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Abstract: Star products on the classical double group of a simple Lie group and
on corresponding symplectic groupoids are given so that the quantum double and
the "quantized tangent bundle" are obtained in the deformation description.
"Complex" quantum groups and bicovariant quantum Lie algebras are discussed
from this point of view. Further we discuss the quantization of the Poisson
structure on the symmetric algebra S(g) leading to the quantized enveloping
algebra Uh(g) as an example of biquantization in the sense of Turaev. Description
of Uh(g) in terms of the generators of the bicovariant differential calculus on F(Gq)
is very convenient for this purpose. Finaly we interpret in the deformation frame-
work some well known properties of compact quantum groups as simple conse-
quences of corresponding properties of classical compact Lie groups. An analogue
of the classical Kirillov's universal character formula is given for the unitary
irreducible representation in the compact case.

1. Introduction

Let g be a complex simple finite-dimensional Lie algebra. According to Drinfeld's
theorem [11] (Proposition 3.16) there exists a special element ^e(U(g)®
£/(#)) [[/z]] such that the linear space U(g)[[h]~] can be equipped with the
structure of the quasitriangular Hopf algebra, with the standard multiplication and
counit induced from U(g) and with the twisted comultiplication Δh and antipode
Sh given by formulas

(1)

with

(2)
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A and S in the above formulae are the standard comultiplication and antipode in
U(g\ c is a central element in l/(gr)[[Λ]]. The formulas for the antipode together
with the shorthanded notation & = £ JSΓ(1) (g) ̂ (2) and J^'1 = £ J^~(1) (x) ^-<2>
are taken from [12].

The universal ^-matrix making the above Hopf algebra a quasitriangular one
is expressed with help of the symmetric ^-invariant element teg® g (defined via
the inverse of the Killing matrix) as

& = y~ϊ exp(hί)^-. (3)

Moreover Drinfeld's theorem claims that this quasitriangular Hopf algebra is
isomorphic to the famous quantum group corresponding to the Lie algebra g as it
was introduced by Drinfeld and Jimbo [1,17]. Let us denote by φ this isomor-
phism φ: l/?(0)-> 17(0)[[ft]].

Comparing (1) with the explicit formula for the antipode from [3] and remem-
bering that the φ is identity on the Cartan subalgebra we realize that the u should
be proportional up to some central element to the γ = exp(—ftp), where p is the
element of the Cartan subalgebra equal to the half-sum of the Cartan generators
corresponding to the positive roots.

In the compact case (heR)φ can be taken to be a *-homomorphism

φ(x*) = (φ(x))*, (4)

where the * on the left is the usual one in Uh(g) and the * on the right is the usual
one in the ϊ/(0)[[fc]].

Unfortunately there is no explicit formula for the F.
In this paper we will also be interested in the dual (in the sense of the Hopf

algebras) situation, which is nicely described in [21]. Roughly speaking in this
situation we have on the vector space C°°(G) [[ft]] with the standard comultiplica-
tion and counit of the function Hopf algebra F(G) on the corresponding Lie group
G, but the deformed multiplication *Λ (star product) and antipode Sh. The corres-
ponding formulas expressing those with help of undeformed ones m and S are:

a*hb = m(#'*(a®b)*&~1), Sha = S(u~l * α * t i ) , (5)

for any α, b e F(G). Here the * have been used to denote the actions of U(g) on
F(G) via left and right invariant differential operators.

In the compact case we have also

(6)

The rising Hopf algebra should be of course isomorphic to the Hopf algebra of
quantized functions F(Gq) [3] on the group G under the φ* dual to the φ. The
reader can find an explicit example of SL(2) in [21]. We will in the following often
not distinguish between isomorphic objects under these isomorphisms. We hope it
will be clear from the context what we have in mind.

In the above situation the Hopf algebras F(Gq) are deformation quantizations
(ττ[' 5 ' ] ~* i{' >'} if h -»0) °f trιe corresponding Poisson-Lie Groups [1], with the
Poisson bracket

i{a,b} = -m(r*(0(g)fr)-(f l (x)fc)*r), (7)

with r eg® g being the classical r-matrix.
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In this paper we will use this idea of Drinfeld to introduce the star product on
the classical double group of a simple Lie group and on the corresponding
symplectic groupoids [13, 30,14] to obtain the quantum double and the "quan-
tized tangent bundle" in the deformation framework described above. We will
relate our results with some recent papers on "complex" quantum groups
[2, 7, 10,15] and bicovariant quantum Lie algebras [18].

Further we will discuss the quantization of the Poisson structure on S(g)
leading to the Uh(g) as an example of biquantization in the sense of Turaev [26,23]
which is dual to this of [23]. It turns out the description of Uh(g) in terms of the
generators of the bicovariant differential calculus on F(Gq) [6,5,19] is very
convenient for this purpose.

Finally we hope to show that the deformation reinterpretation of the group
algebra of the compact quantum group of Podles and Woronowicz [2] lead us to
some kind of universal formula for character generalizing the classical situation
[36]. Here it means that a very simple change in the classical formula allows us to
express the trace of a functional b -> hc(ab) (hc is the Haar measure on F(Gq\
a,beF(Gq)) in the unitary irreducible representation of Uh(g) ~ t/(#)[[/*]]
in terms of an integral on the classical coadjoint orbit with the standard
Kirillov-Souriau-Kostant symplectic structure (which is isomorphic as a
symplectic manifold to the dressing orbit with the symplectic structure induced
from the Poisson-Lie structure on the dual group Gr [20]). It supports the recent
idea of Xu and Weinstein [25] to construct an symplectic counterpart of the
Reshetikhin-Turaev construction of link invariants [35, 34].

Through the paper we assume q = eh with generic values of q.

2. Double

Here we will be interested in the local double Lie group corresponding to the
connected complex simple Lie group G. As it follows from [13] this can be
described as D = G x G. The starting group G and its connected dual group Gr [13]
are identified with the subgroups of D via its Iwasawa decomposition
[24], which leads to the identification D = G x Gr, where now G is assumed
as the diagonal subgroup {(x, x\ x e G} and Gr = AU+, where A = {(x, x~ *), x e
H} and U+ = {(*+, x_), x+ <=N+, x_ e N ~ } , with H being the Cartan
subgroup and N ± the connected nilpotent subgroups corresponding to the positive
and negative roots respectively. Let us remember that the double D as well
as the groups G and Gr are Poisson-Lie groups and that the above factorization
based on the Iwasawa can for more detailed exposition consult [13, 14, 30]). Here
we will only write down the corresponding Poisson brackets using the classical
r-matrix.

The Poisson structure on G have been already given by (7). We will take the
classical universal r-matrix e g (x) g of the form

r = - (P_ - P+ + t) 9 (8)

where P± are projectors on the nilpotent subalgebras correspoinding to the
positive and negative roots respectively. Here the correspondence between the
elements of g (x) g and maps g -> g via the dualization of the first factor in g (x) g
with help of the Killing form has been used.
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We will not distinguish between the universal r-matrix and its representative in
the fundamental representation. The Poisson bracket (7) then becomes on the
matrix elements of the fundamental representation τ

i{τ(x),τ} = [r,τ®τ] . (9)

The Poisson bracket in Gr = {(#+,#_ )} then can be given as [16] (we take
a slightly different convention)

i{9±®>9±} = I>,0±®0±] ,

] . (10)

Because of the factorizability of simple Lie algebras in the sense of [8] the above
Poisson Lie group Gr can be as a manifold identified with G taken with a new
Poisson bracket. If we denote now as y = g+g'1 the corresponding element of
G we have

(ii)
The double D as a Poisson manifold is a direct product of Poisson manifolds

G and Gr. The Poisson structure on the D if this is described as a manifold G x G
can be also easily described for (τ, τ) e G x G,

i{τ(x),τ} = [r,τ®τ] ,

J{τ(8),τ} = [r,τ®τA] ,

i{τ®,τ} = [r,τ®τ]. (12)

From these explicit formulas it is seen immediately that the above mentioned
Iwasawa decomposition

(τ,τA) = (τ,τ)(0+,0_) (13)

is a Poisson mapping.
Let us now assume the function algebra F(D) ~ F(G) ® F(G) with the Lie-

Poisson structure given above. If & e (U(g) ® £/(#)) [[ft]] is this one introducing
on F(G) the structure of the quantum group F(Gq) with & the corresponding
^-matrix, then the &D e (U(g ®g)® U(g ® #))[[/ι]] given by

όZ-D _ ϋ& (j& ήΛ ί\Λ\
^ 1234 — ^13^24^23 U^j

plays the same role for F(D). The corresponding 3fcΌ is

Λ^Λ^Λ13Λ23 . (15)

Here we have used the fact [13] that in the situation of the double the t from
Drinfeld's construction should be taken as (ίi3 — ί24.)

The corresponding u in the formula for the antipode can be taken as

wf2 = ^ 2 1 (y®y). (16)

In the above formulas we assume of course that the multiplication, comultiplica-
tion, antipode and counit of the classical double are the standard one of the tensor
product.
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For the proof of these facts it is enough to note that the above formulae are
nothing else but a direct application of Theorem 2.9 of [8] to the φ(Uh(g)).

The deformed multiplication *D can be written as

(0®

(l®

(0® !)*D(!® b) = a

(17)

Here σ denotes transposition.
The * is given simply by

where * on the components on the right is this one given by (6).
Comparing (17) with the Poisson structure on the classical double given by (12)

we see that this product is really a deformation product along this Poisson bracket.
We denote the obtained quantum double as Dq.

It is also immediately seen that the mapping pG = *Λ : F(Dq) -* F(Gq) is a Hopf
algebra homomorphism as it should be. Similarly there is a Hopf algebra
homomorphism pυ: F(Dq) -> Uh(g)op ~ ί/(^)[[/ί]]op: (a ® b) -*@2ι , b)0t( 9 0),
where "op" means the opposite multiplication. So factorizing out the kernels of
these surjective homomorphisms we obtain the F(Gq) and Uh(g)op as Hopf-subal-
gebras.

It is instructive to write out the commutation relations resulting from (17) for
the representations of the double y = (τ ® 1) and tf = (1 ® τ), where τ is the
fundamental representation of G. We have of course the familiar relations of
[7, 10, 15],

(18)

Here R is the universal ^-matrix for g in the fundamental representation. We have
also omitted the *D as a sign for the multiplication.

To define the quantum double with the help of generators 3Γ and S~ as it was
done in the above mentioned papers we should suppose that the matrices S~ and
2Γ the quantum determinant conditions in the An case and quantum orthogonality
conditions in the remaining cases. They as well as the antipode can be obtained
also from the deformation formulas. The comultiplication and counit on y and
y are clearly the standard one [3].

Let us now briefly discuss the quantum Iwasawa decomposition. Let T denote
the matrix of generators oΐF(Gq) (the fundamental representation). So we have the
famous relations of [3]

2 = T2T1R. (19)

Let yl1 be the same as L± of [3] but now taken with the opposite multiplication

RΛΪΛΪ=Λ%ΛΪR, RΪΛ2=Λ2Λ^R. (20)
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With the help of generators T, A± (entries of T are supposed to commute with
those of A±) there can be introduced according to [2, 8, 9] another description of
the quantum double.

A slight generalization of Proposition 4.5 of [9] shows that this Hopf algebra
can be assumed as a completion of the Hopf algebra generated by ZΓ and ̂  . The
explicit formulas

3~=TΛ+, f=TΛ~ (21)

describe jin injective Hopf algebra morphism (pG (x) pv)A of the algebra generated
by SΓ, ZΓ into the algebra generated by T and Λ±. So they give the quantum
generalization of the Iwasawa decomposition (13). There is also the opposite
Iwasawa decomposition

3T = Λ+T, F = Λ~T. (22)

Moreover the Poisson-Lie structure on Gr given by Eqs. (10) can be understood as
the Poisson limit from the Hopf algebra structure of the Hopf algebra Uh(g)op

generated by Λ±. For later convenience we will discuss this now for the Poisson
bracket (10) taken with the minus sign. Taking on Gr the coordinates y we can
identify G and Gr as manifolds (locally). Now using results of [27] we can introduce
on the function algebra F(G) a new structure of an associative noncommutative
algebra expressed in terms of the *Λ -product (5) as

a*rb = a2*hb3a(al9b2)&(a3, b,) . (23)

Here we used the notation Jα = α 1 ®α 2 , etc. $k denotes an element of
(U(g)® £/(#)) [[/ι]] inverse to the & but now in the algebra taken with the
opposite multiplication in the first factor. It follows from [27] that such an algebra
structure is isomorphic to the usual one of Uh(g). Taking the classical limit we
arrive at the Poisson structure (10) with the minus sign.

3. Quantization of π±

Let us remember [13] that having a general Lie-Poisson group G with the Poisson
structure given by (7) we can introduce on the manifold G two new Poisson
structures denoted by π+. They are given by

π±(da,db) = i{a,b}± = ± m(r*(a®b) + (a® b)*r} . (24)

Here r should be taken as antisymmetric solution of the modified classical Yang-
Baxter equation. Of course G equipped with these Poisson brackets is no more
a Lie-Poisson group. Nevertheless the natural left (for the + sign) and the right (for
the — sign) group actions of G (G is assumed to be equipped with the Lie-Poisson
structure (7)) are Poisson mappings.

In the case of G = D these Poisson structures are nondegenerated [13] and the
manifold D with the above Poisson structures contains all ingredients to be
a symplectic groupoid over G (in the + sign case) or over Gr (in the — sign case)
[30]. We should warn the reader that we use different notation than what is used in
this reference.

Now making the necessary (but straightforward changes) in the proofs
of corresponding Propositions of [21] concerning the quantization of the
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Poisson-Lie structure (7) leading to the (5) we can easily state the following:

1. Formulas

a*+b = J^'φφfc)*^'1 (25)

and

α * _ f c = J* r*(α(x)f?)*<F2i1 (26)

define associative products on F(G\ which are quantizations of (24).
2. If we denote as F(G, *Λ) and F(G, *±) the function algebras equipped with

corresponding products, F(G, *Λ) having the standard comultiplication, then the
following F(G, *Λ)-coactions

Here we have also omitted *+ as a sign of the multiplication.
The coaction δ+ is given as

(27)

δ- : F(G, *_ ) - F(G, *- ) ® F(G, *„) : (<5_ a)(g, h) = a(gh) (28)

are algebra morphisms.
We can now apply all the above to the double D, with ̂ D given by (14). The

resulting algebra structure on £Γ = τ (x) 1 and f = 1 ® τ (τ is again the funda-
mental representation of G) gives e.g. in the " + " case

(29)

f®.#9 (30)

with a proper understanding of the algebra structure of the factors in the tensor
products (we did not graphically distinguish between doubles taken with different
algebra structures).

The " — " case can be treated similarly.
In the same sense as in the previous section we have the Iwasawa decomposi-

tion

er = TL+, f=TL~, (31)

which leads us to the following well known commutation relations of [19]:

RTίT2 = T2T^R ,

RiiLϊ L2 = L2 LΪ R2ι ,

R2\Lι L2 = L2 L! K2ι >

LI T2 = T2R2\Lι , LI T2 = T2Rι2 L\ . (32)

As shown also in [19] the relations in the last line are equivalent to the standard
pairing between F(Gq) and Uh(g\ which is in this way implicitly contained in the
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quantization of π+. The action of Uh(g) on F(Gq) resulting from these relations is
easily recognized as the left action X * a = X(a2)al of x e Uh(g) on the a e F(Gq).
Similar algebra was also introduced and investigated in [33].

We have of course also the opposite Iwasawa decomposition

2~ = L+f, f = L~f. (33)

The corresponding commutation relations are

ϊ L2

 = L2 Lι\ R ,

-/ι L2

 = -L/2 -"i

(34)

Now computing the commutation relations between Γ and X =
TL+(L~Γ1T-1 we get

T2Xl = RΪΪXiRύ1T2. (35)

This is as easy to see is the same as the commutation relation between T and
S(L+)L~ if they are assumed in the algebra which is obtained from F(Gq) and Uh(g)
as a semidirect product with the help of the right action of Uh(g) on F(Gq)
( = α* X = X(aι)a2) [27]. Comparing two above Iwasawa decompositions gives

and we realize that the subalgebra generated by L± can be identified with the
algebra of right-invariant maps on F(Gq) (let us remember the known fact that the
matrices of generators L± are uniquely obtained from the X via decomposition to
the triangular parts [28]).

Let us now assume the left coaction δ of F(Gq) on F(D, *+) given by
δ+ followed with the projection F(D, *Λ) -»F(G q ) in the first factor. As a product of
two algebra morphisms it is again an algebra morphism. The explicit formula reads

XCT\ TrvN T λ(<f~ * &Γ — (J ~\~^ T +\ ](3\(T~\~lT+ C%£\(J\J ) — -* \θ) -* j U\ιS is — \JU j LJ ) — 1 V£y \Lj J J-/ . V*^*MV

As it should be δ acts trivially on left-invariant maps.
Computing the coaction on right-invariant maps we have

which is nothing else but the left dressing action of F(Gq) on Uh(g)op corresponding
to the opposite Iwasawa decomposition of the double given by (22) [9].

With slightly different conventions the above coaction δ has been investigated
also in [18]. Here we hope it was introduced in a more general context.

We will now briefly discuss some facts generalizing the classical situation
[13,30]. Owing to the above described Iwasawa decompositions of F(D, * + ) we
have the following natural projections (algebra homomorphisms):

(38)
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corresponding to the first Iwasawa decomposition (31) and

+ )-+Vh(gΓ (39)

corresponding to the opposite one (33).
Further as easily shown by direct calculation the entries of the matrices ̂ ^ ~ 1

(right-invariant elements) and 17~~1^~ (left-invariant elements) mutually commutes
as it should. So the subalgebras of F(D, *+ ) generated by L± and L± can be viewed
as a generalization of the notion of the dual pair from the classical case. As in the
classical case [31] their only common elements are their Casimirs.

It is well known [13, 14, 30], that the symplectic manifolds (D, π±) play an
important role in the description of symplectic leaves of the Poisson structures on
G and Gr. Their quantization presented in this section should play an analogous
role in the representation theory of F(G^) and Uh(g). E.g. the irreducible finite-
dimensional representations of Uh(g) for the generic value of q can be obtained by
decomposing the representation of Uh(g) on F(Gq) given by the left action X * α,
X e Uh(g), a e F(Gq) which is contained as it was shown in the algebra structure of
theF(D, *+).

We hope that also in the quantum case all ingredients to satisfy the formal
definition of quantum groupoid [22] are contained in JF(D, *±).

4. Biquantization of S(g)

This section is motivated by the appendix of [23], where the dual situation has
been described. Here we will use without further explanation the terminology
introduced in [26, 23]. The reader is referred to the algebraic parts of these papers.
We think that it is not necessary to reproduce here all details, because we hope that
the presented example is enough illustrative. Minor differences from [26, 23] are
insubstantial.

Let us remember that a simple Lie algebra g can be equipped in a standard way
with a structure of Lie bialgebra [1]. It means that in addition to the Lie bracket
[ , ] we have also a Lie cobracket v : g -> g Λ g (which is according to [1]
equivalent to the Poisson structure on G) and the Lie bracket and Lie cobracket
are compatible. In our case the Lie cobracket is given in terms of the classical
r-matrix

v(X) = [r,l®X + X®l], Xzg. (40)

The symmetric algebra S(g) is then endowed with the structure of the so-called
bi-Poisson bialgebra. Roughly speaking it is equipped in addition to the com-
mutative multiplication and the standard Poisson bracket (given by the extension
of the Lie bracket on g via the Leibniz rule) with the

1. comultiplication A (coalgebra structure)

A(X)= 1®X + X®1, Xeg, (41)

which is extended to the entire S(g) as an algebra homomorphism.
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2. Lie cobracket (co-Poisson structure) given on g by (40) and extended to the
entire S(g) with help of the rule

v(ab) = v(a)A(b) + A(a)v(b) . (42)

Let us note that using the classical Yang-Baxter equation we can write the
Poisson bracket in coordinates — X = (τ (x) id)(r + r2i) (τ- the fundamental rep-
resentation, r- the classical universal r-matrix) as

i{*ι,*2} = [r + r2 1,X2]. (43)

It is a well known fact [14, 13] that this Poisson structure is the linearization of the
Poisson structure on F(Gr).

Further let V be the associative algebra over C[/z] obtained in the following
way:

It is the tensor algebra Γ(C[/ι] ® g) over C[ft] ® g divided by a two-sided
ideal generated by elements of the form

ab — ba — /ί[α, b] .

The generators of V are simply only rescaled generators of g. We have V/hV = S(g)
and V/(h — l)V = U(g). In this same way as above we can equip V with a co-
algebra and co-Poisson structures. The V as an C[h]-algebra is quantization of
Poisson algebra S(g) in the usual sense. The corresponding projection qh : V -+ S(g)
is called a quantization homomorphism. qh is of course a surjective bialgebra
homomorphism and preserves the cobracket. If r is the classical r-matrix (8), then
collecting the generators of g with the help of the fundamental representation τ into
the matrix X = (τ ® id)(r + r2ί ) we can write, thanks to the classical Yang-Baxter
equation, the commutation relation in the form

X,X2 - X2X, = h[r + r21, X2~\ - (44)

Let us now assume the Uh.h(g). It means that in the definition of the quantized
enveloping algebra we make simply the change h-+h h, where h is a new Planck
constant. Further let us introduce with the help of the standard .R-matrix a new
matrix R,

l), (45)

so that we have

R = - r + 0(hh) . (46)

We will collect the generators in the matrix denoted again as X,

X = (hΓl(L+S(L~)-I). (47)

We have the following commutation relations:

+ (hfι)2(R21XιRl2X2 - X2R2ι

= - h2h(R2lRί2X2 - X2R21R12) - /ι[£i2 + £21, X2Ί - (48)
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The comultiplication is given as

= XtJ <g> 1 + 1 ® Xt j + Xu (x) (Lί S(L ~ )υ - δikδβ) . (49)

Here it is assumed that the entries of L± in the last term are expressed as functions
of X, which is possible due to the already mentioned triangular decomposition of
hX + I. The entries of the matrix X are nothing else but the properly normalized
generators of the bicovariant differential calculus on F(Gq = ̂ v(hh}) [6, 5, 19]. The
C[[/z, ft]]-bialgebra A generated by X (47) with relations (48-49) is essentially the
Uh(g\ which is a completion of A/(h — I) A.

In the limit h -> 0 we get the anove described co-Poisson algebra V (more
precisely their completion via the inclusion C[ft]c*C[[Λ]]) so that A is a co-
quantization of V in thesense that for a e A holds

(Ph® Ph)h~l(Δ(a) - σΔ(a)) = v(ph(a)) . (50)

The corresponding projection p^, which is again a surjective bialgebra homomor-
phism, is called co-quantization homomorphism.

The last we need in our discussion of the biquantization of S(g) is the following
Poisson bialgebra F. Let y = g + gl 1 be the coordinates in Gr introduced in Sect. 1.
Let us introduce new coordinates collected in the matrix again denoted as X via the
relation X = h~l(y — I). The Poisson bracket in this new coordinates reads

i{Xl9 X2} = h(r2ίX1X2 + XιrX2 - X2r2ίXl - X2X,r) + [r + r21, X2~] .

(51)

The comultiplication is given by

A(Xtj) = Xi} ® 1 + 1 (8) Xtj + Xkl ® ((f l f+Mflf-ίJ 1 - δikδβ) . (52)

The g± are assumed as functions of X in the last term. The Poisson bialgebra
F over C[ft] with coordinates X is nothing else but F(Gr). Namely the later is
a completion of F/(h — 1)F.

We also immediately see that A is a quantization of F (in the limit h -> 0 we get
the completion of F via the inclusion C[ft] c; C[[ft]]). F itself is a co-quantization
of S(g). The corresponding surjective bialgebra homomorphisms ph and q^ are thus
quantization and co-quantization homomorphisms respectively. Moreover the
map qh is an Poisson algebra homomorphism.

The collection consisting of the bialgebra A, co-Poisson bialgebra V, Poisson
bialgebra F, homomorphisms ph, q^ qh, q^ and the surjective bialgebra homomor-
phism

p : A - + S ( g ) ,

p = qh°ph = qh°ph, (53)

which is simultaneously the quantization of the Poisson bracket and co-quanti-
zation of the co-Poisson bracket in S(g) realize the notion of the reduced biquanti-
zation of the bi-Poisson bialgebra S(g).

Now we will briefly discuss some consequences of the facts collected above in
the context of the representation theory. We will be interested only in the algebraic
and Poisson structures appeared (we will forget all co-algebra and co-Poisson
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algebra structures). Let us remember that S(g) ~ Pol(g*) and let us assume
a particular integral coadjoint orbit 0 in g* of the maximal dimension (we assume
in the following the connected and simply connected, simple compact groups).
According to the classical Borel-Weil-Bott theorem there is one to one corres-
pondence between such orbits and irreducible unitary representations. The quant-
ization hommorphism qh "restricted" to the particular representation T0 which
extends to be an irreducible unitary representation of F) and the corresponding
orbit 0 (we hope that it is clear what we mean) is most conveniently described with
the help of coherent states connected with T0 [37]. The introduction of the Planck
constant h in the commutation relations as it was done in the case of introducing
the algebraic structure of F is a common trick used for the discussion of the
classical limit [39]. The corresponding modification of coherent states described
there is this just what we need. We refer the reader to this article for a more detailed
discussion. In our situation we know that the range of the exponential mapping is
up to a set of a zero measure on the entire G. If At are the generators of g, then the
corresponding coherent states are defined as

e*™\y, (54)

where the coefficients λt are taken such that the exponent belongs to the definition
domain of the exponential mapping and the | > is the highest weight vector of T0.
Now as it is easy to see the covariant symbols of rescaled generators hΛt have
the proper limit as /ι-»0 and the resulting symplectic structure is the usual
Kirillov-Souriau-Kostant we need.

The algebra homomorphism p^ is described with the help of the algebra
isomorphism φ. Formula

h'l((τ ® id)@(hh)2ί@(hh) -1) = X

gives an expression of the generators X in terms of the generators of g, which are
nothing else as h'1 x generators of V. This way this formula also gives the
expression of X in terms of generators of V. The projection p^ is then given by
taking the limit h -> 0 in the last expression.

So the discussed representation extends to the unitary irreducible representa-
tion of A which is already discussed is essentially the quantized enveloping algebra
of g. The representative operators of Xtj are now quantizations of their covariant
symbols [38] in the coherent states representation. The limit /ι-»0 from the
symbols gives of course a Poisson map F -»0 and describes in such a way the
symplectic leaf of F. As well known [13,14] the last should be a dressing orbit of
G in Gr. It is also known [20] that the Poisson manifolds g* and Gr are isomorphic
and that this isomorphism sends the coadjoint orbits into the dressing orbits. So we
have finally arrived to a particular realization of this isomorphism. It is clear that
there is a similar relation between this isomorphism and the algebra homomor-
phism q^ as it was between φ and ph.

5. Compact quantum groups and the trace formula

Now we will discuss some consequences of introducing the *-structure in the way
described in Sect. 1 (6).
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Following the lines of proofs of Proposition 3.16 of [1 1] and Proposition 4.3 of
[29] it is easy to see that in the compact case J5^* is ^-invariant. The * in
^(fiOCCΌ] ® U"(0)[[fc]] is the usual component-wise one. From the property of
the ^-matrix (Proposition 4.2 of [29])

we conclude the symmetry of 3F3F*. Twisting [11] with the help of the symmetric
0-invariant element (J^*)"1/2 leads to the new one & which is unitary. We will
assume in the following the 3F to be unitary. As a simple consequence we have

U* = S(CU~1).

Further if ία denotes the unitary irreducible representation of G, then compu-
ting the (ίy)* and Sh(tfy according to the formulas (6) and (1) we get tg = Sh(tβ). It
means ία is also a unitary irreducible representation of the Gq (corepresentation of
the F(Gq)) in the sense of [4] (the comultiplication remains unchanged). So the
Peter-Weyl theorem generalizes immediately from the classical to the quantum
case. The last is of course also well known [4]. The above *Λ-product is in this case
the same as introduced in [32] and the Weyl transformation described there is
identical with isomorphism φ*. The Haar measure hc on the Gq of [4] reduce under
this isomorphism to the usual Haar measure η = § dg on G as already noted in
[32].

Using the definition of the *Λ-product and the property of the Haar measure η

η((x * a)b) = η(a(S(x) * b)\ η((a * x)b) = η((a(b * S(x))\

o,6eF(G),xel7(f l) , (55)

we have

) = η(a(((cu-ί)*b*S(u))). (56)

Applying these formulas and the definition of * (6) we can compute for the unitary
irreducible representations ία and tβ of G using the well known orthogonality
relations for the compact groups [36]

Comparing this with Theorem 5.7 of [4] we see that

dim(α)y2 = MΛuS(cu~l) , (58)

where we have made an identification between y2 and /Ί of [4] and where
Mα denotes the trace of y2 in the representation ία.

Similarly computing η((tΛ)*j+htnn) we have

dim(φ-2 = MucS(u)u~l . (59)

Further using the two possible expressions for the c following from the definitions
of u and u~ 1 (2) and the fact that 3F is now unitary we get immediately from the
above Eqs. (57) and (58)

1-
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valid for any unitary irreducible representation ία of G. Let us denote the positive
square root of the Casimir cc* as N. We have N = S(N) and we can rewrite
formula (56) as

η(a*kb) = η(((Nγ)*a*γ)b) = η(a((Nγ-l)*b*γ-1)). (61)

Let us now remember that ̂ according to [2] we can to any άeF(Gq) relate
a functional ξ& which gives on b e F(Gq) the value

ξά(b) = hc(ab). (62)

In our deformation description we have, owing to (61),

ξ.(b) = η(((Ny)*a*y)b) = η(a((Ny-1)*b*y-1)) (63)

for a, b e F(G). On the other hand we have also the classical functional ξ£ given
simply by

ξ?(b) = η(ab). (64)

Comparing (63) and (64) we obtain

ξa = Ny~lξSYl = ξ*, (65)

with
α = (Ny) * a * y .

Let us now assume the unitary irreducible representation t0 of G (simply
connected, connected, compact) corresponding to the integral coadjoint orbit of
the maximal dimension (it is as already noted above a unitary irreducible repres-
entation of Gq). We can now apply the classical universal trace formula [36] to the
functional ξ% to compute the trace of the operator ξa in this representation. We get

f a(yexp(X)y)Q1/2(expX))e2πi<F>x>dX dβ0(F) . (66)

IVlQ

_ dim(O) ,

Mo b\u

In the last formula F e #*, < , > is the dualization between g and g*, U is the
inverse image in g of an open region (of the complement of the zero measure) in
G covered by the canonical system of coordinates, β0 means the canonical measure
on 0 defined by the Kirillov-Souriau-Kostant symplectic form, dX-Lebesgue
measure on g* and Q is a universal function [36]. Here of course the ordering of
terms in the argument of a is insubstantial. We have taken the most symmetric one.

So the trace of the functional /ίc(ά ), άeF(Gq) in the unitary irreducible
representation of Gq is expressed in the following way:

1. in the Peter-Weyl expansion there are matrix elements of unitary irreducible
representation of Gq replaced by those of the corresponding unitary irreducible
representations of G so we get the corresponding element a — (φ*)~1(α)eF(G)
and

2. applying the trace formula to the so-obtained aeF(G) to express the
trace with the help of integration over the correspoinding coadjoint orbit (dressing
orbit) 0.



Quantum Groups from the Quantization Point of View 77

Let us note the interesting fact that the trace of ξa is proportional to the
Markov trace of ξ?.

We finish with the simple formulas for the left and right invariant measures
hdL and hdR of [2] on ξa,

hdR(ξa) = £ dim(0)Tr0(£α

cl) = a(e) 5 (67)
o

which agrees with the formula (2.24) of [2] (here we have instead of the left
invariant measure the right one, because the ρa of [2] differs by antipode from ξa).
For the left invariant Haar measure we get

hdL(ξa) = Σ <Km(0)Tr0($.α) = α(y4) . (68)
o

So using the deformation formalism described above we can view many
properties of the compact quantum groups in particular some of them described in
[4, 2] as consequences of the well known properties of the compact Lie groups.
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