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Abstract: We consider a model Hamiltonian derived from the interaction of an atom
with a non-relativistic massless quantized field. The model atom has two states, and
the interaction is linear in the field operator. We do not make the rotating wave
approximation and there is no infrared cutoff. We prove that the excited state of
the atom with no photons present decays at an approximately exponential rate in
accordance with the predictions of time dependent perturbation theory. The proof
requires some analyticity and regularity assumptions on the interaction between atom
and field. These imply in particular that the interaction goes to zero at least as fast
as k2, as k -» 0, where k is the photon momentum.

1. Introduction

The subject of this paper is an important and widely studied topic in quantum
mechanics, namely the interaction of an atom with a quantised field. The specific
problem addressed here is to show that time dependent perturbation theory correctly
describes the decay of an excited state of the atom over an intermediate time in-
terval, for sufficiently weak coupling. For simplicity, the atom is assumed to have
only two states, the ground state and an excited state. The object is to show that
if the atom is in its excited state at time zero with no photons present, then the
probability that it will remain in that state at future times decays at an approxi-
mately exponential rate. We prove this result with some analyticity assumptions on
the interaction between atom and field.

The literature on this subject is huge; a partial list is [CMR, Da, Di, DE, EY,
F, Froh, He, Hu, Ki, OY, Sk, St]. For our purposes the most relevent results are in
[OY], where the method of dilatation analyticity is applied to the full model of a one
electron atom interacting with a massive quantised field (with an ultraviolet cutoff).
It is shown there that the excited state becomes a resonance in the sense described in
[AC, BC, Hu, SI, S2]. As shown by Hunziker [Hu], this then implies approximate
exponential decay in the manner predicted by time dependent perturbation theory.
In particular suppose that ψ0 is the eigenstate of the unperturbed problem which is
believed to become a resonance. If H(β) is the interacting Hamiltonian, where β is
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the coupling constant, then Hunziker shows that there is a positive number a such
that for all t > 0, and β sufficiently small,

| ( Λ ) , e " l W ( ^ ) | = e~β2at + O(β2) , (1.1)

where the remainder O(β2) is uniform in t. This estimate allows an interpretation of
both "decay rate" and "intermediate times," ideas which arise from time dependent
perturbation theory. We shall prove that this result holds for our model also. We
note that E.B. Davies [Da] has proved a result similar to (1.1) for this model, but
without the estimate O(β2) for the remainder term.

The method used in [OY] requires a massive photon. This is a technical condi-
tion needed to apply the usual method of dilatation analyticity. On the other hand,
the "infrared problem" in QED associated with the massless photon has a long
history [Bl, BN, Froh, FrMS], and arises in many different areas. The question
addressed in this paper is one aspect, of the infrared problem.

The full state space of our model is C 2 0 3F, where 3F is the symmetric Fock

space over L2(R). The excited state of the atom is ί ~ 1, and the ground state is

With respect to this choice of basis, the Hamiltonian is

Eo

(1.2)

Here [a(k), cfi(k1')] = δ(k — kf) represents the scalar Bose field. Also EQ > 0 is
the gap between the ground state and excited state of the atom. The Hamiltonian
(1.2) is identical to the spin-boson Hamiltonian which has been extensively studied
as a model for tunneling [L-Z, SD]. To the best of our knowledge the result proved
in this paper has not been derived in that context. Hamiltonians related to (1.2)
have also been studied in the polaron problem [Froh, G, N2]. We shall give a more
precise and detailed description of (1.2) in Sect. 2.

We tackle the problem using a hybrid of other methods. We adopt a strategy
outlined in [Ki], which allows the approximate exponential decay (1.1) to be de-
duced from certain regularity bounds on a matrix element of the resolvent of the
Hamiltonian near the putative resonance. We obtain these estimates using dilatation
analytic methods. However, we dispense with the usual goal of dilatation analyti-
city, which is to find an analytic continuation of a matrix element of the resolvent
across the continuous spectrum. As a technical aid, we first prove the result using
an upper bound N on the number of photons in any state. We then let N —• oo to
deduce the final result.

Our method requires the assumption that the photon wave function f(k)
in (1.2) is dilatation analytic, and also that \k\pf(k) is square integrable, for
—3/2 ^ p ^ 1/2. The precise conditions are stated in Definition 4.1. The con-
ditions (ii) that |£|~3/2/(&) be square integrable and (iii) that /"(&) be uniformly
bounded imply in particular that f(k) approaches zero at least as fast as k2, when
k —> 0. These rather strong conditions are needed in this approach to control the in-
frared problem. Removing these conditions would be an interesting extension of our
results.
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The main difficulty is caused by the massless photon. Let HQ(0) be the analytic
dilatation of the free Hamiltonian H(0) (this terminology is borrowed from [SI]
and [OY], and will be explained in Sect. 4); from (1.2) we have

H0(0) = (*° J ) ® 1 + l®Je-Θ\k\a\k)a(k)dk . (1.3)

The usual strategy at this point is to use standard Rayleigh-Schrodinger pertur-
bation theory to introduce the perturbation in (1.3). However the massless photon
means that the eigenvalue E$ of (1.3) is not isolated from the continuous spectrum,
so this does not work. The resolution of this problem is contained in Proposition
4.5, which is the technical heart of the paper. Roughly speaking, it states that in
each ^-particle sector of the state space, the singularities of the analytically dilated
resolvent are pulled below the real axis at low energies by the interaction with the
(n -f 1 )-particle sector. This interaction separates into a direct part and an exchange
part. The direct term is simple to evaluate and produces the desired shift; the ex-
change term is much more complicated. However, the exchange term is short range
and so does not contribute to the low energy behavior of the resolvent. This rough
idea lies behind the results proved in this paper. This result is then used to prove
that a partially resummed perturbation series for the full resolvent is convergent.

The paper is organised as follows. Section 2 contains the definition of the model
and introduces the notation used throughout the paper. Section 3 states the main
result in Theorem 3.1, and derives it from Theorem 3.2. This latter result concerns
the regularity of a certain resolvent. In Sect. 4, this regularity result is derived
from a resummed perturbation series, assuming some bounds on the "renormalised
propagators" for the photon. These bounds are then derived in Sect. 5, where the
infrared problem is met and overcome. Section 6 proves that the infinite photon
number limit exists.

2. Definition of the Model

Our model is a caricature of the interaction between an atom and a non-relativistic
massless quantised field. The essential features are that the atom has two states
only, and that the interaction is linear in the field. The interaction is therefore the
sum of a creation part C(f) and an annihilation part A(f) — C(/)* . The operator
C(f) creates a photon with wave function / £ L2(R). For simplicity we use a one-
dimensional field. The wave function / is the only remnant in this model of the
wave functions of the ground state and excited state of the atom. We will make
further assumptions on / shortly.

The interactions C(f) and A(f) are multiplied by operators which switch the
two states of the atom. This is in accord with the usual semiclassical description of
photon emission and absorption. For simplicity we ignore interactions which change
the photon number but leave the atomic state unchanged.

We note that our model includes interaction terms corresponding to photon emis-
sion accompanied by atomic transition from ground state to excited state, and its
conjugate. Therefore our model goes beyond the rotating wave approximation, which
has been extensively analysed [see for example the review article [St] by Stenholm].

As mentioned in the introduction, we introduce a cutoff N on the number of
photons. Our estimates are uniform in N, and at the end we let N —> oo to obtain the
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result for the full model. Our coupling constant is denoted β. Rather than deriving
the Hamiltonian H(β) from the full non-relativistic model, we give a self-contained
description below, which avoids introducing extraneous spaces and operators.

Due to our simplified choice of interaction, the full state space is a sum of two
non-interacting parts. One consists of states which have an even number of photons
with the atom in its excited state, and an odd number of photons with the atom in
its ground state. The other part has the "even" and "odd" switched. We shall be
interested only in the former part, which can be identified with the complex Hubert
space

Jff = # o θ 3F\ θ θ &N . (2.1)

Here J^o = C,^Ί = L2(R)9 and J% is the symmetric subspace of L2{R)®n, cor-
responding to w-photon states. Specifically, let Sn be the symmetric group on n
letters. Then F(k\9...9kn) is in J% if for all σ G Sn,

F(kι,...9kn) = F(kσ{l)9...9kσin)). (2.2)

The free photon Hamiltonian is diagonal with respect to the decomposition (2.1),
and on 3Fn is given by the operator gn, defined as follows:

( ^ F X Λ I , . . . Λ ) = ( | * I | + + | * » | ) F ( * I , . . . , * „ ) . (23)

We define go = 0. Let EQ > 0 denote the energy difference between the excited
state and the ground state of the atom. Then the non-interacting Hamiltonian H(0)
is also diagonal with respect to the decomposition (2.1), and is given on 3Fn by

Let Pn : 3/e -+ &n be the orthogonal projection for 0 £ n <£ N, and let P* de-
note its adjoint. The creation operator C(f) : J f —» Jf is defined as follows; for
all 0 S n UN ~\, and F € J%,

PmC{f)P*nF =

1 ί t t !
...^ . (2.5)

Vn+ 1 l y =i I

We use kj to indicate that this entry is missing. Similarly the annihilation op-
erator A(f) is given by its action on $Fn as follows:

PmA(f)P*F = 0 if m * Λ - 1, or if w = 0 ,

(2.6)

Note that C(f) is linear in / , and A(f) is anti-linear in / . To define the
interacting Hamiltonian H(β), it is convenient to introduce the subspaces

&n = &n θ ^ + i θ θ &N (2.7)

Let Qn : @n —> 3Fn be the orthogonal projection, and let Q* denote its adjoint
We define for 0 ^ n S N - 1,

C n + 1 = Q*n+ιPn+ιC(f)P*n : ^ w -> ^ w + i ,

An+ι = PnA(f)P*n+ιQn+ι : %+ι -* &n . (2.8)
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The interacting Hamiltonian H{β) is defined recursively as follows. For each
0 S n ^ N, we let hn denote the restriction of H(β) to states with n or more pho-
tons. So hn:&n-± <&n, with h0 = H(β) and hN = GN. Write JdT = 0 O =
J^o θ 0i then with respect to this decomposition,

βί:
For each 1 ^ « ^ iV — 1, write ^ = ,f „ 0 0Λ+i; then with respect to this decom-
position,

h _ (
\ p ί i nn+\

The reason for writing the operator in this way is that it allows a simple recursive
evaluation of the resolvent of H(β). Our principal object of study is the amplitude

H^ described in the introduction, which in this notation is

A(t) := Poe-mβ)P% . (2.11)

For Im(z)=f=0, we define

R(z)=P0(H(β)-zΓιP*0. (2.12)

The spectral theorem implies that

1 OO

A(t)= lim — f e-iλt[R(λ + iε)-R(λ-iε)]dλ. (2.13)
ε-^o+ 2πi JQO

So we need an expression for Po(H(β) — Z)~1PQ, the projection of the resolvent
onto the excited state of the atom with no photons present. For 0 ^ n ^ N — I,
and Im (z)φθ, define

Mn(z) :^n-*^n,

Mn(z) = An+ι(hn+ι -z)~lCn+l . (2.14)

Then by resumming the Neumann series for (2.9) (see [Ki]) we see that for
Im(z) + 0,

P0(H(β) - z)~lPl =(E0-z- β2M0(z)Γι . (2.15)

In a similar way, it follows from (2.10) that for all 0 ^ n ^ N — 1,

Mn{z) =An+ιQ;+ι(Gn+ι - z - β2Mn+ι(z)ΓιQn+1Cn+ι . (2.16)

Also MN(z) = 0. Using (2.15) and M0(z) = M0(z) (for ImzφO), (2.13) can be
rewritten as

A(t) - lim - T e'at lm[E0 - λ - iε - β2M0(λ + iε)]~ιdλ . (2.17)

Our result, which is stated in the next section, requires some additional assump-
tions on the interaction function / . We assume that /(0) = 0 and that / ( £ 0 ) φ 0 .
We also assume that / is a dilatation analytic vector in the sense of Nelson [Nl]
and Simon [SI], and that its analytic continuation satisfies some regularity condi-
tions. This property is defined in Sect. 4, where the precise assumptions on / are
also stated.
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3. Results

Our main result concerns the behavior of the amplitude A(t) given in (2.11), for
t > 0 and for β sufficiently small.

Theorem 3.1. Assume f satisfies condition (R) given in Definition 4.1. Then there
are numbers β0 > 0,α > 0 and Eγ, independent of N, such that for \β\ ^ βo and
all t > 0,

a)
A(t) = e-^ot

b)
lim A(t) exists .

N—>oo

Remark. The result (3.1) has been derived for other models which display resonant
behavior (see [Hu] and [Ki] for examples). It implies approximate exponential decay
of the amplitude A(t), whose square p4(ί)|2 is m e probability that the atom is in
its excited state at time t with no photons present, given that it was excited at time
zero with no photons present. The remainder O(β2) in (3.1) is uniform in t. In fact
the left side of (3.1) goes to zero as t —• oo, but at a rate slower than exponential
[S2].

Unless otherwise stated, all estimates and constants from here on are independent
of β and N. The proof of Theorem 3.1 uses the representation (2.17) and the
following result.

Theorem 3.2. There are positive numbers β\,oc such that for all \β\ ^ β\,

i) M0(z) and its first three derivatives are bounded uniformly in β and z, for all
\β\ ύ βu and for all z satisfying Imz > 0, |Rez — EQ\ ^ α;
ii) limε_^o+ ImMo(^o + *'β) = a > 0.

We will use Theorem 3.2 to prove Theorem 3.1 (a). The proof of Theorem 3.2,
which uses dilatation analyticity, is given in Sects. 4 and 5. Theorem 3.1(b) is
proved in Sect. 6. First we have the following result.

Lemma 3.3. Let h(x, y) be defined for y > 0 and a ^ x ^ b. Suppose that for
some integer k ^ 1, and some positive numbers c,M,

sup{|5αA(jc?y)| : a ^ x ^ 6,0 < y ^ c9 0 ^ |α| ^ k} ^ M .

Then for each x in [a,b], there exists g(x) = limy_>o+ h(x,y). Furthermore g is
continuous in [a,b], and has at least k — 1 continuous derivatives in (a,b).

Proof Let x e [a,b], and let {yn} be any decreasing sequence converging to zero.
For all n,m sufficiently large,

\h(x,yn) - h(x,ym)\ ^ b«-;>w|sup j-

ύM\yn-ym\. (3.2)

Therefore {h(x,yn)} is a Cauchy sequence, and we define

g(x)= lim h(x,yn). (3.3)
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The bound (3.2) implies uniqueness of the limit (3.3). Continuity of g follows
from a standard " | " argument and the uniform continuity of h.

Suppose now that k ^ 2. Repeating the above argument leads to the continuous
function

d

For each 0 < y ^ c,h(x,y) — h(a9y) = f*Φ(s,y)ds. Since Φ is uniformly
bounded, we may apply the Dominated Convergence Theorem to conclude that for
all x in [a,b],

g(x)-g(a) = fG(s)ds.
a

This implies that G(x) = gf(x) and hence that g has one continuous derivative
in (α,Z>). Repeating the argument with higher derivatives of h gives the stated result.
QED

Applying Lemma 3.3 to MQ(Z)9 and using Theorem 3.2(i), we conclude that for
\β\ ^ βi, and real λ satisfying \λ — EQ\ ^ α,M0(A) := limε_^0+M)(^ + i&) exists
and has at least two continuous derivatives in the interval (EQ — CC,EQ -f α). Let

K = sup{|M0(z)|, K ( z ) | , K ' ( z ) | : Imz > 0, |Rez - Eo\ ί α} .

By Theorem 3.2 (i), K is finite. Recall that for ImzΦO, we have

R(z) = P0(H(β) - z)-ιPl =(E0-z- β2M0(z)Γι .

Lemma 3.4. There is O < αi ^ α,0 < /?2 ύ β\ and K\ > 0, such that for all
\β\ ^ β2 and all z satisfying Imz > 0, |Rez — Eo\ ^ α i ?

\R(z)\ ^

Proof If \z - EQ\ ^ 2β2K, then

\R(zyι\ ^ \z-E0\-β2K ^ ^\z-E0\ ^ β2K.

If \z-E0\ < 2β2K, then Theorem 3.2 (i), (ii) imply

- 1 > β2lmM0(z) ^ β2(a - \z - E0\K).

Let αi = mm{oc,a/2K}, and β\ = min{^,αi/2^}. Then for \z - Eo\ <^ oc{ and

\β\ S βi,

\R(zΓι\ ^ \lmR(Zy
ι\ ^ a-β2 > ^\z-E0\ .

Let K~ι = min{\/2,Kya/2,a/4K}; then R(z) satisfies (3.4). QED

For 0 < |j8| ^ β2, and \λ-E0\ ^ αi, we define

R(λ) := lim R(λ + iε) = (EQ - λ - β2M0{λ))~λ . (3.4)

Let us write, for \λ — EQ\ ^ αi,
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M0(λ) = Mo(Eo) + (λ- EoWί(Eo) + S(λJ), (3.5)

where the remainder satisfies the bound

\s(λ,β)\ £ f μ - £ 0 | 2 . (3.6)

Let β2=min{β2,l/2K,a/4K2}9 and let ξ = (1 + β2M^E0))-1. Then for
|j8| ^ ft and | λ - £ 0 | ^ αi, we have \ξ\ ^ 2 and

R(λ) = -ξ(λ-Eo + β2ξMo(Eo) + β2ξS(λ,β)Γι . (3.7)

Furthermore, lmξM0(E0) > a/2 for all \β\ ̂  ft. So for |j8| ^ ft, |λ - Eo\ ^ αi
we define

R0(λ) = -ξ(λ -Eo + β2ξMo(Eo)Γι . (3.8)

Then we have
R(λ) - R0(λ) = β2S(λ, β)R(λ)R0(λ). (3.9)

Lemma 3.5. For \β\ ̂  β3, there is a positive number K2 such that

Proof. Let r = Re(ξM0(E0)), and s = lm(ξM0(E0)). Then |r| ^ 2ΛΓ and 5 > a/2,
so

s

β2r\+β2-2Ks
a

^ Λ/2max j 1, — 1 \λ - Eo + β2r + /j
I « J

Combined with the bound \ξ\ S 2, this gives (3.10) with K2 = 2\^max{l,4X/α}.
QED

Lemma 3.4 implies that for \β\ ̂  ft,

lim - Γ ^ιAίIm7?(A + ιβ)rfλ = - / e-iλtlmR(λ)dλ . (3.11)
^ 0 + * %

From (3.6), (3.9) and Lemmas 3.4 and 3.5, we deduce that for \β\ ̂  β} and
μ - £ Ό | ^ αi,

! (3.12)
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Therefore for \β\ ^ ft,

- / e-iλtlm(R(λ)-R0(λ))dλ

577

(3.13)

Furthermore it is straightforward to show using a contour integral that there are
positive numbers K3,K4, independent of β and t, such that for all t ^ 0 and all

\β\ ̂  ft,

e-iλ'lm(λ -Eo + β2ξM0(E0y
ιdλ

1 £•„-«,

(3.14)

where r = Re(ξM 0(^ 0)) and s = ]m(ξM0(E0)). Since \ξ - l\ ύ 2β2K, this and
(3.13) imply that

1 £o+α

- J
π

(3.15)

Now A(0) = 1, and lmR(λ + iε) ^ 0 for all λ, and all ε > 0. Therefore

lim - O(β2)

= A(0)- lim -

= 0(β2).

Finally, write Ex = Re(Mo(£o)). Then \r - Ex\ ^ 2β2K2, and \s - a\ ^ 2β2K2,
and so for all t > 0,

β2w_β2
eiβ

2rt-β2st _ eιβ
2Eιt-β2at < e

_ eiβ
2(r-Eι)t-β2(s-a)t

This proves Theorem 3.1 (a) with β0 = ft.

4. Dilatation Analyticity and Theorem 3.2

As mentioned in the introduction, we will use the method of dilatation analyticity
to prove Theorem 3.2. The description below follows [Nl, SI and OY]. For θ real,
we define the unitary dilation operator U(θ) on L2(R,dk) by

U(θ)ψ(k) = (4.1)
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Formally, U(θ) = e~ΘD, where D = \(kj^ + ±k) is the generator of dilatations.

Let Nb be the subspace of functions φ for which the series Y^=0^Dnφ has radius
of convergence at least b. We call φ a dilatation analytic vector if φ eNb for some
b > 0. If φ G Nb, then U(θ)φ has an analytic continuation φβ to the disk |θ | ̂  b,
given by

ψβ := Σ(-Ί

LD"Ψ • (4-2)

Although we will not need the result, we note that if φ G Nb, then U(θ)φ can
also be continued to the strip |Imθ| ^ b. As discussed in Sect. 2, we will assume
that the photon wave function / which appears in the Hamiltonian H(β) belongs
to Nb for some b > 0. For later convenience, we also assume that b < π/8. The
following definition collects together the regularity properties of / which we require
for the results in this paper. Recall that g\ defined in (2.3) is multiplication by \k\.

Definition 4.1. The function f satisfies the regularity condition (R) if the following
holds:

i) for some 0 < b < π/8, / G Λ^;
ii) Hgrf/fllk is uniformly bounded for all \θ\ ̂  b, and all — \ rg p ^ \\

iii) \k\-xll\fQ{k%\f^\k)\ are uniformly bounded for all \θ\ ̂  b, all k e R, and
0 S n S 2;
iv) \f(E0)\2 + | / ( - £ o ) | 2 > 0.

We remark that the class of functions satisfying condition (R) is non-empty; for
example, it contains A:2exp[—k2]. (In the language of the spin-boson Hamiltonian
[L-Z], this is the superohmic case.)

Extending (4.1) we define for θ real the unitary dilation operator U(θ) on J%
as follows (with abuse of notation we use U(θ) to denote the dilation operator on
each J%): for any F in J%

θku...,e-θkn). (4.3)

Acting on J^o, U(θ) is the identity. For real θ it follows that

U(θ)gnU(θ)-ι=e-θgn. (4.4)

For real θ we define

gn(θ) = U(θ)gnU(ΘΓι ,

Gn(θ) = U(θ)GnU(ΘΓι . (4.5)

Both operators in (4.5) have an obvious analytic continuation, with the same
domain as gn, and we denote by gn(θ),Gn(θ) their continuations. The spectrum of
gn(θ) is {e~θx : x ^ 0}. Furthermore, an easy computation shows that for θ real,
and F G J%,

Pn+ιC(U(θ)f)P*nF = U(θ)Pn+ιC(f)P*nU(ΘΓιF ,

Pn-{A(U(θ)f)P*nF = U(θ)Pn^A(f)P;U(θyιF . (4.6)
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Lemma 4.2. Assume that f satisfies condition (R), and let F e J% be in the
domain of gn. Then Pn+ιC(fβ)Pn F and Pn-ιA(fg)P*F are the analytic continu-
ations o/(4.6) to the disk \θ\ ̂  b. Furthermore, for all m ^ ^,

^ V2\\g;
mfθ\\\\F\\ , (4-7)

(4 8)

Proof The analyticity is proved in [OY], Proposition 2.5, and we refer the reader
there; property (ii) of condition (R) is used in the proof. To derive (4.7), we modify
the argument in Proposition 2.5 of [OY] as follows:

1 /«+i \~ m «+i

Therefore, we get

\(g;£Pn+ιC(fθ)P*nF)(ku...,kn+ι)\2 ύ -

^\F(ku...,kh...,kn+ι)\\F(ku...,kj,...,kn+ι)\

Some elementary bounds show that

Using Cauchy-Schwarz twice and the symmetry of F, this gives the stated result.
The bound (4.8) is similar and simpler, and we omit the details. QED

We note that the complex conjugate appears in the analytic continuation A(fφ
because the operator is anti-linear.

The strategy of our proof of Theorem 3.2(a) is the following. Equation (2.16)
gives an expression for M0(z) in terms of M\(z), and by iteration in terms of
Mn(z) for all 1 ^ n ^ TV — 1. For real θ, we can conjugate by the operator U(θ)
and replace each Mn(z) by U(θ)Mn(z)U(θ)~ι for all n ^ 1, without changing the
value of M0(z) (since U(θ) is the identity on «^0) Let us define for real θ, and
n ^ 0,

Mn(z, θ) = U(θ)Mn(z)U(ΘΓι . (4.9)

We will prove that for 0 ^ n ^ N — 1, (4.9) can be analytically continued
to the disk|0| ^ b, for β sufficiently small, and for z in the region Imz > 1,
Argz > | . This will prove that Mo(z,θ) is analytic in θ and z for all |0| ^ b,
and for all z in the region indicated. Since it is independent of θ for real values, it
is independent of θ for all |0| ^ b. The next step will be to show that M0(z,ib) can
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be analytically continued to the region Imz > 0, |Rez — EQ\ ^ α for some a > 0
(independent of β). Since MQ{Z) is analytic in this extended region, the equality
Mo(z) = Mo(z,ib) also holds there. We will derive uniform bounds on Mo(z,ib)
and its derivatives in this region; the same bounds hold for MQ(Z), and this proves
Theorem 3.2(a).

Let us denote by W the set of values (0,z) satisfying Imz > 1, Argz > | and

|β| S b.

Lemma 4.3. a) Let (0,z) G W. Then for all n ^ 0, am/ a// F G J%,

b) (Gn(θ) - z ) - 1 w fl/ifl/y^ ΪΛ IT.

Proof a) Simple geometry shows that for x ^ 0, and (θ,z) G

n - ^ ,
16

\e x — z\ ^ sin — e
8

since 0 < b < f. Therefore
o

\eθx~z\ ^ i (

This implies the stated result. Then (b) follows from (a) and the analyticity of
the operator (Gn(θ) - z). QED

For n ^ 0 and |0| ^ b, we define by analogy with (2.8)

Cθ

n+1 = Q*n+1Pn+iC(fθ)P*n,

Aθ

n+1 = PnA(f^P*n+ιQn+ι . (4.10)

Since QnQζ = 1, Lemma 4.2 implies that

Proposition 4.4. 77zere w J?4 > 0, independent of N, such that for all \β\ ^ βΛ,
and all 0 ^ n S N - l,Mn(z,θ) is analytic in W.

Proof. We use (2.16) and an inductive argument. For all n ^ N, (2.16) implies
that

Mn^(z,θ) =Aθ

nQ*n(Gn(θ) - z - β2Mn(z,θ)yλQnC
e

n

= Aθ

nQ*n(Gn(θ)-zΓιQnC
θ

n

oo

+ Σ<Qn(Gn(θ) -zyι[β2Mn(z,θ)(Gn(θ)-zy'γQnc
θ

n.

(4.11)
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Lemmas 4.2 and 4.3 imply that for all (θ,z) 6 W,

V2\\g;1/2fθ\\ \\gTi/2fΈ\\ \\gιJ2(Gn(θ)-zΓι\

7=1

bΓ1/2/^ll(l - β2\\Mn(z,θ)\\Γι . {AM)

Now we make the inductive assumption that for some n f^ N", the operator
Mn(z, θ) is analytic in W, and satisfies the bound

\\Mn(z,θ)\\ ^ l6V2\\g;ι/2fθ\\ \\g;
i/2fg\\ . (4.13)

We define β$ as follows:

β~2 = 2 5 6 ^ sup {\\g;l/2fθ\\ \\g;V2f-θ\\} . (4.14)
\θ\$b

Then (4.11)-(4.14) imply that for |^| ^ jS4,Mw_i(z,θ) is analytic in W, and
satisfies the bound (4.13). Furthermore, since M^(z) — 0, analyticity and the bound
(4.13) are trivially satisfied for n=N. Therefore they also hold for all 0 ^ n rg
N - 1. QED

Proposition 4.4 implies that M0(z, θ) is analytic in W, and hence independent
of θ, as discussed before. Therefore in particular,

M0(z) = Mo(zjb). (4.15)

Our next goal is to analytically continue Mo(zjb) to a vertical strip above the
real axis. For any α > 0, with α < JEQ, we define the region

Sa = {ze C\lmz > 0, |Rez - £ 0 | ^ α} . (4.16)

Simple geometry implies that for all z G Sa, and x ^ 0,

|^~^x -f ^o — A ^ ^ sin b .

These bounds imply that for all z e Sa,

2||(0Λ(, &)_z)- | | g _ _ ,
kn sm b

\\gn(ib)(gn(ib)+E0-zyι\\ ^ ~ . (4.17)

The next result lies at the heart of this paper, and will be proved in Sect. 5.
For all 0 ^ n ^ N - 1 define

Nn(z) = Mn(zjb) - Ln(z) . (4.18)
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Proposition 4.5. There are positive numbers K5,K6 and βs, such that for all
\β\ ̂  β5, all z e Sa, and all n ^ 0,

) W ( ) ) ( )
iii) \\(gn(ib)+E0 -z-β2Ln(z)rι(gn(ib) )\\
iv) \\{gn(ib) + E0- zfl\gn{ib) + Eo - z - β2Ln(z))-\gn(ib) + Eo - z)x'2\\ S

Proposition 4.5 will be proved in Sect. 5. We now use it to deduce Theorem
3.2(a). We will prove that Mo(z,ib) has an analytic continuation to Sa for some
α > 0, and at the same time derive uniform bounds on its norm and the norms
of its first three derivatives in that region. Our proof follows the same lines as
the proof of Proposition 4.4. We use (2.16) and an inductive argument to derive
uniform bounds on Mn(z,ib).

From (2.16) and (4.18) it follows that

oo
N2n(z) =

7=1

(4.19)

Using the bound \\gι

n

/2(gn(ib) - z)~ι\\ ^ (y/2/E^)/sinb9 Lemma 4.2 and (4.19)
imply that

ll^ωil S ̂ Hί/Γ1/2/»llllβΓ1/2/-allΣ [^ ̂ l ^ l ^ + ^ ' ^ l l f <4 2°)ll^ωil S ^

We make the inductive assumption that for some n, satisfying 2n + 1 ^ N, the
operator M2n+ι(zjb) is analytic in Sa, and satisfies the bound

\\M2n+1(z,ib)\\ ί ^K6\\g;ι/2fib\\ | |0Γ 1 / 2/-*ll • (4-21)

Furthermore we define ββ as follows:

It follows that for \β\ ̂  β6 and z e Sa,

\\N2n(z)\\ ί -±^-\\g^
2fib\\ \\g^2f_ib\\β2\\M2n+ι(zJb)\\ . (4.22)

^ sin b

Now we return to (2.16), and deduce the following expansion:

M2n^(zjb) =A$nQlt(G7n(ib) - z - β2L2n(z)yιQ2nC2

b

n

+ Σ 4bnQ*2n(G2n(ίb) - Z ~ β2L2n{z))''

. [β2N2n(z)(G2n(ib) - z - β2L2n(z)ΓιYQ2nC2

b

n . (4.23)

Proposition 4.5, combined with Lemma 4.2 (with m = 1/2 and m = 1), (4.17)
and (4.23) imply that for all z G Sa,
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| | M ( ^ ) l l ύ
2

+ jjβVfibW Wΰiuw WU)\\ Σί
sin b j=o

(4.24)

Define

tf 2 ^ ^ l / 2 2 1 / a 2 (4-25)

Then for z G Sa and |j8| g j87, we have K5\\N2n(z)\\ ^ 1/2, and so (4.24) implies

r-allll0Γ1/2/*ll

(4.26)
sm

Finally, define

= max ̂  βj2, °"a i / - " " π t > 1 J " " } . (4.27)

Then (4.26) implies that for z G Sa, and |j8| ^ β5,M2n-\(zJb) satisfies the bound
(4.21). If N is odd, then (4.21) is automatically satisfied for N = 2n + l.If N = 2n
is even, then NN-\(.Z) = 0, and so (4.23) and (4.24) imply that

Therefore the bound (4.21) holds for all n ^ 0, with 2/i + 1 S N, and all \β\ ^
β5. The uniform convergence of the series (4.19) and (4.23) implies analyticity of
M2n-\(z,ib\ for z e Sa.

In particular, we deduce that M\{zjb) is analytic in Sa. From (2.16) we have

Mo(zjb) = ΣiA^Q\{gx{ib)-'zrιβ2J[Mι(z9ibXgι(ib)-zrx]lQιC^ . (4.28)
j=0

The bound (4.20) guarantees convergence of (4.28), and hence analyticity of
Mo(zjb) in Sα. The expression (4.28) also produces a uniform bound for \M0(zJb)\.
Furthermore, for ImzΦO,

= Σ(2/+ lMiβϊ(0i -zΓ^tMKz)^ - z r ^ f t d . (4.29)
j=0

By repeating the analytic continuation arguments in this section, we deduce
that MQ(Z,Θ) is analytic in W, and independent of θ, for |j8| ^ β5. The identity
(4.29) and the bound (4.20) allows M^zjb) to be analytically continued to Sα,
where (4.29) implies that it is uniformly bounded, and equal to MQ(Z). A similar
argument shows that higher derivatives of M0(z) are uniformly bounded in Sa. This
proves Theorem 3.2 (i).
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To prove Theorem 3.2 (ii) we must use property (iv) of Definition 4.1. Using
(4.28), it follows that for Imz > 0,

Mo(z) = M0{z,ib) = AfQί(gι(ib) - z)-χQxC* + O(β2)

Furthermore,

Km A&^-Eo - iβΓ^βid = lim /

where ' ^ ' denotes the principal value. From these two results we deduce

lim+lmM0(E0 + ie) = π(\f(E0)\2 + \f(-E0)\2) + O(β2) ,

which is positive for β sufficiently small.

5. Bounds on the Resolvent

In this section we will prove Proposition 4.5. The proof relies on some properties
of the following integral; for Imz > 0, define

From the assumption of dilatation analyticity for / , it follows that

Γ(z) = J ~ * — p dp . (5.2)

The estimate \e~ιb\p\ — z\ ^ \p\sinb for Imz > 0 implies the bound

jZ'(z) ^ — — / j—j dp . (5.3)

Let

τ = sup \T(z)\ . (5.4)
Imz>0

The interaction term Mn(z) in the resolvent can be separated into two terms,
which we will call the direct and exchange terms (these are defined below in (5.9)
and (5.10)). The direct term yields the estimates we require; the exchange term
causes a problem. However, the infrared problem comes from the behavior near
momentum zero. In this regime, the contribution of the exchange term is very
small, and goes to zero as the momentum goes to zero. The contribution of the
direct term approaches a constant as the momentum goes to zero. Based on this
observation, we introduce a splitting of the momentum space into two regions; in
the large momentum region, there is no problem, and for small momenta the direct
term dominates the exchange term.
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For ease of notation, let y(p) = \f(p)\2 + \f(-p)\2 for all p ^ 0. Then for
Imz > 0,

p. (5.5)

We define the constant M which will appear in many of our bounds, as follows:

M := max ||y||2, sup{y(/>), \y'(P% \f(p)\) •

\ P^° J
Lemma 5.1. Let z = u + iv, with u > 0, v > 0. Then

\\mT(u + iv) - πy(u)\ ^ Mv [ u + - ) .

(5.6)

Proof. Note first that

Secondly,

2"
πγ(u) = v

y(u)
v f

y(u)

The estimate \y(p)\ S M implies that

2r y(p) - y(u)

rdP.

ί (P - u)2 +
dp •3vMf-

ι — ii\2
dp

(p - uf + v2
'-dp 3vM-

The estimate |/'(/?)| ^ M now gives

|ImΓ(iί + iv) - πγ(u)\ ^ -M2u + 3vM- .

QED

Lemma 5.2. There are positive numbers β% and C\, such that for all \β\
and Imz > 0,

\E0-z-β2T(z)\ ^ β2Cx.

Proof If \E0 - z\ > 2β2τ, where τ is defined in (5.4), then

\EQ - z - β2T(z)\ ^ \E0 -z\- β 2 τ > β 2 τ .
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If \E0 - z\ <, 2β2τ, then Imz ̂  2β2τ, and \E0-RQZ\ ^ 2β2τ. Therefore
Lemma 5.1 implies that

|ImΓ(z) - πy(Rez)| ^ M2β2τ [Eo + 2β2τ
Eo-:

By continuity of y(p) and our assumption that y(£0) + 0, there exists r > 0,
independent of jS, r < EQ/2, such that

• r ί \ ^ y(^Ό)
mi y(w) ̂  .

|M-£ 0I<' 2

Then for /?2 ^ r/2τ and for |£Ό - A ύ 2β2τ, we have \E0 - Rez| ^ r, and so

|ImΓ(z)| ^ πy(Rez) - M2β2τ

Let

)8| = m i n <j ^-,

Then for \β\ ^ jg8, and |£Ό - z\ ^ 2jg2τ,|ImΓ(z)| ^ fyί^Ό), and hence

| ^ o - ^ - i 8 2 Γ ( z ) | ^ I m z

Taking C\ = min(τ, |y(£Ό)) gives the desired result. QED

Lemma 5.3. There is a positive number C2, such that for all \β\ ^ β%, and
Imz > 0,

\E0-z-β2T(z)\ ^C2\E0-z\.

Proof From the proof of Lemma 5.2, if \EQ — z\ > 2β2τ, then

\E0-z-β2T(z)\ ^ \E0-z\-β2τ> ^\E0 - z\ .

If \E0-z\ ^ 2β2τ, then

\Eo-z-β2T{z)\ ^ ^y(E0)β2 Z ^^\E0 -z\ .

Taking C2 = min(^, ̂ y(£Ό)) gives the desired result. QED

We now turn to the proof of Proposition 4.5. Recall that for all 0 rg n ^ iV — 1,
zesa,

Ln(z)=Λi

n

b

+ιQ*n+ι(Gn+ι(ib)-zΓιQn+ιCn

b

+ι . (5.7)
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We also define for 0 ^ n ^ N - \,z e Sa,

Kn(z) = Gn{ίb) - z ,

Jn(z) = Kn{z) - β2Ln(z). (5.8)

From now on we assume that n is even, so Gn(ib) = gn(ib) + £Ό It will be useful
to separate (5.7) into the direct term Dn(z) and the exchange term En(z), so that
Ln(z) = Dn(z) + En{z). For F € Pn, (recall (5.1))

{Dn(z)F)(ku •••,kn)=T(z- e~ib(\kx| + + \kn\))F(ku ,kn), (5.9)

CJ —ib\kn+\ )** \k\i'' 9 kj > -' ' 9 kn+

/ ^ ) | / g-<&(|jfci| + .,. + |JWl|).z j
(5.10)

As a technical aid for the proof, we introduce a parameter (5 > 0, which sep-
arates the low and high momentum regions. Its magnitude will be chosen later to
satisfy some requirements. Having fixed δ, we let Πn : 3Fn —• <Fn denote the or-
thogonal projection onto the part [0,(5] of the spectrum of gn, and let Ωn = 1 — Πn.
It will be convenient to use the following quantities:

μ(p)=Sup\e-ibp-z\-1, (5.11)

p(b) = inf \e-ibp + E0-z\. (5.12)
p^δ;zeSa

Simple estimates show that (recall a < ψ)

tip) ^ ^ (/> + y ) PW ^ ^inZ). (5.13)

For any F e &n,

\\Jn(z)F\\ =\\ΠnJn(z)F + ΩnJn(z)F\\

^-\\ΠnJn
V2

^ ) 0 ^ 1 1 + | |O^n(2)/7nF||} . (5.14)
V2

We will now obtain upper and lower bounds for the terms on the right side of
(5.14). Since both Kn(z) and Dn(z) commute with Πn and Ωn, it follows that

ΠnJn(z)Ωn = -β2ΠnEn(z)Ωn. (5.15)

Furthermore, since the operator Πn restricts each momentum \kj\ to the interval
[0,<5], (5.10) and (5.13) imply
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\{ΠnEn{z)ΩnF){ku...,kn)\ ύ -?

\{ΩnF){ku...,kj,...,kn+x)\dkn+ι\ .

By adding on one extra term, this gives

\\ΠnEn(z)ΩnF\\ ^ -A- PnA{\f-ib\) (gn+ι + ̂ ) C{\Πxfib\)(P*n\ΩnF\)\ .
sin# \ 2 J II

Using Lemma 4.2 (with m = 1/2) and \\Ωn\\ = 1 produces the bound

\\ΠnEn(z)ΩnF\\ ί ^\\g;"2f_ib\\ \\Πιg;ι/2fib\\ \\F\\ . (5.16)

The "smallness" in (5.16) comes from the estimate

\\Πxg-χl2fib\\ S V2δ sup {\k\-λ'2\fib{k)\} . (5.17)
l l

From assumption (iii) of Definition 4.1, the last factor is finite. We define

σ := sup {|*Γ1 / 2 |/0(*)l} . (5.18)

Then (5.16) implies the estimate

\\ΠnEn{z)ΩnF\\ 5Ξ Vδσ-^\\g;ι/2f-ib\\ \\F\\ • (5.19)

A similar estimate shows that

4
\\ΩnEn(z)ΠnF\\ ̂  Vδσ—\\g;ι/2fib\\ \\F\\ . (5.20)

We now turn to the remaining two terms on the right side of (5.14). First,

ΩnJn(z)ΩnF = ΩnKn(z)ΩnF - β2ΩnLn(z)ΩnF . (5.21)

The second term on the right side of (5.21) is bounded similarly to (4.19),
(4.23) giving

^ϊl/2fib\\ \\g;l/2f-it\\ \\QnF\\ . (5.22)

It is important to keep the projection operator in the last factor in (5.22). The
first term on the right side of (5.21) is bounded from below by (recall (5.12))

110^(2)0^11 ^ p(b)\\ΩnF\\ . (5.23)

We choose βg to satisfy

^ m ^ ^ ι / 2 f - ^ - ( 5 2 4 )
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Then for all \β\ ̂  β9, and z e Sa, (5.21)-(5.24) and (5.13) imply

\\ΩnJn(z)ΩnF\\ £ ^(6)110^11 £ ~ I M I (5.25)

The remaining term on the right side of (5.14) is given by

ΠnJn{z)ΠnF =Πn[Kn(z) - β2Dn(z)]ΠnF

- β2ΠnEn{z)ΠnF . (5.26)

The last term on the right side of (5.26) is also bounded by (5.20) (multiplied
by β2). The first term on the right side of (5.26) is a multiplication operator. Let
us write xn = \kι\ H \-\kn\. Then for F e J% (recall (5.1))

([Kn(z) - β2Dn(z)]F)(ku... Λ ) = («-'**» +E0-z- β2T(z - e-ibxn))

xF(ku...,kn). (5.27)

The operator Πn imposes the restriction xn ^ δ. Furthermore,

|Im(z - e~ibx)\ = Imz + x sin b > 0 ,

so Lemma 5.2 implies that for all \β\ g β%,

\\[Kn(z) - β2Dn(z)]ΠnF\\ ^ β^WΠnFW . (5.28)

Combining these estimates for (5.14), we find that for β ^ min(j88,jS9), and

\\Jn{z)F\\ ^ ±=

As our first condition on δ we require

(5.29)

( 5 3 0 )

Therefore (5.29) and the bound | | F | | ̂  \\ΠnF\\ + \\ΩnF\\ give the estimate

~ 3 ^ 2 i ίnT l l ^ 1 / 2 / l * l t σ } m • ( 5 3 1 )

Our second condition on δ is that

1 ' ^ , . (5.32)

Combining (5.30) and (5.32) gives a condition that β must satisfy, namely
^ 0io, where

2 d sin3 ft
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With this condition, we deduce

\\Uz)F\\ > ^

This proves Proposition 4.5(i), with K5 — 2\fϊjC\. Part (ii) is proved in a similar
way, by obtaining a lower bound on \\Jn(z)Kn(z)~ιF\\. Let us write xn = \k\\ -f

\-\kn\. First we note that

Jn(z)Kn(zΓιF = (1 - β2Dn(z)Kn(zyι)F - β2En(z)Kn(z)-ιF .

Furthermore,

{En(z)Kn{zΓιF){ku...,kn)

Recalling the estimate that for Imz > 0, \e ώx + Eo — z\ ^ |x| sin b, we get

|e- 'V+i - kj] +E0-z\^ \kn+x I sin b . (5.35)

We now repeat the argument leading to the bound (5.16), and this gives

\\En{z)Kn{zTxF\\ ί ^-\\g-
γl2fib\\ \\gfl2f-ib\\ \\F\\ . (5.36)

sm b

Similar bounds hold for \\Kn(z)-ιEn(z)F\\ and \\Kn(z)-^2En(z)Kn(z)-^2F\\. It
remains to find a lower bound for | |1 — β2Dn(z)Kn(z)~ι\\. This is precisely the
estimate given by Lemma 5.3, with z there replaced by z — e~ιbxn. Therefore we
get the bound

||(1 - β2Dn{z)Kn{zyι)F\\ ^ C2\\F\\ . (5.37)

Let us define

R2 C2 sin2 b
" Π ~ . /7Zu -3/2 n , , , , -1/2 r I, * W J 5 i

Then for all \β\ ̂  βn, (5.37) implies Proposition 4.5 (ii) with K6 = 2/C2. Since
Dn(z) and Kn(z) commute, this proves (iii) and (iv) also.

6. The Infinite Particle Number Limit

In this final section we will prove that the amplitude A(t) defined in (2.11) has a
limit as N —> oo, for all t > 0. This will complete the proof of Theorem 3.1.

The idea of the proof is simple. We use the pointwise convergence of the resol-
vent R(z) as N —> oo; as we will see, it is sufficient to have pointwise convergence
of MQ(Z). In order to apply this to the model, we deform the contour of inte-
gration in (2.13) as follows. Since t > 0 and \R(z)\ is uniformly bounded (from
(2.15)) for \z\ sufficiently large, we may deform the contour of integration in the
lower half plane. Specifically, let Γ be the following contour; the vertical half-
line Rez = — 2EQ, for — oo < Imz ^ 0, followed by the semicircle \z\ = 2EQ, for



Resonant Decay of Two State Atom 591

π ^ Argz ^ 0, followed by the line Arg (z - 2E0) = -6/2, for 0 ̂  Imz > -oo.
We shall prove the following result.

Proposition 6.1. There are constants βn, C3, independent of N, such that
\R(z)\ <£ C3 /or all \β\ ̂  j812, 0«d all z e Γ. Furthermore, limjv—oo ^(*) exists

for all z eΓ.

We will first use Proposition 6.1 to prove Theorem 3.1 (b). For t > 0, we may
deform the contour of integration in (2.13) to get

A(t)=^-Je-iztR(z)dz. (6.1)

For all t > 0, Proposition 6.1 implies that for all z e Γ,

\e~ίztR{z)\ S C3 exp(ίlmz). (6.2)

The function exp(ίlmz) is integrable on Γ for t > 0. Therefore Proposition 6.1
and dominated convergence imply that

lim A(t) =~J e~izt lim R(z)dz , (6.3)
N^OO 2πι Γ N-+00

which proves Theorem 3.1 (a).

Proof of Proposition 6.1. The proof uses the analytic continuation of Mo(z), as
in Sect. 4. In this case the continuation is considerably simpler, since we avoid
the regions near 0 and Eo. First recall from Sect. 4 that Mo(z,θ) is analytic in the
region W, which implies that M0(z) = Mo(zjb) in W.

The complement of the contour Γ has two connected components. Let Γ denote
the closure of that component which does not contain zero. Then simple geometry
shows that for all z € Γ9 the following estimates hold: for all x ^ 0,

\e~ibx + Eo -z\ ^ max{3J£0,£osm&,xcos6,xsin(6/2)} . (6.4)

The estimates (6.4) imply that for all z e f, and all n ̂  0, all F e 3Fn,

\\(Gn{ib)-zyιF\\ ^ —^\\{gn+E»y'F\\ . (6.5)

The estimate (6.5) allows us to analytically continue each operator Mn(zjb) to Γ.
The identity (2.16) gives

Mn(zjb) =A*+ιQΪ+ι(Gn(ib)-zΓιQn+ιCn

b

+ι

7=1

. [β2Mn+1(zJb)(Gn+1(ib) - zyιYQn+1Cn

b

+ι . (6.6)

The usual inductive argument can be used now. Indeed, (6.5) implies that
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(6.7)

The series in (6.7) converges provided that 2β2\\Mn+ί(z,ib)\\ ^ £Όsin(Z?/2). By
imitating the argument in the proof of Proposition 4.4, and using the starting condi-
tion MN{z) = 0, we deduce analyticity of Mn(z,ib) in f for all N 2: n 2: 0. Com-
parison with that proof also shows that for β2 sufficiently small, we have the bound

The bound (6.8) in the case n = 0 implies that for β2 sufficiently small, the
function R(z) = (Eo — z — β2M0(z))~ι is also uniformly bounded in the region Γ.
This proves the first statement in Proposition 6.1.

To derive the existence of the limit N —> oo of R(z), it is sufficient to prove
the existence of lim#_>oo M0(z). We do this by showing that {Mo(z)} is a Cauchy
sequence in N.

Let N ^ N be any integer, and let {Mn(z,ib)} denote the operators defined
in (2.14), with the cutoff N replaced by N. Then the above estimates show that
||MAΓ(Z,/Z?)|| satisfies the bound (6.8), while MN(z) = 0, of course. For any n ^ N,
let

an = sup I\Mn(z9ib) - Mn(z,ib)\\ . (6.9)
zef

From (2.16) and (6.6) we deduce that

Mn(z,ib) - Mn(z,ib) =Ai

n

b

+ιQ*n+1(Gn+ι(ib) - z - β2Mn+ι(z,ib)Γι

.[β2(Mn+ι(zJb)-Mn+ι(z,ib))]

• (Gn+ι(ib)-z-β2Mn+ι(z,ib)ΓιQn+ιCn

b

+ι . (6.10)

Also (6.5) and (6.8) imply that for β2 sufficiently small, we have the following
bound:

\\(Gn(ib)-z-β2Mn(z,ib)ΓιF\\ rg — l ^ l l (θn + ψj F\\ . (6.11)

Applying this to (6.10) gives

a" - ^ β 2 ( s h ^ / 2 ) ) l l 0 Γ ' / i δ | 1 WβTlf-a,\\an+ι • (6.12)

Therefore for β2 sufficiently small, there is a constant c > 0 such that for all
n ύ N,

an ^ cβ2an+x . (6.13)



Resonant Decay of Two State Atom 593

From (6.8) we conclude that for some constant c\,

a0 ^ (cβ2fCι .

Therefore for β2 sufficiently small, and for all z e f,

lim \M0(z) - M0(z)\ = 0 .

QED
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