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Abstract: A class of affine nested fractals is introduced which have different
scale factors for different similitudes but still have the symmetry assumptions of
nested fractals. For these fractals estimates on the transition density for the
Brownian motion are obtained using the associated Dirichlet form. An upper
bound for the diagonal can be found using a Nash-type inequality, then probabilis-
tic techniques are used to obtain the off-diagonal bound. The approach differs from
previous treatments as it uses only the Dirichlet form and no estimates on the
resolvent. The bounds obtained are expressed in terms of an intrinsic metric on the
fractal.

1. Introduction

The study of diffusion processes on finitely ramified fractals has seen the develop-
ment of probabilistic techniques which can be used to study the heat equation on
such fractals. The initial work was done on the Sierpinski gasket [5], in which the
existence of a Brownian motion, its uniqueness with respect to the local symmetries
of the set and estimates on the heat kernel were obtained. An important property
needed was the finite ramification of the fractal, that any part of the fractal can be
disconnected by the removal of only a finite number of points. The existence of
a Brownian motion on a class of fractals with this property, called nested fractals,
was shown in [27]. As yet the uniqueness of the process has only been proved for
a subset of these fractals, [2] and only some properties are known [21, 23, 27].
There has also been some work on the Sierpinski carpet, an infinitely ramified
fractal, in which the existence of a Brownian motion has been demonstrated [3]
and estimates obtained on the heat kernel [4]. More general infinitely ramified
fractals have been considered in [26], though all must have the property that the
spectral dimension is less than two. Recently the extension to fractals in which the
spectral dimension is greater than two has been accomplished by Barlow and Bass.
For a review of the physics literature in this area see [13].

Another approach has been to discuss analysis on fractals directly [16], where
Laplacians are constructed on Sierpinski gaskets and [17] for a large class of
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finitely ramified fractals, P.C.F. self-similar sets, which includes nested fractals.
These ideas enable Laplacians to be constructed as limits of difference operators
on the discrete lattices which approximate the fractal. They also allow the
Dirichlet form on the fractal to be described as the limit of Dirichlet forms on the
lattices.

In this paper we will consider a class of finitely ramified fractals, more general
than nested fractals, which we call affine nested fractals. They have the property
that the similitudes used can have different contraction ratios but they must still
preserve the symmetry of the fractal. In the same manner as for nested fractals [ 12,
25] we can construct a Laplacian on the fractal via a Dirichlet form. There is
a natural measure, suggested by [20], for this Laplacian and our aim will be to
obtain heat kernel bounds for the transition semigroup with respect to this
measure.

It is also possible to define an infinite version of the fractal, by inverting one
of the contractions and iterating. The Dirichlet form can be extended to this
fractal and our estimates will be obtained for the heat kernel on this infinite
fractal. There is a natural intrinsic metric for a Dirichlet form and we will prove
the existence of a version of this metric on the fractal. In the case of finitely
ramified fractals it can be thought of as a constant power of the effective
electrical resistance between two points in the fractal. The metric also takes
account of the shortest path between points. Our results will be presented in terms
of this metric.

In order to obtain estimates on the heat kernel we establish a Nash inequality
for the functions in the Dirichlet space. By [6] this provides a uniform upper bound
on the decay of the transition semigroup. In [6] it is shown how the method of
Davies (for more discussion see [8]), for obtaining off diagonal bounds for the
semigroup can be used for general Dirichlet forms with the Nash inequality. This
method cannot be applied in this context due to the singularity of the energy forms
with respect to the Hausdorff measure on the fractal [24]. Instead we turn to the
probabilistic techniques developed for nested fractals in [23].

The lower bound can be obtained from the Dirichlet form wihtout using
probabilistic estimates. This approach requires the Holder continuity of the
transition density. This is obtained via the scaling in the Dirichlet form and control
of the continuity of the functions in the Dirichlet space by the Dirichlet norm.
A chaining argument can then be used to extend the result form a small ball about
the diagonal to the whole space. We prove the lower bound for the unbounded
fractal where there is an exact scaling, and then use an inequality for the reflected
process to obtain the bound for the compact fractal.

The Bernoulli measure we use for the discussion of the heat kernel on the fractal
is the measure p based on the electrical resistance. The dimension of the fractal
based on this measure is the similarity dimension, S, (see [10, 20]). The spectral
dimension can then be expressed in terms of this dimension as d;,=2S/(S+1). The
walk dimension d,, will be computed by determining the shortest path metric on
the fractal. In our case there is a relation between the Hausdorff dimension d, (with
respect to the shortest path metric), d,, and d;; d,=2d,/d,,. This relationship has
been shown to hold in other cases ([ 4, 5, 231]).

The fundamental scaling factors for the fractals will be denoted as u for the
mass, t for the time, p for the conductance and o for the spatial scaling.

The main result is stated for the infinite affine nested fractal E, in the following
theorem,
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Theorem 1.1.

(1) There exists a jointly continuous transition density p,(x, y) for the semigroup on
the fractal E.
(2) There exist constants ¢s.q, Cs.10> Ce.1» Co.2 SUCh that

Coal Zexp(—co, W(d(x, y), 1) Splx. y)Ses ot~ “Pexp(—cs.i0P(d(x,y), 1)),
for all 0<t< o0, x, yeE, where
Pz, t)=(z%t w1

In this paper, ¢; (ieN) will be used as a positive finite constant whose value
remains fixed within each proof and depends only on the affine nested fractal in
question, while ¢, ; (ieN) denotes a fixed constant which appears in section n.

The work in Sects. 3, 5 and 6 was done by the third author while visiting the
university of Cambridge with the support of the Japan Association for Mathemat-
ical Sciences and Trinity College. The work in Sects. 4 and 6 of this paper was done
while the second author was visiting the University of California, San Diego with
the help of NSF grant DMS 8657483 and at the University of Cambridge with the
support of the UK SERC.

2. Affine Nested Fractals and Their Dirichlet Forms

In [27], Lindstrem introduced a class of finitely ramified fractals called nested
fractals. The Dirichlet forms for these fractals were constructed by Kusuoka [25]
and Fukushima [11]. We begin by defining affine nested fractals which is a wider
class of fractals and stating some results which will be needed subsequently.

Let 2> 1, then an a-similitude is a map ¥:R” — R” such that

Y(x)=a 'U(x)+a, 2.1

where U is a unitary, linear map and aeR”. We will denote a finite family of
a;-similitudes by ¥ ={¥,, ..., Yy}. Then for a set A =RP, define

\
P(A)=[) ¥i(A) .
i=1

D (A)=P - D(A).

By Hutchinson [14], this mapping has a fixed point which is the unique compact
set E such that E=®(E) and this is a self-similar fractal.

As each ¥;is a contraction, it has a unique fixed point. Let F be the set of fixed
points of the ¥’s, | i< N. A point xeF is called an essential fixed point if there
exist, i, je{l, ..., N}, i%jand yeF such that ¥;(x)=¥;(y). We write F* for the
set of essential fixed points. Now define

Vi) =W, 0 oW, (4) AcR”.
We will call the set ¥;, . (F@)ann-celland ¥;, . ; (E)an n-complex. The set
of n-th iteration of F© can be defined as

FW= ) Wi L (FO).
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The set E can be recovered from the essential fixed points by setting

F® =) F®, E=cl(F®).

n=0
We can now define an affine nested fractal as follows.
Definition 2.1 The set E is an affine nested fractal if {¥, . . Wy} satisfy:

(A1) (connectivity). For any 1-cells C and C’, there is a sequence {C;:i=0, ..., n}
(neN) of 1-cells such that Co=C, C,=C" and C;-ynCi*¢,i=1,...,n

(A2) (symmetry). If x,yeF© then reflection in the hyperplane H,,=
{z:|z—x|=|z—y|} maps F® to itself.

(A3) (nesting). If {iy, . . ., in}> {jis - - -» ju} are distinct sequences then
Vi il B0 (E)=Y, ..i,.(F(O))ﬁ lIjj,,...,j,.(F(O)) .

(A4) (open set condition). There is a non-empty, bounded, open set V such that the
¥.(V) are disjoint and ( J). | Pi(V)<=V.

Note that the difference between affine nested fractals and nested fractals is that the
contraction rate for each similitude can be different for the former but not for the
latter.

We briefly list up geometrical properties of affine nested fractals. Results (1), (2),
(3) can be obtained exactly by the same proofs as for nested fractals [27], while (4) is
noted by J. Murai [28].

Proposition 2.2.

(1) If x,y,x, yeF® and |x — y| =|x'— /|, then there is a symmetry U (i.e. reflection
in (A2)) such that U(x)=x" and U(y)=Y'.

(2) Set ly=min{|x—yl; x, yeF 9, x+y}. Then, for x, yeF®, there is a strict 1-walk
Sty - - s Sy (€. 5; and s;. 1 join in the same 1-cell (¥}, say) and |s;— ;1| =0jg 1y for
1<i<n—1) such that s,=x, s,=y and s,e F*V—F©® 2<k<n—1.

(3) Any 1-cell contains at most one element of F©.

(4) Y(E)nY,(E) (i=)) is at most one point for 1 <i,j<N.

The key ingredient in constructing a process on an affine nested fractal is to
determine a sequence of random walks with suitably nested transition probab-
ilities. On nested fractals, this has been studied in [27]. We define edge equivalence
classes so that

{Ix—yl; x, yeFO, x££y} ={l, ..., I}, O<lj<-- <,

and define my= # {yeF9:|x—y|=I}. For each xe F™, let N} (x) be the set of
F™-neighbors y of x such that |x—y|=(a;, . o, ) ' I;, where x, ye¥;, . .;.(E)
for some 1=Ziy,...,0i,<N. Also, let N,(x)= Uf‘;l Ni(x). We call (x,y)e
F© x F© type i and write Type(x, y)=iif x and y are F @-neighbors and |x—y|=
I;. Now we can define the space of possible transition probabilities for the discrete
chains with a natural ordering

P={(p1, -+ > Ps,):P1> " >Pps, >0, Z mip;=1}.

i=1
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Fig. 1. Examples of affine nested fractals

We next define a size equivalence class. The sets ¥;(E) and ¥;(E) are the same size
if they can be mapped to each other by the composition of the reflection maps
which appear in (42). Let the number of 1-complexes with different size be k,. We
can order the 1-cells by their size and put a weight on each size;

E:('71:'~~7Fko)s Ft>0(1§l§k0)

In the following of this paper, we put * (super tilde) when we distinguish cells by
their size.

We call (x, y)eF®M x FV (x4 y) size i and write Size(x, y)=i if x and y are
F®.peighbors and the size of the l-complex containing both x and y is i
(by Proposition 2.2 (4), we see that there is a unique 1-complex containing both
x and y).

These can then be used to construct a random walk on F. Let X' be
a Markov chain on F® moving according to a set of basic transition probabilities
Pe2 divided by the weights F; for F™M-neighbors x, y (x+y), define

plx, y) = Lnmean 1)
rSize(x.y)

where #(x) is the normalization constant so that Y .y, P(x, y)=1. Otherwise
p(x, y)=0.

The Markov chain on F* induces a Markov chain X° on F© by considering
X! stopped when it hits F©. Let T9(X!)=inf{n=0: X eF©@}, and T}, ,=
inf{n>T(X"): X, eF©—{X}ox+}} inductively for i>0. Then we require that
Xtoxn and X? have the same law. This corresponds to a fixed point for the
transition probabilities whose existence was proved in [27] in the case of nested
fractals. The following proposition can be proved in the same way as the corres-
ponding part of [27].

Proposition 2.3. For any choice of ¥=(fy,...,7,), 7;i>0 (1=i<k,), there
exists pe? such that the corresponding Markov chain X 1x+, and X have the same
law.

In the following, we assume, without loss of generality, that the size of the
1-complex which contains an element of F(© is 7. Also, let 7;=Fg,. . ), Where
Size(P;(E)) is the size of ¥;(E) (1<i<N). Let c=P*(X} o= x) for xe F¥, where
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o(F)=inf{n>0: X, eF©@}, then the conductance for the 1-complex containing
an element of F© can be expressed as

1
pl_l_c,

which is independent of x (see [25] and Theorem 5.2 of [22]). If we set A=p;ry,
then the conductance for ¥;(E) is p;=A/r;.
Throughout this paper, we assume the following:

Assumption 24. For all 1Zi<N, p;> 1.

For x, yeF© with x#y set Il,,=p; if |x—y|=I,. Also, let u be a Bernoulli
measure on E such that u(¥,(E))=u;>0 (¥, p;=1). We can now define the
Dirichlet form for the affine nested fractal in the same way as [17] and [25]. Let f;
gel(F™)={f F® - R} and define

1
&S, g)=§1 > 2 P (f(Pry, ) =f(Pr,, ()

<k;...kn=N x,yeF©

X(@(Fe,. .. oeaX) =9 (P, (W) sy 22

where py, . . k.=Pk,, ..., Pr,- Then, from [25] and for the more general class of
P.C.F. self-similar sets in [17], the sequence of forms is monotone so that we have
the following.

Theorem 2.5. Let fel(F'™),
?={f:su.:pé’,,(f,f)< o}, 5(ﬂf)=}£fg L)

1) Any function in & can be extended uniquely to a continuous function on E (thus we
can consider F < C(E)={ff is a continuous function on E}).

2) (&, F)is alocal regular Dirichlet form on L?(E, ) which has the following scaling
property:

N
E(f,9)=). pi6(fo¥i,go¥s) forall f,geF .
i=1

3) If we set Eg(+,+)=6E(+,*)+P(+, >, for p>0, then &, admits a positive
symmetric continuous reproducing kernel g§(-,-).

Our interest here is to obtain estimates on the heat kernel for the corresponding
diffusion process. For this purpose, we need a “natural” measure, which is sugges-
ted by the following theorem in [20].

Theorem 2.6.

1) Let A, be the generator for (&, F) on L*(E, n) and let n*(x)=4%{1| A be an
eigenvalue of —A,<x.}. Then, for the unique positive number dy(u) satisfying
N (i) pi)= W2 =1, the following inequality holds:

0<lim infn*(x)/x%®2 <lim sup n*(x)/x*®? < co .
x— 00 x— 00
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2) Let S be the unique constant which satisfies Y \_ | p; >=1. Then,

28
max {d(u): p is a Bernoulli measure on E.} =S (=d,),

where the maximum is attained only at the Bernoulli measure p satisfying
.“i:pihs Jor 1SisN .

In the following we define u;=p; 5 for 1 <i< N and consider this measure unless
otherwise stated.

Next we will consider unbounded affine nested fractals and their Dirichlet
forms. In [12] and [31], such forms are used to identify spectral dimensions, which
express the asymptotic frequency of the eigenvalues of the corresponding Laplace
operators on nested fractals. Assume, without loss of generality, that ¥, (x)=o; * x.
Let ES"” =¢1E and E—U > E<">,

Set F,=aof F™. We change 'the definition of F® as follows: F©© = o Fnand
F®=q"F© for neZ. We next define the address of an n-complex on E. First, set

Qo={we{0, ..., N}*|3n, (eZ such that w, =1 for all k<¢E,
wy =0 for all k¥'># and w;-+0 for all k" <n}.

For wef?,, define
no(w)=min{k:w,=0} -1,
Eo(w)y=max{k:w;=1Vj<k},

(we just use #o, &, when there is no confusion).

For an n-complex D, < E, we say the address of D, is weQ, if ¥{"*)(D,) = E and
D,=¥Y oW, ... . on(E). Here ¥ is the I-th composition of ¥; and we regard
Yoirg...on=1 (1dent1ty map) if no=£&,. Thus from the definition we see that o=
and that £0=—mm{l| Y9 (D,)=E}. For weQ,, we define

Pol(E)= P57 Vo, onlE) s (2.3)

which is the corresponding #,-complex.
Next, define 6,: [(E<"”) — I(E) by

o.f (X)=f (i x)=f°P{ " (x) for xeE .
Set F g<>=0_,;% and
Ep--(f,9)=p1' E(0if, og) for f,geF g . (24)
Also, let i be the Bernoulli measure on E such that
ME)=p1" UPo(E)= 1ty g

for all n, meN, weQ,. Note that for the following theorem, y; could be any positive
number such that Y™, u;=1.
Now we define a quadratic form on E. Let

Fr={f1f|g<>€F g~ for each |, llim Eg-(flgev,flgr)<o0} .
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Then < C(E). Set
F=FynL2(E; i), 6(/, g)=}im Ep-(flg=r, glg=-) for f, geF .

Then we have the following results in th same way as [12].

Theorem 2.7. 1) (&, %) is a local regular Dirichlet form on L2(E; fi) which has the
following scaling property:

E(f,9)=p1&(fo¥y,g°%) forall f,geF . (2.5)
2) (& )s admits a positive symmetric continuous reproducing kernel gg(-,-).
We now deduce some results which will be used later. Set ;= p;/u;=pi *5.

Proposition 2.8. For the reproducing kernel gyz(x, y) (B>0) associated with the
Hilbert space (&4, # ), the following scaling property holds:

9p(X, Y)=p1 "genplalix, ot y), Vx,yeE, neN.
Proof. From the scaling (2.5) we can deduce the scaling for the form ((?,;, F),
E5(£,9)=8(£9)+B(f9)
=p1E(fo PP, go PO+ Bui(fo PP, go PP))
=P By fo WD, g o PP (2.6)
as desired. Recall the reproducing kernel property,
é’a\ﬂ(gﬂ(xa')’f)zf(x)y VXGE, eré% .
Now using this and (2.6)
gt x, y)=E5(gp(-, x), ggen(ai -, y))
= & (0 - ngp(+,X), 0_nggen (o -, Y))
=0 Ep1(Gprenp (-5 9)s (o™, X))
=p1gp(ay "y, x) .
Then rearranging using symmetry and change of variables gives the result. H

As we have the continuous reproducing kernel for each x, y, by [9] Lemma 2.1,
the transition function possesses a kernel which satisfies the Chapman-Kol-
mogorov equations for all x, y:

Lemma 2.9.

1) The transition function on E possesses a kernel p,(x,y), so that
P(t, x, dy)=p,(x, y)fi(dy), and such that p,(x, y) satisfies the Chapman—K olmogorov
equations,

ﬁt(x9 y)z.[ﬁs(x> Z)ﬁt—s(z’ J’)#(dz)’ vx’ yeE . (27)
E

2) The transition function on E possesses a kernel pE(x,y), so that
P(t, x, dy)=pE(x, y)u(dy), and such that pE(x,y) satisfies the Chapman—Kol-
mogorov equations.
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Properties of the Dirichlet form include the following Sobolev type inequality.
Let p;,=min, .,y p; and consider the compact fractal.

Proposition 2.10. There exists a constant ¢, { >0 such that for all feF with f(x)=0
for some xe F'YE

IflI1%=ci6(LS) s (2.8)

where || « ||, is the supermum norm on E. There exist constants ¢, ,, ¢5.3>0 such that
Sup, |f(X)=fDIS 22 8LV VfeT, (29)

1% S c2s(ESLN+IS13), VieF . (2.10)

Proof. Let i denote a 0-harmonic function (an i-harmonic function is a function
which is harmonic inside each i-complex) vanishing at some point g of F©. As
,,>0(x*y, x,ye F 9 NE),

Sl a)=5 3 (a(x)—i(y))* My

x, yeF(O)

z%(maxnxy) T apd)ze lal?

x+y pe F©

1
2

for some ¢; >0. We use the maximum principle in the last inequality. Now by [20]
Proposition 1.9 for ue# and u the harmonic function with the same boundary
values as u,

IIM—anéCZg(u, u)l/z ’ (211)

so that
lullow=<lu—ial,+ale

§ng(u, H)I/Z +Cq éa(zi, ﬁ)”z
<(ei+e)E(uu)'?

by minimality of the harmonic functions. For (2.9) observe that u(x)=f(x)—f(q)is
a function in % vanishing at ¢, then from (2.8),

Lf)=fDI=If ) =f @I+ f (@) —fDIS2 [ullw =2(cs +c2) & (u,u)' 2,

and then take the supremum.
For (2.10), note that as the set of 0-harmonic functions is finite dimensional, the
norms | - ||, and | - ||, are mutually equivalent on the space. Thus, using (2.11).

If oo S N f~F oo + 1S Nl eo
S 8(LN P +eslfla
<ESLNP el fla+ 1 f~fllw)
S (E(LN2+IS1L) u
Corollary 2.11. Let D, be an n-complex such that D,= ¥ ,(E) for w€Q,. Then

SR 1) SIS 2 2(ppon o) PO
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Proof. From (2.9) and scaling we have that for the compact fractal

sup ”k"‘f(x)_f(y)l—S—c2~2pk_1}/,2. .,k,.@@(f,f)l/z ‘

x,yeEk,,

Now, as Y{"*(D,)cE,

sup | f(x)—f(y)I= sup lo s f(x)—0 & f ()]

x,yeDy, x‘ye%wuéo"'“"ro( )
<C33(Pon.roon) (0 fo 7o)
:02.2(p€10pw”50...w,,0)—1/2 5E< '§o>(f;f)1/2 . |

3. Distance on Affine Nested Fractals

In this section we introduce an intrinsic metric for the Dirichlet forms constructed
in Sect.2. The distance on the wider class of fractals, P.C.F. self-similar sets, is
discussed in [18] and [19]. Our distance is similar to that of [18].

We will first construct a distance on E. For x, ye F™ N E, let

(X, y)={Tp: 7, is an m-walk in E from x to y which does not
contain multiple points} . 3.1)

Here 7, ={pr, Px+1 k=1 is called an m-walk if [eN, p,e F™ for 1 £k <1, p, and py ;
join in the same m-cell for 1 Sk <I—1. For m,,={py, Pr+1 }k=1ETm(X, ¥), we say the
length of 7, is | and denote it by |r,|=[ For ner,(x,y), let v(n) be an so-
dimensional vector such that (v,()); is the number of k-size j-type steps in the path
n (15j<50, 1=k=ky). Now, for a positive number ¢, set

ko
Si={ Pr i ()| meny(x, y), x, ye FONE, yeNB(X)} , (3.2)
k=1

where p;, = A/F;.
In order to construct a distance, we must first solve an eigenvalue problem.

Proposition 3.1. Set
(G/(x));=maxa-x . (3.3)
aeS;

Then, there exist 0<y'<S+1, x>0 such that G, (x)=x.

This proposition is essentially the same as Proposition 3.4 of [23]. For the proof,
we prepare a lemma.

Lemma 3.2. Let B={xeR*|0<x;<- - <x,,}. Then G,(B)<B.
Proof. Fix peF®, qeNy(p), ¢ €Ny *(p). Let U, be the reflection map which
maps g to ¢'. Define V={zeR”:|z—¢'| £|z—q|}. Also we define a map T:R? — R”
by
Tsed? if zeV.
U,z otherwise.

For xeB and 22, let (G/(X))i=YF" P auXi+ " + Y52y Pe ok X,
(YK Pe'aie - -5 Y P "asu)eS:. Then we know that there exists at least one
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1-walk from p to g which has k-size j-type steps ay times. Express the 1-walk by
Vo> Y1s - - -» Ym» Where yo=p, ym=q and m= Z k Ajk-

Then we know Type(Ty;, Tyi+1)<Type(yi, yir1) because |Ty;—Tyi.|<
|yi—yi+ 1| (Where we set Type(y;, yi+1)=0 if y;=y;+1). Also, as the sizes of two
1-complexes are the same if they are mapped to each other reflections,
Size(Ty;, Tyi+ 1)=Size(y;, yi+1) when Ty;+Ty;.,. Denote aj=#{(y;, yi+1):
Type(Tyi, Tyi+1)=J, Size(y;, yi+1)=k, 0Si<m—1}. Then we have (G,(x));-1 =
zj,k[)k"a}kxjgzj’kﬁk"ajkxj:(G,(x))i because xeB. |

Proof of Proposition 3.1. For fixed t >0, set
K,={A:A is an s, X so-matrix, (I-th row of A)eS;, 1<I1<s,}, (3.4)

and A, =min .k, {largest eigenvalue of 4}. We first prove that there exists x,>0
such that G (x,) AeXe.

Set co=min, p; ‘. If xeB, then (G(x));=2cox; and (G(X));=c;x; for some
¢;>0 (1<Zi<s,) because (¢;, 0, . . ., 0)eS’ from Proposition 2.2 (2). Thus, if xeB
and x, >0, we know

(G(x)) < CGoX1 _ Co

Y. G(x)), Yeixy Zc,

~ 1
Let B,={xeB:Yx;=1, x;2¢} and G,(x)= Z(G G,(x) for xeB,. Then, by
t

definition, (G,(x)); = &. Combining this with Lemma 3 2 we see G,(B,)< B,. Thus,
by the fixed point theorem, there exists x,€B, such that G,(x,)=x,. If we define
4=Y(G(x,));, we have G.(x,)=7x,. By the Frobenius theorem, it is easy
to deduce A,=4;. When t =0, A,>1 because A1=>1 for all AcK,. We next consider
the case t=S+1. For AeKg,,; which attains the minimum largest eigenvalue,
decompose it as A=} pr TV A4, where (A4,);=dy if (i-th row of A)=
(Yhoy P G - oo, Y 1P " agy). Clearly, max; Y (Ay); < (number of k-size 1-
complexes in E). Thus max; Y A< Yo pm STV < YN pm°=1 and hence
As+1<1. As 4, is a minimum of the largest eigenvalue of matrices in K;, 4, moves
continuously with respect to t. Thus there exists 0<y'<S+ 1 such that 1, =1.1

Remark 3.3. For m, w'eny(x,y), we can write n<n' if v(n)=v(n') for all
1<k=<ky. By this ;(x, y) is an ordered set. Define S} ={neS} | = is a minimum
with respect to the order.} Then, it is enough to consider S"y when we calculate

G, (x)

In the case of Fig. 2, S is as follows:
St ={(2p1 " +p27,0), (p37, 201 "), 201" +p5 7, pi7), (Ap1 " +p37,0)} .

($? has many elements and we leave it to the reader to write them all out.)
Now we define the distance on F™ as follows:

Ikl
dpe(x, y)= min
y) nemm (%, ¥)s n={(Pic, i+ O} 2_:1 pSIZe(pk Piry) XType (pre, py ) -

Here x is the one which appeared in Proposition 3.1 and Size(p, q)=i; " - * i,, if the
m-complex containing both p and g is ¥;,, . ; (E).
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P2 z
£l !
[ 3 pg]
1 1
z P2 Y
L

Type(z,y) = 1, Type(z,2) =2

Fig. 2. An example of an affine nested fractal and its shortest path

Lemma 3.4.

1) If p, qe FONE and Type(p, q)=i, then drw(p, q)=(e;, G, (X))=x;, where ¢; is
a unit vector whose i-th component is 1.
2) dpm(x, y)=dpm-n(x, ) if x, ye F™ N E.

Proof. 1) is clear by definition of G,..
For p, qe F©, let n={py, px+1}r=1 be a minimal F"-path. Define the F"* -
path between ¥, (p), Yo(q) (we{l,..., N}™) as

nw‘:{?’w(pk)a Syw(pk+1)}lrcn=1 . (35)

To prove 2), pick a minimal F™*Y.path =, ,,; between x and y and induce
a F™-path ©,,={qx, qi+1 }k=1. Then, by the nesting property ((A3) in the Defini-
tion 2.1) of affine nested fractals, 7, . ; moves in the same m-complex (¥, (E), say)
between g, and ¢;+. It must be of the form of (3.5) as n,,+, is minimal. By
definition and 1), the dpw-v-distance of =,.,; between ¢, and ¢4, is
Po” XType (geas.)» Which is exactly the dpw-distance of 7, between gy and gy + 1. Thus
the dgw+v-distance of w,, 4 ; is equal to the dpw-distance of w,,. Next we prove that x,,
is a minimal F™-path between x and y. If it is not, we have a minimal F™-path
,, between x and y. In which case we can construct an F™*Y-path 7, from
n,, by putting (3.5) in each step. Then the dp«-»-distance of =, is equal to the
dpm~distance of «,, and this contradicts the minimal choice of =, ;. n

This lemma enables us to define a metric d on F*)nE by setting
d(p, q)=dpm(p, q) for p, ge F™eE. We extend this metric to a metric on E as
follows.

Theorem 3.5. For any choice of p, qeE, define d(p, q) by

d(p, ¢)= lim d(py, qa) ,

where p,, q,€F*™ E and p,— p, g, — q as n —»oo. Then d is well defined and d is
a metric on E.

Proof. The following is the same proof as [18]. Note that by the nesting
property ((A3) in the Definition 2.1) of affine nested fractals, p, —p if and only
if, for each m, there exists n(m) such that, for all n>n(m), p,eU,,, where

Um,p= Uw:pe‘llw(E),|w|;m 'Pw(E)
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Now, let p, —p, p,—p as n—oo, where {p,}, {p,} =F. Note that for
we{l, ..., N}",
d(¥,(E))= max d(x,y)SR"™M,

x,y€ Vo (E)NnF™
where R=maxL p; ¥ <1 and M =max;x;. Hence, for sufficiently large n,

d(pa,pn)S ), d(¥(E)<CR"M,

@eUm,p

where C=#{ J;4;(¥:(E)n ¥;(E)). Therefore d(p,, p,) — 0 as n —co. By the triangle
inequality,

,d(pm Qn)”_d(pm’ qm)l éd(pm pm)+d(qm Qm) .

Combining this with the above facts, we see that the limit of d(p,, ¢,) exists as
n —o0. The same discussion shows that d is well defined, and it is clear that d is
a metric on E. ]

For p, ge E<">, define
d"(p. q)=p1" d(P? (p), ¥{"(9)) -
Then d" is a metric on E="”. Further there exists an N such that for each m,
d"N(p,q)=d""N*¥(p,q) forall p, qeE<™”, keN . (3.6)
To prove this, define

P W&"’(E)“(Ulm:n,w*i---l Y’“"”) |

First, the minimal F™-path between any two distinct elements in P™ does not exit
PD for large N between because otherwise the distance would be infinite as
min  d(x, y)=p, min d(x,y).
xeP®™,ye POTD xeP* D, ye Pt

Then, we easily see that the minimal path between any two elements of ¥ (E) is
contained in ¥;(E), which gives 3.6).

By (3.6), we can define a metric on E which we will also denote d(p, q). By
suitable normalization of x, we can set d(E)=max, . d(p, g)=1. Clearly, this
metric has the following scaling:

d(p, q)=p% d(¥1(p), ¥1(q)) for all p, geE . 3.7

Next we introduce a A-approximation to E. For neZ, set

_{wEQO{pCO 1 (ugo. Pm péo !

Oy, Po,...on) -
Here p;,=max,; ¢;<y p; and we set Po,. =1 when 7y = ¢, (an analogous set was

considered in [20]). Define H“W = U,,,E " lP (F©~E). We can prove the following
in the same way as [20] Lemma 2.6, which is an easy consequence of the definition,

(J P(E)=E forall neZ, (3.8)

weAy,

Y (E)nP,(E)c H™ for all w, w'eA,, o+w'. (3.9)
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Consider two pomts P, qu‘A"’ which belong to ¥ (E) (wed,). If the shortest
path between p, g is inside ¥,(E), then d(p, q)=(p%"~ pw60 wqo) * XType (p.q)-

Further, by the geometrical property of affine nested fractals, if the path between
p,q is not inside ¥,(E), then it passes through at least one element in
H AP (EY.

Thus there exist constants ¢z , >c¢5.; >0 (independent of p, g, n) such that for p,
q in a H“"-neighborhood,

31 pu" Sd(p,q)Sc32pi™ (3.10)
Using this we have the following scaling property.

Proposition 3.6. There exists c3 3 >0 (independent of p, q) such that for all p, ge E and
for all we Jmen{l, ..., N}™,

c33pw’ d(p, @) Sd(Yu(p), Pu(q) Sy d(p, q) .

Proof. If the minimal path between ¥, (p) and ¥,,(q) is inside P,,(E), then, by the
construction of the metric, d(P,,(p), ¥.(q))=p, " d(p, q). This gives the upper
bound. To show the lower bound it is enough to consider the case when the
minimal path is outside ¥,,(E). Choose n such that

Y N(E)c¥, (E)c¥Y,.(E) for some w'eA,, w" €A,y .

Then, there exists ¢, ¢, >0 (independent of the choice of w) such that

C1PLSPw=Capi, . (3.11)
On the other hand, using (3.10), we have
d(Po(p), Yola))Zcs1pi," (3.12)
goml()iining (3.11), (3.12) and using the fact that d(p, g) <1, we obtain the lowe;
ound.

Remark 3.7.

1) In proposition 3.6, the equality does not hold in general. In fact, in the case of
Fig. 1 in Sect. 2, if p; < p,, p3, then

d(c,d)=d(c, e)+d(e,f)+d(f,d)<p;” d(a,b) .

2) In [19], Kigami introduced a resistance metric Ry on E. Using Proposition 3.6
and the results in [19], we see that there exist ¢34, ¢3.5>0 such that

¢3.4d(p, 9)SRy(p, q)" <c3.5d(p,q) for all p,qeE .

As the Hausdorff dimension of E w.r.t. R, is S (see [19]), the Hausdorff dimension
wrt. dis S/o".

3) In the case of nested fractals, we have the following relation between the
Euclidean metric and the distance studied in this section.

c3.6d(p, q)<|Ip—ql*“<c3d(p,q) for all p,qeE,

where ¢3¢, c3.7 are positive constants and d, is a chemical exponent studied in [1]
and [23].
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4. A Nash Inequality for Affine Nested Fractals

In this section we will establish a Nash-type inequality, and thereby a diagonal
upper bound on the transition density for Brownian motion on the fractal. We will
first prove the Nash inequality for the unbounded fractal £ and then use an
embedding argument to deduce the analogous inequality for E.

Theorem 4.1. There is a constant ¢4 { such that

IfI3 4 < ca s ECLNINS T 4.1)
for all feZ nL'(E, fi).

Proof. For feC,(E), the set of continuous bounded functions on E, set

U f(x)= E"[je"”f ] s ) f () dii(y) -

Let feZ and consider SUPep, | f(x)|* for an n complex D, = P(E), weQ,. As in
Corollary 2.11 we can use scaling in (2.10) in order to obtain

SUP [f( (X)*=Ze,. 3((P1 Pa, ... )_1 Ep<-to> (f,f)“’“ﬂloHw,+;0.<.mno(ﬁf)E<*f°>) .

xeDy,

By choosing weAy, the values of (p5° pwm(y”%)‘1 and ps° Ho, ..., ATE within
a constant of 1. Thus we have that

SuP lf(x)|2<01 (5SS

xeDn

where ¢, is independent of the choice of we Q. Therefore we have the extension of
(2.10) to the unbounded fractal. Now, following the proof of Theorem 2.3 in [12],
and using the extension of (2.10)

SUPxep, 91(X, ) _ upxeD,. [f(x)

sup 91(%3’)§SUP \/’g(y——y) =/ \/——T
yeDn y 1(y,

Thus ¢, = g1 |l < 0. Since
éA”(f,f)=§1>lpo BULS=BUS )2 (Lf= U )
we have || f3<(f U f)u+E(f.f), and so

IfI3Se IS I+E(LS), feF . (4.2)

Now notlce that if f(x)—f oi x) where neZ, then |§f|| =uy "/"||f||p, where
ui=p1 S and &(f,f)=pi"é(f.f). Replacing fin (4.2) by fand using the fact that
U1 =p1 S we obtain

=<0 .

I 13pt e | f I3 +p1" 9 8(LS), feF nel. (4.3)
Since dy/2=S/(S + 1), (4.3) yields immediately
IfIBSR* e, | fI+R1E(fS), feF,R>0. (4.4)

Optimizing the choice of R in (4.4) we obtain (4.1) with a constant ¢, ; depending
only on | g4 ||, and d. |
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Remark 4.2. By the above proof, we can see that (4.1) holds if and only if the
Bernoulli measure is pu; =p7 5.

The analogous Nash-type inequality for the compact fractal E is a consequence
of Theorem 3.1 and the following

Lemma 4.3. There is a linear map J: F — % and constants ¢, , and c4 (9) such that
for all feZF,

(i) Jf=fon E
(ii) If feL?(E, @), then | Jf|[,<cas || f1p, for all 1<p< oo;
(i) E(JfIf)Scas@)(E(L£S)+01S13), for all 6>0.

Proof. Let F' denote the set of points ieF(”NE that belong to at least one
0-complex of E\E. Given ieF’ let C; be the 1-complex of E containing i, and let
Ci1, Cis, ..., C;p be the 1-complexes of E\E containing i. Let ¥; ; denote the
contraction which fixes i and scales by o;. For each pair i, j there is a uniquely
determined reflection R; ; that maps ¥;;(C; ;) onto C; (and fixes i). Now given
feZ define fon E by

S(x), xeE;
Fx)={f(Ri,; ¥ }(x)), xeCy;,ieF’;
0, otherwise.

Finally, let C; ; denote the unique 2- complex contained in C; ; that contains i, and
define a 2-harmonic function  on E by requiring that h=1 on E and that h=0 off
Eu(|)i,;Ci,;)- The desired extension of fis Jf=fh. It is easy to see that if n is the
maximum number of 1-complexes to which an element of F’ can belong and
l=max; u;, then

IJf1psnallfly, 1sVp<oo,
and clearly || Jf | » = || f Il . Moreover, from the estimate ([11], Theorem 1.4.2(i1))
& (uv, uv) <2[ull% & (v, 0)+ [0]1% E(u,u)],
and the local nature of &, it follows easily that
EULINZESN+2malE (S ) +elf1Z], (4.5)

where ¢, =&(h, h). But from (2.10), | f|2 <c,5(& (f.f)+ 1 f13). Together with
(4.5) this yields point (iii) of the lemma. |

Combining the lemma with Theorem 4.1 we arrive at the main result of this
section.

Theorem 4.4. If 6 >0 then there is a constant c4 3(0) such that

134 <cas()ELN+INSID IS YfeF AL (EF).  (46)

By Theorem 2.1 of [6] the Nash inequality of Theorem 4.4 is equivalent to an
upper bound on pf(x, y) on the compact fractal for small ¢. For the transition
density on the unbounded fractal p,(x, y), Theorem 2.1 of [6] with Theorem 4.1
above gives an upper bound for all times:
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Theorem 4.5. For the transition density pr(x, y) of Brownian motion on the compact
affine nested fractal E there is a constant ¢4 4>0 such that

ptE(x> y)§C4.4t7dS/2 vx’ yeEo VIG(O, 1] .
For the transition density p,(x, y), there is a constant c4 s>0 such that
Pe(x, y)Scast™ %% Vx, yeE, Ve>0.

Remark. The equivalence between the decay of the heat kernel and the Nash
inequality has been used in [29] as a definition of the spectral dimension.

Using the upper bound estimate, we can show the joint continuity of the heat
kernel.

Lemma 4.6. p,(x, y) (resp. p(x, y)) is jointly continuous in (t, s, y)e(0,00) x E x E
(resp. (t, x, y)e(0, 1] x Ex E).

Proof. As # < C(E) and P,:L?(u) - %, we see that P,feC(E) for all feL?(u).
Also by Chapman-Kolmogorov and symmetry

[ De(x, )13 = (Pelx, ¥))* p(dy)=Paclx, x) < 00,
E

so that p,(x,-)eL?(u). Hence, as
pi(x, Y):pt/z(ﬁt/z(' ,YN(x) 4.7)

the map x—p,(x,y) is continuous for each fixed t and yeE. Now use
Cauchy-Schwarz and the diagonal upper bound, to obtain

B, Y)S[hi(x, x) Py, ¥) 12 Zei(2), Vx, yek . (4.8)

This estimate allows dominated convergence to be used in (4.7) to show that
(x, y)Py(x, y) is continuous. The next step is to get joint continuity in (z, x). By
[7] Proposition 1.18, if Py=1,P,,=P,P,and lim, | o P.f=f for all feL*(E; i), then
(t,f)— P.fis jointly continuous. As these conditions hold for our strongly continu-
ous contraction semigroup we can take (t,, y,)r—(t, y) then set f,=p(+, V),
f,=t,—s for an s such that s<t,. Now by the above

pAtn('7yn):anf;l - pt*sf:pAt('ay) .
Thus the map (¢, y)+—p:(x, y) is jointly continuous for each x.

To get the joint continuity in all three variables we use Champman-Kol-
mogorov again. Fix s>0 and let t, »t>s, x, —»x, y, —»y. Then by the continuity
results so far

lim Ias(xna Z) ﬁtn *s(zs yn) =pAs(x’ Z)pAt*s(Z’ y) B

for each zeE. Now apply (4.8), to get
ﬁs(xna Z)ﬁtn*s(z yn)écl(s)ﬁs(xna Z) )

and as the family p,(x,, z) is integrable we can use dominated convergence in (2.7)
to extend the continuity of p(x, y) to {(¢, x, y)it>s, x, yeE} Now let s| 0 to obtain
the joint continuity on {(t, x, y):t >0, x, yeE}. The joint continuity of p¥(x, y) is
proved in the same way. n

By this lemma and Proposition 2.8, we have the scaling property of p,(x, y):
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Proposition 4.7. For the transition density associated with the Laplacian defined by
the Dirichlet form (&, %), the following scaling property holds:

Pux, y)=pi"Pene(aix, at y), Vx, yeE, >0, neN .

5. Hitting Time Estimates and the Upper Bound Estimates of the Transition Density

For AcE, let a(A)=inf{t=0:X(t)ed}, where X(t) is the diffusion process
corresponding to (&, & ). Set

W,=inf{t>0:X(t)eF™ —{X(a(F™))}} .

In this section, we will obtain exponential bounds on W= W ; and using this bound
we will deduce the upper bound for the transition density.

For xe F®AE,let ¥ ,.(E), . . ., ¥ ,m(E)(|0*|=nfor 1 £k <m, m depends on x)
be al the n-complexes containing x. For s=0, 1<i<s, and 1<j<m, set
B, iwi(x)={w:X(W,)eNi(x)n¥,;(E)} and define

(Mw‘, .. .,w'",wJ)(S)= Ex[exp(_SWn) I Bn,i,wj(x)] .

Note that by Proposition 2.2 (4), x is determined as the unique intersection of
Voi(E), . .., Pym(E).

Lemma 5.1. For all s20,1<k<N,

¢Ew‘k, s w'“k;wfk)(s) = ¢fkw‘, . ka)"‘;ka)(S) = ¢éw‘, . a)"‘;wJ)(Tk_ ! S) .

Proof. 1t is enough to show that 7, is the time scaling factor on ¥, (E) (1=<k<N).
Using Proposition 2.8 and a well-known formula for point recurrent processes, we
have

“1, -1
gﬂ(x,y)~P19ﬂri(°‘1 x, 00 y)

E¥(e”PM)= = -
95(1,¥)  p1gpe, (1 y, a0 ty)

- _ -1
=Ea1‘x(e Brio({ax y})) ,

for all x, ye E. By this, we see that 7, is a time scaling factor on ¥, (E). For k> 1, we
first construct an unbounded fractal of which the origin is the fixed point of ¥, (E).
Then the Dirichlet form can be constructed using the scaling p,. By the same
argument as above, the hitting times of both diffusions are the same if the particle
moves inside E. Thus we see that 7, is a time scaling factor on ¥, (E). |

Proposition 5.2. Define y=1v'/(S + 1). Then, there exist cs. 1, ¢s.5;>0 such that
Dlir . imin(S)Scsyexp(—cs27;,7"), Vs20.

Proof. Set max;t; !=o and min;t; ! =p. Take an arbitrary c,€(0, 1) and fix it.

Because ¢f;,. i i)(s) = 0as s — o0, it is possible to take a sufficiently small 6 >0
and sufficiently large ¢, >0 such that

Blis. ... imsip (S)=Screxp(—01;,"x;5") for se[cra, ¢, ] . (5.1)

Here x; is an i-th element of x >0 whose existence was proved in Proposition 3.1.
Now, define

ny(x, Ni(x)n ¥, (E))={n,:m, is a 2-walk from x to an element of
Ni(x)n¥;,(E) which does not pass F*V\{x}}.
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Also, for F®®-neighborhoods p, g, define

Dp.a(s)=EP(exp(—sW;)| X(W;)=q) .
Then by the strong Markov property,

Viwoimin)= X prn By, (0] (5). (52)

re Al Ny () A P (B)), ARG
= {DpePrea 1}

Set ks

fi,={memn,|n is minimal with respect to the order introduced in Remark 3.3.}

Then, noting that
Z P*[7|By,;,:,(x)]=1

and 0< ¢, ,, . (s)=1, we see from (5.2) that
¢£i,,..‘,im;ij)(s)§ Z Hlkn'=1 ¢pk,pk+,(s) . (5.3)

mEf2
On the other hand each ¢, .., (s) is of the form
¢f;'1,...,i,,.;i,)(S):(f)ﬁ‘,...,im;iJ)(Tfl s)
if k=1 (as the weight of 1-complexes containing an element of F(® is r;), and
(bfz,:, e ijim’;ijij’)(s)= ¢f., e im’;ij’)(Ti; ! s)

if k> 1 (as the 2-complex containing p, is contained in ¥; (E)). Here the equalities
hold because of Lemma 5.1. Now using (5.1) in (5.3), for s€[c¢,, c¢,/f] we have

¢fi,,..‘,im,i,)(5)§ Z Clln‘eXp(—é'fi;y(G(X))iSy) .

mef,

Choose ¢ €(0, 1) so that Zneh ' < ¢y, which is possible because |22 for neft,.
Then (5.2) holds for se[c,, c,/B], too. Inductively, it follows that (5.1) holds for
sefocy,00). As d)fiwwim;,-j)(s)él, retaking ¢; =exp(d,, 7 x;c}) we have the re-
quired estimate. ’ |

Set
Wy, =inf{t=0: X (t)eH" —{ X (s(H"))}} .

Remark 5.3. From this point we consider unbounded affine nested fractals.
Theorem 5.4. There exist cs 3, ¢s.4 >0 such that
E*(exp(—sW,,)) < cs.sexp(—cs.a{pi, "¢V s}7) Vxe H

Proof. First, we consider E. Let xe H“"nE be a boundary point of the | A,-

complexes F;, . . ., F;. Without loss of generality, we can let the weights of F;, be

Tio.. . inTj 1.7y for 1Sk<I Set maxi-, n(i)=u. Then,
;\(—J

n(k) times
E*(exp(—sWy,)) S E*(exp(—sWh+ 1 +4))

l —
<max Dijer i ((Ti - T, 7)1 s)

<crexp(—c{(n, .. T7) ' s))

<crexp(—cs(pi " Vs)).
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Here the second inequality is by Lemma 5.1, the third inequality is by Proposition
5.2 and the last inequality is by the fact that pf. <p; ... p; p% max’, p;. For
xeH in the unbounded affine nested fractal, take k such that ¥ (x)eE. Then,
by the above estimate and time scaling property, we can easily obtain the desired
estimate. n

Using a Tauberian theorem for exponential type for oscillating functions ([15]),
we obtain the following.

Corollary 5.5. For xe H",

v
PX(W,, <s)<cs.sexp(—cse{pi® s} 1-7).

Lo

Now we are ready to deduce the upper bound on the transition density. We define
dy=1/y.

Lemma 5.6. There exist ¢s ;, ¢s.g>0 such that,

s<t

1 -
P"<supd(Xs, Xo)—_>—5>§0547 exp(*cs.s(édwt—l)d‘”__T), Vxek .

Proof. Choose n so that 2¢; ,p;,"™ S6=<2¢3,p;, "~V Then,

P*(supd(X,, Xo)20)< max P’ (W, =r1)
s<t

yeNa, (x)
$+1) 01—
<cs.sexp(—cs.6{ Pl t} awT)

1
Scssexp(—csg{o™t ™} o) .

Theorem 5.7. There exist ¢s.q, C5.10>0 such that,

1
d(x, y)"w>m
t

Pe(x, y)écs.gt“’s/zexp<—cs.1o< > Vx, yeE, Vte(0, o) .

Proof. The following proof is the same as that of [4]. Fix x+y and ¢ and let
¢<gd(x,y). For aeE, set B,(a)={beE|d(a,b)<e}. Let vi=pt| px)» Vy="I|B.(y)»

Ay={zeE:d(z,x)<3d(x,y)}, A,=E—A, and S=inf{t:d(X,, Xo)>}d(x,y)}.
Then

P™(X.€B.(y))=P™(X.€B(y), X1e4,)
+ P*(X,eB,(y), X%GAZ)EII +1,.
For zeB,(x), by Lemma 5.6,

t
V(X ¢ <P? =
P (XEEAZ)_P (S<2>

1
d(x, y)y™\aw 1
<c¢s exp<—01 <%) > 5
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while if g(z)=P(X€B.(y)| X%=z), then by Theorem 4.5,

4(2)= [ Pilzw)p(dw)<cs =% u(B,(y)) .
B:(y)

Thus
Iz-_—va(‘I(X%):X%EAz)

AT T
gcsu(Bs(x»u(BE(y))rdsfzexp(_Q(d(x’y> > >

t

For I, by the symmetry of p,(x, y),
P™(X.€B(y), Xse4,)=P>(X€B(x), X1€4,) .

which is bounded in exactly the same way as I,.
Adding the bounds for I, and I,,

Ve —dg/2 d(x, )™\t
P™(X €B.(y))=2c3pu(B.(x))u(B(y))t ™ “ exp| — ¢4 . .
Dividing both sides by u(B,(x)), u(B:(y)) and using the continuity of p,(x, y) in
(x, y) proves the theorem. |

For the transition density of the compact fractal, we have the following estimate by
essentially the same proof.

Theorem 5.8. For sufficiently small 6 >0, there exist constants ¢s.11(9), c5.12(0) such

that .
_ d(x, y)™\aT1
PE(x, y)<cs11(0)t dS/zeXP<—C5.12(5)< ( ty) > )

for all 0<t<1, x, ye Bs(0).

6. Lower Bounds for the Heat Kernel

In the previous section we obtained an upper bound for the heat kernel for affine
nested fractals. The object of this section will be to obtain a corresponding lower
bound. The approach is to use the scaling in the transition density and a Sobolev
type inequality. We will work with the unbounded fractal as it has an exact scaling
property. At the end we will need to prove a relationship between the transition
density for the unbounded fractal and for the compact version. Our result can be
stated as follows.

Theorem 6.1. There exists cg.1, C¢., >0 such that,

1
d(x, y)"“’)"w—‘1

pi(x, y)ics.ltwdS/zeXp<_Cs.z< ;

), Vx,yeE", Vte(0, 00) .

The proof will follow from a series of lemmas with the main motivation for the
approach coming from [4]. However we do not use any resolvent estimates, just
the Dirichlet form and its scaling.
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Theorem 6.2. There exist constants c¢ 3, Ce.4 SUch that

ﬁl(xa .V)zc6.39 ifd(x7y)<c6.4a te[‘rfl, 1] .

The proof will follow from a series of lemmas. Firstly we control the diagonal of
the transition density.

Lemma 6.3. There exists a constant c¢ s such that
pu(x,x)=ce 5, Vte[ri!, 1], VxekE. (6.1)
Proof. This follows almost exactly the proof of [4] Lemma 7.1. n

Lemma 6.4. Let D, be any A,-complex. Then, there exists a constant cg ¢ Such that

sup  sup sup|pi(x, y)—p(x, y)Scespi " -

te[r;',1] X, x'€Dn yek

Proof. As p,(-,y)eZF we use Corollary 2.11. Noting that D, is a A,-complex, we
have

sup | p(x, y)—p(x', y)| écmi"’z gz(ﬁt(‘ ,¥), Dol a)’))llz .

’

x,x'€e Dy

Let u(x)=p,»(x, y), so that Pt/z u(x)=p,(x, y) and use [11] Lemma 1.3.3(j),

P ~ 1 ~
&(Pyzu, Pt/2”)§;(”u”%_ 1Pyzull3)

1,
é;pt(y, )

=

1
—cqst™ %2
t 4.5

Thus for te[ 771, 1] there is a cg ¢ such that

Sup sup !ﬁl(xﬂ y)—ﬁt(xla y)[§06.6pi;"/2 .

tefr;*,1] x,x’eDy,
Finaly observe that the constants obtained are independent of y. |
Proof of Theorem 6.2. The lemmas above give the proof as for x, yeD,,
—nf2

ﬁt(x,x)?_ﬁt(X, x) =P (%, X)—Pe(x, ) |2 C6.5 —C6.6Pi,

Hence we can choose a c¢ 4 such that if d(x, y) < ce 4 then x, yeD,, for n (or 3ze H
so that x, zeD, and y, zeD,) and cq.5—Co.6pi; "> = C6.3- |

This is enough to give the lower bound off the diagonal via the scaling in the
transition density.

Corollary 6.5. There exist constants cg.7, Co.g Such that
ﬁt(xa y)éc6.7t—d5/2, vxa y3d(X, y)<c6.8t1/dw’ tE(O, 1] .

Proof. By the scaling for the transition density and the theorem we can iterate the
result from that on the interval [t{ !, 1]. If t <17 !, let n be such that 7} te[z7 !, 1].



Transition Density Estimates on Affine Nested Fractals 617

Then, for x, y such that d(x, y)<ce.4 t'/™ <ce.4717™, by the scaling property of the

distance (3.7), d(a]x, at y)<ce.4p7 71" S Co.4- Thus
Pux, y)=p1 "Pene(i X, a y)
Zcqpy (i)
=cy t %2, ]

The final step is to use Aronson’s method, a chaining argument, to extend the
estimate from a small neighbourhood of the diagonal to all the off diagonal terms.
For this purpose, we prepare some lemmas.

For the A-approximation to E, we define 7, S%, and G*"(x) in the same way
as those defined in (3.1), (3.2) and (3.3), but with respect to H*?~E and with
respect to A,-walk. Here m={(qy, gx+1)}k=1 is called a A,-walk if leN, g,e H"
for 1£k<l, g and g4, join in the same A,-cell for 1<k<I—1. For p;=A/F;
(1£iZkg), define

;L,={Cl)=601 e wm‘bwi...a)m-,<p;'o§ﬁw,...wm, 1§(D,§ko (1§l§m)} .
Then we have the following.

Proposition 6.6. Let AcK, (K, is defined in (3.4)), satisfying G,(x)=X so that it
has the decomposition A=Y, pr 7" A, as in the proof of Proposition 3.1. Then, for all
nz1, G"(x)=xand A=Y, 4. b0’ Ao (Ao=Aa, ... o) attains the minimum in
G

Proof. Let G"(x)=(min,s; a- x)1<l<so—AA"x and max,ej, |o|=m (Jo| is the
length of the word w) where A A, 1S an s¢ X sg-matrix so that the i-th row belongs to
S, (1<i<s,). Then, by (3.8) and (3.9), if o =w; . . . wzeA, then o, w,_ i€,
for all 1<i<k,. By the symmetry and the self-sxmllanty of the fractal, we can
decompose A,, into Y ueinjwi<mfa’ A(O)+Y vei, wl=mPa’1 A(w—1)B(w) for
some kg x ko-matrices 4(w), A(w—1) and B(w)eK (here w—1=w; ... w;- for
w=w; . ..wy,). Iterating this decomposition, we have A4,,=3 - B where
B,=B(w;)B(w,w,) .. .B(w)(B(w; ...w;)eK,1<i<|w]). On the other hand, as
B(w)eK, B(w)x=x and so 4, x=x. As A“x=x, by definition of G*(x), A"
attains the minimum. |

Lemma 6.7. There exists cq.5 >0 which satisfies the following for all x, yeE, meZ
and keN:

If d(x, y)<pi™', then there exist Xo, X1, . . ., Xn (Co.0pY <n<ce.10p8") such
that Xo=2X, Xy =Y, X1, - ., Xy 1€EH and x;, x;, { lie in the same A, . ;-complex
for 0<i<n—1.

Proof. For x, ye H", set
dy,(x, y)y=min {|n|:neny,(x, )} ,
L,= max d,(x,y).

X, yeFONE
Firstly we show that L,<c;p?"" for some ¢, >0. By the above proposition,

G™"(x)= ) Po’ ApX=X.

weAn
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Let

Uy 1

Then v; is the number of steps for the A,walk leading from 0 to N;(0). As
Po-1<prL<p, and x>0, we see that max;v;<c,p? for some c,>0, thus
L,<cipl

Next, we show that

. da,(x, J’)
lim sup max max ———— P
n—>w xeHA'NE yeFOnE i/

Set g=max,.guy~g MaX,crogd4, (X, y). Then, we have

d~An(xa J’) Z Lk+1

max max Py 7
xeHAWANE yeFONE pioy k=1 p,o p,oy
n-—-2 1
q
<qc; ). +—
T 7
k=0 Pi,  Piy
2qc
<2
pl,—1

Now, if d(x, y)<p;, ™', then there exists ze H"»"+ such that each pair x, z and
z, y lies in the same A,,_;-complex. Take x'e H“~* which lies in the same
A, +x-complex as x and also take y’ in the same way. Then, by the self-similarity of
the fractal and by the fact we have proved above, we know that we can take
a sequence of the elements of H“* which connects x’ and y’ with at most ¢, p;, *”
points for some large c,. By moving at the same points of H“"* if necessary, we can
take the length of the sequence greater than c3p¥” for ¢z <c,. [ |

Proof of Theorem 6.1. The idea of the proof is just the same as [4] and [23].
Let L=d(x, y)*t. By Corollary 6.5, the theorem is already proved if L<c g g-
Thus we assume L=cg 5. For arbitrarily fixed ¢; >0, choose n and m so that

pun(s+1)(y 1)>c L>p (n+1)s+1)(y— 1) (62)
- - 1 1
pi, " T> d(x, y) Z pg, DT (6.3)

By the above lemma, we can pick the sequence xq, Xi,...,X,
(C6 gply <D<C6 10p )Such that X=X, X=Y, X15 - - .,Xv_leH(A"“") and Xis Xi+1
lie in the same A,,,+,,-complex for 0<i<v—1. Let B; be the union of the 4, ,,-
complexes which contain x;. Note that if zeB;_; and z'eB;, then
d(z,2')<3p;, MHWET DY < ep o(2/v)*, when ¢, is chosen small enough. Thus, by
Corollary 6.5, p(t/v,z,2') = ce.7(t/v) %% Therefore

P, )z ... [ pt/o,x, y1) ... p(t/v, yu—1, ¥)du(y1) - . . dp(Yu-1)

B, By-4

> (T2 w(B;)) et o (t/v) ™ %v12
2 ¢t {11321 (B 1/0) )} (1) 2
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As i "< (B S ey piy ™S and co0pl SuSc.10pl”, from (6.2), (6.3) we see

that u(B;)(t/v)~%/* is bounded above and below by positive constants which are
independent of L and t. Thus we have

(e, x, y)Z cheq(tfo)” o2
=cheqt
Zeut” M2 exp(—ce0pi loges ') .
Substituting our choice in the last term completes the proof. |
Following [ 5], we can derive the bound for the compact fractal from this result.
Theorem 6.8. For sufficiently small § >0 there exist constants c¢.11(0), ¢.12(0) such

that
Y d(x, y)\==
PE(X, y)Zco.11(0)t ds'2eXp<_Cé.1z(5)<%>dw 1)

for all 0<t<1, x, ye B5(0).
Proof. 1t is easy to see that the inequality

pr(x, y)Zpi(x, y)

holds between the transition densities for the reflected process and the process
absorbed at the boundary of E. We can now write the transition density for the
absorbed process in terms of the transition density for the process on the un-
bounded fractal as

pi(x, y)=p(x, y) _E(I{U(FE)gt} ﬁt—a(r‘E)(Xa(fE)’ ).

Then, following [5] Theorem 7.11, we can obtain the result for p{(x, y) and hence
for pf(x, y).

Remark. In the case of the Sierpinski gasket it is possible to map the path on the
bounded gasket into the unit triangle by a succession of folds about the central
triangle. This mapping is constructed by hand in [30]. Then the point yeE is the
image of an infinite number of points in E, and thus we can express the transition
density as

pE(x, y)=Pp(x, y)+ Y hilx, ) .
=
The result is just the first term.
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