
commun. Math. Phys. 165,485-531 (1994) Communications in

Mathematical
Physics

© Springer-Verlag 1994

Global Vertex Operators on Riemann Surfaces

Yongchang Zhu*

Mathematics Department, Caltech, Pasadena, CA 91125, USA

Received: 28 April 1993/in revised form: 28 December 1993

Abstract: We develop an approach towards construction of conformal field theory
starting from the basic axioms of vertex operator algebras.

1. Introduction

The notion of vertex algebras was introduced in [Bol]; the variant of this that
we call "vertex operator algebras" defined in [FLM2] and [FHL] can be
regarded as a mathematical reformulation of "chiral algebras" or "conformal
algebras" in conformal field theory. The basic ingredients in the definition of
vertex operator algebras are a space of states and the vertex operators associated
with the states. One of the two main axioms, the Jacobi identity, involves the
properties of vertex operators on a complex disc; the other main axiom is about
the Virasoro algebra which is supposed to encode the information of infinitesimal
deformations of Riemann surfaces with local coordinates. It is expected that
these axioms and certain finiteness conditions are sufficient to formulate and
verify the theorems on all Riemann surfaces. The present work discusses this
problem. We introduce the notions of the global vertex operators and the space
of vacua on a Riemann surface with punctures, and prove some initial results.
And we will discuss the relation of our approach with the modular functors defined
in [Se].

For a given vertex operator algebra V and a given data

{Σ\QU. . . ,QN;zi,. . . ,zN) ,

where Γ is a compact Riemann surface, Qt,. . . , QN are N distinct points on Σ and
zι is a local coordinate at Qt satisfying Zi(Qi) = 0, SL global vertex operator on such
data is defined to be the sum of the residues of an operator valued differential form
associated to a primary vertex operator Y (α, z) and a meromorphic differential
/with the dual degree on Σ. In this language, the operators of Virasoro type and
Kac-Moody type on a two-punctured Riemann surface defined in [KN] are
essentially the global vertex operators associated to the Virasoro algebra and
primary fields of degree one on a two-pointed Riemann surface, respectively.
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Suppose further we assign at each point Qt a representation Wt of V, so we have
the data

Ϊ = {Σ; Qu , Qnl zu , ZNI Wl9. . . , WN) ,

the space of vacua on Σ is defined to be the subspace of {W^ ® ® WN)* whose
elements are annihilated by all the global vertex operators. This definition is
motivated by physical literatures (e.g., [DVV, GGMV, W]).

In the case that the vertex operator algebra under consideration is generated by
a Kac-Moody affine Lie algebra, the notion of the space of vacua is defined in
[TUY], which appears to differ with our definition, but one can prove that the two
definitions are essentially equivalent (see remarks in Sect. 7). After we introduce the
notions of the global vertex operators and the space of vacua, we prove some
results similar to the results in [TUY]. One of these results (Theorem 6.1) is that if
the data

Σ' = (Σ;QU. . . ,QN,QN+I',ZI, , zN, zN+1;Wl9. . . ,WN,V)

is obtained by adding (QN + χ9zN+1)to the data Σ and assigning the adjoint module
V (or 0 sector) at β N + 1 , then the space of vacua on Σ' and the space of vacua on
Σ are canonically isomorphic. This result is used to define the correlation functions
associated to every vector in the space of the vacua on the Riemann surface (see
Theorem 6.2). Some of the arguments used in proving these results is similar to the
argument used in [TUY]. However, since there is no affine Lie algebra structure in
a general vertex operator algebra, we cannot appeal to the representation theory of
the affine Lie algebras as in [TUY]. To overcome this difficulty we are forced to
define the quasi-global vertex operators on a Riemann surface with projective
structure, and we prove that the space of quasi-global vertex operators forms a Lie
algebra (Proposition 4.2) and that the space of vacua is annihilated by quasi-global
vertex operators (Theorem 5.1). These results are used as technical tools in the
proof of our main theorems (Theorem 6.1 and Theorem 6.2). In the end we discuss
a conjectured procedure to construct the space of vacua on higher genus Riemann
surfaces by gluing lower genus Riemann surfaces. This gluing construction relates
to the modular functor defined in [Se].

The paper is organized as follows. Sect. 2 gives a brief review of definitions of
vertex operator algebras and the results needed later in order to make this paper
self-contained. Section 3 sets up the notations and gives the definition of global
vertex operators and the space of vacua on a rc-pointed Riemann surface. In Sect. 4
we define the space of quasi-global vertex operators on a n-pointed Riemann
surface with a projective structure and prove that it is closed under the Lie bracket.
In Sect. 5, we prove that the space of vacua on a Riemann surface with a projective
structure is annihilated by the quasi-global vertex operators. In Sect. 6, we prove
that there is a system of correlation functions corresponding to the each vector of
the space of vacua. In Sect. 7, we discuss the examples of the space of vacua for
various situations. In particular, we give the relations of the space of vacua on
2-pointed and 3-pointed spheres with the notion of dual representations and
interwining operators defined in [FHL], In Sect. 8, we give a conjecture on
constructing the space of vacua on higher genus Riemann surfaces by gluing lower
genus Riemann surfaces and discuss its relation with the modular functors.

We will denote by C and Z the set of complex numbers and the set of rational
integers respectively. And we denote by §cf(z)dz the contour integral so nor-
malized that §c^dz=l for a contour C surrounding 0.
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2. Definitions of Vertex Operator Algebras and Representations

We recall the basic definitions of vertex operator algebras and representations, and
give a summary of the results used later and sketch their proofs. For more details,
see [FLM2] and [FHL]. And see [FLM2, FK, FZ, Li] for various examples.

Definition 2.1. A vertex operator algebra is a graded vector space V=(J)Γ=o »̂
equipped with a linear map

V->(Endy)[[z,z~1]] ,

aM>y(a,z)=£ a{n)z-"-1(a(n)eEndV)
neΈ

(we call Y (a, z) the vertex operator of a) and with two distinguished vectors leVθ9

ωeV2 satisfying the following conditions for a,beV:

a(ή)b = 0 for n sufficiently large (2.1)

F ( l , z ) = l ; (2.2)

F(α,z) leV[[z] ] and lim Y(a9z)l = a (2.3)
z-> 0

the vertex operator Y(ω,z) = YJneZLnz~n~2 generates a copy of the Virasoro
algebra:

(2.4)

where c is a constant which is called the rank of V and

for aeVn, (2.5)

^Y{a9z); (2.6)

and the following Jacobi identity holds for every m, n, leZ:

Resz_w(Y(y (α, z-w)b, w)ιWtZ-wF(z, w))

= Resz(F(α, z)Y(b, w)ιz,wF(z, w))-Resz(Y(b, w)Y(a, z)ιw,zF(z, w)), (2.7)

where F(z, w) = zmwn(z — w)1. This completes the definition.

Identity (2.7) needs some explanation. Expressions ιWiZ-wF(z9 w), ιZyWF(z,w)
and ιWtZF(z, w) mean the power series expansions of the rational function F(z9 w) on
the domains | w | > | z — w|, | z |> |w | , | w | > | z | respectively, i.e.,

ιz w(zmwn(z-w)ι)= Y (-l)M )zm+ι-ίwn

i=o

Iw,z(z"V"(Z-w)')= Σ (- l ) ' + i ( . )z" + lw"
ί = 0
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And Resz _ w ( . . .) in (2.7) means the coefficient of the (z — w) ~* of the formal power
series in (. . .). Resz(. . .) and Resw(. . .) have the similar meanings. And we will use
the similar notations later. So (2.7) is equivalent to

m\ °° ίl\
)Y((l + i ) b ) m + n - i = Σ ( - l ) M . )a(m + l-i)Y(b, w)wn+i

i = O l J \lJ

Σ (-^ι+i(lAY(b,w)a(m + ί)wn + ι~i, (2.8)

And taking coefficient of w * in both sides of (2.8), we have

)(( ))( ) Σ ( ) .

- Σ ί - ί Γ Ί .)b(n + l-i)a(m + i ) . (2.9)

By (2.1), for a fixed veV, there are finitely many vectors among a(l + i)b9b(n + i)υ
and α(m + i)ι; (i^O) are non-zero, so all the three terms in (2.9) are well-defined
linear operators on V. The Jacobi identity (2.7) are equivalent to (2.9) for every
m, n, leZ.

We give some immediate consequences of the definition. We have relations:

Y(a9z) = 0 iffα = 0, (2.10)

m\

)Y({)bήm-i (2.11)

(2.12)

j z (2.13)

a(ri)Vm c Vw + d e g α-π-1 for α homogeneous , (2.14)

α(n)l=0 forw^O, (2.15)

y(α,z)l=exp(zL-Ofl, (2.16)

( f c l ) lα ( f c l ) l ( L _ i ) f e α for fc^O . (2.17)

We sketch the proofs of the above relations. Equation (2.10) follows directly from
(2.3). Equation (2.11) is obtained by specifying / = 0, n = 0 in (2.8). Equations (2.12)
and (2.13) is proved by using (2.11), (2.5) and (2.6). Equation (2.14) follows from
(2.13) directly. Equation (2.15) follows from (2.3). Equations (2.16) and (2.17) are

ίd\k

equivalent. To prove (2.17), using (2.12), we have (flrfL_!)kΓ(α, z)= — I Y(a, z\
\άz)

apply this identity to 1 and take l i m z ^ 0 , using L _ ! l = ω(0)l = 0, we obtain
k
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From (2.10) we see that the operators a(ή) (aeV, neZ) are closed under the Lie
bracket. And from (2.14), we see that for a homogeneous element α, the operator
a{ή) (neZ) maps a homogeneous subspace into a homogeneous subspace, and a(ή)
has degree dega — 1 — n, we write deg(α(n)) = dega — \—n.

Definition 2.2. A representation of V or a V-module is a graded vector space
M = (J^°=o Aίn> such that there is a linear map

neZ

and the following properties are satisfied:

α(n)MwczMm + d e g Λ - n _ 1 / o r every homogeneous a (2.18)

and (2.2) (2.4) and (2.6) and the following Jacobi identity holds:

RQSZ-W(YM(Y (a, z-w)b, w)ιWlZ-wF(z9w))

= Resz(YM(a, z)YM(b, w)ιz,wF(z, w))-Resz(YM(b, w)YM(a, z)ιw,zF(z, w)) (2.19)

for every rational function F(z, w) = zmwn(z — w)ιm, n> ZeZ.

Equation (2.19) has the same interpretation as (2.7). And relations (2.11)-(2.13)
hold also for representations of V. We will write F(α, z) for YM(a> A- Note that by
(2.18), for fixed as V and veM, a(n)v = 0 for n sufficiently large. Thus, for a Laurent
power series f(z) = £ : ^ N ltz\ the operator

is a well-defined operator on M.
It is clear that V itself is a representation of V; we call it the adjoint module or

O-sector.
Subrepresentations, direct sums of representations, irreducible representations,

etc., are defined as expected.
An important class of vertex operator algebras are rational vertex operator

algebras, which is defined as follows:

Definition 2.3. A vertex operator algebra is rational if it has only finitely many
irreducible representations, and each irreducible representation M = © n G N Mn satis-
fies dim(Mw) < oo, and moreover every representation is a direct sum of the irreducible
ones.

We quote a result of [FLH] on correlation functions on the Riemann sphere
which is not used later but will be compared with our results on correlation
functions on general Riemann surfaces.

Theorem 2.1. Let M = £ ^ o Mt be a representation ofV, let M' = £ ^ o M? {Mf is
the dual space of Mt). Then for every v'eM\ veM and at (i= 1,. . . , n\ the formal
power series

<v',Y(a1,z1)...Y(an,zn)v}
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converges on the domain \zx\> | z n | > 0 to a rational function (v\ Y(a1,zϊ). . .
Y(an, zn)v) with only possible poles at zt = Zj (iή=j) and Zi = 0. For every permutation
il9. . . , in of 1,. . . , ft, we have the identity of the rational functions

{v\Y{ah, ziχ). . . Y{ain, zin)v) = (v\ Y{au z±)... Y(an, zn)v).

And ifC is a contour ofz1 which surrounds z2 and 0, z 3 , . . . , zn are outside ofC, then

§(v',Y(a1,z1)Y(a2,z2). . .Y(an,zn)v)(z1-z2)
kdz1

c

= (v',Y(a1(k)a2,z2)Y(a39z3). . .Y(an,zn)v) . (2.20)

Proof We first derive a formula which expresses the (ft + l)-point function

(v\Y(auZl). ..Y(akizk)Y(b,w)Y(ak+uzk+ί). ..Y(an,zn)v} (2.21)

in terms of the ft-point function. Write Y(b, w) = £ ^ = 0 b(m)w~~m~ί +

Σm = i bi — mjw™'1, and move the term Σ ^ = o b(m)w~m~ί across the terms

Y(ak+1, Zfc+i),. . . , Y(a», zn) to the right, and move Σ ^ = 1 b( — m)wm~1 across the

terms Y(ak,zk),. . . ̂ (a^Zγ) to the left, and using (2.11) to compute the Lie

bracket, we obtain

m = O

(»', Σ b{-m)wm-ίY{aι,z,)...Y(an,zn)v

j^k+li=0

+ Σ Σ h.Λ^-ZjΓ-'Xv^YiauZ,). . .Y(b(i)aj,zj). . Y(an,zn)v} . (2.22)

Note that all the four terms of the right-hand side of (2.22) are actually finite sums
since b(i)v = 0, b(i)aj = 0 and <ι/, b( — i)x} = 0 (xeV is arbitrary) for i sufficiently
large. From (2.22), we see by induction that

<v\Y(aί,zί)...Y(an,zn)v>

converges on the domain | z i | > * '>\zn\ to some rational functions with poles at
Zi = Zj (i +j) and zf = 0, and the fact that the limit rational function is independent of
the ordering of the product of Y {ah zt) also follows from (2.21). To prove (2.20), let
Ci be a contour of z1 which contains 0 while z{ (i = 2,. . . , zn) are outside Ci, and
C 2 be a contour of zγ which contains 0 and z2 while zf {ί = 3,. . . , ή) are outside C2.
By the Cauchy Theorem for contour integrals, we have

§(Ό'9Y(al9z1)Y(a29z2)...Y(aH9zH)υ)(zi-Z2)kdz1

c

= I (v\Y(ai,zί)Y(a2,z2). . .Y(arnzn)v)(^-^)kdz1

c2
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The both integrals over C t and C2 are meromorphic functions of variables
z2,z3,...,zn with singularities at zt = Zj and z, = 0. The integral on C2 has a power
series expansion on the domain | z 3 | > > | z n | > | z χ | as

(υ'9Y(a3,z3). . .Y(an,zn)RεsZι(ιZuZ2(zί-z2)
kY(auz1)Y(a2,z2))v> .

The integral on Cx has a power series expansion on the domain |z31 > > \zn\ > \
zd as

<ι/ ,F(α 3 , z 3 ) . . .

By the Jacobi identity, we have

R e s Z l ( i Z l , Z 2 ( z 1 - z 2 ) k F ( α 1 ? z 0 F ( α 2 , z 2 ) ) - R e s Z l ( ι Z 2 , Z l ( z 1 - z 2 ) k F ( α 2 , z 2 ) y ( α 1 , z 0 )

= F(α 1(/c)α 2,z 1).

Thus we have proved that both sides of (2.20) have the same power series expansion
on the domain | z 3 | > > | z n | > | z 2 | , so they are the same meromorphic function.
This concludes the proof. •

The rational functions (υ\ F(α 1 ? Zi). . . Y(an, zn)v) are called correlation func-
tions on the sphere. It can be proved that a certain converse of Theorem 2.1 is true:
the convergence of the products of vertex operators and the properties of the limit
as in the theorem implies the Jacobi identity.

To describe a generalization of this theorem to an arbitrary Riemann surface, we
write (υ\ Y(au z x ) . . .Y(an,zn)v} in a different way. Assume dim(M f)<oo for
every i, let {eh ί = 1, 2,. . .} be a basis of M, and {e[, z = 1, 2,. . .} be its dual basis
(i.e., <e/, ej} = δij). Then x = Σ™=1 et ® e , viewed as a vector in (Mf (x) M)*, has
the property:

<x, vf ®v} = (v', v} .

So

1 ) . . .Y(an,zn)v) .

As we will see later x is a vector in the space of vacua of the two-punctured Riemann
sphere with punctures oo and 0. Our generalization of Theorem 2.1 to a compact
Riemann Σ surface with N punctures can be roughly described as follows (see
Theorem 6.2 for detail): if x is in the space of vacua on Σ, then

converges on the domain | z i | > > | z M |>0 in a coordinate neighborhood of the
N-th point, and the limit can be extended to a global meromorphic section of
a certain line bundle over Σ", and this meromorphic section is independent of the
ordering of the product of the vertex operators.

By the definition, every representation of V is in particular a representation of
the Virasoro algebra. We will frequently assume that V is a sum of highest weight
representations of its Virasoro algebra. And we assume all the representations of
V in this paper satisfy the condition that L o acts semi-simply.
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3. Global Vertex Operators and Space of Vacua on Riemann Surfaces

We will give the definitions of global vertex operators and the space of vacua for
a labeled Riemann surface. And associated to each vector in the space of vacua we
define 1-point correlation functions on the underlying Riemann surface.

We first fix some notations. Let Σ be a compact Riemann surface, β l 5 . . . , QN

be N distinct points on Σ, z{ be the local coordinate near Qt satisfying z^Qt) = 0. We
will denote this data by

(Σ 9QU...9QN',ZI,...,ZN) (3-1)

and call it an N-pointed Riemann surface. Let K be the canonical line bundle over Σ;
we denote by

Γ(Σ;Ql9...,QN;κ") (3.2)

the space of global meromorphic sections of the line bundle κn holomorphic away
from points Qu. . . , QN, or equivalently, (3.2) is the space of n-meromorphic
differentials on Σ with possible poles at Qt (i= 1,. . . , IV). κn has a local section
(dzi)n near the point Qu for a / i n (3.2). Write f=fi(zi)(dzi)

n. We denote zZ ί/the
Laurent series expansion of/i(zf) in zf; we call it the expansion of/at (Qί5 zt). So we
have a linear map ιz. from (3.2) to C((ZJ)). The following standard lemma will be
used later.

Lemma 3.1. For each neZ, the linear map

* = 0 ιZi: Γ(Σ; Qu . . . , QN; κ M ) - > 0 C((z,)),
i = ί i = l

is ίnjective. And if <, > is the bilinear form

given by

= Σ

then (^i(Zi),. . . , gN(zN)) is in the image ι(Γ(Σ; Qu . . . , QN; κn)) if and only if

for every ( / i ^ ) , . . . JN(zN))eι(Γ(Σ; Ql9. . . , QN; κ~n+1)).

The following consequence of the Riemann-Roch theorem is used in the proofs
of Theorem 5.1, Theorem 6.1 and Theorem 6.2 without mentioning it. For every
integer fc, m, there exist a/eΓ(Γ; Ql9. . . , QN; κn) such that

ιzJ=zk

N

and ίZj/=0 ModzΓ for 2^i
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Recall that a projective structure on I is a covering of coordinates chart
{Ua, zα} such that every coordinate transition function is a Mobius transformation.
Given a projective structure {£/α, zα} and points Ql9. . . , QN on Σ, for each Qh we
choose a local chart (f/α., zα.) such that ί/α. contains β^ and take zι = zα.-zα.(()/) as
the local coordinate at Qt. So the obtained iV-pointed Riemann surface is said to be
projective.

By assigning a representation Wt of V at each point Qt of (3.1), we have the data

Σ = (Σ; Qu . . . , QN; z 1 ? . . . , zN; Wl9. . . , WN) . (3.3)

This is the main object in our investigation, and we call it a N'-labeled Riemann
surface with labels as representations ofV as simply the iV-labeled Riemann surface.
If (3.1) is projective, we call (3.3) a projective N-labeled Riemann surface.

Recall that the space ^n(V) of primary fields of degree n is defined as

For ae£Pn(V\ using (2.11) and (2.6), we have the commutation relation:

lLm,Y(a,z)-] = (n(m+l)zm + zm+1j-)γ(a,z). (3.4)

V dzJ
The commutation relation of Lm and F(ω, z) is close to (3.4) with n = 2 except for
a central term:

f 4V (m3~m)C-2. (3.5)1 d z j y 9 " 1 2

Note that (3.4) is similar to the formula of the Lie derivative of a local
n-differential f(z)(dz)n on a Riemann surface with respect to the holomorphic

vector field z m + 1 —:
dz

So Y (a, z) has the similar covariance property as a n-differential which is for-
mulated in the first part of Lemma 3.2 below.

Let z and w be local coordinates near QeΣ such that z(Q) = w(β) = 0, w = φ(z) =
Σa = 1CiZι be the transition function. Write φ(z) = exp(]Γ?l0 / f z

i + 1 ^)z; such an
expression is unique by requiring 0 ^ I m / o < 2 π . Following [H and TUY], the
operator T(Φ) associated to the transition function φ(z) is defined as

( (3.6)
\i = 0 /

The following lemma is easy to prove.

Lemma 3.2. For φ(z) and T(φ) as above, we have relations
ι )n for ae&n(V), (3.7)

}c, (3.8)

where {φ(z\ z) = —-( I is the Schwarzian derivative of φ(z).

φ (z) 2\φ(z)J



494 Y. Zhu

The additional term -fa,{φ(z\ z}c in (3.8) is caused by the central term in (3.5).
From (3.7) we may view heuristically Y(a,z)(aeέ?n(V)) as an operator valued
n-differential on a Riemann surface Σ; and from (3.8), we view Y{ω, z) as an
operator valued quadratic differential on a Riemann surface Σ with z as a local
coordinate in a projective structure since the Schwarzian derivative {φ(z), z) = 0 for
φ(z) a Mobius transformation. Thus we may view F(α, z)f(z)(dz)~n+1

(Y(ω,z)f(z)(dz)2 resp.) for/being a global ( — w + l)-meromorphic differential on
Σ (meromorphic vector field, resp.) as a global operator valued 1-differential.
Motivated by this point of view, we will define global vertex operator on a N-
labeled Riemann surface (3.3) by taking the "sum of residues."

We first set some notation which is used for the rest of the paper. For a tensor
product Wι ®.:- - -®WN of vector spaces Wt and an operator AonWi9 we write

At= 1 ® ® 1 ® A(i-th place) ® ® 1 , (3.9)

so Ai is an operator on Wι ® * ® WN. And for an operator i o n a vector space
W, A acts on the dual space W * from the right by the rule (v'A, v} = (v\ Av} for
every v'eW * and veW.

Definition 3.1. For a N-labeled Riemann surface Σ as (3.3), as^n{V) andje
Γ(Σ;Ql9. . . , QN; κ~n+1), the global vertex operator associated to a and f on Σ is
defined as the operator

£ = 1

which acts on W1 ® ® WN. The dependence ofa(f, Σ) on the local coordinates zls

can be easily derived using (3.7). //

ΣW = (Σ; Qu . . . , QN; wl9. . . , wN; Wl9...9 WN) (3.10)

is the N-labeled Riemann surface obtained from (3.3) by changing z{ to wt. Let
wi = φί(zί) be the local coordinates transition function, T(φi) be the associated
operator. Write /fa) = ιzjand g^wi) = ιWif then ^ ( ^ ( z i ) ) ^ / ^ ) " " " ^ 1 =/ifo) This fact
together with (3.7) implies that

ResWί(F(α, w ί)ιW |/) = Γ(0i)ResZ|(y (a, z^ij

Therefore we have

N U ' ) . (3.11)

The following lemma makes it possible to define global vertex operators
associated to ω.

Lemma 3.3. Let Σ as (3.3) and Σw as (3.10) be projective N-labeled Riemann surfaces.
Let wi = φi(zi) be the coordinate transition function at Qh T(φi) be the associated
operator. Let feΓ(Σ; Qu . . . , QN; K'1). Then

ί = l

N
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Proof. Put/ ί(z,) = »z,/and 0;(w, ) = ιw,./ Then 0,(ώ(z ί))#(z»Γ1=./i(z ί). This fact
together with (3.8) implies that

RcsWί(Y(ω, Wi)ιWlf) = TiφdRe& p(ω, zdhjmφ^1 +^sZι(htf{φi(zi), zt}) .

So it is sufficient to prove that

ΣRes Ϊ I(ιΓ,/{ψ ί(zι),z ί}) = 0 . (3.13)

Let {ϊ/α, Zα} andJVjj, wβ} be the projective structure which gives the local coordi-
nates of Σ and Σw respectively, let Wβ = Φβoι(zQl) be the local coordinate transition
function. Considering {Φjgα(zα), zα}(dzα)2, which defines a holomorphic quadratic
differential on VβnUΛ9 recall the pseudogroup property of the Schwarzian deriva-
tive (e.g. [G] p. 164): for φ{w\ φ(z) and h{z) = φ(φ(z)\

{/ι(z),z} = {φ(w),w}.ιA'(z)2 + {ιA(4z} . (3.14)

Using this property, it is easy to prove that {Φ^α(zα), zα}(dzα)2, as a and β run over
the index sets, defines a global holomorphic quadratic differential g on Σ. Then
(3.13) is the sum of residues of the meromorphic differential/#, so it is 0. •

Definition 3.2. For Σ as in (3.3), feΓ(Σ; Qu. . . , QN; K'1). Choose a projective
N-labeled Riemann surface Σw as (3.10), let zi = φi(wi) be the local coordinates
transition function at point Qu T(φi) be the associated operator. The global vertex
operator associated to ω and f on Σ is the operator

ω(fϊ)= X TiφJfHKeSyipfaWiKmnφdi,

which acts on W± (x) ® WN.

The independence of the choice of a projective JV-labeled Riemann surface
(3.10) follows from Lemma 3.3. And it is clear from Definition 3.2 that the
dependence of the global vertex operator associated to ω on the local coordinates is
similar to (3.11):

Γ N i V 1 ) (3.15)

We denote the space spanned by the global operators associated to n()
(neZ) and ω on Σ by &(Σ). Operators in &(Σ) act on (x) f= 1 Wi, so they act on the
dual space from the right. The space of vacua is defined by the principle that "sum
of the residues of a 1-differential is 0":

Definition 3.3. For a n-labeled Riemann surface Σ as in (3.2), we associated Σ a linear
space N(Σ) by

) = {xe(W1<S>' -®WN)*\xA = 0 for every

We call N(Σ) the space of vacua associated to Σ.

The dependence of the space of vacua on local coordinates is as follows. Let
Σ' = (Σ; Qu . . . , QN; z[,. . . , zf

N; Wu . . . , WN) be another iV-labeled Riemann sur-
face, let z = φi(Zi) be the transition function and T(φi) be its associated operator,
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T(φ1) (x) (x) T(φN) acts from the right on space (Wt ® ® W^)*, then by
(3.11) and (3.15), we have Γ ( ^ ) ® <g) Γ((/>Λr) map isomorphically from N(Σ') to

For each xeN(Σ% we can define a system of correlation functions associated to
x, we first define 1-point correlation functions, the general n-pointed functions will
be defined in Theorem 6.2.

Proposition 3.4. For xeN(Σ), υ1 ® ® %eWi ® • ® WN and ae^n{V\ let

then there exist a unique geΓ(Σ; Q1,. . . , QN; κn) such that g(zi)(dzi)n is the Laurent
series expansion of g at (Qh zt) for each i.

Proof For every feΓ(Σ\ Qu . . . , QN; (κ)~n + 1\ we have

Σ Res((i2|/)^(z ί)) = <xa(f Σ), t?χ ® ® %> = 0 .
i = l

Using Lemma 3.1 proves the lemma. •

The global meromorphic n-differential in Proposition 3.4 is called a 1-point
correlation function for xeN(Σ), v1 ® ® ϋπ and αG^n(y). In Sect. 6, we define
for each xeN(Σ\ vx ® ® vN of Wx ® ® WN and ^ e ^ V ) (i = 1,. . . , n),
a meromorphic section of the bundle

over Σn, where πf is the projection of Σn into the i-th component, π f~
1 κ;/ι is the pull

back of the line bundle κli under π f. This meromorphic section is called a n-pointed
correlation function.

4. Quasi-Global Vertex Operators

In this section, we define quasi-global vertex operators on a projective labeled
Riemann surface which will serve as a necessary technical tool in the proof of
Theorem 6.1.

We assume in this section that V is a sum of highest weight representations of
the Virasoro algebra and dim(V0) = 1, i.e., every element of VQ is a multiple of 1.
Recall that the space of quasi-primary fields £(V) = Σ™=0 ̂ JY) is defined as

= 0 and Loa = na} . (4.1)

It is clear that ^ ( y ) c J f l ( V ) and ωeJ 2 (V). For ae£n(V), Y(a,z) transforms as
a n-differential under the Mobius transformation. To be more precise, for

Λφ(z)=- —, we write it as φ(z) = QXΌ\loz — -\-l1z
2—)z. The associated

kz + k \ dz dzj\ j
transition operator is Γ((/>) = exp(/0L0 + /iL1). Using the relation
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which is a corollary of the conditions in (4.1), we have

T(φ)Y(a,z)T(φ)-1 = Y(a,φ(z))(φ\z))n . (4.2)

Let

Σ = (Σ; Ql9...9QN;zl9...9zN;Wl9...9 WN) (4.3)

be a projective labeled Riemann surface. For a quasi-primary state ae£ίn(V), and
a global meromorphic differential feΓ(Σ, Ql9. . . , QN, κ~n+ί\ we define the
quasi-global vertex operator associated to such a and / o n Σ as

a{f, Σ) = £ (ResZj(y (α, z()»z,/))ι, (4.4)
ΐ = l

which acts on (x) f= x W;. We denote the linear span of the quasi-global operators by
Ά&(Σ). It follows from the definitions that 9(Σ) a Ά<${Σ). The main result of this
section is the following proposition.

Proposition 4.1. If V is a sum of highest weight representations of the Virasoro
algebra and dim(Vo) — 1> Σ as in (4.3) is a projective labeled Riemann surface, then
£&(Σ) is a Lie algebra.

From the formula

[Res,(Γ (α, z)f{z)\ Resz(Γ (ft, z)g{z))-\ = £ yResz(Y (a(l)b9 z)f«>(z)g(z)) , (4.5)
1 = 0 L

which is a direct corollary of (2.11), we see that in order to prove Ά^(Σ) is closed
under the Lie bracket, we first need to represent each a(l)b (1^0) as a sum
Σs t (L-i)svt for υt quasi-primary.

Let α, b be a homogeneous quasi-primary state with degree | α | > 0 , | b | > 0
respectively. A simple degree argument shows that α(Z)fc = OforZ>|α| + |fe| — 1, the
first possible non-zero a(l)b is α(|α| + |fc| —l)b, which has degree 0 by (2.14), it is
a multiple of 1, in particular it is quasi-primary. For 0^n^\a\ + \b\ — 2, we will
define quasi-primary fields xa,b;n and represent a(l)b in terms of xa,b;n- For this
purpose, we set for integers Z, n satisfying 0 ^ Z ^ π ^ | α | + |fo| —2 the constants

where x\ = Γ(x+l% Γ(x) is the usual Gamma function. (Note that since
Γ(x + k)

Γ(x +1) = xΓ(x), the expression — for k a non-negative integer makes sense.)
1 (X)

With the above notation, xa,b;n ( 0 ^ π ^ | α | + |b | — 2) are defined by the following
linear equations:

\a\ + \b\-2

a{l)b= Σ Ca,hΛn{L^γ-ιxaMn, 0^Z^ |α | + | fo|-2. (4.7)

Since a{l)b ( 0 ^ / ^ | α | + | b | - 2 ) and xaMΪ ( 0 ^ Z g | α | + | 6 | - 2 ) are related by a tri-
angular matrix with diagonals Cα>^;/5/φ0, so xa^i ( 0 ^ Z ^ |a\ +1b| — 2) are uniquely
fixed.

Lemma 4.2. ί/mίer ίte assumption in Proposition 4.1, xα ^;
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Proof. It is clear that xa,b j has degree (|α| + |fe| — /— 1). The assumption that V is
a sum of highest weight representations of the Virasoro algebra implies that every
element in V with degree 1 is primary, in particular, xfl} &. | α | + ^ | _ 2 is quasi-primary.
Assume xα? &; ne=2|fl|+|k|_n_/(V) for n ^ /, we want to prove based on this assumption

/ 1*1 + 1*1-2

= Lίίa(l-l)b- X Cath

\a\ + \b\-2

= (2\a\-l-l)a(l)b- £

6|-2

It is easy to see from (4.6) that

so Lixα5^ ;/_i = 0, as was to be shown. •

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. If one of a and b has degree 0, then by our assumption it is
a multiple of 1, then the Lie bracket of quasi-global operators a(f Σ) and b(g, Σ)
are 0. For homogeneous quasi-primary fields α, b with degrees \a\ ^ 1, |fc| ^ 1 and
Laurent series/(z), #(z), write L=\ a\ + |fe| — 1, we have

[Res(y(α,z)/(z)),Res(r(ft,z)flf(z))]
l ,

i i

R ( F ( ( / ) b ) / < I > ( ) ( ) ) —Res(7(α(L)ft,

Σ Σ
ί = 0 n = ί

| | + | | | | + | | _ n « i r

= Σ Σ .,a>b;''nRes(Y(xa,b;nz)(P'\z)g(z)y-')
l

1 = 0

Σ Res(r(xαjί,;n,z)G f l j6;/^;n(z))
« = o

^ Res(y (α(L )fe, z)/<L>(z)3(z)), (4.8)
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where we have set for 05^π^ |α | + |ft| —2,

a,b;f9gM= Σ
1 = 0

For feΓ(Σ; Qu . . , QN; κ ~ N + 1) and #eΓ(£; β l s . . . , QN; κ~]b] + 1l we need to
prove that

la(f,Σ)9b(g9Σ)]eΆ9(Σ).

Write iZif=fi(zi) and ιZιg = gi{zϊ). By (4.8), we have

[ResZi(7 (α, z^/fe)), ResZί(7 (fe, z.O&fc ))]
|α| + |&|-2

+^Res(F (α(L)fe, zO/^ίzO^ίz,)) . (4.10)

It suffices to prove the following two claims.

Claim 1. For each 0 ^ r c ^ | α | + | i>|-2, Ga>b;fhghn(zi) (i=ί9. . . ,N) are Laurent
series expansions of Fn(f9 g)eΓ(Σ; Ql9. . . , QN; κ

n-\a\-\t>\+2^ a t p O i n t s g. u n d e r
z, respectively.

Cte'm 2.

ί = l

To prove Claim 1, let {Ua, zα} be the projective structure of Σ, for/and g as
above, write/=/α(zα)(^zα)~ | f l | + 1, g = g(X(za)(dza)~^ + ί on ί/α. We define a meromor-
phic differential on Ua by

^, ί/α = Gα,, ; / α,,α,π(zα)(rfzαr-l f ll-l^+ 2. (4.11)

Using Lemma 4.3 below (/q = - 2|α| + 2, k2 = — 2\ b\ + 2), one can check tat F^ Uaι =
Fn u on UΛί n £/α2. So (4.11) defines a global meromorphic differential FM(/, ̂ f) in
Γ(Σ\Ql9 ...9QN; κn-W-W+2). This proves Claim 1.

To prove Claim 2, we first note that a(L)b (recall that L = | α | + |fr| —1) is
a multiple of 1, and it can be proved that a(L)b = 0 unless \a\ = \b\. So it suffices to
prove that when |α| = |6|,

Σ Res,l(/i

(L)(z£)ft(zί)) = 0 . (4.12)
ΐ = l

Again we will use Lemma 4.3 below. We define a meromorphic differential on Ua\

Using Lemma 4.3 (k1 = k2= —2|α| + 2), one checks that FL5 UOLI(LQ) = FL, t / α 2 ( / # ) o n

^ α i

n ^42? so we have a global differential FL(/, g)eΓ(Σ; Ql9. . . , β N ; /c). It is easy
to see that (4.12) reduces to the fact that the sum of residues of FL(f, g) is 0. •
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Lemma 4.3 used above is a modified version of Theorem 7.1 in [Co], which is
used in [Co] to prove that certain bilinear forms in the derivatives of modular
forms are modular forms.

Lemma 4.3 [Co]. Let f1(z\f2(z) be two meromorphic functions on an open set ofC.
For given real numbers kί,k2, set:

where x! = Γ ( x + l ) and dz=—. Then
dz

(a) For ally = \ a , )eSL2(C) we have
\c dj

where {f\ky)(z) = (

(b) One has the identity:

F(ff)-Y( 1 v ί

Though the statement of Lemma 4.3 is not the same as Theorem 7.1 in [Co], the
proofs are essentially the same.

5. Space of Vacua on Projective Labeled Riemann Surfaces

The purpose of this section is to prove that the space of vacua on a projective
labeled Riemann surface is annihilated by quasi-global vertex operators. Only the
statement of the following theorem is used later.

Theorem 5.1. // Σ = (Σ; Qu . „ , QN; zl9. . . , zN; Wu . . . , WN) is a projective
labeled Riemann surface, xeN(Σ), b is a highest weight vector for the Virasoro
algebra with degree \b\, L(b) is the highest weight representation of the Virasoro
algebra generated by b, ae£n(V)nL(b) and feΓiΣ Q^^,. . . ,QN;κ~n + 1), then
xa(f,Σ) = 0.

The essential reason for xa(f Σ) = 0 is that a(f Σ) is generated by the global
vertex operators associated to b and ω in a certain way. However we did not
succeed in proving there exists an expression for a(f Σ) in terms of the global
vertex operators associated to b and ω. A part of the following indirect proof is in
the same spirit as the proof of the Proposition 2.2.3 of [TUY].

We need to fix some notations used in the proof. Let {ί/α, zα} be the projective
structure of Σ which gives the local coordinates in Σ. Let | b | be the degree of b. Let
%(b) be the Verma module of the Virasoro algebra with a highest weight vector
b such that Lob = \b\b, and ^(1) be the Verma module of the Virasoro algebra with
a highest weight vector T such that L o ϊ = 0. There are obvious morphisms of
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modules of the Virasoro algebra:

_h. . .L_imb ,

We write ώ = L _ 2 ϊ ; it is clear that p(ω) = ω. For each positive integer k and k points
QN+I, - - ,QN+k on Σ such that Qi + Qj when zΦj ( U = l , . . . ,ΛΓ + fc), and we
choose a open set ί/αθβ, for each i = N + l9. . . , N + k and take z ^ z ^ — zαi(β, ) as
a local coordinate at point Q{. So we have a projective (M + ΛΓ)-ρointed Riemann
surface

(Σ;Ql9. . ., QM+NI zl9. . . , Zjy+fc) . (5.1)

We assign the Verma module %{b) or ̂ f(l) at the point QN + 1, and assign the
Verma module ^(1) at points QN+2, , 6iv+fc So we have the data

, (5.2)

1 ? . . . , WN, Φ(l), Φ(l), . . . , Φ(l)) . (5.3)

Set

It is clear that the operators associated to coordinate transformations T(φ) as
defined in (3.6) and operators Resz(7 (ω, z)/(z)) ϊov Y(ω,z) = Σ<*L_ooLiz~ί~2 and
/(z) a Laurent series act on Φ(&) and Φ(l). For feΓ(Σ; β/,. .?\ βiv+fc; ^ - 1 X
we write ω(/,z f) = ResZi(y(ω,Zi)zZ//). For f,geΓ{Σ; Qu . . . , βΛr+fc; K " 1 ) , write
fi(zi) = ι

Zif and gi(zi) = ιZιg, we have the commutation relation

Σ Σ l / ) - / i ( z J ) f t ' ( z i ) ) ) ί ( 5 - 4 )
ί = l i = l

Note that/i^z^^^Zj)—f^z^g^Zi) (i= 1,. . . ,N + k)) is the Laurent series expansion
of - [ / , Λ e Γ ( Σ ; β 1 , . . . , β J k ; ι c - 1 ) at point (Quz{). For feΓ(Σ;Qu. . . ,
QN+k;κ'1) and geΓ(Σ-Qu.. . , βN+fc; K ^ ' - 1 ) , write ffa^ij and gfa^iφ
we have the commutation relation

N+k N+k

where fr^z,) denotes ResZ|(y(6,Zi)ϊz^). Note that ( I f t l " ^ ^ ^ ^ ) ^ ^ ^ ) ^
(z = 1,. . . , N + k)) is the Laurent series expansion of the Lie derivative of — g with
respect to a meromorphic vector field/at points (β ί ? zf).

of Theorem 5.1. We divide the proof into several steps.

Step 1. We will first construct vectors

v+i5 j QN + UI Z N + I ?

WN
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based on x such that the following properties are satisfied for the sequence {yk}
(*=1,2,...):

(1) For

feΓ(Σ;Qu...,QN+k;κ~ί),
N + k

>- ,zN+k)ω(f9 zf)j = O .

(2) For i/eW^ ® ® WN ® Φ(&) ® ̂ (1)J'~2, i/'e^(l) fc-J' (so i/ ® ϊ ® ι;"eflk and
ι/ ® v"eBk-1), we have

where ̂ indicates the missing terms.
(3) For υ' and υ" as in (2), we have

where u is in the universal enveloping algebra of the Virasoro algebra.
(4) For veW1 ® ® WN,feΓ(Σ; β i , . . . , QN+ύ κH* l + 1) such that

f\zN+i

 = zN+ι + higher terms ,

we have

Similarly, the sequence {xk} {/c = l, 2,. . .} satisfies the properties:

(1') For

N + k

(2r) For υ'eWi®- '®Wx®qi{\y-\ v"e^{\)k~j (so I ; '®T®I;"GΛ and
υ' ® t '^^fc-!), we have

,zN+J9. . .

where "^ indicates the missing terms as before.
(3;) For υ' and υ" as in (2'), we have

<x(βjv+i,. ,QN+klzN+u. . . ,zN+k\vf ®L_h . . . L . ^ L - J ® t;">=0 .

(4')

I , . . . ,zN+k) and x(βiv + i, . , QN+kl zN + 1,. . . , zN+k)
will depend on the data (βjv+i,. . . , ζ>N+kl zN+l9. . . , zN+k\ when no confusion
will arise, we write them as yk and xk respectively.
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Let #(fo) be the vector space with basis of formal symbols L_iί. . .L-imb
( — ίj<0), #(£>) has two gradations given by

There is an obvious surjective map from #(fc) to %{b).
We will construct {y_k} by induction on k. To construct y l 5 we first construct

ί i e ( W i ® * <g> WN®%{b))*, then prove that yx reduces to y1e(W1®'-
® WN (x) ̂ (fo))*. Constructing j ^ is equivalent to defining the numbers

_ i l . . L-ikb) ,

we do it inductively on deg2. Choose feΓ(Σ; & , . . . , 2 N + I ; κ:~|fe| + 1) such that

Ϊ Z J V + 1 /=ZJV+I +higher terms ,

we define

(Note that this definition is forced by Property (4).) It follows from the conditions
satisfied by x that (5.6) is independent of the choice of/. And using (5.5), we can
prove that

Σ < y i , ω ( Λ z i ) l t ? ® ί > = 0 (5.7)
ΐ = l

for every geΓ(Σ, Ql9. . . , β^; K'1) satisfying

of terms higher than z^+1 .

Assume we have defined (yi,v®b'} for every v and every b'efyφ) with
deg2 b'^fc, and the property

Σ (5.8)
i = l

for every geΓ(Σ; Qu . . . , QN, K:" 1 ) satisfying

1of terms higher than

holds. Based on this induction assumption, we define (yi,v®L-ib'y as follows.
Choose/eΓ(Σ;β1 ?. . . .QN+UK'1) such that

hN+ιf=ZN+ι + terms higher than

we define

N

O I J v ® L-ib'y= — Σ O I J ω(/> zi)i>i; ® fcr) 5

it follows from (5.8) that it is independent of the choice of/ And it can be proved
that property (5.8) is again satisfied. So we have completed the construction of y i.
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By a direct computation using (5.4), we can prove that

So j/i reduces to a vector j ^ e O ^ (8) ® W# ® ^ ( ^ ) ) * ? and with some effort we
can prove that yx satisfies the condition (1) for fc=l. By the same method as
constructing yλ based on x, we can construct yk + 1 based on yk. For example,
Ok+uv ® ΐ > for ϋeWi ® ® WN ® Φ(fc) ® W l ) ) k ~ 1 is defined to be < j ^ , v}.
Then it can be proved that yk=y(QN+1,. . . ,QN+k;zN+ί,. . . ,zN+k) satisfies
the properties (1), (2), (3), (4). It is not hard to see that {yk} satisfying (l)-(4) are
unique. Taking b=ί9 we then get the sequence {xk} ( fc=l , . . . ) xk =
y(Qs+u > QN+UI z N + 1 , . . . , zN+k) satisfies (l')-(4') above, and they are charac-
terized by ( l 'H4 ' ) .

Step 2. We prove the following claim in Step 2.

Claim A. If (£/, z) is a coordinate chart in {Ua, zα}, and QN+1,. . . , Q ^ + M are in the
domain {|z|<ε} cz U while β l 5 . . . , QN are outside {|z|<ε}, let ξN + i = z(QN+i)the
z-coordinates of the points QN+h take zN+i = z — ξN+ias the local coordinates at the
point QN+h then for veWx ® ® WN and άe%(b), the function

= <y(Qu ,QN+MIZN+U . ,ZN+M),V® ά®(ώ)®(M-V} (5.9)

and

are meromorphic functions on {\ξN+i\<ε; ( i = l , . . . ? M)} with singularities at
N̂ + i = ^N+iO"*y). And for fixed ^ + i ? . . AΉ+M-U Y(ξN+i, ΛN+M) has the

Laurent series expansion

< 3 ; M _ l 9 F ( c o , ^ + M - ^ + 1 ) i v + ^ ® ^ ® ( ^ ) 0 ( M - 2 ) > (5.10)

for the variable ξN+Mat the ξN+1. (When we want to emphasize v and a in (5.9), we
write the left-hand side of (5.9) a.sY(v9a;ξN+l9...9 £/v+Λf) )

Proof of Claim A. By Hartog's Theorem, to prove Y(ξN + i, , £N+M) is
meromorphic, it is sufficient to prove that for each k, Y(ξN+l9. . . ,ξN+M) is
meromorphic for ξk when the rest of ξt are fixed. To prove that Y (ξN+!,. . . ,
is meromorphic with respect to ξN+M, we consider the Laurent series

(i= 1,. . . , N + M — 1), by the condition (1), g/s satisfy the condition of the second
part of Lemma 3.1, so there exists a meromorphic 2-differential ge
Γ(Σ,Qu.._.,QN+M-ύκ2l such that gi(Zi) = iZig ( i=l, . . . , ΛΓ + M-1). Write
g = g(z)(dz) x on {|z| < ε} c: U, so f̂(z) is a meromorphic function on z with poles at

, ξiv+M-iί we want to prove that

For this purpose, we choose feΓ(Σ, Q l 5 . . . , βjv+Mί ^ - 1 ) such that

/k + M = ziv+M + higher terms .
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Then we have

JV + M - l N + M-l

u) = -ResQ,,.M(gf)=- Σ Res β l (^/)=- Σ
i = l Ϊ = 1

N + M - l

= - Σ <3'M-1,ω(/,z(),»®β®ώ®<M-?)>
ί = l

This proves (5.11). SoY(ξN+l9. . . 9ξN+M)is meromorphic for ξN+M with poles at
points ξN+ί (i + M) and has Laurent series expansion (5.10). The same argument
proves the same statement for the variables ξN + 2, > £JV+M It remains to prove
that Y(ξN + l 9 . . . 9ξN + M) is meromorphic with respect to ξN + 1. For α = /? and
M = 1, considering Laurent series

then by Proposition 3.4, there exists a geΓ(Σ, Ql9. . . , QN; κ}b\) such that
hιg

 = θί(zi)> Write # as g = 0(z)(dz) |b | on {\z\ <ε} cz ί/. By the similar argument as in
the proof of (5.11), one can prove th3it_g(ξN+ί) = Y(ξN+1). This sets down the case
ά = B and M=\. For the case ά = b and M = 2, for fixed QN+2, choose a fe
Γ(Σ; Qu . , QN, QN + 2; K'1) such that

1ZN+J=ZNI 2 + higher terms ,

then we have

), V ® b ® CO}

1ί;®fo> . (5.12)

The first term of the right-hand side of (5.12) is meromorphic for ξN+1 by the case
M= 1. For the second term of the right-hand side of (5.12), if/ has the expansion

zN+J= Σ
i = 0

then

Thus the second term of the right-hand side of (5.12) is
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Using Property (1), it is easy to prove that it can be written as

Σ h<y(QN+uZN+i\vi®b>, (5.13)
ί = 0

for some ff's in Wι ® ® WN. By the case M = l and since lt depends on
ξN+± meromorphically, so (5.13) is meromorphic for ξN+ί. This proves that for
ά — b and M = 2,Y(ξN+1,ξN+2)is meromorphic for ξN+ί. The argument general-
izes to the cases ά=b and M ^ 3 . Thus we have proved that Claim A for
ά=b. Assume that Claim A is true for ά=άu based on this assumption, we want to
prove that Claim A is true for ά=L -kάγ. By (5.10) in the induction assumption, we
have

Y(υ9ά;ξN+l9. . . ,ξN+M)

= $Y(υ9ά1;ξN+l9. . .,ξN+M + ι)(ξN+M + ι-ξN+ί)~i+ίdξN+M + ί , (5.14)
c

where C is a contour of ξN+M surrounding ζN+1. Since Y{dύ ξN+l9. . . , £N+M+I)
is a meromorphic function for the variables ξN+i ( i = l , . . . , ΛΓ + M+1), (5.14)
implies that Y(ά;ξN+l9. . . ,ξN+M) is a meromorphic function for the variable
ξN + x. So we have proved the assertions about Y(ξN+ί,. . . _, ξN+M) in Claim A. The
assertions about X(ξN+l9. . . ,ξN+M)is proved by setting b = 1. This completes the
proof of Claim A.

Step 3. We prove Claim B in this step.

Claim B. Let (£/, z) be a coordinate chart in {UΛ9 zα} such that the domain
{|z|<ε} c [/contains the points βfc, QN+ι,. . . , QN+M while <2f(l rgirgJV, i=(=/c)are
outside {|z|<ε}, and the local coordinate of βfe is given by zk = z—z(Qk) = z-ξk.
Write ξM+i = z(QM+i)> t&ke ziv+/ = z — îv+i as the local coordinates at the point
QN+i. For veWί ® ® WN and άeΦ(fe), let F ( ^ + 1 , . . . , ̂ + M ) be the function
defined as

1)) . (5.15)

(When we want to emphasize of v and ά in (5.15), we write it as
Y(υ, a; ξN+1,. . . , ^N+M)-) Then we have the following

(Bl) Y(ξN+u. . . 9ξN+M) is a meromorphic function on
(i= 1,. . . , ΛΓ)} with singularities at ĵv+t = ^N+j (i%#) and

(B2) For fixed ξN+u. . . , <^v+M-i, ^ ( ^ N + I , ,£H*M) has the Laurent series
expansion

for the variable ξN+M at ^ + i

(B3) For fixed ^ + 2 , . . . , ξN+M9 Y(ξN+l9. . . , ̂ N+M) has the Laurent series ex-
pansion

< * ( β i V + 2 > . , β N +

for the variable ξN+1 at ξk.
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Proof of Claim B. The statements (Bl) and (B2) can be proved using exactly the
same method used in the proof of Claim A. We only need to prove (B3). We may
assume k = N. We prove the statement (B3) for the case d = b first. We use the
induction on M. If M = 1, considering for i= 1,. . . , N the Laurent series

by Proposition 3.1, there exists a geΓ(Σ; Qu . . . , QN; κ | 6 ) such that ιZig = gi(Zi).
Let g = g(z)(dz)W on the domain {\z\ <ε} c U, then by the same argument as used
in the proof of (5.11), we can prove that 0(<̂ v + i) = ̂ (6v+i). This proves (B3) in the
case ά=b and M = l .

Now assume that (B3) is true for a = b and M = S — 1, we want to prove (B3) for
the case ά = b and M = S. For fixed QN+2> - > QN+S\ w e choose a /e

β l 9 . . . , QN9 QN+S; K-1) such that

hN+sf= ?NIS + higher terms

Write x(βiv+2, ? QN+S) for
Then we have

; ZN+2, ?
for simplicity.

N + S - l

= - Σ - i), ώ ® <s

-Σ
ί = l

, zN)N(ω,f, z,)tv

(5.16)

The first term of the right side of (5.16) converges on a domain {0<|z i V |<εi} ,
since it is a Laurent series expansion of some meromorphic function on {\zN\ <ε}
by the induction assumption. For the second term, a direct computation shows
that

where f(zN) = ιZsf so the second term of (5.16) also converges on the domain
{0<c|ZJV|<εi} by the induction assumption. This proves that the Laurent series

converges on { 0 < | z N | < ε 1 } .
To complete the induction step, it remains to prove that

,. . .,ξN+s)
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when l&v+s —£tfl<6i To achieve this, we choose a/eΓ(Σ; Qu . . . , QN, QN+S', K " 1 )
such that

hN+sf=ZN+s + higher terms ,

i Z w + l / = O M o d 4 + i f o r 2 ^ i < S ,

i Z w + 1 /=0Modz^ + 1 . (5.17)

Using (5.16), we have

= - Σ <*(QN+2, . . . , β iv+s-i) , ^ ( 6 ,

®^-2)> . (5.18)

Denote by T^z^) and Γ2(zN) the first term and the second term of the right-hand
side of (5.18) respectively. Using the induction assumption, we have

N

= Σ
ί = l
N + S - l

= Σ

= Y(v,b; ξN + l 9 . . . , ξN+s)

It remains to prove that

T2{zN)\zN-ξN+ι-ξH = 0 •

Using the identity

[ω(/, z ^ , 7(6, zN)N]=f(zN)^-Y(b, zN)N + \b\-^-f(zN)Y(b, zN)N

dzN dzN

(where f(zN) = ιzJ) we have

2,. . . , QN+S-2% Y{b, zN)

Using the induction assumption and the fact

(this follows by the third property of/in (5.17)), we have T2(zN)\ZN=ξN+ι-ξN = 0. This
completes the proof of (B3) for ά=b.
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Assume (B3) is true for αx and every v. Based on this assumption, we are going
to prove that (B3) is true for L-kά1. Since for fixed ξN+i (i = 2, . . . , M ) ,
y(t>,L_kfl1;6v + 1 , . . . ,ξN+M) is a meromorphic function of ξN + ie{\ξN+1\<ε}
with poles at ξN, ξN+2, , £ N + M The Laurent series expansion of
Y^L-kάύ ξN+l9..., ξN+M) for variable ξN+1 at the point ξN is

£ ( § Y(v,L-kάί;ξN+u...,ξN+M)(ξN+ί-ξNγdξN+1\ξN+1-ξNΓn-1 ,
i=-00 XCj /

where CΊ is a small contour of £ N + 1 surrounding the ξN. It suffices to prove that

)> . (5.19)

If C 2 is a contour of £JV+M+I surrounding ξN+i, we have

dξN

x (ζN+i~ζN)n

-§ § Y{υ,dύξN+u. . . ,ξN+M+ι)(ξN+M+i-ξN+i)~k+1

where C'{ is a contour of ^ + M + I which is outside Cu and C^ is a contour of
£N+M+I which is inside CΊ. The first equality follows from (B2) and the second
equality follows from the Cauchy theorem for contour integrals. By (B2) and the
induction assumption, we have

and

II = <x(QN+2, ,

where

(/) = ResV V 2ResW l(F(ω,w2)F(p(ά1),w1)ιW 2,vv1((w2-w1)- f c + 1w?))

and

(//) = ResM>I Res.^ίr(p(αiX W l ) K ( ω , W 2 ) Ϊ V V I I W 2 ( ( W 2 - W 1 ) - * + 1 W ? ) ) .

Using the Jacobi identity, we have

This proves (B3).
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Step 4. We are now ready to give the final touch. For aeΆn(V)r\L(b\ it is easy to
prove that a has a preimage de^{b) such that L1ά=0 and degα = n. Let KQ be the
fiber of the line bundle κn at the point β; it has a basis (dz)n for z a local coordinates
at β. We will first prove Claim C.

Claim C. For every υeWi ® ® WN, the vector

(5.20)

is independent of the local coordinates chosen from the projective structure
{Ua,zΛ}.

Proof of Claim C. If z'N+1 is another local coordinate obtained from the projective
structure {ί/α,zα}, let Zχ + 1 = φ(zN + 1) be the transition function, (note that it is
a Mobius transformation), and T(φ) be the associated operator, so T(φ) has the
form T(φ) = Qxp(l0L0 + l1L1). We define j / ( β N + 1 ; z N + 1 )e(B!)* by

It can be proved that P(QN + U ZN + 1 ) satisfies the property (1) and (4) satisfied by
y(QN+ιlzN+1). Since (1) and (4) uniquely determine y(QN+1;zN+1)9 so

Therefore

y. (5.21)

Using the fact that L1ά = 0 and Loά = nά,WQ have

Substitute this in (5.21). We have

This means that (5.20) is independent of the local coordinate chosen at QN+ ί . This
completes the proof of Claim C.

So (5.20) defines a section g = g(QN+i) of the line bundle κn on the domain
δiv+i + βi (i=U - - - ,N). By Claim A and Claim B above, we know that g is
meromorphic with possible poles at Qu. . . , β N , and by Claim B, g has the
Laurent series expansion at the point Qt (ΐ = l,. . . ,N) as <x, Y(a, z^v}. For

+ 1

, a(f Σ)v} = X <χ, ResZί(F(α,

(5.22)
ί = l

Since (5.22) is true for every veWi ® ® Wjy, we conclude that

Σ?=1xα(/,£)=0. D

Theorem 5.2. IfV is a sum of highest weight representations of the Virasoro algebra
and dim(Vo)= 1 and Σ = {Σ\ Qu . . . , QN; zu . . . , zN; Wl9. . . , WN) is a projective
labeled Riemann surface, xeN(Σ), ae£n(V) andfeΓ(Σ; Qu . . . , QN; κ~n + 1\ then
xa(fΣ) = Q.
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Proof. To apply Theorem 5.1, we need to prove that ae£n(V) can be written as
a £ " = 1 α, such that ai€^n(V)nL(bi) (z = l , . . . , n) for Lφi) a highest weight
representation of the Virasoro algebra generated by the highest weight vector bt.
This is the following lemma. •

Lemma 5.3. If V is a sum of highest weight representations of the Virasoro algebra
and dim(VP

0)=l, then every αeJ n(V) can be written as a = Σ"=1 at such that ate
£tn(V)nL(bi) ( i = l , . . . , n ) for Lφ{) a highest weight representation of the
Virasoro algebra generated by the highest weight vector ί>f.

Proof We first prove that every element x in a highest weight representation L(b)
of the Virasoro algebra generated by the highest weight vector b can be written as
a linear combination of elements Ln.1y for n^O and yeL(b) homogeneous and
quasi-primary. We prove the statement using induction on degx. If degx = 0 or
1 or x has the lowest degree in L(b), then x is primary, in particular it is
quasi-primary. We assume that the statement is true for every x with degxrgS
(5^1). If degx = S + l, since degL1x = S9 applying the induction assumption, we
have L1x = Yι

k

i=1L
ni1xiϊor some non-negative integer n{ and homogeneous quasi-

primary field Xi in L(b). Set y = x-£*= χ (l/fa + l)(n, + 2degx())L -' J lXt. It is easy
to check that Lίy = 0, so x can be written by a linear combination of Ln-ίx for
x homogeneous quasi-primary in L(b). This completes the induction.

If aeln(V\ by our assumption on V, a = Σ™=i xj for XjβLφj), L(bj) is the
highest weight representation of the Virasoro algebra generated by the highest
weight vector bt. And by what we just proved, we can write each Xj as ^ ] ^ χ L

 n2'[ xjyi

for xjt i homogeneous quasi-primary fields in L (bj). We choose these xjs and xj, f s so
that the number £ w

= 1 fc/ is minimal. Applying operator L x to the equality
x = Έr=ι YJ%I L -Ίχj,ί» w e c a n P r o v e that each ^,^ = 0 and kj=l. This completes
the proof. •

6. Correlation Functions

In this section we prove that the space of vacua on a ΛΓ-labeled Riemann surface is
unchanged when adding a new point and assigning the 0-sector V at the point. To
be more precise, let

Σ = (Σ; Ql9...9QN;zl9...9zN;Wl9 .., WN)

be a ΛMabeled Riemann surface. Adding (QN+ι, zN+ί9 V) to Σ9 we have the
(iVH-l)-labeled Riemann surface

Σ' = ( Σ ; Q U . . . ,QN + 1 ; z l 9 . . . , z N + 1 ; W l 9 . . . , W N , V ) .

We will prove N(Σ')~N(Σ). This result leads to a definition of n-pointed correla-
tion functions associated to a vector of N(Σ).

Theorem 6.1. Assume V is a sum of highest weight representations of its Virasoro
algebra and dim(Vr

0)= l Let i be the linear map:

N N

i: (x) Wfc-^® W fc®y,
fe=l k = l
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ί*' (®u=i Wk ® V)*-+((£)%=1 Wfc)* is the dual map. Then the restriction of i* on
N(Σf)e((S)k=i Wit ® V )* *5 β« isomorphism from N(Σ') to N(Σ). Moreover ifϊw and
£„ are the labeled Riemann surfaces obtained by changing coordinates zf to wh let
Tu T2 be the associated isomorphisms from N(ΣW) to N(Σ) and from AΓ(Γ )̂ to N(Σ')
respectively, then the diagram of maps

N(ΓW) - ^ N(ΣW)

N{Σf) —U N(Σ)

is commutative.

Proof. For^ae0>n(V), feΓ(Σ; Qu . . . , QN; κ~n + 1), we need to check that
(i*x)-a(f Σ) = 0. Since/is regular at QN+1, we have

ResZN+ί(Y(a,zN+1)ιZN+J)l=O.

So for ve(g>y=ί Wh

N

<i*x,α(/,f)i;>= Y <i*;

ί = l

2V+1

= X <x,ResZ l(y(β,z ί)iz,/) l»®l>

Similarly, we can prove that i* is annihilated by the global vertex operators
associated to the Virasoro element. This proves i*xeN(Σ). So we have a map
i*: N(Σ') -• JV(Γ). Tracing the definitions, we can prove that the above diagram is
commutative.

Next we prove that i*: N(Σf) -> N(Σ) is injective. By the above commutative
diagram, we may assume that Σ is projective. For x such that z*x = 0, we need to
prove x = 0. It suffices to prove that <x, v ® α> = 0 for all ve(£)f= ί Wt and aeV. By
our assumption on V, we know from Theorem 5.2 that x is annihilated by the
quasi-global vertex operators and from Lemma 5.3 that every aeV is a linear
combination of the elements of form L"! ί b for b homogeneous quasi-primary. So it
suffices to prove <x, v® L™1b) = 0. For this purpose, choose /e
Π £ , β i , . , ftv + i; κ- d e g * + 1 ) such that

hN+J=m\zϋ+ϊ1 + regular terms .

Then we have

£ <x, Res2((F (b,

Thus x = 0. This proves the injectivity of Ϊ*.
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To prove the surjectivity of ί*, we may also assume Σ is projective. Let {ί/α, zα}
be the projective structure of Σ. We choose a local coordinate chart (U, z) among
{Ua9 zα} such that {\z\ <s} for some ε contains QN, while β ί 5 i = 1,. . . , iV — 1 are
outside {| z | < ε}. We only need to prove the surjectivity for the case QN + x e {| z | < ε}.
Because if we prove the isomorphism of N(Σ) and iV(Γ') at the above situation,
then for QN +1 at arbitrary position, we may choose points QN+2, QN + 3> ,QN+U
such that any two successive pointy P, Q in the sequence g#, βiv+2, >
2N+/C? 6iv+1 fit the above situation. Let Γfc be the labeled Riemann surface obtained
by adding points QN + 2, - , 2N+/C> δiv+i to Σ and assigning V at these points. By
deleting points QN+i (ΐ = 2,. . . , fe) in the order QN+2,> . ζjjv+jb we have an
isomorphism of the spaces of vacua each time, thus we have N(Σk)cχN(Σ'). On the
other hand, by deleting points QN+Ϊ ( i = l , . . . , fc) in the order
2 N + I > 2JV + 2 ? 9 6iv+/c> we have the isomorphism N(Σk)~N(Σ). Thus N(Σ) is
isomorphic to ΛΓ(Σ') and it is easy to see that this isomorphism is just i*.

Thus we can assume that QN and QN+1 are in {|z| <ε}. For every xeN(Σ),wε
need to find x'eN(Σ') such that i*x' = x. Our method to construct such x' is
similar to the proof of Theorem 5.1 with the Lie algebra of the quasi-global vertex
operators playing the role of the Viraroso algebra and the "Verma module"
ΊΓ define below playing the role of Φ (1) and #(&).

For a positive integer M, pick M points QN+ι,. . . ,QN+M in {|z|<ε}, set
£/v+i = z((2N+i) (Ϊ = 0, 1,. . . , M), take zN+i = z — ξN+ί as the local coordinate at
QN+ί. In this way, we obtain a projective (AT + M)-pointed Riemann surface

(Σ9 6 l > 5 G N + M? Z 1 ? 5 ziV + Λf)

By assigning the "Verma module" Ϋ" (which is defined below) at each point QN + ί

(i = 1,. . . , M), we have the data

=(Σ; Qu . , QN+M; z l 9 . . . , zN+M; w l 9 . . . 9 w N , r 9 . . . , r ) . (6.1)

To construct xfeN(Σf)cz(0^=ί Wi® V)* such that i*x' = x, we first construct
fi we prove that x ( ^ + i ) reduces to the needed x'.

For this purpose we will construct for each M, xίfjv+ij » £N + M)Ξ
( ® f = 1 ^ i ® ^ ® M ) * associated to the data (6.1).

The "Verma module" V is defined as follows. Let si be the free associative
algebra with identity T generated by the symbols α<rc>, where ael(V) and neZ,
and a(ή) is linear in a. Set F <α,z> = ̂ ?!=_o o α<n>z~w~1, so Resz(F<α, z>zm) =
a(jn). Let J / be the quotient algebra of si modulo the relations

= Σ Res z(y(xα,M, z>Gβ,ft;z- z.;ί(z))

^ >(zw)^>(z)z"), (6.2)

and 1 < — 1 > = T, l<i> = 0 for iΦ — 1, where α, b are homogeneous quasi-primary
fields with degrees \a\ and |fe|, L = | α | + |fo| — 1, xa,b;i are quasi-primary fields as
defined by (4.7), Gα fc;zm z*;i(z) is defined in (4.9). The relation (6.2) is motivated by
the formula (4.8). We continue to write elements of si as a(m}b(ϊi}\.
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Let Ψ* be the left regular representation of J/ . So a typical element of Ψ~ is
«i<h> βw<*w>ϊ Let f be the left regular representation of si modulo the
relations

α1<i1>...αw<iM>T = 0 w h e n i ^ O . (6.3)

We continue to write elements in y as αi<z'i> . . . αM<iπ>ϊ. And we write ά for
α< — l > ϊ e f . We have the obvious surjective linear maps

p: ^ - > i ^ : α i < ί i > . . . α,,<Λ>

p: T T - V: α ^ ) . . . fl^i^T^fl^ii) . . . an(in>l (6.4)

Both Ϋ and ^ have a gradation defined by

It is clear that both maps in (6.4) preserve the gradation. And it is easy to prove
using (6.2) and (6.3) that TΓ doesn't have a non-zero element with negative degree.
Thus for fixed αeJ(V) and vei^9 a(n}v = 0 for n sufficiently large. Therefore for
a Laurent series/(z) = £\>fc ltz\ the operator Resz(F <α, z}f(z)) = Σi>k lta^i > acts
on IT. We will write Resz(Γ (α,z)/(z)) for Resz(F <α,z>/(z)), and "for α homo-
geneous quasi-primary, feΓ(Σ; Qu . . . , 2*+*; κ:~|α| + 1), we write a(f9 zt) =
Resz.(F(α, Zi)ιz.f) as before.

x(ξN+i>> •' ,^+fe)e(®f=1 Wf® ^ 0 / c ) * (fc=l,2,. . .) to be constructed will
satisfy the following properties:

(1) For every homogeneous aeΆ(V) with degree |α|, and every

(2) Fort;e(x)f=1 Wi9

(3)

(4) For

and

where "^indicate the missing terms.
To construct x(ξN+1), we construct x(ξN+1)e(W1 ® ® WN® Ψ~)* first, then

prove that x(ξN + 1) reduces to Xi(ξN+i))e(Wi ® • ® WN® T "̂)*. Defining
is equivalent to defining
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we do it inductively on k. For k = 0, we define

For fc=l, choose feΓ(Σ;Qu. . . , g ^ ; κ:~ |αil + 1) such that

hN+1f=zlN+i+ positive terms ,

we define

Using (4.10) in Sect. 4, we can prove that

Σ (x{ξ»+,\a{g,zi)iv®by = Q (6.5)
i = l

for b = aί(ίί)ΐ or T, αe^(V) with degree \a\ and geΓ(Σ,Qu. . . , &v; κ H f l | + 1 )
satisfying

ίz^+i0 = sum of terms higher than z^+i + e g .

Assume we have defined (x(ξN+i)>v® b) for every v and every b
= aί(i1} . . . ak(ikyϊ and the property that

Σ <x{ξN+i\a{g,zi)iv®by = Q (6.6)

for every ael(V) with degree |α | and geΓ(Σ; Ql9. . . , g N ; κ~ | α | + 1) satisfying

ι2jv+^ = sum of terms higher than z^+i + e s

Based on this induction assumption, we define <x(ξjv+i)» f ® α<i>^> as follows.
Choose/GΓ(Γ; β 1 ? . . . , QN+ί; /c~ |fl| + 1), such that

higher than zjvίαj+ 1 + d e 8 f t

 ;

we define

it follows from (6.6) that it is independent of the choice of/. And with some effort, it
can be proved that the property (6.6) is again satisfied. So we have completed the
construction of x ( ^ + i) By a direct computation, we can prove that

when ik ^ 0, and
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So x(ξN+1) reduces to a vector x(&v+i)e(Wi® ® W^®'Jf")*. And we can
prove that x(<̂ v + i) satisfies the condition (1) for fe=l and condition (3). By the
same method, we can construct x(ξN+1, £N+I) based on x(ξN+1) (constructing
X{£N+I> ^jv+2)e(Wi ® ® WN ® TT (x) f7")* first as constructing x(<^v+i), then
proving it reduces x(&v+i> &v+2)e(Wi ® ® WN ® TΓ ® TT)*). For example,
<x(^N + i ? ^iv+2)^® 1> for i eWi®- ® WN® ̂  is (x(ξN+iίv}. And we con-
tinue this way; we can construct x(ξN+1,. . . , ξN+k) (k = 1,2,. . .). It can be proved
that X(£JV+I, . . . , ζN+k) satisfies the properties (1), (2), (3), (4) above. It is not hard
to see that {x(ξN+u. . . , ξN+k)} satisfying (1), (2), (3), (4) are unique.

Next we prove the following claim.

Claim A. For every veW1 ® ® WN9 bei^, al9. . . , aMe£(V) homogeneous.
Then the function

<x(ξ N + i , . . . ,ξN+Mlv®b(g)ά2<g)' - ® α M > (6.7)

is a M-variable meromorphic function on the domain {|ξjv+/|<ε, i = 1,. . . , M}
with singularities at ξiv+i = ξjv+i (iφj) and ζN+i = ζN- And for fixed
^N + IJ * £ N + M - I J (6.7) has the Laurent series expansion

l> (6.8)

for the variable ^ + M at ̂ N + 1 .

Proof of Claim A. Consider the Laurent series given by

(i = 1,. . . , N + M — 1). The condition (1) implies that gfs satisfy the condition of the
second part of Lemma 3.1. Apply Lemma 3.1; there exists a meromorphic (\aN+M\
^differential geΓ(Σ, Ql9...9 QN+M; κ M \ such that gt(zt) = ιZig

(i = l, . . .,ΛΓ + M - l ) . Write g = g(z)(dz){a«+»l on { |z |<ε}c£/, so g(z) is
a meromorphic function on {|z|<ε} with poles at ξN,. . . , ̂ + M - I We want to
prove that

v®b®ά2® ' ®αM> (6.9)

For this purpose, we choose feΓ(Σ9 Qu . . . , QN+MI κ~ |αM+Λίl + 1) such that

f\zN+M = ZNlM + higher terms ,

Then we have

N + M - l N + M - l

Resft(ί//)=- Σ

N + M - l

= - Σ

This proves (6.9), so (6.7) is meromorphic ϊoτ ξN+M on {\ξN+M\<ε} with poles at
points ξN+i (i = 0,1,. . . , N + M— 1) and has Laurent series expansion at ξN+ί as
(6.8). The same argument proves that (6.7) is meromorphic for ξN+j (j = 2,. . . , M)
on {\ξN+j\<e} with poles at points ξN+i (i = 0 , 1 , . . . ,N + M, i )
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If b = ά1 for d\ quasi-primary and homogeneous, the above argument applies to
the variable ξN + i, so we have in this case (6.7) is meromorphic for ξN + 1 on
{l£jv + i l<ε} and has poles at ξN+i (ι = 0, 2,. . . , M). Thus, if b = ά1 for ax quasi-
primary and homogeneous, by the Hartog's Theorem, Claim A is true.

Suppose Claim A is true for b, based on this assumption, we want to prove it is
true for b' = a(i}b, where a is quasi-primary and homogeneous. Set aM+ί =a. By
induction assumption, we know that

is a meromorphic function of ξN+l9. . . 9 £N+M+I with poles at ξN+i = ζN+j (*+./)
and £JV + ; = 6V> and it has Laurent series expansion for the variable £JV+M+I at
siv + i as

<x(ξN+u> 9

So

(6.10)

for C a contour surrounding ^ + i Since the right side of (6.10) a meromorphic
function of variables ξN+l9. . . , £ΛΓ+M with poles at ζN+i = ζN+j 0=k/) and
6v+i = 6v, so is the left side of (6.10). The proof of the fact that the left side of (6.10)
has a Laurent series expansion for ξN+M at ξN+ί as

(x(ξN+u. . . ,ξN+M+ιlv®Y(a,ξN+M-ξN+1)N+ιb'®ά2(g)- - ®<zM-i>

is already given before. This completes the proof of Claim A.

Claim B. (Bl) Equation (6.7) has the Laurent series expansion for the variable

sN+M at ς# as

(B2) Equation (6.7) has the Laurent series expansion for the variable ξN+ ί at ξN as

<x(ξN + 2,' , ξN+M),YΦ, ξN + 1-ξN)Nv® ά2(8) ' ®άM} ,

where b = p(b).

Proof of Claim B. (Bl) is already proven in the proof of Claim A. To prove (B2), it
suffices to prove the case when b = b1(i1 > . . . bk(ίk)ϊ for bieΆ(V) and homogene-
ous. We use induction on k.

If k = 0, then b = T, then we have

2®- - ®άM}

Y(hξN+l-ξN

This proves (B2) for the case k = 0.
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Assume (B2) is true for b== bί, based on this assumption, we are going to prove
that (B2) is true for b = a(i}b1, where a is in J(V) with degree \a\.SetaM+i=a, and
set

I , . ,ξN+M\v®b®ά2<8)' ' ® αM> ,

and set

By Claim A,

is a M-variable meromorphic function on {|<̂ v + i |<ε} with singularities at
£N + I = £N+J (i+j) and ξN+i = ζN- The Laurent series expansion of
F(ξN+i, , £;V+M) for the variable ξN+1 at the point ξN is

,i=-oo \d

where Ci is a contour of £#+1 surrounding the ξN. It suffices to prove that

By the statement on the Laurent series expansion in Claim A, we have, for
C2 a contour of ξN+M + i surrounding ξN+1,

y l, . . , ζN + M + l){ζN + M + 1 — %N + lY d>ζχ + M + 1 = F {£N + i, >

c2

So we have

§ F(ξN+u.. .,ξN+M)(ξN+i-ξN)ndξN+1

cx

= § § G(ξN+l9
CyC2

~ J J

where C2 is a contour of ^ + M + I which is outside Cί9 and C2 is a contour of
^jv+M+i which is inside Cu the second equality follows from the Cauchy theorem
for the contour integrals. By (Bl) and the induction assumption, we have

and

II = (x(ξN+29. . ,
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where

and

Using the Jacobi identity, we have

This proves (6.11) therefore (B2).
Now we are ready to give the final touch. By Claim A, for ue(x)f=1 Wt and

) (6.12)

is a meromorphicfunction oϊξN+1 on{\z\<ε} with poles at ξN. By Claim B, (6.12)
has Laurent series expansion at ξN as

<x9Y{p(E),ξN+1-ξN)Nvy.

This means that if p(δ) = O, then <*(£# +1), f ® b > = 0 . So x(ξN + 1)e
(Wί ® ® WN ® -T)* reduces an element x ' e O ^ ® ® WN ® V)*. By condi-
tion (1), it is clear that x'eN(Σr) and i*x' = x. This proves the surjectivity of i*. •

If V is a sum of highest weight representations of the Virasoro algebra and
dim(Vo)= 1> Σ is a iV-labeled Riemann surface as above. Let P = (PU. . . , Pn) be
π-different points on Σ such that P/ΦQj, W; be a local coordinate at P f; write
w = (w l 5 . . . ,jvπ). Let £ F > W be the (N + «)-labeled Riemann surface given by adding
points P o n ί and assigning wί9 V at Pi. For xeN(Σ\ let xP j W be the image of x in
the isomorphism N(Σ)~N(Σp9W). Then for i eM^ ® ® WN, a^i. (i= 1,. . . , rc),

F(i>, fll5. . . , an; Pu . . . , PB) = <xPfW, u ® α t ® ® an}{dwί)
1'. . . (dwn)

ι» (6.13)

(the local coordinate wt at P t defines a basis (dw,-)*1" of the fiber Kp, we continue to use
(d\Vi)li to denote the corresponding basis in π f 1 ^ ) defines a vector on
( π Γ 1 ^ 1 ® * ® iίn1κln)P. We have the following theorem.

Theorem 6.2. F(υ,au . . . , α w ; P 1 ? . . . , Pw)G(πf1κ:/l ® . . . π~x κln)P defined in (6Λ3)
is independent of the local coordinates w. 4̂mί as P varying on Σn, it defines a global
meromorphic section of the line bundle πϊ1^1 ® . . . πnlκln over Σn, and the only
possible singularities of this section are those P's satisfying Pi = Pj for some
z,7= 1,. . . , n or Pί = Qjfor some i = l , . . . , n, 7 = 1,. . . , N.

The meromorphic section F(v, au . . . , « „ ; Pl9. . . , Pn) relates to the vertex oper-
ators Y(auz1\. . . , Y(auzn) as follows. For each Qk (fc=l,. . . , N), let U=
{\zk\<ε}bea neighborhood ofQk which contains no other Qls, let (z£,. . . , z£) be the
coordinates on Un a Σn induced from zk9 write

F(v, a u . . . , a n ; P u . . . , Pn)=f(zi

k

1\ . . . , z ^ f Y ^ ι

on Un. Then for every permutation (iu . . . , in) of (I,. . . , n\ the meromorphic function
f{z\^\ . . . , zίn)) has the expansion
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on the domain ε> \zil}| > > \zi")\ >0. (Recall as in Sect. 3, Y(ais, Zks))k denotes the

operator 1 <g> <g> Y(aia, Zks)) (k-th place) ® ® 1.)

Proo/. To prove the right-hand side of (6.13) is independent of the local coordinates
w, let w' = (w[,. . . , w )̂ be another choice of the local coordinates, let w = Φt(wf) =

exp ( X w

= 0 Cijwj+ * - — 1 wt be the transition functions, 7} = exp( ]Γ ?= 0 citjLj) be the

associated operators, then we have XP,W = XJ>,M,'Π?=1(Ίl)N+i. In other words, we
have

<Xp f W^®αi® * ®an) = (xP,w>,v®T1a1®' -®Tnan} . (6.14)

A direct computation using the facts Lkat = 0 for fc>0 and Loai = liai shows that
Tiai = exp(licii0)ai = (Φl(wi))lι\Wi=0, a{. Substituting this to (6.14) and using the facts

ll(Wi))lι\Wi=o = {dwί)\ one proves that

® ®α B >

This proves (6.13) is independent of w.
As P varying on Γw, F(t>, α l 5 . . . , an; P l 5 . . . , Pn) is a section of

πf1*;'1 (x). . .Un1^ defined on PfφP; (iή=j) and PiΦβj We next prove that
F(v, au . . . , an; Pu . . . , Pn) is meromorphic. By Hartog's Theorem, it suffices to
prove that F is meromorphic for each variable P f. To prove that F is meromorphic
with respect to PM, let Σn-1 be the (N + n— l)-labeled Riemann surface given by
deleting (PM, wM, V) from Xp,w. Let xn- 1eJV(Γw_ t ) correspond to x as in Theorem
6.1. Considering the Laurent power series ^(z,-) ( i = l , . . . , JV + n—1) (z N + ί = wi)
given by

By Proposition 3.4, there exists a geΓ(Σ; Ql9. . . , β#+«-i; κ/n) (where QN+i = Pt)
such that gtiz^idzi)1" is the Laurent series expansion of #. Write g = gN+n(wn)(dwn)

ln

near Pw; we claim that

Indeed, choose a,feΓ(Σ; Qί9. . . , βiv+Π; κ~ / n + 1) such that

ιwj= w~1 + higher terms .

So we have

N + n-ί

= - Σ

This proves our claim. So F is meromorphic for Pn with poles at Qu. . . , QN,
Pu . . . , P n - i . Similarly we can prove that F is meromorphic for other variables.
Thus F is a meromorphic section.
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It remains to prove that F has the Laurent series expansions as in the theorem.
We may assume k= 1 and that the permutation ( ι l 5 . . . , in) is (1, 2,. . . , n). Write

F{υ, a l 9 . . . 9 a n ; P l 9 . . . , PH)=f(z[1\ . . . , z[n))(dz[1}^ . .

on (/". Let Σj (i= 1,. . . , ή) be the (iV + /)-labeled Riemann surface obtained by
adding (Pu z-z{?γ\ V\ . . . , (Pi9 z-z(?ι\ V) to Σ, let X eiVC^) correspond
XGN(Σ). We have the expansion on the domain {ε>\z[1)\>\z[2)\> ' > | 4 " } | > 0 } :

where

. . . άzf , (6.15)

where the contour Cf is for Zι\ and Cj contains G + 1 .
By the proof above, we know that/(zί υ , . . . , zi ) have expansion for z ^ at ^ ,

Thus we have

Similarly,

Continue this way, thus we have

Ciι,...,in = <x,aί(ii)N. . .an(in)Nv) .

This is precisely the coefficient of ( z ^ ) " 1 ' 1 " 1 . . . (z[n))~ln~ι in

as was to be shown. •

F in the theorem is called the ̂ -pointed correlation functions associated to x, υ
and cii (i = 1,. . . , ή).

Remark. If Σ is projective with the projective structure {ί/α,zα},we use {Ϊ7α, zα} to
give local coordinates wt at P ί s then Theorem 6.2 is true for au. . . , an quasi-
primary. Using this fact together with the fact that every element of V is a sum of
the formLk~xbk with bk quasi-primary, one can prove that for arbitrary au . . . , ane
V,

converges on the domain ε > | Wi | > > | wΛ | > 0, and the limit can be extended to
a meromorphic function on the domain ε>|Wj|>0 ( ΐ = l , . . . , n) with the only
possible singularities at w^Wj, and this meromorphic function is independent of
the ordering of F(α t , zt). This generalizes Theorem 2.1.
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7. Examples

We give examples of the space of vacua for some cases. The space of the vacua for
an one-pointed sphere relates to the vacuum vector leV. The space of vacua
for a two-pointed sphere relates to the dual representations. And the space of
vacua for a three-pointed sphere relates to the interwining operators. The notions
of dual representations and interwining operators are introduced in [FHL]. The
space of vacua on a torus with one puncture relates to the g-trace of vertex
operators, which is studied in [Z]. We also discuss the space of vacua for the vertex
operator algebras associated to the affine Lie algebras and Heisenberg algebras.
The space of vacua for vertex operator superalgebras associated to the Clliford
algebra is known completely.

We assume that the vertex operator algebra V in the examples 1-4 below
satisfies that V is a sum of highest weight representations of its Virasoro algebra
and dim(Vo)—1 and a representation W=(£)™=0 W(ή) of V under consideration
satisfies that dimWr(n)<oo and L o acts on W(ή) as n + h for some constant h.
Under this assumption on V, by Theorem 5.2 and Lemma 5.3, every vector in V is
a linear combination of vectors ZΛ x a for keZ and a homogeneous quasi-primary,
and the quasi-global vertex operators annihilate the space of vacua on a protective
iV-labeled Riemann surface.

We first recall the notions of dual representations and intertwining
operators for representations (see [FHL] for details). Only the basic definitions is
deeded.

Let W= 0 w°°= i Wn be a representation of V. The restricted dual W' = £M°°= χ W *
of W admits a structure of representation of V given by

The identity (7.1) for ae£n(V) is equivalent to

', ι;> = (-l)π<t;', a(2n-2-ί)v) for every ίeZ . (7.2)

The representation W' is called the dual representation of W.
Let Wί = φΓ=o Wi(ή) (Ϊ = 1, 2, 3) be representations of V such that Lo acts on

Wi(n) as n + ht. An intertwining operator of type I I is a linear map / ( , z)

Ό\->I(V9Z)= £ ϋ φ z - ' - ^ - k + Aa
i= — oo

such that / ( , z) satisfies that for fixed veW2vίeWu v(i)v2 = 0 for i sufficiently large
(truncation condition), and for every/(z, w) = (z — w)mzn,

Resz_W(I(Y(α, z-w)v, w)z>v,2_w/(z, w))

= Resz(F(α, z)I(v, w)ix,w/(z, w))-Resr(J(ι>, w)F(α, z)*w,z/(z, w)), (7.3)

and I(L _ x ι;, z)=—J(u, z).
αz
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1. One-Pointed Sphere. Consider Σ = (CP 1; 0; z; W% where z is the standard co-
ordinate. It is clear that Σ is projective, so Theorem 5.2 applies. And it is easy to see
that L 0 = w(l) is a global operator on Σ. So if L0W=W (this situation happens
when L o acts semi-simply on W without 0 eigenvalue), then Λ/XCP1; 0; z; W) = 0.
Note that Γ(Σ; 0; κ~n+1) has a basis

so S&iΣ), the space of quasi-global vertex operators, is spanned by

{a(ί)\aeUV),neZ,i^2n-2}. (7.4)

The following Proposition is easy to prove.

Proposition 7.1. JVίCP1; 0; z; V)~C. The dual vacuum 1'eV* defined by <1\ α> = 0
ί/degα>0 and <1', 1> = 1 is α feαsw ofNiCP1; 0; z; V).

2. Two-Pointed Sphere. Considering Σ = (CP1;0, oo z, l/z; Wl9 W2). It is clear that
Σ is projective, so Theorem 5.2 applies. And Γ(CP*; oo,0;κ~w + 1) has a basis
zι(dz)~n + 1 (ίeZ). At the point oo and coordinate w=l/z, zί(dz)~n + 1 is written as
(—l)w+1w2w"2~ ί(dw)~w + 1, so the quasi-global vertex operator associated to ae
ln(V) and the differential z\dz)~n+^ is 1 ® (-l)n+1a(2n-2-i) + a(i)® 1.

Proposition 7.2. 77ze ŷ cwα 5pαc^ N(Σ) = N(CPι; oo, 0; l/z, z; Wx, W2) is isomorphic
to the space Homv(Wu W2% where W2 is the dual representation ofW2-

Proof. Given a homomorphism/GHomF(W1, W2), we define N(f)e(Wί ® W2)* as
usual by <ΛΓ(/),ι>i® u2> = </(t>i),ι>2>. Using (7.2) and the fact
/(α(z)ι;1) = α(0/(^i), we have N(f) a(f9Σ) = 0 for every quasi-global operator
a(f,Σ) on Γ, so N(f)eN(Σ). Thus f^N(f) defines a linear map from
HomF(W l5 W2) to AΓ(Σ). Conversely, if xeN(Σ) c ( ^ ® W2)*9 we define for each
ViβWi a linear functional / X (D 1 )GW 2 * as usual by (fx(vx), υ2} = (x, υγ ®v2)>.
L0®\ — \®L0 is a global vertex operator on Σ, we have
<x, (Lo (g) 1 — 1 ®L0)ι?i ® y2> = 0. This implies that (fx(LoVι\ v2} =
(fx{vί),L0v2y. So for ϋi6Wi(n), </Λ(ϋi), v2}=0 unless L0ί;2 = (n + /ii)ί;2? this
implies thatXc(i?i)eW2. So we have a linear maρ/ x: Wi -• W2. It remains to check
that

fx(a(ί)v1) = a(ί)fx(v1) for every aeV . (7.5)

For aeln(V), we have

This proves that (7.5) is true for a quasi-primary. Using the facts that every aeV
is a sum of L^ib for b quasi-primary and (Lk-ίb)(i) = (— l)kι'(ΐ-fl). . .
(i + k — l)b(i — k\ it is clear that (7.5) is true for every ae V. Thus/X is a morphism of
representations of V. It is clear that the maps/i—>JV(/) and x\-*fx are inverse
maps. •

Since the points 0 and oo are symmetric, we also have N(CPX; oo,0; 1/
z, z; Wu \y2)^HomF(Wr

2, W[). We give some corollaries of Proposition 7.2.
Corollary 7.3. IfWl9 W2 are irreducible representations, W2 is the dual represent a-
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tion ofW2, then

Proof. Using the Proposition 7.2 and the fact that W2 is irreducible. •

Remark. If Wx = W2, let ex (i = 1, 2,. . .) be a homogeneous basis of Wl9 {e[} c W2

be a dual basis of {ej, then ^Γ=i ^ ® ^ i s i n ΛΓίCP1; °°>0; 1/z, z; Wl9 W2)9 it
corresponds to the identity map of Hom^W^, Wi).

3. Three-Point Sphere. Every three-pointed sphere is conformally equivalent to
(CP 1 ; 0,1, oo). It suffices to consider

Σ = (CP1; 0,1, oo; z, z-1,1/z; W1? W2, W3) .

Since Σ is projective, so Theorem 5.2 applies. /"(CP 1 ; 0,1, oo; κ~n+1) has a basis
{zm(z-l)ι(dzyn+\ mJ

Proposition 7.4. N(Σ) = N{CP1;0, 1, oo; z,z-1,1/z; Wl9 W2, W3) is isomorphic to

the space I(Wί9 W2, W3) of intertwining operators of type I j * I. Wί is the dual

representation of W3.

Proof. Let / ( , z) be a interwining operator of type I J, we define a linear

functional fIe(W1 ® Wx ® W3)* by <F J,ι;1 ® t ; 2 ® U3> = <ϋ3,/(ϋ29 l)^i>. For
fl6Jfe(V),/=zw(z-l)w(dz)~fc+1, the quasi-global vertex operator a(f Σ) is

Resz(y (a, z)zm(z-1)") ® 1 ® 1

Set/(z, w) = zm{z~w)\ by (7.3), we have

0 = <t>3, Resz_w(/(y (fl, z-w)v2, w)iWfZ

- < ϋ 3 , Resz(y (α, z)/(ί;2, w)ϊZtW/(z,

3 , Resz(/(ί;, w)y (α, z)ιw,z/(z, w))^ > . (7.6)

Put vv = 1 in (7.6), the right-hand side is precisely (i7/, α(/, Σ)f t ® v2 ® f3>. Thus
we have Fra(f Γ) = 0, so F^NiΣ). Thus we have established a linear map from
/(Wl9 W2, W3) to ΛΓ(Σ). Conversely, for xeN{Σ), we define / x by

(v3,Ix{v2,w)v1) = (x,w~Lov1®w~Lov2®wLov3y . (7.7)

Note that for fixed vl9v29 v39(7J) is a in C[w, vv~x] w~hl~h2+h\ And it is easy to see
that I(υ2, w) is an element of the space End(W1? W3)[[w, w~1]]w~ / l l~ / l 2 + / l 3 and it
satisfies the truncation condition. To prove the L-1 property, choose f=z{dz)~1,
the global vertex operator ω(f Σ) is

® (Lo +L _ 0 ® 1 - 1 ® 1 ® L o ,
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<x, ω(/, Σ)w~L°v1 ®w~L°v2 ® wL°v3} = 0 is precisely

<ι?3, IX(L _!ι?2, w)ι?i > = - τ - <ϋ 3 , /x(t;2, w)vί > .

This proves L-x property. We next prove the Jacobi identity (7.3). For aeΆk{V\
f(z,w) = (z-w)mzn, setf=(z-l)mzn(dz)~k + \ then we can check that the identity
O, a{f9 Σ)w~L°Vi ® w~L°v2 ® wL°v'3 > = 0 is the same as (7.3). This proves (7.3) for
a quasi-primary. For arbitrary αeV, write a as a sum of elements of type Lι-Xb
for b quasi-primary, using L_χ property of vertex operators and (7.3) for
quasi-primary fields, it is easy to prove (7.3) is true in general. So Ix is an
interwining operator, thus we have established a linear map from N(Σ) to
I(Wι, W2, W3) which is clearly the inverse map of the map of I(Wί9 W2, W3) to
N(Σ) defined earlier. Π

4. One-Painted Torus. Set q = e2π^~~u. Let Lτ be the lattice (mτ + n}, and let Tτ be
the torus C/Lτ. Take the image OeC in Tτ to be the marked point Q and the
standard cordinate z be a local coordinate at β, and we denote Q by 0. We will
consider the 1-labeled torus (Γτ; 0; z; V).

The torus Tτ can be also obtained by identifying the boundaries of the annuli
{|q|^|w|:gl} by the relation w~wq. The point Q corresponds to the image of 1.
We have another local coordinate z' = w— 1 at β. z and z' are related by
z' = exp (2π ̂ / — 1 z) — 1. Let T be the associated operator with respect to the
transition function z/ = exp(2πλ/—lz)—1.

The process of gluing the boundaries of the annuli {\q\ ̂  |w\ :g 1} corresponds
the process of taking traces of the vertex operators. Let W = φ £ L o W ( 0 be
a representation of V with the action of L o on W (i) as i + h for some constant h.
Consider the trace of the operator Y(zL°a, z)qL° on W:

tv\wY(zL°zfz)qL«. (7.8)

It is easy to see that (7.8) is a power series in C[[g]]gh. It is proved in [Z] that
tr\wY(zL°z,z)qL° converges on 0 < | g | < l for every a under the condition that
dim V/C2(V)< oo, where C2(V) is the subspace of V spanned by the vectors of the
form b1( — 2)b2 for bl9 b2eV. We define a functional χ(W, τ)eV* by

where we put o(Ta) instead of a because of the coordinates transformation. The
results of [Z] about the trace trwo(a)qL° implies that χ(W, τ)eN(Tx; 0; z; V).

5. Vertex operator algebras associated to the affine Lie algebras. Let g be a simple
Lie algebra, g = g® C[ί, ί" 1 ] φ C k be the associated affine Kac-Moody Lie
algebra [K]. We write a(n) for a ® tn, and a(z)=:Σ™=_ a{ή)z~n~1. For k a posi-
tive integer, the integrable highest weight representation of g of level k has a vertex
operator algebra structure. The set of irreducible presentations of Lk are the same
with the set of integrable highest weight representation of g of level fc, and Lk is
rational. See [FZ] for detail.

For a iV-labeled Riemann surface

Σ = (Σ; Qu . . . , QN; zl9. . . , zn; Wl9. . . , WN) .
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Let M(Σ; Qu . . . , QN) be the space of meromorphic functions on Σ with poles at
most at Ql9. . . , QN (so it is the same as Γ{Σ; Ql9. . . , QN; κ0)). For αeg, fe
M(Σ; Qu , QN\ put a(f9 £) = Σf=i Res^z,)**/)* which acts on ®f=1 W,.

The space of vacua defined by Tsuchiya-Ueno-Yamada is

® <g> WN)*\x a(f9Σ)

= 0 f o r a f

Since a(z) is a vertex operator of a primary field of degree 1, we see that the
condition for xei^(Σ) appears weaker than the condition for xeN(Σ). Since Lk is
now generated by g, using the same method in proof of Theorem 5.1 with the Lie
algebra g playing the role of the Virasoro algebra, one can prove that "Γ(Σ) = N(Σ)

6. Vertex operator algebras associated to Heίsenberg algebras. Let {1, a(ή)(neZ)}
be an infinite dimensional Heisenberg algebra; it has commutation relations
[h{m\ h(ny\=mδm+n0\. The polynomial ring V=C[α( — 1), a( — 2),. . .] of vari-
ables a( — 1), a( — 2),. . . (V is also called the Fock space) is a representation of the
Heisenberg algebra. F has a vertex operator algebra structure; the vertex operators
are generated by the basic vertex operator ^(^) = Σ^°=_00 flfφ"""1 [FLM2]. For
a 1-labeled Riemann surface Σ = (Σ, Q,z,V) (Q is a point on Σ9 z is local coordinate
at Q), with a little effort, one can prove that

N(Σ) = {xey*|χ.Resz(α(z)/(z)) = O for every feH°(Σ-Q)} ,

where H°(Σ — Q) denotes the space of meromorphic functions with possible poles
at Q. Then we can follow a method in [DVV] to compute N(Σ). It goes as follows
(see [DVV] Sect. 6c for detail). Let g(z) be a multi-valued meromorphic function
with possible poles at Q and with constant shifts around the nontrivial cycles of the
surface, then dg(z) is a meromorphic differential with possibles at Q, so

[Resz(α(%(z)), Resz(α(z)/(z))] = Res2(/(z)%(z)) = 0 ,

for every f{z)eH°(Σ-{Q}). Thus the operators Resz(α(z)#(z)) preserve N(Σ). The
space of such g(z) modulo H°(Σ — Q) is naturally dual to Ht(Σ9 C), hence is 2g
dimensional (g is the genus of Σ). We take 2g such multi-valued meromorphic
functions gAl,. . . , gΛ; gBί,. . . , gB corresponding to cycles Λh Bt in H^Σ) such
that

One can then prove that there is a unique xoeN(Σ) (up to scalar) such that x0 is an
eigenvector for Resz(a(z)gΛι(z)) (ί= 1,. . . , g) and N(Σ) is a completion of the space
spanned by Resz(α(z)#£.(z)). . . Resz(α(z)^(z))x0. In particular, we see that N(Σ)
is infinite dimensional if g>0.

7. Vertex operator superalgebras associated to Clifford algebras. Recall that an
infinite dimensional Clifford algebra generated by bn9 cnneZ has anticommuting
relations:
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For an integer , the canonical Clifford module Vj is generated by a vacua vector
1 and 1 is annihilated by annihilation operators b1-j,b2-j9. . . ;Cj9cj+ί,. . . .
A basis of Vj is obtained by acting the creation operators bj9 b-j-l9. . . c_ ( 1 _ 7 ) ,
c _ ( 1 _ i ) _ 1 , . . . on 1. Vj has a structure of vertex operator superalgebra, the vertex
operators are generated by two basic vertex operators fr(z) = ΣΓ=-oo bnz~n~j and

Φ ) = ΣΓ=-oo cnz-"+j-1 (see [A] Sect. 4 for a proof).
The notion of global vertex operators and the space of vacua generalize directly

to vertex operator superalgebras. It is easy to see that V} is its own unique
irreducible representation, and use a similar argument as in the proof of Theorem
6.1, we can prove that the space of vacua for iV-labeled Riemann surface is
isomorphic to that for 1-labeled Riemann surface. Therefore is sufficient to con-
sider the case Σ = Σ, Q, z, Vj). Note that b(z) {c(z)) is a primary field of degree
j (1 — j). One can prove

N(Σ) = {xe Vf I x Resz(ft(z)/(z)) = x Resz {c(z)g(z)) = 0

for every f(z)eΓ(Σ; ρ, K " ^ 1 ) , g(z)eΓ(Σ; Q, *')} .

In [GGMV], N(Σ) is proved to be one dimensional and an explicit formula for
a basis is given. This conformal field theory is also studied in [KNTY].

8. Gluing Construction of the Space of Vacua and Modular Functors

Having defined the space of vacua on labeled Riemann surfaces, an immediate
question is to study the structure of these spaces. We give a conjecture on the
construction of the space of vacua by gluing Riemann surfaces. This conjecture can
be roughly stated as that Σ -> N(Σ) is a modular functor if the vertex operator
algebra V satisfies a certain finiteness condition.

Let

Σi =(Σύ Qu . . . , QN, P';zl9. . . , zN,z') ,

, z") (8.1)

be two pointed Riemann surfaces. Let D 1 = {|z/|^|^f1|} and {D2 = l ^ " l ^ }
discs near P' and P" respectively such that they contain none of ρ/s. We cut off
Di from Σx and D2 from Σ2 and glue the two boundaries together by the relation
z'z" = qχq2, we get a (M + iV)-pointed Riemann surface with the genus equal to the
sum of genus of Σx and Σ2. Similarly, we can glue two marked points on a single
pointed Riemann surface. If

Σ' = (Σ[; Ql9. . . , QN, P\ P"; zu . . . , zN, z\ z") (8.2)

is a (N -f- 2)-pointed Riemann surface, we cut off two discs {| z' \ ^ | q i |} and {| z "\ :g |
q2\} which contains none of Q{s and glue the two boundaries by the relation
z'z" = q1q2, we get a JV-pointed Riemann surface with genus increase by 1. In both
cases the resulting pointed Riemann surface Σq depends only on the product
q = qiq2. Every n-pointed Riemann surface can be obtained in this way by success-
ively gluing the 1-pointed, 2-pointed or and 3-pointed Riemann spheres.

Let V be a rational vertex operator algebra, Wx,. . . , Wm be a sequence of
irreducible representations of V and assume Ws and Wt (1 ̂  s < t ̂  m) are dual with
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each other, a linear functional/e(W! (g) ® Wm)* is called contractable at the s-th
argument and the t-th argument if the following holds: let {ei]Γ= 1 be a homogeneous
basis of Ws, {e[}^L\ be its dual of Wt (so <βj,e/> = <5y), for every xteWi l ^ i ^ m ,
i φ s9 ί), the series

oo

® x«) (8.3)
i=ί

converges absolutely. For such/, the contraction off at the s-th argument and the
t-th argument is defined to be the vector in (W1 ® . . . Ws. . . Wt. . . (x) Wm)*
(where denotes the omission) whose value on ® I = M t Xi is (8.3).

Conjecture 8.1. Assume vertex operator algebra V satisfies the conditions: (1) V is
rational (2) V is a sum of highest weight representations of its Virasoro algebra,
dim(Vo)= 1. (3) V is an irreducible representation. Let Wαi,. . . , Wan be a complete
list of irreducible representations of V. Then

(1) For two labeled Riemann surfaces:

£l,α = ( £ i ; Qu . , 6iV> P'l Zl9 . . . , Zjy, Z'\ Wu . . . , WN, Wa) ,

^2,α' —(^2? -P"J 2 N + 1 ? J QN + MI zN+l, •> ZN + M' > ^ α ? ^JV+1? > ^iV + Λf)

^ = (^«' δ i ' 9 QN+MI ZI>

be the labeled Riemann surface obtained by gluing the points P' and P" with the
parameter q described as above. Let be qN°+ι be the operator which acts on
(Wi ® ® WN ® Wα)* as the operator qL° on the {N+ \)-th factor Wa. For every

and

x2eN(Σ2,a.) c (WN+! ® ® WN+M ® W^r ,

qN°+1Xi ® x 2

 ί s contractable at (N + l)-ί/ι argument and (N + 2)-f/z argument and the
contraction is in N(Σq). This defines a linear map Lα: N(Σ\iOί) ® N(Σ2>a>) -> N(Σq).
The linear map

© Lα;. © ΛΓ(fi>αι) ® iV(Σ2,α/) - . iV(f,)
i = l i=l

is a linear isomorphism.

(2) For a labeled Riemann surface

Σ« = (Σ'; Q u . . . , QN, P'9 P " ; zl9. . . , zN9 z\ z" Wl9...9 WN9 WΛ9 WΛ ) ,

let

^ ( ^ ' 6 Q >
 z ί > J

 ZN + Λfi Wi, . . . , W )

be ί/zβ labeled Riemann surface obtained by gluing Σ'a at the points P' and P"
described as above. Then for every xeN(Σa)9qN°+ίx is contractable at (N+l)-th
argument and (N + 2)-th argument, and the contraction defines a linear map
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Lα: N(Σ'a) -• N(Σq). And the map

is a linear isomorphism.
(3) N(Σ) is finite dimensional for every Σ.

There are three infinite families of known vertex operator algebras satisfies
these conditions: the vertex operator algebras associated to integrable highest
weight representations of the affine Kac-Moody algebras [FZ]; the vertex oper-
ator algebras associated to the minimal modules of the Virasoro algebra [ Wa]; and
the vertex operator algebras associated to positive even lattices [FLM, Dol]. In
the lattice case, the relation of vertex operator algebras with the path integral
approach is discussed in [T]. These three families corresponds to WZW-models,
Minimal Models and the torus models in conformal field theory, respectively (see
e.g., [BS, TUY, KNTY] for other approaches to conformal field theory). And the
Moonshine module [FLM1, Bol, FLM2, Bo2] also satisfies these conditions, and
it is proved in [Do2] that the moonshine module is rational and it has the unique
irreducible representation.

This conjecture reduces to the construction of the space of vacua on any labeled
Riemann surfaces to the construction of the space of vacua on 1, 2 and 3-labeled
spheres with representations assigned at each marked point irreducible, these cases
have been discussed in Sect. 7.

For the vertex operator algebras associated to integrable highest weight
representations of the affine Lie algebras, the results in [TYU] imply the above
conjecture.

The truth of Conjecture 8.1 together with Theorem 6.2 implies the correspond-
ing gluing properties for correlation functions. Let x1eiV(Σrijα) and x2€N(Σ1)a>) as
in the Conjecture, xeN(Σq) be their contraction. Let {ej be a homogeneous basis
of Wa and \e[} be its dual basis in Wa>. Let P1,. . . , Pm be m points on Σq such that
the first s points are in Σx and the last m — s points are in Σ2. Then the correlation
function on Σq

Fx(vu . . . , vN+M; al9. . . , am; Pu . . . , Ps)

associated to x9 i^e Wi (i= 1,. . . , N + M\ ai€V(i= 1,. . . , m) is equal to
00

Σ FXί(vl9. . . 9vN9eϊ9aί9. . . 9as;Pl9. . . , P S )

* Fχ2 \ei 9 VN + 1 j 5 % + M > as + 15 > am\ *s + 1 > ? * m)

Recall the definition of modular functors in [Se]. Let Φ be a finite set of labels
which contains 1 and has an involution φv-+φ such that 1=1. Let 9ίφ be the
category whose objects are disjoint unions of Riemann surfaces with each bound-
ary circle parametrized and equipped with a label from Φ. A morphism in 9ΪΦ is
several sewing operations which sew together pairs of parametrized boundaries,
and we allow a pair circles to be identified only if they have the same labels.
A modular functor is a holomorphic functor from 9ίφ to finite dimensional
complex vector spaces satisfying the certain properties [Se]. If we take the label set
Φ to the set of irreducible representations of V, and the involution in Φ is given by
the dual representations, the label 1 is the adjoint representation. And we modify
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the category 9lφ by taking the objects as disjoint unions of labeled Riemann
surfaces and a morphism as the gluing operations on pairs of labeled points with
dual labels described as above. For an object O = Σ1Ί1- ΊlΣk, we define
N(0) = N(Σ1)® "0N(Σk). Then Conjecture 8.1 says that N defines a functor
from the category 9{φ to finite dimensional vector spaces which satisfies similar
properties with a modular functor. One of the conditions of a modular functor is
that when {Xb}beB is a holomorphic family of surfaces parametrized by a complex
manifold B the spaces corresponding to {Xb} forms a holomorphic vector bundle
on B. In our situation, we can define the sheaf of vacua on a local family of
JV-labeled Riemann surfaces as in [TUY], presumably the Virosoro algebra gives
a connection of the sheaf of the vacua. However in order to generalize the results in
[TUY] to arbitrary rational vertex operator algebras satisfied the assumptions
given earlier in the section, we need a structure theory for rational vertex operator
algebras which is not available today.

The spaces of vacua on a 1-pointed Riemann surface with 0-section assigned at
the puncture for the vertex operator algebras associated to integrable highest
weight representations of Kac-Moody affine Lie algebras (they are the same as the
spaces of vacua defined in [TUY], see Sect. 7) can be identified with the space of
global sections of certain line bundles on the moduli space of stable G-bundles on
the underlining Riemann surface [Fa]. We expect similar geometric interpretations
for the spaces of vacua associated to other rational vertex operator algebras, e.g.,
the space of vacua for the moonshine module may relate to the moduli space of
M-structure (M is the Monster group) on the underlying Riemann surface. And we
expect that the vertex operators Y (α, z) for a primary and their correlation func-
tions associated to a vector in the space of vacua also have interesting geometric
meanings.
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