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Abstract: A class of affine nested fractals is introduced which have different
scale factors for different similitudes but still have the symmetry assumptions of
nested fractals. For these fractals estimates on the transition density for the
Brownian motion are obtained using the associated Dirichlet form. An upper
bound for the diagonal can be found using a Nash-type inequality, then probabilis-
tic techniques are used to obtain the off-diagonal bound. The approach differs from
previous treatments as it uses only the Dirichlet form and no estimates on the
resolvent. The bounds obtained are expressed in terms of an intrinsic metric on the
fractal.

1. Introduction

The study of diffusion processes on finitely ramified fractals has seen the develop-
ment of probabilistic techniques which can be used to study the heat equation on
such fractals. The initial work was done on the Sierpinski gasket [5], in which the
existence of a Brownian motion, its uniqueness with respect to the local symmetries
of the set and estimates on the heat kernel were obtained. An important property
needed was the finite ramification of the fractal, that any part of the fractal can be
disconnected by the removal of only a finite number of points. The existence of
a Brownian motion on a class of fractals with this property, called nested fractals,
was shown in [27]. As yet the uniqueness of the process has only been proved for
a subset of these fractals, [2] and only some properties are known [21, 23, 27].
There has also been some work on the Sierpinski carpet, an infinitely ramified
fractal, in which the existence of a Brownian motion has been demonstrated [3]
and estimates obtained on the heat kernel [4]. More general infinitely ramified
fractals have been considered in [26], though all must have the property that the
spectral dimension is less than two. Recently the extension to fractals in which the
spectral dimension is greater than two has been accomplished by Barlow and Bass.
For a review of the physics literature in this area see [13].

Another approach has been to discuss analysis on fractals directly [16], where
Laplacians are constructed on Sierpinski gaskets and [17] for a large class of
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finitely ramified fractals, P.C.F. self-similar sets, which includes nested fractals.
These ideas enable Laplacians to be constructed as limits of difference operators
on the discrete lattices which approximate the fractal. They also allow the
Dirichlet form on the fractal to be described as the limit of Dirichlet forms on the
lattices.

In this paper we will consider a class of finitely ramified fractals, more general
than nested fractals, which we call affine nested fractals. They have the property
that the similitudes used can have different contraction ratios but they must still
preserve the symmetry of the fractal. In the same manner as for nested fractals [12,
25] we can construct a Laplacian on the fractal via a Dirichlet form. There is
a natural measure, suggested by [20], for this Laplacian and our aim will be to
obtain heat kernel bounds for the transition semigroup with respect to this
measure.

It is also possible to define an infinite version of the fractal, by inverting one
of the contractions and iterating. The Dirichlet form can be extended to this
fractal and our estimates will be obtained for the heat kernel on this infinite
fractal. There is a natural intrinsic metric for a Dirichlet form and we will prove
the existence of a version of this metric on the fractal. In the case of finitely
ramified fractals it can be thought of as a constant power of the effective
electrical resistance between two points in the fractal. The metric also takes
account of the shortest path between points. Our results will be presented in terms
of this metric.

In order to obtain estimates on the heat kernel we establish a Nash inequality
for the functions in the Dirichlet space. By [6] this provides a uniform upper bound
on the decay of the transition semigroup. In [6] it is shown how the method of
Davies (for more discussion see [8]), for obtaining off diagonal bounds for the
semigroup can be used for general Dirichlet forms with the Nash inequality. This
method cannot be applied in this context due to the singularity of the energy forms
with respect to the Hausdorff measure on the fractal [24]. Instead we turn to the
probabilistic techniques developed for nested fractals in [23].

The lower bound can be obtained from the Dirichlet form wihtout using
probabilistic estimates. This approach requires the Holder continuity of the
transition density. This is obtained via the scaling in the Dirichlet form and control
of the continuity of the functions in the Dirichlet space by the Dirichlet norm.
A chaining argument can then be used to extend the result form a small ball about
the diagonal to the whole space. We prove the lower bound for the unbounded
fractal where there is an exact scaling, and then use an inequality for the reflected
process to obtain the bound for the compact fractal.

The Bernoulli measure we use for the discussion of the heat kernel on the fractal
is the measure μ based on the electrical resistance. The dimension of the fractal
based on this measure is the similarity dimension, S, (see [10, 20]). The spectral
dimension can then be expressed in terms of this dimension as ds = 2S/(S+l). The
walk dimension dw will be computed by determining the shortest path metric on
the fractal. In our case there is a relation between the Hausdorff dimension df (with
respect to the shortest path metric), dw and ds; ds = 2df/dw. This relationship has
been shown to hold in other cases ([4, 5, 23]).

The fundamental scaling factors for the fractals will be denoted as μ for the
mass, τ for the time, p for the conductance and α for the spatial scaling.

The main result is stated for the infinite affine nested fractal £, in the following
theorem,
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Theorem 1.1.

(1) There exists a jointly continuous transition density pt{x, y) for the semigroup on
the fractal E.
(2) There e x i s t c o n s t a n t s c 5 9 , c 5 Λ 0 , c 6 Λ , c β 2 s u c h t h a t

for all 0 < t < oo, x, yeE, where

In this paper, c, (ieN) will be used as a positive finite constant whose value
remains fixed within each proof and depends only on the affine nested fractal in
question, while cnΛ (ieN) denotes a fixed constant which appears in section n.

The work in Sects. 3, 5 and 6 was done by the third author while visiting the
university of Cambridge with the support of the Japan Association for Mathemat-
ical Sciences and Trinity College. The work in Sects. 4 and 6 of this paper was done
while the second author was visiting the University of California, San Diego with
the help of NSF grant DMS 8657483 and at the University of Cambridge with the
support of the UK SERC.

2. Affine Nested Fractals and Their Dirichlet Forms

In [27], Lindstr0m introduced a class of finitely ramified fractals called nested
fractals. The Dirichlet forms for these fractals were constructed by Kusuoka [25]
and Fukushima [11]. We begin by defining affine nested fractals which is a wider
class of fractals and stating some results which will be needed subsequently.

Let α> 1, then an α-similitude is a map Ψ: RD -» RD such that

Ψ(x) = aL~1U(x) + a , (2.1)

where U is a unitary, linear map and aeRD. We will denote a finite family of
αΓsimilitudes by Ψ= {Ψu . . ., ΨN}. Then for a set AczRD, define

Φ(A)=f] ΨAA),

Φn(A) = Φ o o φ[A) .

By Hutchinson [14], this mapping has a fixed point which is the unique compact
set E such that E = Φ(E) and this is a self-similar fractal.

As each Ψt is a contraction, it has a unique fixed point. Let F be the set of fixed
points of the Wt\ l^i^N. A point xeF is called an essential fixed point if there
exist, Uje{l, . . ., N}, ifj and yeF such that Ψi(x)=Ψj(y). We write Fm for the
set of essential fixed points. Now define

Ψi1.....iΛ
A)=ψn° * * ° ψin(

A) A c i R D

We will call the set Ψiit in(F(0)) a n rc-cell and Ψiίt..., in(E) an ^-complex. The set
of /7-th iteration of F ( 0 ) can be defined as

i^ .... in =1
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The set E can be recovered from the essential fixed points by setting

00

F ( o o ) = ( j f(») 5 E = cl(Fico)) .
n = 0

We can now define an affine nested fractal as follows.

Definition 2.1 The set E is an affine nested fractal if { Ψ11 ΨN) satisfy:

(Al) (connectivity). For any \-cells C and C , there is a sequence {Ct : i = 0, . . ., n)
(neN) of l-cells such that C0 = C, Cn = C and Cf- iπCί + 0, i = l, . . ., n.

(A2) (symmetry). If x,yeF{0) then reflection in the hyperplane Hxy =
{z:\z-x\ = \z — y\} maps F{n) to itself.

(A3) (nesting). If {iu . . ., /„}, {ju . . .,jn} are distinct sequences then

(A4) (open set condition). There is a non-empty, bounded, open set V such that the
Ψi(V) are disjoint and (Jf=1 P ^ j c K

Note that the difference between affine nested fractals and nested fractals is that the
contraction rate for each similitude can be different for the former but not for the
latter.

We briefly list up geometrical properties of affine nested fractals. Results (1), (2),
(3) can be obtained exactly by the same proofs as for nested fractals [27], while (4) is
noted by J. Murai [28].

Proposition 2.2.

(1) Ifx,y,x\y'eF{0) and \x — y\ = \x' — y'\, then there is a symmetry ί/ (i.e. reflection
in (Λ2)) such that U(x) = x' and U(y) = y'.
(2) Set lx =min{ |x —j; | ; x, yeFi0\x + y}. Thenjor x, yeF{0\ there is a strict 1-walk
su . . ., sn(\.Q. Si and si+1 join in the samel-cell (Ψj{i), say) and\si — si+γ\ = ajil)lι for
l^i^n-1) such that s1=x, sn = y and skeF{ί)-F{0\ 2<±k^n-\.
(3) Any 1-cell contains at most one element of F(0\
(4) Wi(E)nWj(E) (i+j) is at most one point for l^iJ^N.

The key ingredient in constructing a process on an affine nested fractal is to
determine a sequence of random walks with suitably nested transition probab-
ilities. On nested fractals, this has been studied in [27]. We define edge equivalence
classes so that

{\x-y\; x,yeFi0\ χ*y} = {ll9.. ., /so}, 0 < / 1 < . . </ S o ,

and define ms= # {yeF(0)\\x-y\ = ls}. For each xeF(m\ let JVJ^x) be the set of
/^"O-neighbors y of x such that \x — y\ =(α f oc J " 1 h, where x, yeΨt irn(E)
for some l^il9 . . ., im^N. Also, let Nm(x)={)*lιN

i

m(x). We call (x,y)e
p(0) χ p(0) t ^ p e i a n ( j w r j t e Type(χ? y) = i if x and y are F(0)-neighbors and \x — y\ =
li. Now we can define the space of possible transition probabilities for the discrete
chains with a natural ordering
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Fig. 1. Examples of affine nested fractals

We next define a size equivalence class. The sets Ψί(E) and Ψj{E) are the same size
if they can be mapped to each other by the composition of the reflection maps
which appear in (Λ2). Let the number of 1-complexes with different size be k0. We
can order the 1-cells by their size and put a weight on each size;

r = (r l5 . . ., fko), ri>0(l^i^ko) .

In the following of this paper, we put (super tilde) when we distinguish cells by
their size.

We call (x, y)eF{1) x F ( 1 ) (xΦj/) size i and write Size(x, y) = i if x and y are
F(1)-neighbors and the size of the 1-complex containing both x and y is i
(by Proposition 2.2 (4), we see that there is a unique 1-complex containing both
x and y).

These can then be used to construct a random walk on F ( 1 ) . Let X1 be
a Markov chain on F ( 1 ) moving according to a set of basic transition probabilities

divided by the weights f; for F(1)-neighbors x, y (x + y), define

p(χ>y)=

where η(x) is the normalization constant so that ΣyeN1(x)P(x,y)=l Otherwise
p(x,)>) = 0.

The Markov chain on F ( 1 ) induces a Markov chain X° on F ( 0 ) by considering
X1 stopped when it hits F ( 0 ) . Let r8(A r l) = inf{n^0:Z Λ

1 6F ( O ) }, and Tf+1 =
inf{n>Γ?(JV: 1):XM

1eF ( 0 )-{Z^ ( χ i )}} inductively for i^O. Then we require that
Xτ°i(χi) and Xf have the same law. This corresponds to a fixed point for the
transition probabilities whose existence was proved in [27] in the case of nested
fractals. The following proposition can be proved in the same way as the corres-
ponding part of [27].

Proposition 2.3. For any choice of f = (r1 ? . . ., rfco), η > 0 (l^ί^ko\ there
exists p e ^ such that the corresponding Markov chain Xτϊ(x*) and Xf have the same
law.

In the following, we assume, without loss of generality, that the size of the
1-complex which contains an element of F ( 0 ) is r1. Also, let η = fSize(ϊ/ι(£)), where
Size(Ψi(E)) is the size of Ψt(E) (l^i^N). Letc = Px(XΪ(F^ = x) for xeFi0\ where
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( ) = inf{n>0:X^ei7(O)}, then the conductance for the 1-complex containing
an element of F ( 0 ) can be expressed as

1

which is independent of x (see [25] and Theorem 5.2 of [22]). If we set λ =
then the conductance for Ψi(E) is p ί = /l/rI.

Throughout this paper, we assume the following:

Assumption 2.4. For all 1 ̂ ί^iV, ρt> 1.

For x, yeF(0) with xή^y set Πxy = ps if |x — y\ = ls. Also, let μ be a Bernoulli
measure on E such that μ(Ψi(E)) = μi>0 (Σf = 1 μΐ=l) . We can now define the
Dirichlet form for the afϊine nested fractal in the same way as [17] and [25]. Let /,

( ) ) = {/:F ( o o )-+R} and define

χ(g(Ψkl,...,kn(x))-g(Ψkl,...,kn(y)))Πxy, (2.2)

where Pk1,...,kn = Pk1,...,Pkn Then, from [25] and for the more general class of
P.C.F. self-similar sets in [17], the sequence of forms is monotone so that we have
the following.

Theorem 2.5. Let fel(F(GO)%

^ = {/: sup Sn{fJ) < oo}, δ{fj) = lim δn{fj) .
n H->OO

1) Any function in 3F can be extended uniquely to a continuous function on E (thus we
can consider !F aC(E) = {f:f is a continuous function on £}).
2) ($, 3F) is a local regular Dirichlet form on L 2 (£, μ) which has the following scaling
property.

f, g)=Σ pι*(f° ψi>β° ψ<) f°r alϊ f>

3) If we set ^ ( , ) = ^ ( ? ) + ̂ ( , )L2(£,μ) far β>0, then Sβ admits a positive
symmetric continuous reproducing kernel g%(•,•)•

Our interest here is to obtain estimates on the heat kernel for the corresponding
diffusion process. For this purpose, we need a "natural" measure, which is sugges-
ted by the following theorem in [20].

Theorem 2.6.

1) Let Δμ be the generator for (δ,^) on L2(E,μ) and let nμ(x) = 9{λ\λ be an
eigenvalue of — Λμ^x.}. Then, for the unique positive number ds(μ) satisfying
YJ^ί(μi/pi)ds(μ)l2 = U the following inequality holds:

0 < l i m inf nμ(x)/xds(μ)/2 ^ l i m sup nμ(x)/xds{μ)/2 < oo .
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2) Let S be the unique constant which satisfies ]ζf=1 pΓs=ί Then,

2S
max{d s(μ):μ is a Bernoulli measure on E.} = — — - ( Ξ ^ ) ,

S + 1

where the maximum is attained only at the Bernoulli measure μ satisfying

μi = prs far l^i^N .

In the following we define μι = ρΓs for l^i^N and consider this measure unless
otherwise stated.

Next we will consider unbounded affine nested fractals and their Dirichlet
forms. In [12] and [31], such forms are used to identify spectral dimensions, which
express the asymptotic frequency of the eigenvalues of the corresponding Laplace
operators on nested fractals. Assume, without loss of generality, that Ψ1(x) = otϊ1x.
Let E<n>=an

1E and E=[j^1E
<n>.

Set Fn = κ\F{n\ We change the definition of F(n) as follows: F ( o ) = U»°°=o F« and
Fin) = aϊnF{0) for neZ. We next define the address of an n-complex on E. First, set

Ωo = {ωe{0, . . ., N}z\3η,ξeZ such that ω k = l for all k^ξ,

wk> = 0 for all k'>η and ωk» + 0 for all k"^η}.

For ωeΩo, define

(we just use η0, ξ0 when there is no confusion).
For an ^-complex DnaE, we say the address of Dn is ωeΩ0 if Ψ[~ξo)(Dn)czE and

Dw = ψ^o) o !P ω i + { o ω, 0(£). Here Ψf is the /-th composition of Ψλ and we regard
Ψωi+ί0... ©,0 = I (identity map) if η0 = ξ0. Thus from the definition we see that η0 = n
and that £o=-min{/ | ψψ(Dn)cE}. For ωeΩ0, we define

(2.3)

which is the corresponding ^-complex.
Next, define σn:l{E<n>) -> /(£) by

σnf(x)=f(θίn

1x)=fo Ψ[~n){x) for

Set #'£</>=σ_ zJ^ and

*E«>(f,g) = PΪι*{σιf,σιg) for f9ge&E«> . (2.4)

Also, let μ be the Bernoulli measure on E such that

for all n, meN, ωeΩ0. Note that for the following theorem, μf could be any positive
number such that £f=i μ/= 1.

Now we define a quadratic form on E. Let

<ι> for each/, lim ^<ι>(/U<ι>,/|£<.
/-* oo
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T h e n # £ c z C ( £ ) . Set

# 2 £ ; μ), £{f g) = lim ί£<.>(/|E<->, #|£<») for /, # e # .
i-+O0

Then we have the following results in th same way as [12].

Theorem 2.7. 1) (<f, 3F) is a local regular Dirίchlet form on L2(£; μ) which has the
following scaling property:

i(f,g) = p1i(foψugoψ1) forallfgeβ-. (2.5)

2) (S)β admits a positive symmetric continuous reproducing kernel ^ ( , ).

We now deduce some results which will be used later. Set τi = pi/μi = pi+s.

Proposition 2.8. For the reproducing kernel gβ(x,y) (β>0) associated with the
Hubert space (β β, # ) , the following scaling property holds:

gβ(x, y) = pIngZinP(oc\x, aϊly), Vx, yeE, neN .

Proof From the scaling (2.5) we can deduce the scaling for the form (iβ, # ) ,

β/n(f^Ψΐ\g^Ψ{r)) (2.6)

as desired. Recall the reproducing kernel property,

Now using this and (2.6)

£ , χ)> gβ/τ

nS^ni , y))

Then rearranging using symmetry and change of variables gives the result. •

As we have the continuous reproducing kernel for each x, y, by [9] Lemma 2.1,
the transition function possesses a kernel which satisfies the Chapman-Kol-
mogorov equations for all x, y:

Lemma 2.9.

1) The transition function on E possesses a kernel pt(x, y\ so that
P(t, x, dy) = pt(x, y)μ(dy), and such that pt(x, y) satisfies the Chapman-Kolmogorov
equations,

pt{x, y) = $ps(x, z)pt-s(z, y)μ{dz), Vx, yeE . (2.7)
E

2) The transition function on E possesses a kernel pf(x, y\ so that
P(t,x,dy) = p?(x,y)μ(dy\ and such that pf(x,y) satisfies the Chapman-Kol-
mogorov equations.
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Properties of the Dirichlet form include the following Sobolev type inequality.
Let Pio = mmlsίύNpi and consider the compact fractal.

Proposition 2.10. There exists a constant c2.i > 0 such that for all fe^ with f(x) = 0
for some xeF(0)nE

(2.8)

where || || ̂  is the supermum norm on E. There exist constants c2.2, c2.3 >0 such that

sup mx)-f{y)\ύC2.2*U,f)m, VfeF, (2.9)
x,yeE

Wf\\iύc2MfJ)+\\f\\22), VfeP. (2.10)

Proof Let ΰ denote a 0-harmonic function (an /-harmonic function is a function
which is harmonic inside each i-complex) vanishing at some point q of F ( o ) . As
Πxy>0 (xφy, x, yeF(0)nE),

«{ύ,ύ)=\ Σ (ΰ(x)-ΰ(y))2Πxy

for some cλ >0. We use the maximum principle in the last inequality. Now by [20]
Proposition 1.9 for UEΪF and ΰ the harmonic function with the same boundary
values as u,

\\u-ύ\\^c2g{u,uγ12 , (2.11)

so that

by minimality of the harmonic functions. For (2.9) observe that u(x)=f(x)—f(q) is
a function in !F vanishing at q, then from (2.8),

and then take the supremum.
For (2.10), note that as the set of 0-harmonic functions is finite dimensional, the

norms || IL and || | |2 are mutually equivalent on the space. Thus, using (2.11).

Corollary 2.11. Let Dn be an n-complex such that Dn=Ψω(E)for ωeΩ0. Then

sup
x,yeDn
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Proof. From (2.9) and scaling we have that for the compact fractal

Now, as Ψ[-ζo)(Dn)<=E,

sup \f(x)-f(y)\= sup \σ.ξJ(x)-σ.ξJ{y)\
χy*D Ψ ( E )

3. Distance on Affine Nested Fractals

In this section we introduce an intrinsic metric for the Dirichlet forms constructed
in Sect. 2. The distance on the wider class of fractals, P.C.F. self-similar sets, is
discussed in [18] and [19]. Our distance is similar to that of [18].

We will first construct a distance on E. For x, yeF(m)nE, let

πm(x, y) = {πm:πm is an m-walk in E from x to y which does not

contain multiple points} . (3.1)

Here π m = {pk, pk + x}{ = x is called an m-walk if IGN,p k eF { m ) ϊorl^kSlPk a n d p k + ι

join in the same m-cell for 1 ̂ / c ^ / - 1 . For πm = {pk, P/c+i}[ = ieπm(x, y), we say the
length of πm is / and denote it by \πm\ = l For πeπi(x,/), let vk(π) be an s0-
dimensional vector such that (vk(π))7 is the number of fc-size j-type steps in the path
π (1 Sj^So, l^k^ko). Now, for a positive number ί, set

S{ = | Σ PkXMlπeπ^yl^yeF^nE^eN'oixΛ, (3.2)

where ρk = λ/rk.
In order to construct a distance, we must first solve an eigenvalue problem.

Proposition 3.1. Set

. (3.3)

Then, there exist 0 < / < S + l , x>0 such that Gy>(x) = x.

This proposition is essentially the same as Proposition 3.4 of [23]. For the proof,
we prepare a lemma.

Lemma 3.2. Let B = {xeR s o | 0^X!^- ^x s o }. Then Gt(B)aB.

Proof. Fix peF{0\ qeNo(p), qΈNi

0~
1{p). Let Uqq* be the reflection map which

maps q to q'. Define V= { zeRD: \z-q'\ ^ \z-q\}. Also we define a m a p T:RD -> RD

by

Uqq'Z otherwise.

For xeB and ί^2, let ( ^ ^ ! ^ ^ ! ff1fto

(Σfc°= i Pkx&\k > , Σfc°= i Pktasok)£Sιt> Then we know that there exists at least one
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1-walk from p to q which has fc-size 7-tyρe steps ajk times. Express the 1-walk by
)>o, J>i, , JV where yo = P, ym = q and m = ΣJ3kajk.

Then we know ΊypQ(TyhTyi+1)^ΎypQ{yhyi + 1) because |7>ί — 7 > i + 1 | ^
\yi — yi+i\ (where we set Type(y i 5 j; i + 1) = 0 if yi = yi+1). Also, as the sizes of two
1-complexes are the same if they are mapped to each other reflections,

yi+l) = Size(yi9yi+1i) w h e n Ty^Tyi+1. D e n o t e a'jk = #{(yi,yi+1):

Tyi + 1)=j,Sizβ(yi9yi+1) = k, O^i^m-1}. Then we have ( G M - i ^
Σj,kPkta)kXj^Σj,kPhtaJkXj=:(Gt(x))i because xeB. •

Proof of Proposition 3.1. For fixed £>0, set

Kt = {Λ:Λ is an s0 xso-matrix, (/-th row of A)eSι

t9 1^/^So} , (3.4)

and kt = m\nAsKt {largest eigenvalue of A). We first prove that there exists xt>0
such that Gt(xt) = λtxt.

Set co = minkpk

t. If xeB, then (G ί (x)) 1 ^c 0 Xi and (Gt(x))i^cixί for some
c f > 0 ( 1 ^ Ϊ ^ 5 0 ) because (c ί ? 0, . . ., 0)eSι from Proposition 2.2 (2). Thus, if xeB
and Xi >0, we know

Let 5fi = {x6jB:χxi=l, Xi^ε} and G f (x)^ Gt(x) for XG5 £ . Then, by

L(^(X))L ( i ( ) ) i
definition, (G f(x))! ^ε . Combining this with Lemma 3.2, we see Gt(Bε)czBε. Thus,
by the fixed point theorem, there exists xteBε such that Gt(xt) = xt. If we define
λ't = Σ(Gt(χt))h we have G ί(x t) = λίx f. By the Frobenius theorem, it is easy
to deduceλ t = λ't. When£ = 0, λt>l because Al^l for all AeK0. We next consider
the case t = S+l. For i e K s + 1 which attains the minimum largest eigenvalue,
decompose it as A = Σkpk{S+1) Ak, where {Ak)ij = a)k if (i-th row of A) =
(Σk°=iPkγ αifc' •> Σk°=iPfc~/α^). Clearly, m a x ^ ^ ^ ^ ^ (number of fc-size l-
complexes in E). Thus, max, ΣjAijύ Σ m = i P m ( 5 + 1 ) < Σ m = i P m S = l and hence
vl5+! < 1. As λt is a minimum of the largest eigenvalue of matrices in Kt, λt moves
continuously with respect to t. Thus there exists 0<y' <S+l such that λy=lM

Remark 3.3. For π, π'e%i(x,y\ we can write π < π ' if v/c(π)^v/c(π/) for all
1^/C^/CQ. By this π^x, y) is an ordered set. Define S\> = {neSl

r\n is a minimum
with respect to the order.} Then, it is enough to consider Sι

r when we calculate
Gr(x).

In the case of Fig. 2, S1 is as follows:

§1 = {(2Pp
t+pp\0)ΛpΓ\2p:y\(2Pr'+pp\pIyΊΛ^pP'+pP\0)}.

(S2 has many elements and we leave it to the reader to write them all out.)
Now we define the distance on i 7 ( m ) as follows:

|π |

dF(m)(x, v ) = m i n y n-yf

 v

Here x is the one which appeared in Proposition 3.1 and Size(p, q) = i1 im if the
m-complex containing both p and q is Ψilt.mmti (E).



606 P.J. Fitzsimmons, B.M. Hambly, T. Kumagai

Pi

P\

c

P2

P3

P2

z

PI

PI

P2

I

Type{x,y) = l, Type{x,z) = 2

Fig. 2. An example of an affine nested fractal and its shortest path

Lemma 3.4.

1) If p, qeF{0)nE and Ύype(p,q) = i, then
a unit vector whose i-th component is 1.
2) dMx,y) = dF^(x,y) i f ™

) = (ei, Gy>(x)) = Xi, where et is

Proof. 1) is clear by definition of Gy>.
For p, qeFi0\ let π = {pk, pk+1}T=i be a minimal F (1)-path. Define the F ( m + 1 ) -

path between Ψω(p), Ψω(q) (ωe{l, . . ., N}m) as

πω = {Ψω{pk), Ψω(pk+ί)}k=i . (3.5)

To prove 2), pick a minimal F ( m + 1 ) -path π m + 1 between x and y and induce
a F(m)-path πm = {qk, qk + i}k=i- Then, by the nesting property ((A3) in the Defini-
tion 2.1) of affine nested fractals, πm + 1 moves in the same m-complex (Ψω(E), say)
between qk and qk+i. It must be of the form of (3.5) as π m + 1 is minimal. By
definition and 1), the dF(m+υ-distance of π m + 1 between qk and qk+1 is
p~y'xType(^k>gk+l), which is exactly the dF(».)-distance of π m between qk and qk+1. Thus
the ί/F(m+D-distance of π m + x is equal to the dF(m)-distance of π m . Next we prove that πm

is a minimal F ( m )-ρath between x and y. If it is not, we have a minimal F(m)-path
π'm between x and y. In which case we can construct an F ( m + 1)-path π'm+1 from
π'm by putting (3.5) in each step. Then the dF(m+D-distance of πf

m+1 is equal to the
dF(mrdistance of πf

m and this contradicts the minimal choice of π w + 1 . •

This lemma enables us to define a metric d on F(G0)nE by setting
d(p,q) = dFw(p,q) for p, qeF(m)eE. We extend this metric to a metric on E as
follows.

Theorem 3.5. For any choice of p, qeE, define d(p, q) by

d(p,q)=\imd(prnqn) ,

where pn, qneF{co)nE and pn-+p, qn-* q as n-+co. Then d is well defined and d is
a metric on E.

Proof. The following is the same proof as [18]. Note that by the nesting
property ((A3) in the Definition 2.1) of affine nested fractals, pn ->p if and only
if, for each m, there exists n(m) such that, for all n>n(m), pneUm,p, where
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Now, let pn^p, p'n-*P as rc->oo, where {pn}, {p'n}czFico\ Note that for
ω e { l , . . . , N } m ,

d(Ψω(E))= max d(x,y)^RmM,
x,yeΨω(E)rΛF{cc)

where ^ = maxfLi pfy < 1 a n < l M ^ m a x ^ . Hence, for sufficiently large n,

d{pn,p'n)ύ Σ d(Ψω(E))^CRmM,
ωel/m,p

where C = # ( J i + j (
ι F i ( £ ) n ¥*,-(£)). Therefore d(pn, pi) -• 0 as n ->oo. By the triangle

inequality,

\d(Pn, qn)-d(pm, qm)\Sd(pn,pm) + d{qn, qm) .

Combining this with the above facts, we see that the limit of d(pn, qn) exists as
n -*αo. The same discussion shows that d is well defined, and it is clear that d is
a metric on E. •

For p, qeE<n>, define

Then dn is a metric o n £ < " > . Further there exists an N such that for each m,

dm+N(p, q) = dm+N + k(p, q) for all p, qeE<m>, /ceN . (3.6)

To prove this, define

First, the minimal F(Λ°-path between any two distinct elements in P(N) does not exit
F ( 1 ) for large N between because otherwise the distance would be infinite as

min d{x,y) = p1 min d{x,y).
XGP

in\yeP(n + 1) xeP(n+l),yeP(n+2)

Then, we easily see that the minimal path between any two elements of Ψψ](E) is
contained in Ψi(E), which gives (3.6).

By (3.6), we can define a metric on E which we will also denote d(p, q). By
suitable normalization of x, we can set d(E) = maxPtqeEd(p,q)=l. Clearly, this
metric has the following scaling:

p), Ψi(q)) for all p, qeE . (3.7)

Next we introduce a /t-approximation to E. For neZ, set

Here pio = m a x ! ^ i s N pt and we set pωζ ,,m(Oη = 1 when η0 = ξ 0 (an analogous set was
considered in [20]). Define H{Λn) = ( J L ^ Ψω (F(0) n £). We can prove the following
in the same way as [20] Lemma 2.6, which is an easy consequence of the definition,

(J Ψω(E) = E f o r a l l n e Z , (3.8)
ωeAn

Ψω(E)nΨω,(E)c:HiΛn) for all ω, ω'eΛn, ω + ω\ (3.9)
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Consider two points p, qeH{Λn) which belong to Ψω(E) (ωeΛn). If the shortest
path between p9 q is inside Ψω{E\ then d(p,q) = (pf~1 ρωξo...ωηo)~yf xΎypeiPyq).

Further, by the geometrical property of affine nested fractals, if the path between
p, q is not inside Ψω(E% then it passes through at least one element in
HiΛn)nΨω(E)c.

Thus there exist constants c 3 . 2 > c3Λ > 0 (independent of/?, q, n) such that for p,
q in a #(/ίn)-neighborhood,

m2pr"y . (3.10)

Using this we have the following scaling property.

Proposition 3.6. There exists c3 3 > 0 (independent ofp, q) such that for all p, qeE and

forallωe[jmeN{h...,N}m/

Proof If the minimal path between Ψw(p) and Ψw(q) is inside ΨW(E), then, by the
construction of the metric, d(Ψw(p), Ψw(q)) = p~y>d(p, q). This gives the upper
bound. To show the lower bound it is enough to consider the case when the
minimal path is outside ΨW(E). Choose n such that

Ψω.(E)czΨω(E)<=Ψω.'(E) for some ω'eΛn, co"eAn-x .

Then, there exists cu c2>0 (independent of the choice of ω) such that

c,piUPvύc2pi. (3.11)

On the other hand, using (3.10), we have

p;r' . (3.12)

Combining (3.11), (3.12) and using the fact that d(p, <?)^1, we obtain the lower
bound. I

Remark 3.7.

1) In proposition 3.6, the equality does not hold in general. In fact, in the case of
Fig. 1 in Sect. 2, if ρx <ρ2, p 3 , then

2) In [19], Kigami introduced a resistance metric R<? on E. Using Proposition 3.6
and the results in [19], we see that there exist c 3 4 , c 3 . 5 >0 such that

C3Λd(p, q)^R#{p, q)y><.c3.5d(p, q) for all p, qeE .

As the Hausdorff dimension of E w.r.t. R<? is S (see [19]), the Hausdorff dimension
w.r.t. d is S/o'.
3) In the case of nested fractals, we have the following relation between the
Euclidean metric and the distance studied in this section.

C3.6d(p, q)S\p-q\dcSc3.Ίd(p, q) for all p, qeE ,

where c3 6 , c3 7 are positive constants and dc is a chemical exponent studied in [1]
and [23].
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4. A Nash Inequality for Affine Nested Fractals

In this section we will establish a Nash-type inequality, and thereby a diagonal
upper bound on the transition density for Brownian motion on the fractal. We will
first prove the Nash inequality for the unbounded fractal E and then use an
embedding argument to deduce the analogous inequality for E.

Theorem 4.1. There is a constant c4Λ such that

Wf\\22 + "/dsύc4Λi(fJ)\\f\\Vds (4.1)

for all fe&(Λl}{E,μ).

Proof. For feCb(E), the set of continuous bounded functions on E, set

= ]gβ(x,y)f(y)dμ(y) .
o

Let / e # and consider supX 6 ί ) n \f(x)\2 for an n complex Dn = Ψω{E\ ωeΩ0. As in
Corollary 2.11 we can use scaling in (2.10) in order to obtain

s u p | / ( x ) | 2 ^ c 2 3 ( ( p f V ω ^ ^

By choosing ωeΛ0, the values of (p\°pωi+ξo...ωη ) - 1 and μ\°μωi+ζo...ωn are within
a constant of 1. Thus we have that

sup | / (x) | 2 ^ C l <?!(/ ,/) ,
xeDn

where cx is independent of the choice of ωeΩ0. Therefore we have the extension of
(2.10) to the unbounded fractal. Now, following the proof of Theorem 2.3 in [12],
and using the extension of (2.10)

Thus c2 = || Qγ II oo < oo. Since

i(ff) = sup β(ff-
β>0

we have | | / | | | ^ ( / , U[^f)μ + i(f,f), and so

II/II2ύc2 II/Hi + i(f,f), / e # . (4.2)

Now notice that if /(x)=/(α?x) where rceZ, then \\f\\p=μϊnlP\\f\\P, where
μί=ρΐs and £{JJ) = pϊn£(fJ) Replacing /in (4.2) by /and using the fact that
μ1=p~s

 W e obtain

H/ll2^Piπc2 ll/lli + P P ( 1 + S ) <?(//), / e # , neZ . (4.3)

Since ds/2 = S/(S + l), (4.3) yields immediately

\\f\\2URdsl2c2\\f\\l + R-1£{ff), feβ,R>0. (4.4)

Optimizing the choice of R in (4.4) we obtain (4.1) with a constant c 4 i depending
only on \\g1 W^ and ds. •
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Remark 4.2. By the above proof, we can see that (4.1) holds if and only if the
Bernoulli measure is μi=pΐs.

The analogous Nash-type inequality for the compact fractal £ is a consequence
of Theorem 3.1 and the following

Lemma 4.3. There is a linear map J: 3F -> # and constants c 4 2 and c 4 3(<5) such that
for all

(i) Jf=fonE;
(ii) IffeU{E,μ\then \\Jf\\p^c^2\\f\\pJor all l^p^

(iii) i

Proof. Let F' denote the set of points ίeF(0)nE that belong to at least one
0-complex of E\E. Given ieF' let Ct be the 1-complex of E containing z, and let
Q.ij Cί,2> •? Ci,n be the 1-complexes of E\E containing z. Let Ψitj denote the
contraction which fixes i and scales by α,-. For each pair z, j there is a uniquely
determined reflection Ritj that maps Ψ^/(Citj) onto Cf (and fixes z). Now given
f ^ define / o n £ by

(f(x)9 xeE;

\

[ 0, otherwise.

Finally, let Qj denote the unique 2-complex contained in Citj that contains z, and
define a 2-harmonic function h on E by requiring that h=l on E and that h = 0 off
E u ί i J jC'ij). The desired extension of/is Jf=fh. It is easy to see that if n is the
maximum number of 1-complexes to which an element of F' can belong and

h then

|| Jf 11^nμ ||/||£, l^

and clearly || J/1 | oo ̂  II / II oo Moreover, from the estimate ([11], Theorem 1.4.2(ii))

and the local nature of <?, it follows easily that

i ( J f Jf)^*(f9f) + 2nfil*(f9f) + ci WfWU , (4.5)

where cx = £(h,h). But from (2.10), | | / | | ^ c 2 . 3 ( ^ ( / , / ) + 1 | / | | | ) . Together with
(4.5) this yields point (iii) of the lemma. •

Combining the lemma with Theorem 4.1 we arrive at the main result of this
section.

Theorem 4.4. Ifδ>0 then there is a constant c43((5) such that

^ , / ! ) . (4.6)

By Theorem 2.1 of [6] the Nash inequality of Theorem 4.4 is equivalent to an
upper bound on pf(x, y) on the compact fractal for small t. For the transition
density on the unbounded fractal pt(x, y\ Theorem 2.1 of [6] with Theorem 4.1
above gives an upper bound for all times:
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Theorem 4.5. For the transition density pf(x,y) of Brownίan motion on the compact
affine nested fractal E there is a constant c 4 . 4 >0 such that

ds/2 Vx,j/e£, Vte(0, 1] .

For the transition density pt(x, y), there is a constant c 4 > 5 >0 such that

Γds/2, Vx, ye£, Vί>0 .

Remark. The equivalence between the decay of the heat kernel and the Nash
inequality has been used in [29] as a definition of the spectral dimension.

Using the upper bound estimate, we can show the joint continuity of the heat
kernel.

Lemma 4.6. pt(x, y) (resp. pf(x, y)) is jointly continuous in (ί, s, y)e(0,αo)x£x£
(resp. (ί,x,j;)e(0, l]x£x£).

Proof As βaC(E) and Pt:L
2(μ) -> # , we see that PtfeC(E) for all feL2(μ).

Also by Chapman-Kolmogorov and symmetry

so that pt(xr)eL2{μ). Hence, as

Pt(χ,y)=Pti2(Pti2( ,ymχ), (4.7)

the map x\-+pt(x,y) is continuous for each fixed t and yeE. Now use
Cauchy-Schwarz and the diagonal upper bound, to obtain

Vx, j/e£ . (4.8)

This estimate allows dominated convergence to be used in (4.7) to show that
(x, y)»->pt(x, y) is continuous. The next step is to get joint continuity in (ί, x). By
[7] Proposition 1.18, if P ? =Λ Pt+s = PtPs and l im n o Ptf=f for allfeL2(E; μ\ then
(ί,/)κ^P t/is jointly continuous. As these conditions hold for our strongly continu-
ous contraction semigroup we can take (£„, yn)ι-*(t, y) then set fn = ps( ,yn),
tn = tn~s for an 5 such that s<tn. Now by the above

Thus the map (ί, y)f->pt(x, y) is jointly continuous for each x.
To get the joint continuity in all three variables we use Champman-Kol-

mogorov again. Fix s>0 and let tn ->ί>s, xn ->x, yn -*y. Then by the continuity
results so far

lim ps(xn, z)ptn-s(z9 yn) = ps(x, z)pt-s(z, y),
n-* oo

for each zeE. Now apply (4.8), to get

and as the family ps(xn, z) is integrable we can use dominated convergence in (2.7)
to extend the continuity of pr (x, j;) to {(ί, x, y): ί > s, x, y e £ }. Now let s j 01o obtain
the joint continuity on {(ί, x, j;): t >0, x, yeE}. The joint continuity of pf (x, y) is
proved in the same way. •

By this lemma and Proposition 2.8, we have the scaling property of pf(x, y):
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Proposition 4.7. For the transition density associated with the Laplacian defined by
the Dirichlet form (<?,#"), the following scaling property holds:

pt(x, y) = μϊnpτ«t(<xn

1x, αϊy), Vx, yeE, ί > 0 , neN .

5. Hitting Time Estimates and the Upper Bound Estimates of the Transition Density

For AaE, let σ(Λ) = inΐ{t^O:X(t)eΛ}, where X(t) is the diffusion process
corresponding to (<?, # ) . Set

Wn = M{t^O\X(t)eFin)-{X(σ{F(n)))}} .

In this section, we will obtain exponential bounds on W= W x and using this bound
we will deduce the upper bound for the transition density.

For x e F ( M ) n £ , let Ψωι(E% . . ., Ψωm(E){\ωk\ = nfor 1 ̂ /c^m,m depends on x)
be al the rc-complexes containing x. For s^O, l ^ z ^ s 0 and 1^/ gm, set

i and define

Note that by Proposition 2.2 (4), x is determined as the unique intersection of

Lemma 5.1. For all s^O, 1 ^ fe^N,

ψ\ωxk, . . ., ωmk;ωJk)(s) = Φlkω1, . . ., kωm;kωJ)(5) ~ Φίω 1, . . ., ωm;ω->) (τfc 5

Proof. It is enough to show that τk is the time scaling factor on Ψk{E) (1 ^/c^
Using Proposition 2.8 and a well-known formula for point recurrent processes, we
have

for all x, yeE. By this, we see that τγ is a time scaling factor on ^ ( £ ) . For k> 1, we
first construct an unbounded fractal of which the origin is the fixed point of Ψk{E\
Then the Dirichlet form can be constructed using the scaling pk. By the same
argument as above, the hitting times of both diffusions are the same if the particle
moves inside E. Thus we see that τk is a time scaling factor on Ψk{E). •

Proposition 5.2. Define 7 = 77(54-1). Then, there exist c5Λ, c52j>0 such that

Proof Set max ί τ f "
1 = α and min ίτΓ 1=j8. Take an arbitrary Cie(0,1) and fix it.

Because φ\iχt ..5 im;ij)(s) ~* 0 as s ->oo, it is possible to take a sufficiently small <5>0
and sufficiently large c2 > 0 such that

ΦL. . . , im;ίj)(s)Sci Qxp(-δτ^γXiSγ) for se[c2α, c2] (5.1)

Here xf is an i-th element of x > 0 whose existence was proved in Proposition 3.1.
Now, define

π2(x, N\(x)n Ψij(E)) = {π2: π 2 is a 2-walk from x to an element of

Ni

1(x)nΨij(E) which does not pass ( )
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Also, for F(2)-neighborhoods p, q, define

φp,q(s) = E*(exp(-sW2)\X(W2) = q) .

Then by the strong Markov property,

* L " W Λ ί s ) = . . . ^ (5 2)

Set - < * — ΐ ί .

π 2 = {πeπ 2 | π is minimal with respect to the order introduced in Remark 3.3.}

Then, noting that

Σ^[π|Bi,M»] = l
πeπ2

and O < 0 P k s P k + i ( s ) ^ l , we see from (5.2) that

On the other hand each φPk,Pk+1 (s) is of the form

Φ ( i 1 , . . . , i m ; i J ) ( S ) = ^ ( ί i . . . . . i m ; i J ) ( τ Γ l s )

if fc= 1 (as the weight of 1-complexes containing an element of F ( 0 ) is JΊ) , and

Φ^i,', . . .,ijirn';ijij')(s) = Φ(ί1', . . ̂ i^-ij')^1 S)

if k> 1 (as the 2-complex containing pk is contained in Ψ^E)). Here the equalities
hold because of Lemma 5.1. Now using (5.1) in (5.3), for se[c 2 , c2/β~\ we have

Choose CxeίO, 1) so that ^] π e . 2 C l

1

π | ^c 1 , which is possible because | π | ^ 2 for π e π 2 .
Then (5.2) holds for se[c2Γc2//Π> t o o Inductively, it follows that (5.1) holds for
se[αc 2,oo). As φ\iίt.. . > ί m ; ί j .)(s)^l 5 retaking c1=exp(5τ~yXiC^) we have the re-
quired estimate. J •

Set

Remark 5.3. From this point we consider unbounded affine nested fractals.

Theorem 5.4. There exist c 5 < 3, c5Λ>0 such that

Proof. First, we consider E. Let xeH(Λn)nE be a boundary point of the I An-
complexes F ί i 5 . . ., F i f Without loss of generality, we can let the weights of Fik be
ri1,...,im

rh ri - - - ri for l^fc^Ξ/. Set max = 1 n ( ί ) = w. Then,

n(fc) times

a
k= 1
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Here the second inequality is by Lemma 5.1, the third inequality is by Proposition
5.2 and the last inequality is by the fact that pi^Ph PijA *maxf=1pj. For
xeH{Λn) in the unbounded affine nested fractal, take k such that Ψ{i)(x)eE. Then,
by the above estimate and time scaling property, we can easily obtain the desired
estimate. •

Using a Tauberian theorem for exponential type for oscillating functions ([15]),
we obtain the following.

Corollary 5.5. For xeHiΛn\

Now we are ready to deduce the upper bound on the transition density. We define

Lemma 5.6. There exist c 5 7 , c58>0 such that,

CsA^Γ1)*^], VxeE .

Proof. Choose n so that 2c 3 . 2 p i ;
M / ^(S^2c 3 . 2 p i ;

( ' ι ~ 1 ) y ' . Then,

)^<5)5^ max Py(W
yeNΛn(x)

Theorem 5.7. There exist c 5 . 9, c 5 . 1 0 > 0 such that,

J, Vx,ye£, Vte(0, 00).

Proof. The following proof is the same as that of [4]. Fix xή=y and t and let
ε<id(x,y). For aeE, set Bε{a) = {beE\d{a,b)<ε}. Let vx = μ\Bt(x), vy = μ\Bε(y),
A1 = {zeE:d{z,x)^id(x,y)}, A2 = E-Aί and S = mi{t:d(Xt,X0)>U(x,y)}.
Then

+ Pv'(XteBε(y),XιeA2) =
2

For zeBε(x\ by Lemma 5.6,

^c5.7exp( -cΛ I
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while if q(z) = P(XteBε(y)\Xι = zl then by Theorem 4.5,

q(z)= J Pι{z9

Bε(y) 2

Thus

For Il9 by the symmetry of pt(x, y),

which is bounded in exactly the same way as J2.
Adding the bounds for 7X and I2,

-^

Dividing both sides by μ(Bε(x)), μ(Bε(y)) and using the continuity of pt(x9 y) in
(x, y) proves the theorem. •

For the transition density of the compact fractal, we have the following estimate by
essentially the same proof.

Theorem 5.8. For sufficiently small δ>0, there exist constants c5Λί(δ),c5Λ2(δ) such
that

for all 0<t^l, x,yeBδ(O).

6. Lower Bounds for the Heat Kernel

In the previous section we obtained an upper bound for the heat kernel for affine
nested fractals. The object of this section will be to obtain a corresponding lower
bound. The approach is to use the scaling in the transition density and a Sobolev
type inequality. We will work with the unbounded fractal as it has an exact scaling
property. At the end we will need to prove a relationship between the transition
density for the unbounded fractal and for the compact version. Our result can be
stated as follows.

Theorem 6.1. There exists c6Λ, c6 2>0 such that,

, Vte(0, oo) .

The proof will follow from a series of lemmas with the main motivation for the
approach coming from [4]. However we do not use any resolvent estimates, just
the Dirichlet form and its scaling.
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Theorem 6.2. There exist constants c6 - 3, c6Λ such that

pt(x, y)^c 6. 3, ifd(x9y)<c6Λ, te[τϊ\ 1] .

The proof will follow from a series of lemmas. Firstly we control the diagonal of
the transition density.

Lemma 6.3. There exists a constant c 6 5 such that

pt(x9x)^c6m59 V ί 6 [ τ Γ U ] , Vxe£. (6.1)

Proof. This follows almost exactly the proof of [4] Lemma 7.1. •

Lemma 6.4. Let Dn be any Λn-complex. Then, there exists a constant c6m6 such that

sup sup svφ\pt{x,y)-pt(x'9y)\<^c6.6p£)

nl2 .
telτϊ1, 1] x,x'eDn yeE

Proof. As pt( ,y)etF we use Corollary 2.11. Noting that Dn is a /^-complex, we
have

sup |p t(x,}')-p,(x',3')l^c1^"/2^(A( ,y),pt( ,}'))1/2

x,x'sDn

Let u(x) = pt/2(x,y), so that Pt/2u(x) = pt(x, y) and use [11] Lemma 1.3.3(i),

£(Pt/2uJt/2u)S-t(\\u\\2

2-\\Pt/2u\\2

2)

1

ύ-Pt(y,y)

Thus for ί e [ τ ] " 1 , 1 ] there is a c 6 6 such that

sup sup \pt(x,y)-pt(x\y)\<,c6.6PU>n/2

ίe fτ ϊ 1 ,1] Jc,Jc'eDn

Finaly observe that the constants obtained are independent of y.

Proof of Theorem 6.2. The lemmas above give the proof as for x, yeDn,

Hence we can choose a cβΛ such that if d(x9 y) ̂  cβΛ then x, yeDn for n (or 3 zeH(Λn)

so that x, zeDw and j , zeD^) and c6.5-c6.6p^0

n/2:^c6.3. •

This is enough to give the lower bound off the diagonal via the scaling in the
transition density.

Corollary 6.5. There exist constants c 6 7 , c 6 . 8 such that

t1^ te(0, 1] .

Proof. By the scaling for the transition density and the theorem we can iterate the
result from that on the interval [τf 1,1]. If ί<τΓ 1 , let n be such that τ"ίG[τfx, 1].
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Then, for x, y such that d(x, y)<c6 4 t1/dw<cβ 4τ[~"τ, by the scaling property of the
distance (3.7), d{a\x, a\y)<cβΛp^τ^^cβΛ. Thus,

pt(x, y) = μ{npτ(
rί l)

=c1r
ds/2. m

The final step is to use Aronson's method, a chaining argument, to extend the
estimate from a small neighbourhood of the diagonal to all the off diagonal terms.
For this purpose, we prepare some lemmas.

For the /[-approximation to E, we define πΛm, Sι

Λrn and GΛrn(x) in the same way
as those defined in (3.1), (3.2) and (3.3), but with respect to HiΛm)nE and with
respect to Λm-walk. Here π = {(qk, qk+i)}lk = i is called a Λm-walk if ίeN, qkeH{Λrn)

for l^k^l, qk and qk+1 join in the same Am-cdl for l^k^l— 1. For Pi = λ/ri
\ define

Then we have the following.

Proposition 6.6. Let AeKγ> (Ky> is defined in (3.4)), satisfying Gγ>(x) = x so that it
has the decomposition A = ΣkPh y A as in the proof of Proposition 3.1. Then, for all
n^. 1, GΛ"(x) = x and ^ ( y l n ) = Σωe^ Pωγ Aω(Aω = Aω ω ) attains the minimum in
GΛ

 n l - l

Let Gi4w(x) = (min β e sA M a.χ) 1 ^ i ^ 0 = ̂ n x and m a x ω e ^ J ω | = m ( |ω| is the
length of the word ω) where AΛn is an s0 x so-matrix so that the i-th row belongs to
Sι

Λrn ( l ^ ϊ ^ s 0 ) . Then, by (3.8) and (3.9), if ω = ω1 . . . ωmeλn then ωχ,m, ωm-1ieAn

for all l^ i^/co By the symmetry and the self-similarity of the fractal, we can
decompose AΛn into ΣωeΛn,\ω\<mPωy'A(ω) + ΣωeΛn,\ω\=mPω-i A(co-l)B(co) for
some k0 x /co-matrices A(ω), A(ω — 1) and B(ω)eK (here ω— l = ω χ . . . ω^-x for
ω = ω 1 . . . ω f t ) . Iterating this decomposition, we have AΛn = ΣωeΛ Bω, where
Bω = B(ω1)B(ω1ω2) . . .B(ω)(J5(ω! . . . ω^eK, l ^ i ^ | ω | ) . On the other hand, as
B(ω)eK, B(ω)x^x and so ^ n x ^ x . As ^ ( / 1 M )X = X, by definition of G^(x), A(/ln)

attains the minimum. •

Lemma 6.7. There exists c 6 . 8 > 0 which satisfies the following for all x, ye£, meZ
and feeN:

Ifd(x,y)<ρi~o

my\ then there exist x0, xί9 . . ., xπ (cβ^p^'^n^Cβ.ioP^') ̂ wc/z
that xo = x, xn = y, xu . . ., xn-ιθHiΛm+k) andxh xi+ί lie in the same Am+k-complex

Proof For x, }/6iϊ(/ln), set

L w = max ^ ( x , ) / ) .

x,yeF(O)n£

Firstly we show that L^CipiJ' for some cγ >0. By the above proposition,

G / l n(x)= X p ^ y ' y l ω x - x .
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Let

Then vt is the number of steps for the A„-walk leading from 0 to iV^O). As
Pω-1 < P?o = Pω a n d χ > 0 > w e s e e that max, i^rgCip"/' for some c1>0, thus

Next, we show that

hm sup max max — - — — < oo .
«->oo xeHίΛ">nEyeFl0)nE pij

Set q = maxxeHiΛ2>nEmaxyeFio>nEdΛΛ(x,y). Then, we have

max max Λn\y.
β^q Σ ^ + ^ 7

BWEF«»E pV ^ P?/ pV

= θ

Now, if d(x,y)<pϊ~o

my, then there exists zG// ( / l m" l ) such that each pair x, z and
z, y lies in the same Λm-1 -complex. Take x'GH ( y l m + k ) which lies in the same
Λm+fc-complex as x and also take y' in the same way. Then, by the self-similarity of
the fractal and by the fact we have proved above, we know that we can take
a sequence of the elements of H(Λrn+k) which connects x' and y' with at most c2pΐ0

ky

points for some large c 2 . By moving at the same points of H{Λn) if necessary, we can
take the length of the sequence greater than c^pΊj' for c 3 <c2. •

Proof of Theorem 6.1. The idea of the proof is just the same as [4] and [23].
Let L = d(x, y)d™/t. By Corollary 6.5, the theorem is already proved if L ^ c

Thus we assume L ^ c 6 8 . For arbitrarily fixed cx >0, choose n and m so that

(6.3)

By the above lemma, we can pick the sequence x 0 , Xi, . . . , x , ,
(cβ.gplo SvSc6Aop"ί)such that xo = x, xv = y,xu ? xυ-ιsH{Λrn+n) and x ί ? x ί + 1

lie in the same /lm + π-complex for O^i^v—1. Let Bt be the union of the Λn + m-
complexes which contain xt. Note that if zeBi-ί and z'eBh then
d(z,z')^3pΓo

im+n){s+1)yύc6AΦ)lldw, when ct is chosen small enough. Thus, by
Corollary 6.5, p(t/υ9z9z')^c6,7(t/υ)~d'/2. Therefore

p(t9x,y)^$ . . . J p(t/υ,x9y1)...p{t/v9yn-1,y)dμ{yί). ..
B1 B V 1

^{irt=ϊ μ{Bi))<?6.Ί(t/v)-d vl2
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As p^m + n)S^μ{Bi)ύc2pi'0
{m + n)S and cb.9pΐf ^υ^c6Λ0pVQ\ from (6.2), (6.3) we see

that μ(Bi)(t/v) dsl2 is bounded above and below by positive constants which are
independent of L and t. Thus we have

Substituting our choice in the last term completes the proof. •

Following [5], we can derive the bound for the compact fractal from this result.

Theorem 6.8. For sufficiently small δ>0 there exist constants cbΛ1(δ\ cβΛ2(δ) such
that

( (Mχ ,.\dvΛ 1

-c6Λ2(δ) ΓX>

for all 0<t^l, x, yeBδ(O).

Proof. It is easy to see that the inequality

holds between the transition densities for the reflected process and the process
absorbed at the boundary of E. We can now write the transition density for the
absorbed process in terms of the transition density for the process on the un-
bounded fractal as

Then, following [5] Theorem 7.11, we can obtain the result for pΐ(x, y) and hence
for pf(x, y). M

Remark. In the case of the Sierpinski gasket it is possible to map the path on the
bounded gasket into the unit triangle by a succession of folds about the central
triangle. This mapping is constructed by hand in [30]. Then the point yeE is the
image of an infinite number of points in E, and thus we can express the transition
density as

phχ>y)=Pt(χ,y)+ΣPt(χ>y')
v'

The result is just the first term.
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