condi-
tions of Theorem 2.8, the Whitham averaged system (1.1) has a solution (/?ι,/?2>ft)
within a cusp in the x-t plane for a short time after the breaking time of the Bur-
gers solution of (2.1). Furthermore, this solution satisfies boundary conditions (2.2)
and (2.3) on the cusp.

3. Large Time Results for the Whitham Averaged System

In this section, we study the initial value problem for the Whitham averaged system
for large time. We shall show that for generic decreasing initial data, the Whitham
averaged system has solutions after some large time. The main idea is to use the
hodograph method to solve the Whitham averaged system for large time.

For convenience, we consider a smooth decreasing initial data u = UQ(X) which
is bounded at the infinity:

lim UQ(X) = a, lim UQ(X) = b .
JC—>• — 00 X—>+00

Other types of decreasing initial data will be considered later in this section. The
inverse ftinction x = f(u) of the initial data is defined over (6,α), and behaves as:

lim/(w) = -oo, lim/(w) = +oo. (3.1)

First, we have:

Lemma 3.1. Consider a decreasing initial data x = f(u) defined over (b,a). Sup-
pose that in addition to (3.1), /(«) satisfies:

/'"(«) < o

in the neighborhood of u = a and u = b. Then there exists a δ > 0 such that
q(βι,β2,βι)of (2.25) satisfies:

for a > βv ^ β2 ^ ft > b and δ > ft - b > 0.

Proof. We first claim that

f"(u) < 0, in a neighborhood of u = a

f"(u) > 0, in a neighborhood of u = b . (3.2)

We shall prove the first inequality by contradiction, and the second one can be
shown in the same way. Suppose that the first inequality of our claim does not
hold. Since f'"(u) < 0 in the neighborhood of u = a, we must have f"(u) > 0
near u = a. This implies that /'(«) is increasing in the neighborhood of u = a, and
that therefore, f'(u) is bigger than a constant when u is near a. A simple integration
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would prove that f(u) is bounded from below in the neighborhood of u = a. This
contradicts the assumption (3.1), and the claim is justified.

It immediately follows from (3.1) and (3.2) that

lim/'(w) = -oo, lim/'(w) = -oo . (3.3)
u— >a u-+b

Choose a\ and b\ such that a > a\ > b\ > Z>, and that

/'"(ιι) < 0, outside (όi, fli).

By (2.25), we obtain:

fc fa -

for a > βι > β2 ^ ft > b, where

1c =

Since /"'(w) < 0 outside (b\,a\), it suffices to show that there exists a δ > 0 such
that

}f'"(ξy(ξ - βτj+j(η - ξf-idξ < 0, for all η ̂  b, (3.4)
03

when 0 < j83 - b < δ.
For a fixed small εo > 0, we have:

= / f'"(ξ)(ξ ~ ft )'+J(η -ξΫ~ldξ+ /
b\ — εo /*3

^ / i/'^oitf-fcy+'Oί-tf-^+βo'* 7
^>1 -εo 3̂

(3.5)

The first term is uniformly bounded for all β^ G (b,a) and ?/ G [b\,a), and the
second one can be decomposed into:

h

= (b, - εo - ft )/"(*ι - fio) - /'(όi - ε0) + /'(ft ), when ι + j = 1

or

= (6, - ε0 - ft)2/"(*ι - εo) - 2(6, - εo - ft )/'(*>! - ε0)

+ 2f(bι - ε0) - 2/(/?3 ), when / + 7 = 2 .
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This when combined with (3.1) and (3.3) proves:

7 V "(«)(ί - ft )ί+Jdξ -> -oo, as
ft

87

b ,

which together with (3.5) implies (3.4). Therefore, Lemma 3.1 is proved for the
case β\ > β2 ^ ft. The rest of Lemma 3.1 will be shown as follows.

At βι = β2, by (2.25) we have

where

dβ\dβJ

2dβ«

Cι =

This and (3.4) prove Lemma 3.1 at βi = jS2. The proof of Lemma 3.1 is completed.
We need the next two lemmas.

Lemma 3.2. Under the conditions of Lemma 3.1, we

lim l - ( - ί r f { = -oo, >r ^c/r ft G

each- ξ)dξ = +00

Proof. By (3.2), we can choose #2 and #2 such that a > a^ > b2 > b, and that

f"(u) < 0, for u > a2 ,

/"(w) > 0, for u < b2 .

For each #3 G (6,α), we can choose άi such that max{β^,a2} < ά2 < a. Thus,

for ^5ι > d2. This and (3.1) prove the first limit of Lemma 3.2.
As to the second limit, for each β\ G (b,a) we choose b2 such that b < B2 <

mm{β\,b2}. Therefore,
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Λ vί ~ ft

01 b2

= / + /
*2 ft

/^2-ft

for ft < £2 which when combined with (3.3) proves the second part of Lemma
3.2.

In the same way, we can prove the next lemma.

Lemma 3.3. Under the conditions of Lemma 3.1, we have:

βι
lim f f " ( ξ ) ( ζ — ft)v βi — ζdξ = —oo, for each ft € (b,a) ,

= 4-00, /or eαcλ ft G (M) -lim //"(ί)(ί -
-

We are now ready to use the scheme of Sect. 2 to solve the Whitham averaged
system for large time. We need to solve system (2.18) with w/'s given by (2.24)
and (2.25) for ft, ft and ft as functions of (x,t).

System (2.18) is simplified as follows. Eliminating x from (2.18) yields:

F(ί,ft,ft,ft) = 0,

G(ί,ft,ft,ft) = 0, (3.6)

where

Substituting (1.2) and (2.24) into system (3.6), we obtain:

where

G(f,0ι,02,03) = 0,

F(t,βl,β2,β3)

— A I
1

+ 2

G(t,βl,β2,β3) = G(<,01,02,03)

= -4

- (1 - s)K(s)

(3.7)

t+--

-(l-s)K(s)

K(s)

Kdβ2

(3.8)
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Clearly, system (3.6) is equivalent to system (3.7) in the region β\ > ft > ft.
The reason to consider system (3.7) is obvious from the fact that system (3.6) is
degenerate at the trailing edge (ft = ft) and leading edge (β\ = ft), while system
(3.7) is not. We shall first solve system (3.7) at both the trailing and leading edges.

Lemma 3.4. Under conditions of Lemma 3.1, there exists a t~ > 0 such that
system (3.7) has a unique solution (j?f(0>β^(0>/?3~(0) Wfλ βf(0 > βΓ(0 =
β~(t) for all t > Γ.

Proof. Using (2.4) and (2.5) in (3.8), we find:

fftA.fc.fc)-!

s32

G(t, βι,β2, ft) = - 41 ( 1 - L + ••] 2(β, - fthU

Therefore, at the trailing edge ft = ft where 5 = 0, (3.7) becomes:

Substituting the first equation into the second one, and using (2.22), we obtain:

2L(βl,β3,β3) + 2jj-(βl,β3,β3) = 0 , (3.10)

/ϊ I,A,ft) = 0. (3.11)

By Theorem 2.5, (2.25) can be rewritten as:

fίl+Hltίβ, + !+*!=*
2 2 '_ι_ι A/(l - μ)(l - v2)

Substituting this into (3.11), we have:
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First we want to solve (3.11) when ft is close to b. Choose a fixed β\ E
(b 4- δ,a\ and it follows from the second limit of Lemma 3.2 that we can find a
β$ €(6,6-hδ) such that

where δ is given in Lemma 3.1. On the other hand, by the first limit of Lemma
3.2 we can also find a βλ > βλ such that

These two inequalities show that there exists a β* > β% such that

Denote t~ by

>0 (3 12)

where we have used (2.25) and the assumption that /+' < 0 in the inequality.
Hence, (f~,j8*,$j;) satisfies (3.10) and (3.11), and β% e (b,b + δ). Before we pro-
ceed, we need the following lemma.

Lemma 3.5. Under the conditions of Lemma 3.1, we have:

Aβ 3β Άβ 3β ^ v» χβ2 ^ v »
Op\(jp2 vplUp3 uβ\

d fl o a θ q
—~ = —j = 3 > 0
dp2 dβ\ ^ft^ft

on the solution (ft,ft,ft) 0/(3.11), where a > β\ > ft > b and δ > ft - b > 0.

Proof By (2.22), we have:

_ d2q dq dq

Taking derivative with respect to ft yields

This and Lemma 3.1 imply

which together with (3.11) proves:

Λ n 3 o ' 3 β 3 β '
VP2VP1 vpivpl

The rest of Lemma 3.5 can be shown in the same way.
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We now continue the proof of Lemma 3.4. Using (3.11), Lemma 3.1 and Lemma
3.5, we calculate partial derivatives of U and V on the solution (ft, ft, ft) of (3.11),
where ft G (b,b + δ):

W\=Wι+2WJfo < 0 )

dV d*q &q

'

8V_ _ d3g &q &q d3q

~ + + + < '

Therefore, by the Implicit Function Theorem, (3.10) and (3.11) can be solved for:

(3.13)

in the neighborhood of f~, where t~ is given by (3.12). It can easily be checked
that A(t) and B(t) are increasing and decreasing with time, respectively. Therefore.
β^(t) keeps closer to b as t increases. Repeat the Implicit Function Theorem; we
see that (3.13) are defined for all t > t~. This proves Lemma 3.4.

At the leading edge β\ = β2 where s = 1, it follows from (2.6), (2.7), (2.22)
and (3.8) that system (3.7) turns out to be:

In the same way as we handle Lemma 3.4, we can use Lemma 3.3 to solve the
above system for β\ and βi as functions of t. Therefore, we have:

Lemma 3.6. Under conditions of Lemma 3.1, there exists a t+ > 0 such that sys-
tem (3.7) has a unique solution (β^(t)9β^(t)9β^(t)) with β+(t) = β£(t) > βf(t]
for all t > t+.

The following lemma is obvious.

Lemma 3.7. On the solution (t,βι,β29β3) of (3.6) [or equivalently (3.7)] in the
region β\ > βi > ft, we have:

=0, for i,j= 1,2,3 / Φ y .

Proof.

Wi) - (λβ

= 0,
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where we have used (2.16) and (2.17) in the second equality, and (3.7) in the last
one. This proves Lemma 3.7.

By Lemma 3.4, (β^ (t), β^ (t), β^ (t)) satisfies system (3.7). For each fixed
t > t~, we need to solve (3.7) for β\ and ft as functions of ft in the neigh-
borhood of β2(t) This is carried out in:

Lemma 3.8. For each t > max{f~,f+}, system (3.7) can be solved for β\ and ft
in terms of ft in the neighborhood of (β^ (t), β^ (t), β^ (t)):

ft =M(ft)
(3.15)

f f t =
\
l f t =

such that β-(t)=M(β~(t)) and β^(t) = N(β~(t)). Moreover, for β2 > β2(t\

N(β2) <β2< M(β2). (3.16)

Proof. Calculating first partial derivatives of (3.9) at (β~^(t\ β2 (t\ β^(t)) and using
(2.22), we find:

dF 8 Γ3 d2q d2<
^

δF 8 Γ 82g i a2g _ i a2g =
5ft π[dβ2dβ, 2dβ,dβ3 4dβ2dβl

=

3ft ^

> 0 ,

where we have used Lemma 3.5 in the first inequality, (3.11) and Lemma 3.5 in
the second, third and fourth equations, and Lemma 3.1 and Lemma 3.5 in the last
two inequalities.

It follows from (3.17) that the Jacobian:

is not vanishing at (β[~(f),/^~(f),/^~(ί)) Hence, (3.7) can be solved for:

βι=M(β2), βι

in a neighborhood of β2 (t) such that βλ (t) = M(β2 (t)) and β3 (t) = N(β2 (t)) for
t > max{rv+}.

It follows from (3.7) and (3.17) that

: 0,
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which implies (3.16). The proof of Lemma 3.8 is completed.
Later, we shall show that, for each fixed t > max{t~,t+}9 solutions (3.15) of

system (3.7) can be further extended whenever: N(β2) < β2 < M(β2). The Jaco-
bian of system (3.7) with respect to (βι, ft) has to be estimated along the extension.
This is carried out in the next lemma.

Lemma 3.9. Under conditions of Lemma 3.1, the following inequalities'.

Λ *S\**£" I " .£ / ^̂ ^ Λ V \Ό* ' ' T j J f\

opi ' 5ft ' θft

A0W ow ίΛ^ solution (jδι,ft,ft) 0/(3.6) [or equiυalently (3.7)] m ίAe region ft <
ft < ft, w/zere 0 < ft - b < δ.

Proof. Using (2.24), we see that (3.6) is equivalent to:

[Ai - 2(ft -h ft + ft)] (f + ̂ ) - [A2 - 2(/>! + ft + ft)] (' + ̂
2y(3.18)

ft + ft)] / + = [13 - 2(/?, + ft + ft)] t +
V 25ft / V 2dft

(3.19)
By Lemma 3.5,

(3.20)

at the trailing edge.
We claim that (3.20) hold for all the solutions of (3.6) with ft < β2 < βι

and 0 < ft — b < δ. We justify the claim by contradiction. Suppose, otherwise,
for instance, at some point (βl9 β2^β^) on the solution of (3.6) with β3 < β2 < β\
and 0 < - b < δ:

which together with (2.22) gives:

£-£ "A A-A)-
This when combined with (2.14) and (3.19) implies:

t+\w-t+\w = *- (3 21)
2 dβ2 2 dβi

By (2.11), (3.18) and (3.21), we obtain:

J + 1 dq -o
+ 2^-°

which together with (2.22) and (3.21) gives:
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d2q d2q d2q

dβ,3β2 dβldβ3 dβ2d

at (/?ι,j82,j?3) where β~3 € (b,b + δ).
On the other hand, by (2.22) and Lemma 3.1:

= 0 (3.22)

S2q d3q
= 2(j?ι - P2).0 ,„ ., < 0 (3.23)

δβ2δβ

Equations (3.22) and (3.23) contradict each other. This proves the claim.
By (2.22), we have:

Differentiating this with respect to β\ yields:

ft)<0 <3 24>
where we have used (3.20) and Lemma 3.1 in the last step.

It follows from (3.20) and (2.22) that

%L < dq < I*!. n 25)
dβ^Wτ Sβ2

 (3'25)

which when combined with (2.11), (3.18) and (3.19) gives:

+ί£<* '+m>* '4t>0 <3 26)

on the solution (β\,β2 >βι) of (3.6) in the region ft < ^2 < β\ where ft G
(b,b + δ).

Therefore, by (2.24):

dλl 1 dq
+ 2 δft

where in the last inequality we use (2.11), (2.15), (3.24) and (3.26). This proves
the first inequality of Lemma 3.8.

Next we shall prove the rest of Lemma 3.8. By (2.22), we have:

N d2q _ dq dq

Differentiating this with respect to ft yields:

From (2.22) and (3.19), we obtain:
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(λ2 - λi) if + I L l + μ3 _ 2^ + β2
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which together with (3.27) gives:

= -2[λ3-

where we have used (2.11) and Lemma 3.1 in the last inequality.
It follows from (2.24) that:

dλ3( ldq\ I , « y A
= t + ~ + [As ~ 2 ( β l + β 2 + β ί ) ]

(3.28)

3λ2-λ3

2 & -&
I ^ Λ , ! ,

2 l

where we have used Lemma 2.2, (3.25) and (3.26) in the first inequality, and (3.28)
in the last one.

This proves the third inequality of Lemma 3.9. In the same way, we can prove
the second one. The proof of Lemma 3.9 is completed.

We are ready to solve (3.6) for β\ and ft as functions of ft for t >

By Lemma 3.8, system (3.6) can be solved for:

in the neighborhood of (βΐ (t), βΐ (t)9 β^ (t))9 where β^(t) £(b,b + δ) for each t >
max{t~9t

+}. Furthermore, (3.16) holds if ft > /^(O ^e s^a^ extend functions
(3.15) in the positive ft direction as far as possible. It follows from Lemma 3.7
and Lemma 3.9 that, along the extension of (3.15) in the region β\ > ft > ft,
where ft G (b,b -f δ), the Jacobian matrix:

δF

δft

aό
\5ft

8F_ \

dβ,

WJ

is diagonal and that therefore, nonsingular. Furthermore, system (3.6) determines
(3.15) as two decreasing functions of ft, and therefore, Λ^(ft) € (b,b + δ) as ft
increases.

This immediately guarantees that (3.15) can be extended as far as possible in
the region: ft > ft > ft with ft e (b,b + δ). Since Λf(ft) is decreasing, (3.15)
stops at some point βj(0 where, obviously, M(/?2~(f)) — /^"(O Therefore, we have



96 F.R. Tian

shown that (3.7) determines ft and ft as decreasing functions of ft over interval

Let
jg+(0 = M(/?2~(0), β$(t) = N(/^(0) .

Clearly, (βϊ(t),βϊ(t)9βf(t)) solves system (3.7) at the leading edge ft = ft.
Hence, these βί~(0>βj(0 anί* βί(0 are exactly the ones appearing in Lemma 3.6.

Substituting (3.15) into (2.18), we obtain:

x = λ2(M(β2\ ft,N(ft))t + w2(M(ft), ft^Λ/Xft)),

which by Lemma 3.7 and Lemma 3.9 clearly determines x as an increasing function
of ft over interval [j8^~(0>βj(0] ^ follows that, for each fixed t > max{ί~,ί+},ft
is a function of x over the interval [x~(t\x+(t)], and that so, therefore, are ft and
ft, where:

(3.29)

Thus, (2.18) can be solved for:

βι=βι(x,t), ft = ft(*,0, ft=ft(*,0

within a region:

jc~(0 < x < *+(0> for * > max{ΓV+} , (3.30)

where x~ and x+ are given by (3.29).
Boundary conditions (2.2) and (2.3) can be checked easily. Therefore, we have

proved:

Theorem 3.10. Under the conditions of Lemma 3.1, the hodograph transform (2.18)
with Wi's given by (2.24) and (2.25) can be solved for ft, ft and ft as functions
of (x, 0 within region (3.30) for all t > max{ί~,ί+}. Furthermore, these ft, ft
and ft satisfy boundary conditions (2.2) 0«d (2.3).

Theorem 2.3 and Theorem 3.10 immediately give:

Theorem 3.11. Under the conditions of Lemma 3.1, the Whitham averaged sys-
tem has a solution (β\(x9t\β2(x9t)9β^(x9t)) within region (3.30) for all t >
max{ί~~,ί+}, and this solution satisfies boundary conditions (2.2) and (2.3) on
the boundaries of the region.

Remark. Conditions of Lemma 3.1 are quite generic. For instance, it is easy to
check that these conditions are satisfied by decreasing initial data UQ(X) with the
following asymptotes at the infinity:

UQ(X) &b+ T-TJ, as x -> +00 ,
\x\

UQ(X) « a - —Γβ, as x —> -oo ,

where α,β > 0.
We conclude this section by considering the case when one or both of a and

b are infinite. In addition to the assumption that f'"(u) < 0, we need to put extra
conditions at a = +00 or/and b = — oo. More precisely, we suppose
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f"(u) < 0, in the neighborhood of u = a if a = +00 ,

lim f"(u) = +00, if ft = -oo . (3.31)
w—»6

Under these conditions, it is easy to check that Lemma 3.1, 3.2 and 3.3 with
slightly different wording still hold when a = +00 or/and b = —oo. Obviously, the
proof of Lemma 3.4-3.11 do not or only superficially depend on whether a or/and
b is infinite. Therefore, we have similar results in the case when the decreasing
initial data is not bounded at x = — oo or/and x = oo.

Theorem 3.12. Consider a decreasing initial data x = f(u) defined over (b,a\
where a = +00 or/and b = —oo. Suppose that in addition to (3.1) and the as-
sumption that f'"(u) < 0 in the neighborhood of u = a and u = b,f(u) satisfies
(3.31). Then there exists a t* > 0 such that the Whitham averaged system has
a solution (ft(x,0>ft(*,0>ft(XO) within region (3.30) for all t > t*, and this
solution satisfies boundary conditions (2.2) and (2.3) on the boundaries of the
region.

As in Theorem 3.11, it is easy to see that the conditions of Theorem 3.12 are
also quite generic.

4. The Whitham Solution for Hump-like Initial Data

In this section, we consider the case of hump-like initial data. For convenience, we
assume the initial data to have a single extremum. We further normalize the initial
data such that

max UQ(X) = ι/o(0) = 1 .
— 00<JC<+00

We denote f+(u) and f~(u) as the inverse functions of the decreasing and in-
creasing parts of u = MO(*)> respectively.

As in Sect. 2, the initial value problem is to solve the Whitham averaged system
for the multibranches ft,ft and ft from the initial curve u = UQ(X). Boundary
conditions (2.2) and (2.3) should also be satisfied on the trailing and leading edges.

The hodograph transform (2.18) when / = 1 after differentiation with respect to
x and use of Lemma 3.7 becomes:

Since the maximum of the initial curve is preserved along the horizontal motion,
the above equation indicates that (2.18) when i = 1 is singular at the maximum of
βι (see Fig. 2.). A modification of the hodograph method is therefore necessary.

Instead of ft, ft and ft, we introduce Xi(x9ty$:

βi(x,t) = uo(Xt(x,t))9 i= 1,2,3.

Later we will see that JQ(x,ί)'s are monotone in x.
As a result, the Whitham averaged system (1.1) becomes:

Xit + Mtto(JCi),tto(JC2),tto(JC3))^x = 0, i = 1,2,3 . (4.1)

The Burgers equation (2.1) becomes:
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Fig. 2.

Xt + 6uo(X)Xx = 0 (4.2)

Figure 2 indicates that (X\9X29X3) should be restricted in the region:

Γ(uQ(X2)) < Xι, Γ(uQ(X3)) < Xl9 X2 > 0, and X3 > 0 . (4.3)

Boundary conditions (2.2) and (2.3) are transformed to:

a) At the trailing edge:

X\ = the solution of (4.2) defined outside the multivalued region ,

X2=X* > 0. (4.4)

b) At the leading edge:

Xι=X2 > 0 ,
X$ = the solution of (4.2) defined outside the multivalued region . (4.5)

Therefore, the initial value problem of system (1.1) for the initial data u — UQ(X)
becomes the initial value problem of the modified Whitham averaged system (4.1)
for the initial data X = jc.

We want to use another version of Theorem 2.3 to solve system (4.1) for the
initial data X = x. Consider the hodograph transform:

x = λi(uQ(Xλ\uo(X2\uQ(X^)t + Wt(Xl9X29X3\ i = 1,2,3 , (4.6)

where Wi(X\9X29X3)'s are determined by the linear overdetermined system:

^ = ^(^(Xi^u^X^^X^u^Xj^Wi - Wjl ij = l,2,3,ίΦ7 , (4.7)

and α,/s are given in (2.17).
We need to understand what kinds of boundary conditions should be imposed

on Wi(X\9X29Xif&. The solution of (4.2) satisfies the characteristics equation:

x = 6uo(X)t+X. (4.8)

By (2.12), (2.13), (4.4), (4.5), (4.6) and (4.8), we see that at the trailing edge:

l, X, > 0 ,

(4.9)
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Similar conditions hold at the leading edge:
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), Xι>0,

(4.10)

As a consequence, it is natural to consider system (4.7) with boundary conditions
(4.9) and (4.10). Similar to Theorem 2.4, we have:

Theorem 4.1. If Q(X\9X2,X$) defined in region (43) is a solution of:

, i,j= 1,2,3 ίφy (4.11)

with boundary conditions:

>X,X) =X9
(4.12)

<0 , (4.13)

(Wι, W2, W3) defined by:

ί= 1,2,3 (4.14)

solves the boundary value problem (4.7), (4.9) and (4.10).

Before we prove this theorem, we shall solve the boundary value problem
(4.11)-(4.13). This is carried out in the following theorem:

Theorem 4.2. System (4.11X4.13) has one and only one smooth solution in region
(4.3). The solution is symmetric with respect to X2 and X^ and is given by:

_ι

where

,

is also smooth in region (4.3).
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Proof. Under a change of variable:

we obtain:

_ *,ΛV\ i /+ f-^ + -^wo(Γ)J i Y ξu'(ξ)
7f== dμ = --/ ,—J? dξ

2V2 _ι VF=~μ

for 7 > 0. This enables us to rewrite F(X,Y) of (4.15) as:

which under a new transform:

ξ = f+ f —^wθPO + —r-^Wθ(ί")
\ 2 2

becomes:

in the case that X ^ 0 and Y > 0. This allows us to write Q(X\,X2,X^ as

i i /+ ^«b(JΓι)+ ̂ ^"0(^2) +

2χ/2π_Vι

(4.16)

for Xι ^ 0,̂ 2 > 0 and X3 > 0. Notice that (4.16) is exactly the same as (2.25)
in view of the transform βi = UQ(XΪ) and the symmetry as stated in Theorem 2.5. It
immediately follows from (4.15) and (4.16) that Q(X\^Xι^X^) is smooth in region
(4.3). A simple calculation with (4.15) also shows that

is smooth at X\ = 0, and therefore it is also smooth in region (4.3).
We next rewrite Q(X\,X2,X$) as:

X, < 0

0(X3)), Xl > 0

where

( Q-(uo(Xl\uQ(X2)9u
,Λ2,A3) = <

I Q+(u0(Xl),u0(X2),u

-i
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and
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f

and λ = +, —.
To prove that

It is straightforward to use (4.17) to check that

(4.18)

,^LS) satisfies (4.11), it suffices to show that:

β , d2Q* dQ* 3Qλ

Since Qλ(β\,β2,β3) is obviously symmetric with respect to j?2 and
to show that

„ . &Qλ 3Qλ

A simple calculation on (4.18) yields:

By (4.17), we have:

dβ '

3, it is enough

(4.19)

(4.20)

L-ι

-dv

I * I

i/
+ 3) 1 - V2

dv

1+v
—

-ft), (4.21)
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where we have used (4.20) in the third equality. Simply integrating by parts, we
can check that the last two terms of (4.21) cancel each other. This proves (4.19),
and therefore, system (4.11).

Boundary conditions can be checked as follows. At XΊ =Xι, we have:

2χ/2 Λ χ/Π^ μ\

which together with (4.15) yields (4.13). Boundary condition (4.12) immediately
follows from (4.16).

Finally, we want to prove the uniqueness of solution to the boundary value
problem (4.11H4 13). Suppose Q(X\,X2,X3) and Q(Xι,X2,Xτ,) are two solutions.
Since the boundary value problem in question is a linear one, Q = Q — Q satisfies
(4.11) and boundary conditions (4.12) and (4.13) with homogeneous terms. In
the region X{ > 0, X2 > 0, X3 > 0, if we let Xι = f+(β\\ X2 = f+(βι) and

), we have:

Λ

~βj

which by Theorem 2.5 implies:

,,*2,*3) = 0, for Xι,X2,Xι > 0 . (4.22)

On the other hand, for X\ < 0, condition (4.13) with a homogeneous term can
be rewritten as:

= 0 .

This and (4.22) at X\ = 0 prove

Q(Xt,X3,X3) = 0, farXi < 0 .

Using the notation X2 = f+(β2} and X3 - f+(β3), by (4.11) we have:

dQ

Q(Xι,f+(β),f+(β» = 0, for Ai < 0 ,

which by Lemma 3.4 of [12] gives:

This and (4.22) proves the uniqueness, and the proof of Theorem 4.2 is completed.
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We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. For X\ ΦO, λ = +, -, let

Xl = f\βv\ X2 = f+(β2\ X, = /+(ft) (4.23)

In this way, we write Wj's of (4.14) as:

\[λi(βι,β2,βι) - 2(/?ι + β2 + &)]ff2 dβi

In view of (4.11) and (4.23), Q(fλ(βι\f+(β2\f+(βι)) satisfies (2.22). By The-
orem 2.4, we obtain

which is equivalent to (4.7).
Boundary conditions can be checked as follows. The second condition of (4,9)

at the trailing edge follows from (2.12), (4.14) and the fact that Q(X\9X29X^) is
symmetric with respect to X2 and X-$. The first condition of (4.9) can be easily
verified using (2.12) and (4.13) in the case of X\ < 0. The part of the trailing
edge for X\ > 0 can be handled as follows.

It follows from (2.12) and (4.14) that

SSL
Wl(Xl9X39X3) = 2[κo(*i) - κo(A3 )]~~^τ + Q(Xι,X3,X3) - (4.24)UQ(AI )

Differentiating this with respect to X3 yields:

dWι(Xι9X39X3)

&Q•

-o,

where we have used (4.11) in the last equation. W\(X\9X39X3) is independent of
^3, and therefore, the first condition of (4.9) follows by substituting X3 =X\ into
(4.24) and using (4.12). Boundary condition (4.10) can be checked in the same
way. This completes the proof of Theorem 4.1.

We now study the hodograph transform (4.6) with ^'s given by (4.14) and
(4.15). We shall show that transform (4.6) can be solved for X\9X2 and X?> as
functions of ( c, t) within a cusp in the x-t plane.

We make some assumption about the initial data. We suppose that the decreasing
part of the initial curve x = f+(u) has only one inflection point at u = u*, more
precisely,

/+"(M*) = 0; f+'"(u) < 0, for M Φ W * . (4.25)

Therefore, by Theorem 2.6 and 2.9, the hodograph transform (4.6) can be solved
within a cusp until a finite time T when the maximum of the initial curve hits the
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trailing edge. The main purpose of this section is to solve the hodograph transform
for time after T.

First, we simplify the hodograph transform. Eliminating x from (4.6), we obtain:

(4.26)

which is equivalent to:

(λιt+Wι)-(λ2t+W2) = 0,

= 0.
M0(*2)-«θ(*3)

Similar to the equations above (3.10), this system becomes:

dQ(Xl,X3,X3)

-+2—

(4.27)

8X28X3 _ 3
2

dQ(Xι,X3,X3)

=0 (4 28)

at the trailing edge X2 =X }. Substituting the first equation into the second one, and
using (4.11), we get

dQ(Xι,X3,X j ) δQ(Xι,X3,X3)

U(t,XltX3) = 6t+
HO(ΛI)

+ 2 = 0 ,

d1Q(X1,X3,X3) d*Q(Xι,X3,X3)

(4.29)

<430)

In particular, as mentioned previously, when t = T system (4.29) and (4.30) has
a solution (T,χ-(T\X~(T}} with JΓf(Γ) = 0 and ̂ 3~(Γ) > 0. To solve (4.29)
and (4.30) for X\ and Xτ> for t > Γ, we shall calculate partial derivatives of (7 and
V on the solution (ί,Jfι,JSΓ3) of (4.30), where w0(^ι) > "0

Integration by parts gives:

j1

(431)

and

-i -A*

(4.32)
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Using (4.15) and the symmetry of Q about X^ and X3, we rewrite U of
(4.29) as:

dξ

4

where we have used (4.31) and (4.32) in the second equality. This gives:

dϋ 1 1

2 «o(JΓ, - αoAΓ 3 ) - ί 2 o

> 0, for ̂ i ^ O ,

where we have used the assumption that MO(*) is increasing for x < 0 and decreas-
ing for jc > 0.

Differentiating (4.11) when i — 2 and j = 3 with respect to X$ yields

2 , _ _
' L ol 2) U

This becomes
* = _ _

^ ' 'u'0(X3)dX3 8X2dX3

when XΊ =X3. Since Q(X\,X2,X3) is symmetric with respect to X2 and XT,, we get:

= =

' ;

when XΊ = X?>.
By (4.29), (4.34) and (4.35), we obtain:

= 0 (4.36)

on the solution (Xι,X3,X3) of (4.30).
On the other hand, it follows from (4.30), (4.33) and (4.36) that
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2?

Therefore, we obtain:

J

(4.37)

^
>0,

^ 0

dV u'0(X3)

on the solution (X\,X^) of (4.30) with MO(^I) >
Similarly,

^

2 [ιio(Jf,) -
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x f 3 d ξ
J ,

v. Λ " θ l - " θ 3 Jj:
r Z ι - * ζ

o

„

+ Γ _ -"0 _ dξ

0 v

+ V2 [1 - «o(*i )][! + 3ιιo(Ai ) - 0

2

>0, forΛΊ ^ 0

on the solution (Xi,X$) of (4.30) where we have used /+ g 0 in the first inequal-
ity, and replaced the integral involving /+ by (4.30) and (4.37) in the equality.

All these imply that the Jacobian:

at the solution (X\9X$) of (4.30), where u$(X\) > uQ(Xz) for Xι ^ 0. Since system
(4.29) and (4.30) hold for (Γ,^f(Γ),Jr3~(Γ)), it follows from the Implicit Function
Theorem that system (4.29) and (4.30) can be solved for X\ and X$ as functions of
t for t in the neighborhood of T. Furthermore, it is easy to check that the solutions
X^~(t) and X^(t) are decreasing and increasing, respectively, as t increases. Since
χ-(T) = 0, we have X^(t) ^ 0 for t ^ T. Equations (4.29) and (4.33) imply that
X^~(T) can not catch up with /~(wo(^3~(0)) in finite time Using the Implicit
Function Theorem again, we see that X{~(t) and X^(t) can be further extended for
all t ^ T. Therefore, we have established:

Lemma 4.3 Consider a smooth initial data u = UQ(X) with a single hump. Suppose
that UQ(X) reaches its only maximum at x = 0, where the maximum is normalized
to be 1. If the inverse function f+(u) of the decreasing part ofu = UQ(X) satisfies
(4.25), system (4.27) has a unique solution (X^(t),X^(t\X~(t)) with X^(t) =
X^(t)for all t ^ T. Furthermore, we have w0(^f (0) > uQ(X^(t))for t > T.

At the leading edge X\ = XΊ > 0, system (4.27), similar to (3.14), is equiva-
lent to:

=

2 '

This system, under transform /?, = uo(X{)9 becomes (3.14) with q(β\,β2,βι) re-
placed by e(/+(j?i),/+(#z),/+(j33)). Therefore, by Lemma 3.6 we have:

Lemma 4.4. Under conditions of Lemma 4.3, system (4.27) has a unique solution
with X+(t)=Xf(t)for all t ^ T. Furthermore, we have
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For each ί > T, we want to solve (4.27) at X\ = 0. Under a change of variable:

*,=/+(/?,), JT2 = /+(/?2), X3 = f+(β3) (4-38)

system (4.27) when Xι - 0 becomes (3.7) with β\ = 1 and q(βι,β2,βϊ) replaced
by e(/+(/5ι),/+(&),/+(ft)) It follows from (3.9) and (3.17) that

dF _ 24 j^_ 0 ^£ _ f t

~dt~l^' ~dfa~ Wτ~

dG , dG n dG Λ

^=6' 8β~2>Q' ^> 0

which implies the non- vanishing of the Jacobian:

d(F,G)

at (Γ, l,M0(^2~(^))'Mo(^3~(Ό)) Hence, system (3.7) can be solved for jf?3 and t
as functions of β2:

in the neighborhood of
Clearly, H(β2) decreases as j?2 increases, and therefore, (t,β\,β2,βι) =

(L(β2), l9β2,H(β2)) satisfies system (3.7) for β2 in the neighborhood of uQ

and β2 > «o(Jζ-(Γ)).
Before continuing, we need a lemma whose proof will be given later.

Lemma 4.5. The following inequalities:

w2) ^ Λ aq3r + FΓ3) ^ A

'

on the solution (t9l9β29β^) of (3.6) iw ίΛe region β2 > β^.

By (2.14), Lemma 3.7 and Lemma 4.5, system (3.7) determines t = L(β2) as
an increasing functions of β2. Accordingly, β2 is an increasing function of t, and
therefore, β$ is a decreasing function of t for t > T in the neighborhood of T.
Using Lemma 3.7, Lemma 4.5 and Implicit Function Theorem again, we see that
we can extend t for all t > T. This together with (4.38) establishes:

Lemma 4.6. Under conditions of Lemma 4.3, system (4.27) when X\ = 0 has
a unique solution ( t , 0 , X ; ( t ) 9 X f ( t ) ) for all t ^ T with X^(T)=X^(T) and
X*(T)=X^~(T). Furthermore, X2(t) and Xf(t) are decreasing and increasing
functions of t, respectively.

We now come back to prove Lemma 4.6.

Proof of Lemma 4.6. By (4.11) and (4.38), we have:

Taking derivative with respect to βi yields
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dβidfc Bβ2dβ3

Using (4.25) in (4.16), we find:

< 0.

These two equations and inequalities give:

S2Q _

at (Γ,l,«o(A 2-(Γ)),«o(AΓ3-(Γ))).
This together with (4.30) implies:

< 0, -̂̂ - > 0

at (Γ, l,uo(X^(T)),uo(X^(T))). The symmetry of Q with respect to β2 and
gives:

82Q d2Q < o

at (Γ,l,«o(JζΓ(Ό),«o(AΓ(Ό))
We claim that

,4.40,

on all the solutions (ί, l,j?2,ft) of (3.7) with fc > ft.
Suppose otherwise, for instance,

= 0

at some point (I,β2,β3) on the solution of (3.7) where /?2 > ft- This when com-
bined with (4.11) gives:

^ = ̂  (441)
dβ2 dβ3

 (*Λί)

at(l, j 8 2 ,ft)where)? 2 >ft.
Using (4.14) and (4.38), we write (4.26) as

(4.42)

,-2(l+|82 + j83)](f + H?-)

1 Λ/~>\
(4.43)
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By (2.14), (4.41) and (4.43), we have:

1 dQ _ 1 dQ _

which together with (2.11) and (4.42) gives:

1 dQ

Therefore, by (4.11) we have

d2Q d2Q d2Q

Sβidβ, dβ2dβ3 dβldβ2

= 0 (4.44)

at(l,ft,ft), whereft > ft.
On the other hand, we obtain from (4.16), (4.38) and (4.39) that

(4.45)

at (1, ft, ft) where ft > ft.
Equations (4.44) and (4.45) contradict each other, and the claim is justified.
It follows from (4.11), (4.38) and (4.40) that

dβi Sβ3 dβ2 '

which when combined with (2.11), (4.42) and (4.43) gives:

(4'46)

on the solution (l,j?2>&) of (3.7) with 1 > β2 > ft.
By (4.11) and (4.38), we have:

Differentiating this with respect to β2 yields:

Using (4.11) and (4.38) in (4.43), we obtain:

which together with (4.47) gives:
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= 2[λ2 - 2(βl +β2

> 0, when β2 > ft (4.48)

where we have used (2.11), (4.16), (4.25) and (4.38) in the last inequality.
It follows from (4.14) and (4.38) that

d(λ2t+W2) dλ2

dβ2

dλ2 ( i dQ \ i
= aft V'+ 2aft J + 2[λϊ ~

2 O Ω
PI - P3

> 0, when β2 > ft ,

where we have used Lemma 2.2 and (4.46) in the first inequality, and (4.48) in
the last one. This proves:

d(λ2t+W2)

Sβ2

In the same way, we can show that

dβi

> 0.

< 0.

This completes the proof of Lemma 4.6.
Next, we want to solve system (4.26) for X\ and X^ as functions of X2 at each

t > T when (t9Xι9X2,X3) is in the neighborhood of (Γ,0,JΓ2*(Γ),JΓ3*(Γ)).
By (2.12) and (4.9), we have:

2 - 1 - <4 49)

at (T909X^~(T)9X^~(T))9 where WQ(JC) reaches its maximum at x = 0.
It follows from (1.2), (2.4), (2.5), (2.8) and (2.9) that

This together with (2.12), (4.14) and (4.35) gives:

d(λ2t+W2)

Άί. Γ 1 & 1

+ 4[«0(A3)-uo(Ai)] dx2

9u'0(X3)\t+--72 «
SXidX i
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at X2 = Xι. Using (4.28) and the symmetry of Q about X2 and X$ in the last
equation, we obtain:

S^>=0 (4,0)
0X2

at (Γ,0,AΓ2-(Γ),Jr3-(Γ)).
Equation (4.16) when combined with (4.25) gives

[u'0(X2)]2u'0(X3)
< 0, < 0

at (Γ,0,^2~(Γ),Jr3~(Γ)). This together with (4.49) and (4.50) allows us to choose
an ε > 0 such that

|A 2*(f) - X2~(T)\ < ε, |ΛΓ3*(ί) - X3~(T)\ < ε, when t e [Γ, T + ε) (4.51)

and that the following inequalities

> o, d(λ2t+W2) 1

< o, < 0 (4.52)
[iα*2)K(*3)

hold in a set S where

S= {(t,Xι9X29X3)\T ^ t < Γ + ε,|Zι| < ε, \X2 -X2(T}\ < ε,

Following the proof of Lemma 4.5, we can use (4.40) and (4.52) to show that

d(λ2t+W2) > 0 (4.53)

hold on the solution (t,Xι,Xz,Xί) of (4.27) whenever the solution is in 5 with
X2*X3.

Lemma 3.7, (4.52) and (4.53) enable us to solve (4.27) for

Xι=m(X2), X3=n(X2)

in the neighborhood of X£(t) for each t € (Γ,Γ + ε). Moreover, m(X2) and n(X2)
are decreasing functions of X2, and in particular, we have:

m'(X2) = (4.54)

Using the Implicit Function Theorem again, we can extend m(X2) and n(X2) in the
positive X2 direction so far as (t,Xι,X2,Xj) is in S and X2 < Xj,.

By Lemma 4.6, X2(t) and ΛΓ3*(?) are decreasing and increasing functions of t,
respectively. Hence, we have Xf(t) < X^(T)=X3~(T) < Xf(t) for t > T. Since
XT, = n(X2) decreases as X2 increases, if we increase X2 starting at X2(t}, then by
(4.51) we find
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\X2 -X2(T)\ < ε, \X3 -X3-(T)\ < ε

for X2 ^Xi. Thus, to prove that (t,Xι,X29X3) € S before X2 and n(X2) meet, it
suffices to show that — ε < X\ ^0 during this extension.

It follows from m(X2(t)) = 0 and the fact that X\ = m(X2) is a decreasing
function of X2 that X\ <*Q. Using m(X2*) = 0 again, we see

J f ι= / m'(ξ)dξ

2

> - ε

for ^2 > ^2*(0» where we have also used (4.52) and (4.54) in the first inequality,
and (4.51) and \X2(t) —X^(T)\ < ε in the last one. Therefore, we have proved
that (t9Xι9X29X3) € S before X3 = n(X2) and X2 meet.

As a consequence, we can extend m(X2) and n(X2) so long as m(X2) < X2 <
). Eventually, n(X2) and X2 will meet at Jζ~. Denote,

Obviously, (t9X^(t)9X^(t)9X^~(t)) satisfies (4.27) and therefore, Xj~(t)'s are given
in Lemma 4.3. Thus, we have proved:

Lemma 4.7. Under the conditions of Lemma 4.1, there exists an ε > 0 such that
(4.27) can be solved for

X\ =
Xζ(t) ^X2^ X2(t) ,

Xi = n(X2\

for each t G [Γ, Γ + ε). Furthermore, m(X2) and n(X2) are decreasing functions
ofX2.

We are now ready to solve the hodograph transform (4.6) for X\9X2 and X^
as functions of (jc,0 for a short time after T. By Lemma 4.7, (4.27) determines
Xι = m(X2) and X3 = n(X2) for X^(t) ^ X2 ^ X£(t). We want to extend m(Xι)
and n(X2) for X2 < X2(t). The change of variables (4.38) allows us to transform
system (4.27) when X\ ^ 0 into system (3.7). The method of Sect. 3 can be used to
show that (4.27) determines X\ and X-$ as decreasing functions of X2 for X2(t) ^
X2 ^ X2(t)9 where X2(t) is given in Lemma 4.4. Therefore, we have shown that
(4.27) determines X\ and X3 as decreasing functions of X2 over [X^(t)9X^"(t)].
Substituting X\ = m(X2) and X$ = n(X2) into the hodograph transform (4.6), we
obtain

x = λ2(uQ(m(X2)),uQ(X2\u0(n(X3»)t

4-

which by Lemma 3.7, Lemma 3.9, (4.52) and (4.53) determines x as a decreasing
function of X2 over [X^~(t)9X^~(t)]. This implies that X2 is a function of (x9t) for
jc~(ί) < x < x+(t) and t ^ Γ, where
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In the same region, XΊ and X^ are, accordingly, functions of (x,t).
Thus, (4.6) can be solved for

within a cusp for a short time after T. Therefore, we have proved:

Theorem 4.8 Under conditions of Lemma 4.3, the hodograph transform (4.6) with
Wi given by (4.14) and (4.15) can be solved for X\,Xι andXτ> as functions of(x,t)
within a cusp for a short time after T. Furthermore, boundary conditions (4.4)
and (4.5) are satisfied on the cusp.

Theorems 2.3, 4.8 and the transform /?,- = UQ(XΪ) immediately establish the main
theorem of this section.

Theorem 4.9 Under conditions of Lemma 4.3, the Whitham averaged system has
a solution (βι(x9t)9β2(x.>t\β^(x9t)) within a cusp for a short time after T. Fur-
thermore, the Whitham solution satisfies boundary conditions (2.2) and (2.3) on
the cusp.

Remark. Lemmas 4.1-4.6 are all time results. However, we did not succeed in
proving Theorems 4.8 and 4.9 for all time t ^ T.

Acknowledgments. I thank C. David Levermore for several discussions.
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