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Abstract: We apply the notion of orbifold models of SU(N) solvable lattice models
to the Hecke algebra subfactors of Wenzl and get a new series of subfactors. In
order to distinguish our subfactors from those of Wenzl, we compute the principal
graphs for both series of subfactors. An obstruction for flatness of connections arises
in this orbifold procedure in the case N = 2 and this eliminates the possibility of the
Dynkin diagrams D2n+i, but we show that no such obstructions arise in the case
N = 3. Our tools are the paragroups of Ocneanu and solutions of Jimbo-Miwa-
Okado to the Yang-Baxter equation.

0. Introduction

A connection between solvable lattice models in statistical mechanics and subfac-
tors in the theory of von Neumann algebras was soon realized after the pioneering
work of Jones [Jo] on subfactors, see for example [EL]. Subsequently the theory
of subfactors has had striking relations with knot theory, conformal field theory,
quantum groups and so on (cf. [Ji, Kn, YG]). Recently the idea of an orbifold of a
solvable lattice model has been studied by [DZ, FG, Ko], borrowing from the notion
of an orbifold model in conformal field theory of [DHVW], who considered string
propagation on toroidal orbifolds. In this paper we study the relation of subfactors
to solvable lattice models, and apply the idea of orbifold lattice models to the sub-
factors of Wenzl [We] to get a new series of irreducible subfactors with the same
index as the subfactors of Wenzl. Recall that his subfactors arise from representa-
tions of the Hecke algebra of type A and correspond to work of Jimbo-Miwa-Okado
[JMOl, JMO2] in solvable lattice model theory, and also to the quantum groups
Uq{slk) and the 2-variable polynomial link invariant of [FYHLMO].
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The notion of orbifold models has also arisen recently in the structure theory of
C*-algebras. Here a striking new phenomenon has been discovered in the theory of
C*-algebras which are approximately finite dimensional and more generally in the
larger class of C*-algebras of real rank zero - which is probably a more accurate
non-commutative analogue of a totally disconnected or zero dimensional space. For
example, AF algebras have been constructed in a non-standard way as an inductive
limit of homogeneous or subhomogeneous algebras on the circle (with careful choice
of embeddings with the circle being wound around itself). The flip on the circle
induces a symmetry on the algebra whose fixed point algebra is not AF (see [Bl, Ku
and BEEK1-3] for generalisations to other groups). Similarly the flip on the interval
has been exploited by [Ell] to construct a symmetry on an AF algebra whose fixed
point algebra is not even of real rank zero. The flip on the non-commutative 2-
torus AQ [BEEK1-3] gives an AF fixed point algebra (a non-commutative toroidal
orbifold - a non-commutative sphere with four singularities) [BK] see also [EE].
Taking the dual action one again gets a symmetry on the AF algebra AQ x Z2 with
fixed point algebra the non-AF irrational rotation algebra AQ. The message from this
theory is that one can get something new and different from what one started with
by considering the action of finite group on a system where there is a fixed point
in the underlying basic structure. It is this same philosophy which we follow here
to construct new subfactors.

The classification of subfactors of the approximately finite dimensional (AFD)
factors is one of the most important and exciting problems in the theory of operator
algebras. The tower of higher relative commutants has been a useful invariant for
this problem. In particular, the Bratteli diagram of this tower is generated by iterating
a graph (called the principal graph) beginning with some initial vertex. A. Ocneanu
introduced a new notion paragroup as a combinatorial characterization of higher
relative commutants in subfactor theory in [01]. He announced in [01] that a
subfactor with finite index, trivial relative commutant, and "finite depth" can be
generated by the tower of relative commutants, and thus they are classified by
paragroups. Though his proof has not been presented yet, S. Popa gave a proof for
this in [P3] without assuming the trivial relative commutant condition, and further
announced necessary and sufficient conditions for such a generating property in [P4].
Thus a large class of subfactors of the AFD factor of type II1 can be classified by
the paragroup approach.

A paragroup is a graph with a certain complex-valued function defined on
squares arising from four edges of the graph. It can be regarded as a certain quanti-
zation of the Galois group. That is, instead of fields and subfields, we study factors
and subfactors, which are non-commutative infinite dimensional *-algebras, and a
graph is regarded as a generalization of the underlying set of a group. Group oper-
ations and duality are transformed into operations on the functions on squares.

Moreover, the study of paragroups can be regarded as differential geometry on
finite graphs. Finite graphs are regarded as discrete models of compact manifolds,
and the distinguished function on squares is an analogue of a connection. We call
this function a connection, too. The key notion in the theory of Ocneanu is the
analogue of flatness of connections.

Another aspect of paragroup theory is its connection with solvable lattice model
theory like [ABF] (without a spectral parameter), and this is what we exploit in
this paper. (See [DJMO, Ba] for solvable lattice model theory, for instance.) We
have the following correspondences between these two theories.
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Table 0.1

Paragroups Lattice models

Connections Boltzmann weights
Unitarity First inversion relations
Commuting square conditions

for towers of relative commutants Crossing symmetry
Flatness of connections Yang-Baxter equation plus something

More details on these correspondences are discussed in this paper. Note that the
commuting square is a key notion in the approach of Jones to subfactors [PI, GHJ,
Sect. 4.2]. We refer to [01, 02, 03] for details of the theory of Ocneanu.

With his paragroup, A. Ocneanu announced classification of subfactors with
index less than 4 in [01]. In this case, the trivial relative commutant condition
and the finite depth condition are satisfied automatically, so it is enough to classify
paragroups with "order" less than 4. (The Jones index of a paragroup is an analogue
of the order of a finite group.) In this case, the graphs we have (the "principal"
graph as in [GHJ]) are among the Dynkin diagrams An, Dn, E^ EΊ, E%.

The second author used the orbifold method in [Ka] to study subfactors with the
principal graph Dn, the Dynkin diagrams, as "orbifolds" of subfactors of type An

by Jones [Jo]. An idea of "orbifold" is that if a paragroup has a certain symmetry,
we can take its quotient by the symmetry. This idea was used in solvable lattice
model theory by [FG, Ko], but the subfactor situation is more subtle as flatness is
quite a strong requirement.

The Dynkin diagram Dn can be regarded as an orbifold of A2n-2> by a Z2-
symmetry. It is natural to apply the orbifold method also to WenzΓs subfactors,
because WenzΓs subfactors are related to SU(N) lattice models and the construction
of Jones corresponds to the case N = 2. Amongst the Dynkin diagrams, only the
even Din appear as paragroups; the odd Din+\ cannot appear as was announced in
[Ol] and proved in [Ka]. (Izumi gave a different proof of impossibility of D2n+\
independently in [I] based on Longo's sector theory [Lnl, Ln2], and its bimodule
version was given by Sunder-Vijayarajan in [SV] independently. This approach was
also claimed by Ocneanu without a proof.) This fact is interpreted in our orbifold
setting as a Z/2Z-obstruction for flatness. In this paper, we show that in the case
N = 3, such an obstruction does not occur. The reason for this vanishing comes
from the fact that 3 is odd while 2 is even. (Indeed, our method can be extended
to all the odd prime N with a slight modification.)

Our subfactors have the same index as those of Wenzl because the orbifold con-
struction always gives the same Jones index as the original subfactor. We compute
the principal graphs for both subfactors in order to distinguish them. For this pur-
pose, we make use of the Yang-Baxter equation, or the star-triangle relation - the
relation between flatness of connections and the Yang-Baxter equation is brought
out in our discussion. Our approach also computes the paragroups of the subfactors
of Wenzl, which he could not obtain. (He computed only the principal graphs with
the /^-matrix version of the Yang-Baxter equation in his unpublished work.)

During the preparation of this paper, the second author applied this orbifold
method also to the classification of subfactors with the principal graph D^ with
M. Izumi in [IK]. These subfactors have index 4 and the extended Dynkin diagrams
Dn are regarded as orbifolds of A^J_5 by Z2-symmetry.
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Note that the procedures obtaining Dn from A2n-3 and D^ from A^_5 by the
Z2-symmetries are analogues of folding an interval and a circle by the Z2-flips in
the C*-algebra setting respectively.

The main part of this work was done while the first author was a visiting
Professor at the Research Institute for Mathematical Sciences, Kyoto University. The
authors thank the Research Institute for Mathematical Sciences at Kyoto University,
University of Tokyo, and Hokkaido University for their hospitality. We also thank
Professors T. Miwa and M. Okado for helpful conversations on solvable lattice
models, Professor S. Popa for a comment related to Remark 5.9, and Professor
H. Wenzl for a comment on his unpublished work in connection to Sect. 3.

1. Lattice Models and AF Algebras

One can associate to a graph Γ a lattice model - a classical statistical mechanical
model on a planar lattice L in the following way. We first need to define the config-
uration space. We can take Z, Γ to be oriented, e.g., L could be the two dimensional
square lattice with downward orientation as in Fig. 1.1 and Γ could be the J / ( Λ )

graph associated with the Weyl alcove of the level k integrable representations of
the Kac-Moody algebra 4 ί - i = SU(N)A :

Λ Γ - 1 Λ Γ - 1

f = l i=\ J

where the Λ^s are the N — 1 weights of the fundamental representations and n =
k + N.

Fig. 1.1

For fixed N, we define ^ n ) as follows. The vertices of stfw are given by elements

of P + l and its oriented edges are given by N vectors e{ defined by

e\=Aι,

βi = Ai — Ai-\ , / = 1 , . . . , N — 1 ,

&N = ~AN-.\ . (1 2)

That is, the adjacency matrix of the graph is given by Aχ>μ = Σi=\δλ+ehμ- The
following graph is an example for N = 3,« = 6. Note that the graphs are oriented.
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Fig. 1.2

A configuration is a map σ : Z,(1) —> Γ ( 1 ) (associating an edge σα of Γ to each
edge α of L) which is compatible with the orientations of L and Γ (if they exist)
and such that if a,β are incident edges of L, then σα and σβ are incident in Γ. Of
course, we also have to specify the Hamiltonian or energy of a configuration. The
energy associated to any face is a function of the shape of the boundary and the
distribution of Γ^ along it. The energy of a configuration σ is then the sum of the
energy of the faces. For the square lattice L of Fig. 1.1, each face has a boundary
of the form

and the Boltzmann weight associated to a configuration

where ocβ.γδ are paths of length two in Γ with same initial and same terminal
vertices could be denoted by W(a,β,y,δ). Strictly speaking, it could depend also
on the position of the face in Fig. 1.1 in the lattice L. The Boltzmann weight of
the configuration is then

l\W(a,β,y,δ). (1.3)
faces

Writing

W(ocJ,y,δ)= *0δ (1.4)

we see that a (translation invariant) energy function on L for the graph Γ is precisely
the same as certain elements of the path AF algebra built from Γ.

The path algebra description of an AF algebra was introduced in [El] or [E2],
and was subsequently rediscovered by [01, pages 128-129] or [03, II. 1], and Sunder
[Su],

We define the path model of the AF algebra associated to a Bratteli diagram
with standard embeddings. The AF algebra associated to a Bratteli diagram is unique
(up to *-isomorphism) and any AF algebra is isomorphic to such an algebra with
standard embeddings. We have a sequence Ω[m] of finite sets (each to represent the
minimal central projections of a finite dimensional C*-algebra An\ and a multiplicity

graph or matrix An — λff whose rows are labelled by j e Ω[n] and columns by
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/ G Ω[n + 1], where λψ is the multiplicity of the simple algebra at vertex i into that

at vertex j . We adjoint Ao = C,ί2[0] = {*}, and only consider unital embeddings.

The Bratteli diagram consists of the graph with vertices | J « > o ^ M a n ( * $? edges

oriented between vertex / in Ω[n] and j in Ω[n + 1] as indicated in Fig. 1.3.

Ω[0]

Ω[2]

Ω[3]

Λ°

Ω[n]

Fig. 1.3

The vertices Ω[n] denote the n-th level of the Bratteli diagram. For m < n,i G
Ω[m]j £ ΩW, let Path (i,j) denote the space of paths in the Bratteli diagram
from i to j . (Such paths have length n — m, since we have oriented the Bratteli
diagram.) For μ G Path {ij\i (respectively j) is called the initial (respectively
terminal) vertex of μ. Then let Ω[m9n] = V\ieΩ[m]jeΩ[n] P a t n (*>•/)> m e s P a c e o f

paths from level m to level n. Let

ij = End /2(Path(ί,y)) (1.5)

generated by matrix units (μ9v),μ,v G Path(/,./), (called strings, denoted by
^ ^ ί j ) in the notation of [03]), and

A[m9n] = ®Aij = ΘEnd (1.6)

where the summation is over all i at level m, and j at level n. If [m,n] c [mr,n%
we embed A[m,n] in A[mr,nr] by

(μ, v) H+£X<xμj8, αvβ) (1.7)

for μ,v G Path(z,y'), where the summation is over all α G Path(ϊ/, i), j8 G Path(/j/)
and i' on level m' and / on level wr. Then

,« | =A[m9n] . (1.8)
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The AF algebra associated with the Bratteli diagram is then

A = lϊmAn, (1.9)

where An =A[0,n] is embedded in An+χ by (1.7).

Example 1.1. Let Γ be a locally finite graph, and Γ^o) a set of vertices from

We can construct a Bratteli diagram (Γ,Γ^)A (and hence an AF algebra

as the space of semi-infinite paths beginning at Γ*Q\ Thus

(Γ,Γ<0))Λ = {(en)Zo : en € Γ^ffo.) = 1(^+1 ),ι(e0) - *,*(*<>) € Γ<0)} , (1.10)

where we have adjoined some vertex * at the beginning of the diagram - which
can sometimes be identified with a vertex of Γ.

A Boltzmann weight W then gives an element Wn in the path algebra
A[n — l,n -f 1] given by

; («ιw), (l.ii)

where the summation is over all otβ,ocfβ' £ Ω[n — l,w-f 1] with same initial and
same terminal vertices.

Orbifold models have been considered in statistical mechanical models [FG, F],
for Z2 and Z3 symmetries of the graphs in [DZ1, DZ2, and Z] as in Figs. 1.4 and
1.5 respectively, obtaining the orbifold graphs of Figs. 1.6 and 1.7 respectively.

Fig. 1.4

Fig. 1.6
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Fig. 1.7

The Boltzmann weights are given by [FG, F],

ά/U'/f), (1.12)

where the weights Wf of the orbifold model are given a linear combination of
those weights W of the initial model, with the coefficient ω being square roots,
and cubic roots, respectively (and vice versa, with the initial weights W being
expressed as a similar combination of the orbital weights Wf). Here we will interpret
this orbifold construction via path algebras, in particular, this allows us to easily
generalize the weights to the ZM orbifolds of the SU(N) models, and derive the
Yang-Baxter equation without any pain. (The Yang-Baxter equation was checked
by hand in the N = 2,3 cases in [FG] and [F], whilst Di Francesco and Zuber
[DZ1, p. 643] expected off critical orbifolds for N > 3 models as consequences of
identities between theta functions.)

Suppose that G is a finite group of symmetries of the graph Γ leaving a subset

Γ^ of the vertices Γ ( o ) globally invariant. Then there is an induced action of

G on strings oc^g~ιoc and hence on the path algebra A(Γ,Γ^)0 by (α,/?)•->

(g~ιoc,g~ιβ). The fixed point algebra A(Γ9ΓQ ) G can be described as the path

algebra built on an orbifold graph as follows.
For the case Γ = s/^n\ we define an action of the cyclic group Z^

as follows. We set AQ = *, and label the other end vertices of the graph s/^ by
A\ = Ao + (n - M ) e u A 2 = Ax + (n-N)e2,...9AN-ι = AN-2 + (n-N)eN-ι. De-
fine a rotation symmetry p of the graph s/^ by

AJ + Σckek J = Aj+χ + Σckek+\ , (1.13)
J

where the indices are in Z/NZ and ck e C. Note that ρN = id. We take Γ^o) =
{A0,...,AN-I}, the orbit of * under ZN.

In this case, the orbit of any vertex is either trivial or can be identified with
the group G. Then at any level of the path algebra A(Γ,Γ^) we have either
direct sums of matrix algebras @heGAh, where Ah is a matrix algebra transformed

isomorphically to Ag+h under the action of g G G. To determine [A(Γ,Γ^)n]
G,

note that the fixed point algebra of each B is identified with a direct sum of a
family {Bh : h G G} of isomorphic matrix algebras indexed by G, and the fixed
point algebra of (&heGAh is identified with AQ. Thus we can construct a graph Γ/G

to yield the Bratteli diagram of A(Γ,Γ^) as follows. We replace each trivial orbit
in Γ by a copy of G, and each non-trivial orbit in Γ by a singleton. These are the
vertices of the orbifold graph Γ/G. The edges of orbifold graph are obtained by
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considering the inclusion of [A(Γ,Γ^)n]
G in [A(Γ,Γ^)n+ι]G. There are 3 cases to

consider.

Γ/G

(a)

(c)

Fig. 1.8

In case (a), we have each vertex of a non-trivial orbit at level n is joined to a
trivial orbit by a single edge at level n + 1 for Γ, which is reversed in the orbifold
graph. Case (c) is similar. In case (b), we have each vertex of a non-trivial orbit
at level n is joined to r vertices in a non-trivial orbit at level n -f 1 for Γ. In the
orbifold graph, we have r edges joining the trivial orbits.

This gives us the rules for computing the orbifold graph Γ/G, so that we have

a filtered embedding A(Γ/G,*) -» A(Γ,Γ{Q])G where * = Γ^/G 6 (Γ/G) ( o ).
Te describe the embedding of the path algebra A(Γ/G) in A(Γ), it is useful to

recall the cell calculus of Ocneanu [01, 02, 03], which conveniently and concisely
describe all filtered embeddings of path algebras.

First, we consider intertwiners between path algebras of sequences of graphs
which have the same initial and same terminal vertices, in a similar fashion to
how we constructed the path algebras themselves in the first place. If λ\9λ2,... and
μ\9μ2, are two sequences of graphs such that

t(λn) = i(λn+1), t(μn) = i(μn+ {

i(λn ) = i(μn ), t(λn ) = t(μn ) ,

(1.14)

(1.15)

we can define (λr,μr) in

0End ), l2(Pathμr(i,j))

to be the intertwiners between (λr,λr) =A(λ)[r,r-\-1] and A(μ)[r9r + 1] generated
by matrix units (μ?v), with μ € Path^(/,j),v G Path^(/,y) with same initial and
same terminal vertices / and j respectively. In particular, concatenating graphs, we
have intertwiners

(1.16)
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where oc,oc',β,β' are edges of λr9λr+ι9μr,μr+ι respectively (where of course we do
not really need (1.15) for n — r).

Consider a filtered *-homomorphism φ between path algebras A(λ) and Λ(μ)
filtered in the sense that A(λ)n is taken to A(μ)n with this restriction denoted by
φn. Now the * -homomorphism φn is up to an inner automorphism of A(μ)n a path
endomorphism of the type (1.7). More precisely, there is a graph in between the
«-th levels of A(λ) and A(μ), and a unitary intertwiner

such that
φn=Ad(un)in. (1.17)

Then since μ(n)φ« = <Pn+i^n\wn+i = jn(u*)un+ι is an intertwiner in

which commutes with

Hence by the extension of (1.8) to intertwiners, wn+\ £ (in+ι^n+ι\f^n+λ^n)

1 I 1 w! I

I 1 I w2 I

: un : :

I i i wn i

implements φn as in (1.17).
If all four graphs in,λn,μn,jn are the same (as will be the case in the

models - see Fig. 1.2), then an intertwiner in (λnjnjnμn) is also an element of the
path algebra s/(λ). In the theory of subfactors, the braid element plays a dual role.
It may appear in the path algebra as a specialisation (see for example (2.5)) of a
Boltzmann weight as in (1.11). There may also be a shift endomorphism k (related
to Kramers-Wannier duality [EL, CE]) of the path algebra, k : s/(λ) —> stf(λ) taking
the braid element

at e jtf[i - 1, i + 1] -> σ, +i e .fi/D", / + 2] .

Indeed, because of the braid relation

we have
( Λ— Γ ( Λ - 1 - 1 - 1 (Λ 1Q\

and indeed we may have

κ(x) = lim σxσ2 σn(x)σ~ι σ^Vj"1 (1.20)
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as in the stf{n) models (see [EG1, EG2] and [GW] for other examples). In this
way, the braid elements appear as the intertwiners or connection for the filtered
homomorphism k. Then when we use (1.17) to transform in the double complex
picture of (2.1) an element W such as a Boltzmann weight or a genuine partition
function:

The elements

/7 a n d\ \ a n d

which appear here arise from "partition functions" of braid elements (with no spec-
tral parameter). In this respect, the expressions

a n d

\\ and 4/
which we compute are not genuine partition functions but intertwiners between
submodel and a model. Note that a unitary matrix cannot in any case have positive
entries except in rather trivial cases. In this regard, the relation between connections
and Boltzmann weights of Table 0.1 needs to be taken with a pinch of salt.

Before we complete the intertwiners between a path algebra and its orbifold
model, let us recall the situation for subalgebras of UHF algebras arising as fixed
point algebras of limit inner actions. (Of course, we could consider actions of AF
algebras which involve both limit inner actions and graph (or Brarteli diagram)
symmetries but we refrain from doing that since the extra notational complexity is
not needed in our examples.)

Example 1.2. Let πy : G —• Mn(j)9 be a unitary implementation of a compact group
G, and OLQ = (8>yΞi Adπ,, the product type action of G on the UHF algebra

A =

7=1

where Am = ®/Li Mι(/) The Bratteli diagram of this tower of algebras is given by
singletons Ω[m] and graphs μ(m) with n(m) edges connecting Ω[m] and Ω[m + 1].
The fixed point algebra AG is AF being the C*-inductive limit of the fixed point
algebras A%.

Let {χα} denote the irreducible characters of G, where χo is the trivial character,
and χ^ the character of π7. For each m = 0,1,2..., let

be the decomposition of the character χ ( 0 ) χ ( w ) corresponding to the representation
&T=o π«C/) m^° irreducible characters where βmα are positive integers. By Schur's
lemma, the fixed point algebra A% has the following decomposition into simple
components:

2 0 . (1.21)
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The multiplicity κ^β of the embedding of the simple components Mama into Mam+ι β

is determined by the decomposition of χ ( m + 1 ) χ α into irreducible characters

/m+l)χ« = Σxtyxβ • (i 22)

Thus AG = A(κ), but to understand the embedding φ : s$(u) —> A(μ), we need the
Clebsch-Gordan coefficients which expresses the equality (1.22) at the representa-
tion level. Let Ω'[m] denote the vertices at level m of the Bratteli diagram of srf{u),
i.e., the irreducible representations of G which figure in (1.22). Then define im to
be the graph with dim πα edges connecting α in Ω'[m\ to the singleton Ω[m]. Then
the connection or intertwiner describing the embedding of stf{κ) in stf(μ) is the
Clebsch-Gordan coefficient % in (ΐw+iκ ( ϊ f l ),λ ( m ) iw):

πα <* Φ I mπβ ® 1 ( w ) I 4T . (1.23)

In a similar way, the connection for orbifold models is obtained as the Clebsch-
Gordan coefficients which put the cyclic permutations of Fig. 1.8 in diagonal form.
If ω is a primitive Nth root of unity, then

1 -> n
(a) 1 I =

m -> 1

1 — > m

<v Ί 1 = -?•

where m,π 6 ZN,p,s € {0, l ,2 , . . . , r - 1} C ZN.
The embedding ^4G -^^4 of limit inner actions of Example 1.2 or graph sym-

metries of Example 1.1 have the property that not only are they filtered but they
also satisfy

A[λ][m,nf -> A[κ][m,n] .

To see this, note that the action of G leaves invariant A[λ][m,n] (e.g., by (1.8))
and

A[λ][m,nf GA[λ][m,n]Γ)A[κ][0,n]

as A[κ][09ή] =A[λ][0,n]G. Take x e A[λ][m,n]G,y €A[κ][09m] cA[λ][0,m]9 then
xy = yx as x G ̂ 4[/l][m,«],^ € A[λ][Q,m]. Hence x € ^4[κ:][0,π] Π^ffcJtOjm]7 =
A[κ][m9n].

In particular, this means that if W £ A[λ][m — l ,/w+ 1] G , then the corresponding
W of i4[λ][m - l ,m + 1] satisfy

μ v
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where

a n dV, a n d 4 /
are the intertwining unitary connections. In the case of Example 1.1, this explains
and verifies the vertex-IRF correspondence computations of [R, Appendix 4]. (Note
also that Property T of [R] holds since we clearly have commuting squares as the
conditional expectation En : An —> A% is consistently given by E = focgdg). Also it
verifies the corresponding equation in the orbifold model Example 1.1 and explains
the computations of [Ka, Lemma 5.1]. Moreover, we see that ZN analogue of [Ka,
Lemma 5.1] holds in the (^H\ZN) case as well. The orbifold weights which we
define via the fixed point algebra coincide (via (1.8)) with the Z2 and Z3 exam-
ples of [FG], [F], when N = 2,3, respectively. Also (with G-invariant) Boltzmann
weights, it is clear that the Yang-Baxter equation in the path algebra

Wi(u)Wi+ι{u + υ)Wi(υ) = Wi+ι(v)Wi(u + υ)Wi+ι(u)

also holds in the orbifold path algebra. In particular, we verify directly the compu-
tations of [FG, F] that the orbifold weights defined from (1.12) satisfy the Yang-
Baxter equation, and immediately generalise from N = 2,3 to N > 3 to get the
s/^/ZN models without having to check any identities between theta functions
[DZ1, p. 643].

2. Preliminaries on the Hecke Algebra Subfactors

Now we recall basic properties of Hecke algebra subfactors of H. Wenzl [We] in
the setting of path algebra construction. Section 2 of [DZ1] and Sect. 2 of [So] are
good reviews.

Choose the distinguished point * to be the vertex Λ\-\ h ΛN-I of the graph
s#(n\ We would like to get the following double sequence of the string algebra
using a connection:

π

ή (2.1)

n

Recall that a connection assigns a complex number to each admissible square.

a -> 6

1 I
c -» d

Here the above square is called admissible if a,b,c,d are vertices of the graph
and the edges α —> b,b -* d,α —> c,c —» d come from the graph. A connection pro-
duces unitary matrices by which we make identifications for different expressions
of strings. See [03, II.2] for details.

-4o,o

n
A\fQ

n
-42,o

n

c

c

c

-4o,i

n
A\9\

n
A2,ι

n

c

c

c

n

n

n
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Connections in paragroups are analogues of Boltzmann weights in solvable lat-
tice model theory without spectral parameters and the unitarity corresponds to the
first inversion relations.

For the vertices of the graph of ^ n \ we define the inner product by βj βk =
δjtk — jf9 and set a function Sβ by Sβ(λ) = sin(^(ey — e\) λ), where λ is a vertex
of the graph. The connection W is given by

i =djkε + {ϊ-όβ)ε* 2 , (2.2)
V sji\λ)

ei + ̂ /

where ε = \/~ΐexp π\ϊ^ a n ί * k — j o r k = I is required to get an admissible
square. If j = / in this formula, then we have 0 as the denominator of the sec-
ond term, but we regard the second term to be zero in such a case by the factor
(1 — δki). (See [DZ1, (2.16)] and see [01, 03] for notations on connections.) Using
[DZ1, (2.6a)], we can show the unitarity of this connection:

Here and later we

a

1
c

Σ
a

Σ
c

use

—»

For the horizontal
by

1
c

α

1
c

the

b

ϊ
d

-> 6

1

1
-> J

following

b <-

string algebra

6 ^~

• 1
d <-

V *-

conventions:

a c —>

1 = ΐ
c α —*

a
i
c'

a

i
c

d

ΐ
b

A

d -> c

= ΐ ΐ

),2 , we de

(2.3)

(2.4)

iX

(2.5)

Then these operators U^ satisfy the relations

u Ά x υ l - u l = u°m+1u°mu°m+ι -u°m+ι,

where j? = 2cos^ as in [DZ2, (2.6)] and the algebra A^m is generated by
U?9...,Un-i as in [We]. It will be shown in the proof of Theorem 3.3 that this
string algebra double sequence construction gives WenzΓs subfactors in [We].
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In the case of unoriented graphs, the sequence

^0,00 C Ai?oo C A2,oo C ^3,00 * *

given by the string algebra double sequence construction is the Jones tower of the
subfactor Ao,oo C A\fOO as in [03, II.6]. But the above double sequence does not
produce the Jones tower because our graph is oriented. In order to get the Jones
tower, we need the following arguments for "reversing" the orientation of edges.

Denote the entries of the Perron-Frobenius eigenvector of the graph srf^ by
μ( ) with the normalization μ(*) = 1. Then this gives the unique trace on the
string algebra as in [El, 03, II.3] by

tr(σ) =

Let
a - > b

I I
c -> d

be an admissible square. Then we define the values of the following squares:

Definition 2.1.
d —• c b —• a

1 I = I I ,
b —> a c —> d

a

μ(b)μ(c) l l •
C 7 (X

a —* b d — > c

Note that these formulas hold for unoriented graph cases as in [03, 1.3] but
now the left-hand sides are undefined because the graph is oriented and the squares
on the left-hand sides are not admissible. We need unitarity also for these newly
defined connections.

Proposition 2.2. For connections in Definition 2.1, we have unitarity identities (2.2)
with conventions (2.3).

Proof First we have to prove the following:

,μ(a)μ(d) a ^ b lμ(af)μ(d) a[ "* b _

μ(b)μ(c) c _ d V μ(b)μ(c) c _^ d

Note that the diagram

n n

gives a commuting square in the sense of [GHJ, Sect. 4.2] by [We, Proposition
3.2]. Then Ocneanu's computation at the end of [02] produces the above equality.
(This can be easily checked directly with formulas for the conditional expectations
in [O3, II.3]. Also see [HS, Sc, 1.1].)
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If we fix b and c in the above formula, the numbers of possible a and d are
equal. This implies the other identities. (That is, an isometric square matrix is a
unitary.) Q.E.D.

Ocneanu's computation cited above means that in the string algebra situations,
the commuting square condition corresponds to the second inversion relations in
solvable lattice models. (See [Ba] for the inversion relations.)

With these new definitions, we construct a double sequence of string algebras
(1.1) as follows. For the inclusions

n n

we use the graph stf^* and the original connection if / is even, and use the graph

j / ( n ) for the horizontal edges and the graph si " with the orientation reversed for
the vertical edges and the new connection of / is odd. That is, if / is odd, we have
the following type of squares:

The vertices of si{n) can be colored by N colors in Z/NZ = {0,1,...N - 1}
so that the starting vertex * has color 0 and each oriented edge goes from a color
* to a color k+l,ke Z/NZ. Take a subgraph stf^ of J / ( W ) which has vertices

of colors k and k+l and edges connecting these vertices. We regard s/^ as an
unoriented graph. In this way, the above setting can be described as follows: For
horizontal edges, we always use the original (oriented) graph *ί/(w) and for the
vertical edges we use the (unoriented) graphs sίty. Thus in the diagram (1.1), the
colors of vertices corresponding to each algebra are illustrated as follows:

0 1 2 . . . N- 1 0 1
1 2 3 ••• 0 1 2
0 1 2 . . . N-l 0 1
1 2 3 ••• 0 1 2
0 1 2 . . . N-l 0 1

Note that the Perron-Frobenius eigenvector μ also gives a Perron-Frobenius
eigenvector for each j / j ^ because the incidence matrix of the graph J / ( Λ ) is normal.
(See the following example.)
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Fig. 2.1

Because the vertical graphs sίζ are unoriented, we can define the Jones pro-
jections in the vertical string algebras by the same formula as in [03, II.3]:

eι = ^ R

|α|=/-l P
μ(r(oc))

(α v v9oc w w) ,

where β is the Perron-Frobenius eigenvalue for the vertical graph. As in [03, II.5]
we get flatness of these vertical Jones projections by Definition 2.1. That is, if we
embed eι G ̂ 4/+i,o into Aι+\>m by putting trivial tails and transform it to the form
horizontal edges of length m followed by vertical edges of length /-hi using the
connection, we get the following expression:

eι = Σ μ(r(α))
(α α7 v V9OL α ; w w) ,

where α is horizontal and α7 is vertical.
Denote the conditional expectation from Aι+\tOO onto Aι}OO by Eι. Note that

if x e Aι+ιtm, then Eι(x) is given by the conditional expectation of x onto A^m

because of the commuting square condition. Then it is easy to see that the above
Jones projections satisfy
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(1) eix — xeu for x e ^ / _ i ? o o .
(2) eixei = £/_i(jφ/, for x e AUoo.

Thus if we set N = A0iOO and M — A\iOO then the sequence

can be identified with the Jones tower

N C M C Mi C M2 C M3 C ,

by [PP, Proposition 1.2].
At the end of this section, we prove certain technical properties of the original

connections on the graph s/^n\ These for the case N = 2 correspond to Lemmas
4.3, 4.4, 4.5 in [Ka].

Lemma 2.3. For the original connection W on ^ n \ we have the following iden-
tities:

I = (-U(ej-ek) λ „ Sing Γ-2(ej-ek) λ-1 _1
+ βj — > λ + βj + ek

λ —• λ 4- ek

— A/ „ /τ\2 ε >

1 "" 1 -
λ -h βj — > λ + 2ej

where we assume jφk in the first and the second cases.

Proof. These are verified directly using the definition of W and the sine law. Note
that (εj — ek) - λ is a non-zero integer for j4=k. Q.E.D

Next we consider a large diagram. As in [03, II.3] or [Ka, Sect. 1], a large
diagram means the sum of the products of connection values over all the config-
urations. (See Sect. 1 for its similarity to partition functions. We also call them
partition functions.) The arguments of partition functions are determined up to π as
follows.

Proposition 2.4. The value of an I x k-diagram

λ - > ••• - > λ f

1 I

1
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is in the set

β m £λ λ+λ"' λ"'-λ' ' λ'-λ" λ"-kl{N-2)IN

Proof. If k = I = 1, this follows directly from Lemma 2.3. The general case can
be proved by induction. Q.E.D.

3. The Yang-Baxter Equation and Flatness

In this section, we compute the canonical commuting squares (in the sense of Popa
[P3]) for subfactors of Wenzl [We] using solutions to the Yang-Baxter equations by
Jimbo-Miwa-Okado [JMO1, JMO2]. We also show some computations of partition
functions follow from the Yang-Baxter equation - indeed vertical parallel trans-
port for Wenzl subfactors and their orbifolds is closely related to the Yang-Baxter
equation (Lemma 3.1).

Some parts of this section seem to be known to several specialists. (Wenzl
mentioned the use of the i?-matrix version of the Yang-Baxter equation for compu-
tations of higher relative commutants at the end of his paper [We] and the second
author saw Wenzl show some examples of the principal graphs of his subfactors in
his seminar talk, but he was unable to compute the canonical commuting squares.)
However, we have been unable to find actual computations of these in the literature,
and we will need several explicit formulae later in this paper, so we will present
the details here.

First we show that the connection W satisfies the Yang-Baxter equation, or the
star-triangle relation, without a spectral parameter. This means the following. Take
a hexagon

where the vertices and edges are taken from the graph stf^n\ For each such a

hexagon, we first consider configurations y—> for inside of the hexagon, mul-

tiply these three connection values of the parallelograms and make a sum of these

products over all the configurations. Similarly we make another sum over config-

urations — \ ^ with the same boundary conditions. Then our claim is that these

two numbers coincide. We state this as a proposition and prove it.

Proposition 3.1. The connection W on sί^ satisfies the Yang-Baxter equation in
the above sense.

Proof. We use solutions of Jimbo-Miwa-Okado. Let p —> 0 and L = n in their

formulas [JMO2, (2.4a-c)]. Then the solutions are now Laurent polynomials of x =

e x p / πuv-ι \ a n ( j m e highest terms have degree 1. Define another connection W1 by

taking a coefficient of x and multiplying it by —2v^Γεsin ^. Direct computations
show the following identities:
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λ + et
J ι ' λ a A i i n r-2(e,-ek) λ-\

. ((βi-et) λ)πC

sm«ar«*.)

where j + k in the first and the second cases. Comparing these and formulas in
Lemma 2.3, we know that W and W coincide in the first and the third cases and
differ only by sign in the second case. The above definition of W shows that the
Yang-Baxter equation holds for W. Looking at the sign difference between W
and Wf carefully for all the possible cases, we can conclude that the Yang-Baxter
equation also holds for W. Q.E.D.

We thank Professor M. Okado for explaining the above method to us. See [M,
Sect. 1] for a similar computation.

Next we define another connection W" by

Lemma 3.2. The connection W" and the new connection defined in Definition 2.1
satisfy the star-triangle relation.

Proof. Note that each of two ways of configurations, we take downward edges from

the oriented graph sέ^ and horizontal edges from the sϋf with the orientation

reversed. Thus in the configurations \—>, the left parallelogram has a value of

W and the right two parallelograms have values defined in Definition 2.1, and in

the other configurations — < ^ , the right parallelogram has a value of W and the

left two parallelograms have values defined in Definition 2.1.
Then we get the desired equalities by taking complex conjugates of the original

star-triangle relation in Proposition 3.1 and multiplying the both hand sides by
certain terms involving μ( ). Q.E.D.

We can prove the following characterization of the tower of the relative corn-
mutants.

Theorem 3.3. In the string algebra double sequence {Λ^i) discussed at the end of
Sect. 2, we have A'0oo ΠAKoo = Ak,0.

Proof First we prove A'0oo ΠAk}OO D Akί0.

We set σ°m = ε + έβU° for U^ in Sect. 2. Because these generate ô,oo> it is
enough to prove that each σ^ commutes with Ak,o. The operator σ°m is a unitary
because β = -ε2 - ε2. (Note that our ε4 and σQ

m correspond to q and ε~3gm in
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[We, Sect. 2].) Because the formula for σ°m has the same form as the definition of
the connection W9 this is a face operator in the sense of [R, page 400]. We also
define ox

m similarly for the string algebras A§$ c A\$ C A\^\ C A\>2 - -.
Because we have the star-triangle relation, the identification using the connection

transforms σ°m to σι

m+ι, which is also a face operator, by [R, Proposition 5]. This
means that σ°m commutes with A\$.

Similarly, by the other star-triangle relation in Lemma 3.2, we get that σ^+1

is identified with a face operator in the next step, that is, a face operator for the
second row

^2,o C A2,\ C A2,2 C A2β *

of the double sequence. This means that σ^ commutes with A2,o.
Repeating these two cases inductively, we get Af

0oo ΠAkίOO c A^.
For the other inclusion, we apply Wenzl's dimension estimate [We, Theorem

1.6]. Q.E.D.

The above proof means that the subfactor v40,oo C A\^ is expressed as (σ\9σ\9

04,...) C {σ\9σ\,σ\, .) Because the above representations of the Hecke algebra
are the same as the (N,n)- representations in [We, Sect. 2], this string algebra

sin2 ^
construction gives WenzΓs subfactors in [We, Theorem 3.7] with the index . 7

n .
sin §

As a direct corollary to the above, we get the following:

Corollary 3.4. For the above subfactors of Wenzl, the principal graph is given

by s4<>\

Proof This is clear because the vertical string algebra sequence

Ao,o C A\tQ C A2$ C ^3,o

is given by the unoriented graph jtf$\ Q.E.D

Here are some examples of the principal graphs. (The second author saw
H. Wenzl show these graphs without proofs in his talk at the Mittag-Lefrler
Institute in September, 1988.)

Fig. 3.1

M. Izumi [I, Figs. 5, 7] computed the principal graphs for subfactors constructed
sin —

in [We, page 360] with index . 2

N f° r the case n = 3. (These are constructed by
sin %
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cutting the subfactor N C M\ by a minimal projection in Nf Π M\ for the subfactor
N CM of type AN-χ. These are also the same as subfactors in [GHJ, Sect. 4.5] for
diagrams An. So Okamoto's method [Ok] also gives the principal graphs.) Figure 3.1
shows that the above subfactors are different from these because they have the
different principal graphs while the indices are equal.

With further work, we can compute the canonical commuting squares for these
subfactors as follows.

In the above construction, we used the graphs ^ n \ Jrf(n\ ̂ n \ j / ( n ) , and so on,
in this order, for the vertical directions. Next we construct another double sequence
of string algebras starting from * by using the graphs ^ n \ ^ n \ ^ n \ ^ n \ and
so on, in this order, for the vertical direction. We label these as follows:

#1,-1
ή

#2,-1

n
#3,-1

n

C #1,0

n
C #2,0

n
C #3,0

n

c

c

c

#1,1

ri
#2,1 •••

n
#3,1 •••

n

•—> # l , o c

n
—» #2,oo

n
—*• #3,oo

n

For each of the inclusions #i,_i C #i,o and A$$ C î,o? we have a single edge.
By identifying these, we can identify Ak,ι and B^i for k ^ 1,/ ^ 0. In this way,
we get the following double sequence.

Λ l , - 1

n
^ 2 , - 1

n

c

c

^0,0

n
-4 i,o

n
^2,0

n

c

c

c

^0,1

n
^1,1

n
^2,1

n

c

c

c

^0,2

n
A\z

ri
^2,2 * * *

ri

n
-* M

n
-> M i

n

Note that in the above diagram, the colors of vertices corresponding to each
algebra are illustrated as follows:

0 1 2 ••• N-l 0 1 •••
0 1 2 3 ••• 0 1 2 •••

N - 1 0 1 2 ••• N- 1 0 1 •••
0 1 2 3 ••- 0 1 2 •••

N-l 0 1 2 ••• N-l 0 1 •••

The same arguments as in the proof of Theorem 3.3 shows M^ΠM' =
Thus we can determine the canonical commuting squares in the sense of [P, Sect. 6]
for the above subfactors as follows.

Theorem 3.5. For the above subfactor N C M9 the canonical commuting squares
are given by

A\-\ C ^2,-1 C ^3,-1 C

n n n
,41,0 C ^2,0 C



Orbifold Subfactors from Hecke Algebras 467

This means that only the subgraph connecting vertices with colors N — 1,0,1 is
essential and the other parts of the graph are redundant from the operator algebraic
viewpoint. We also have the following corollary.

Corollary 3.6. For the above subfactors, the "dual" principal graph is given by

^ffl-i, which is isomorphic to ^

Note that J/QW) and ^^_x are isomorphic as graphs, but the way these are con-
nected is non-trivial. (Consider the Bratteli diagrams for the sequence in Theorem
3.5.) This means that "contragredient" map in the sense of Ocneanu [01, page 150]
is non-trivial. See the following example.

color 0

color 1

Fig. 3.2

Note that a trivial contragredient map would produce the following graph.
color 2

color 0 <

color 1 { (

Fig. 3.3

4. Orbifold Construction

We set AQ — * and label the other end vertices of the graph
Ao + (n -N)euA2 = Ax + (n -N)e 2,...,AN-ι = AN-2 + (n

Define a rotation symmetry p of the graph s/W by

^ by A\ —

V *

where indices are in Z/NZ and
is invariant under this p:

G C. Note that pN = id and the connection W

a -
1
c -

-> b
1

-> d

p(a)

= i
tic)

-* Pib)
I

- tid)
Next we assume « Ξ O (mod N), and construct a double sequence of the string

algebra as in Sect. 2, but we allow any of Aj as starting points of edges. That is,
we took a string (p+,p_) with s(p+) = s(p-) = *,r(p+) = r(p-), \ρ+\ = | p_ | in
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Sect. 2, but now we drop the requirement s(p+) = s(p-) = * and instead impose
s(p+),s(p-) e {A0,...,AN-I}. The multiplication is defined by the same formula
as usual. Note that we have a connected Bratteli diagram by the assumption n = 0
(mod N). We label this double sequence as follows:

n
Ci,o
n

^ 2 , 0

n

c

c

c

Q),i
n

Ci,i
n

C2.1

n

c

c

c

G),2 '
n

c l j 2 ...
n

C2,2 •••

n

—> Q),oo

n

n
—» ^ 2 , 0 0

n

Note that Co,o has TV copies of C and that as in Sect. 2, for the inclusions

n n

we use the graph <β/^ and the original connection if / is even, and use the graph
stf^ for the horizontal edges and the graph J ^ ( Λ ) with the orientation reversed'
for the vertical edges and the new connection of / is odd. (The case N = 2 of this
construction appeared in [Ka, Sect. 5], in which case, the original graph is a Dynkin
diagram of type A.)

We can apply p to each Q ? w as a *-algebra isomorphism and denote it by p
again. (Because the connection is invariant under p, the identifications based on the
connection are compatible with this p9 thus this automorphism is well-defined.) Set
Di,m — Cfm, the fixed point algebra under p. Set Dι>oo to be the weak closure of
UwZ)/,m m * t s GNS-representation with respect to the trace and we study double
sequence of Dιm. Because the vertical Jones projections eι for the double sequence
(C/iW) are invariant under p by definition, we get e\ £ DιfOO. An argument as in
Sect. 2 shows that Z)/jOO = (Z)/_i)OO,eμi) and

A),oo C A,oo C D2,oo C £>3,oo C *

is the Jones tower for the subfactor Z)0jOo C A,oo> and

[A,oo>A),oo] = [CΊ,oo>Q),oo] =
sin2f

(This can be regarded as a very special case of the Invariance Principle of
A.J. Wassermann [Wa, page 227] or [GHJ, Lemma 4.7.1].)

Our construction of C/m may look artificial, but we prove that the subfactor
Q,oo C CijOO is conjugate to the original construction.

Proposition 4.1. The subfactor Coj0o C C\fOO is conjugate to the original Hecke
algebra subfactor of Wenzl, and hence the subfactor Doj0o C Z>i,oo is realized as
simultaneous fixed point algebras of the Hecke algebra subfactors of Wenzl by
the ZM-action.
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Proof. It is clear that the original Hecke algebra subfactor is obtained by cutting
G),oo C Ci?oo by the projection in Co,o corresponding to *. In Co,oo> the sequence
of the face operators {Wn} is central for Ci? o o. If we shift this sequence by 1,
we get another central sequence which does not commute with the original central
sequence. So by [Bi], our subfactor Co,oo C C\>oo has simultaneous splittings of a
common hyperfinite II i factor, which is called the relative McDuff condition. This
implies the conclusion. (Also see [P2, page 200].) Q.E.D.

We call these subfactors A),oo C A,oo orbifold subfactors. (This construction is
related to orbifold models in solvable lattice model theory [DZl, DZ2, F, FG, Ko,
Z] and M. Choda's work [C] on duality of graphs.) We would like to compute the
higher relative commutants for this subfactor. By n = 0 (mod N), there is a unique
vertex C in J / ( W ) that is invariant under p and all the vertices A/s have color 0.
Note that the center C is expressed as

(See the following example.)

Fig. 4.1

We would like to show the vertical string algebra sequence

A>,o C A,o C D2,o C Z)3,o

gives the higher relative commutants as in Theorem 3.3 under some appropriate
conditions. For this, it is enough to prove σσf = σfσ for σ € Do^σ' G £>/,o, be-
cause we can apply WenzΓs estimate [We, Theorem 1.6] again to get the reversed
inclusion.

We work in more details on the equality σσf = σ'σ. Let α, β be paths with
the same length on J / ( W ) and with ^(α) = A0,s(β) = Aj,r(a) = r(β) = Bo, where

Bo is some vertex of ^n\ Set pι(B0) = Bι and σ = Σ^i^i^P^β))- ( S e e t h e

following example.)



470 D.E. Evans, Y. Kawahigashi

Fig. 4.2

Note that σ's of the above form span the \}mD^m. Similarly take paths

ct!yβ' with the same length on the graph sί^ without orientation and with

s(oc) =Ao,s(β) = Ak,r(oc) = r(β) — Co, where Co is some vertex of srf^. Setting

pι(C0) = Cι and σf = Y!i~Q{pl(<xf\pl(P)\ we again have that the vertical string
algebra [JmDm$ is spanned by σ"s of the above form.

Thus we have to study under what conditions we get σσ' = σ'σ. We need a
lemma here.

Lemma 4.2. We have the identity

A

1
Aι+k

for paths a, α0 on ^ ( n ) and ζ on

Proof. Without loss of generality, we may assume that / = 0. The equality means
that the string (α,αo) moves to //(α,αo) under the vertical parallel transport from
Ao to Ak. This is so because the face operators move to face operators as in the
proof of Theorem 3.3, the face operators generate the entire string algebra, and the
face operators are invariant under p. Q.E.D.

By embedding σ and σf into the same algebra and using Lemma 4.2, we get
the following two expressions:
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At PM ... —-> Bι

I 1
σ'σ= Σ C, • (p'(a) η,p!+k(β) η'),

p\βf)\

—> '

pl{β)

• * * *

Pί+J(β')

Pl+k(β)

where η,η' are vertical strings with r(η) = r(η'). These imply that the identity
σσ' = σ'σ is equivalent to the following identities.

Q = Q-t

Pl(β')]
—-> — • 5/+^

for all l,η,ηf.
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We change the orientations of vertical arrows of the lower halves of the dia-
grams, take the squares of the difference of the both hand sides of (4.1), and then
take a sum over all η,η'. The equality σσ' — σ'σ is equivalent to this sum being
0. By expanding the summation, we get the following identity. (See [Ka, Lemma
5.2] for this method in the case N — 2.)

A\ P - Λ . . . —• B ι <— ••• t^- At

I 1
Q Q

I I
,<«<#"> j [Af,

+ cί"'I

pkβ) > B[ i P\P) Aι+.

—> ' * —^ Bι+k <—
pl+k(β)

A\ P-^> ••• — > B ι < — ••• <-— A ι + j

P V ) I

I 1
Cι Cι+j

1 i

ι+k f
pι+J(<x) Pl+k(β)
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Aι+j — > - - — > Bι <— <—

I
Q = 0

I

Pι+J(βf) I I Pι(h

— > — > Bι+k <—
Pl+k(β)

By Lemma 4.2, the values of the first and second terms in this expression are
equal to 1. Then equality (4.2) is equivalent to the following identity:

Aι P—^ ••• — > Bι <— ••• 2 — A i + j

R e Cι CM = 1.

PlCβf)

We will show that above equality (4.3) holds under the following assumptions.

Assumption 4.3.

(1) N is odd.

(2) The graph s/^ has no non-trivial graph automorphism fixing *.

Note that the above two conditions hold if TV = 3 and n ^ 9. (See Fig. 3.1.)
(When N = 3 and n = 6, we get a subfactor with index 4, and classification of
subfactors with index 4 is already known by [P4] (see also [IK]), we do not have
to worry about this case.)

We make some comments on the case N = 2. In this case, we only had to work
on a single diagram as in [Ka, Lemma 5.2]. The original graph is An^\ and the
orbifold graph is Az/2+i It was proved in [Ka, Proposition 4.2] that the left-hand
side of (4.3) is 1 if n = 2 (mod 4) and —1 if n = 0 (mod 4). Thus we had flatness
only in the case n = 2 (mod 4). This means that a Z/2Z-obstruction for flatness
appeared in the orbifold process. What we will prove here is that this obstruction
vanishes under Assumption 4.3.
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Asuming that (4.3) is valid, we can compute the principal graph of the subfactor
as the orbifold graph of jrf^ under p. Some examples are shown below for the
case N = 3.

Fig. 4.3
Our proof of equality (4.3) is rather lengthy, so it is divided into the following

steps. First set

Aι B,
p'(β)

,,>!

B,

aξ =
1

Q

I
, h = Cι+j

I
Ah I

Denoting the partition function which appears in the left-hand side of (4.3) by
c, we get c = Σξaξbξ- We prove c = 1 under Assumption 4.3 in the following
steps:

(1) Prove J ^ \dξ\2 = J ^ \bξ\2 = 1 using the Yang-Baxter equation.

(2) Prove \Σξaξbξ\ ~ 1 using (2) of Assumption 4.3 and properties of the
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Jones projections. (This implies ciξ = cbξ for all ξ and |c| = 1 because we
have equality in the Cauchy-Schwarz inequality.)

(3) Using Proposition 1.4, prove c G R, which means c = ± 1 .
(4) Prove c = 1 if B\ — C, the fixed point of /?, using (1) of Assumption 3.2.
(5) Get a contradiction from (4) by assuming c = — 1 for some general case,

where B\ is arbitrary.
The first step is done by Lemma 4.2. Details of the other four steps will be

given in the next section. Note that an induction as in [Ka, Proposition 4.2] does
not work well in our situation because the graph is more complicated than that for
N = 2, the Dynkin diagrams An.

5. Computations of Partition Functions

We will prove c = 1 under Assumption 4.3 in this section. First we need the fol-
lowing lemma.

Lemma 5.1. Let <& be a bipartite unoriented graph with the distinguished vertex
*. Denote the string algebra of strings with length k with the starting point *
by String^^. Let π be an automorphism of the string algebra, π(String^^) =
String^^, with π(e^) = e^ for all the vertical Jones projections e^s. If <$ has only
single edges and *3 has no-nontrivial graph automorphism fixing *, then π(ξ,ξ) =
(ξ,ξ)for all paths ξ.

Proof Because the automorphism π fixes the Jones projections, it gives an auto-
morphism of the graph ^ . By assumption, this graph automorphism is trivial.

We prove the assertion by induction on length of ξ. Suppose that we have
π(ξ, ζ) = (ξ, ξ) for \ξ\ ^ k and we work for ξ α with \ξ\ = k, |α| = 1.

Suppose first that (ξ oc,ξ α) G S t r i n g ^ ek S t r i n g ^ . Then the string
(ξ α, ξ α) can be expressed as a(ξ,η)ek(η,ξ), where \η\ = k,a G C,fl=f=O. By
assumption, π(ζ,η) = b(ξ,η) for some b G C, \b\ = 1, thus we get π(ξ,ξ) = (ξ,ξ).

Next assume that (ξ α, ζ α) fέ Str ing?^ ek String^^. In this case we
get π(ξ>ζ) = (ξ,ξ) because the graph has only single edges and the induced graph
automorphism is trivial. Q.E.D.

Lemma 5.2.

>'<

I 1
Q = o,

Pl(β''Ί
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Proof This easily follows from

Lemma 5.3.

4 M ' ~

1
Aι+k —• —•

Pk(ξ)

where B is some vertex of stf^

Lemma

B

ι<
1
pk(B)

1 and \ξ\

4.2.

A, X

4

i _
= \n

D.E. Evans, Y. Kawahigashi

Q.E.D

. . . —> B

l

1
••• —> pk{B)

Proof We make a sum over η of the squares of the difference between the both
hand sides as in Sect. 4. By Lemma 4.2, we get the sum is equal to 1 + 1 —
1 - 1 = 0 . Q.E.D.

The next Lemma proves step (2) at the end of Sect. 4.

Lemma 5.4. We have \c\ = 1.

Proof. First note that we have the following identity by Lemma 5.2:

I 1
Q

\c\2 =

j

1 I
Ah [ [ Pl+J\h

f

At
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By applying Lemma 4.2 to the horizontal parallel transport from A\ to Aj9 we get
the following.

Ai • > Bι

Λ l

A, — ... »-a B,

l

Λ«)

l

1
ί
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Aι+j > > ΰ\

I Ip*{ξ) I I n

ΐ I " '
Aι+j —> —> B\

Pl(β)

Here \ξ\ = \ξ'\ and we used Lemma 5.3 in the second equality. By this, we get

At

1

i i
Q C,

1 1

= 1

Ah]

ΐ ϊ
c, c,

by Lemma 4.2. Q.E.D.

Now we have α<* = cZ?̂  for all ξ by the Cauchy-Schwarz inequality. Next we
claim that c is real for the step (3).

Lemma 5.5 We get c £ R.



Orbifold Subfactors from Hecke Algebras 479

Proof Choose ξ so that aξ^0. By Proposition 1.4,

c G R εAι ' Λι+Aι+j+k ' Aι+j+k~Aι+k * Aι+k~Aι+j * Aι+j m

Choose J7i,f72>ίijί2 s ° m a ^

Ax A , ... _ c

a — : :

I
Λ / + * — - > ••• — > C

is non-zero. We also set

Aι+j

b= : :

By invariance of the connections under p, we get a = b. On the other hand, if we
apply the above arguments to a and b, we get

I — - £ R . £̂ /

b

This implies c G R. Q.E.D.

Next we have to determine the sign of c. First we assume that Bι = C
for all /.

Lemma 5.6. We get c = 1 if Bt = C for all I

Proof We have aξ = cZ>£, but the fact that the connections are invariant under p
and Lemma 5.3 imply bξ = ap-j^y This produces

= cap-J(ξ) = <?ap-V(ξ) = •" = cNap-NJ{ξ) = cNaξ .

Choosing ξ so that α^φO, we get c^ = 1. Now N is odd by (1) of Assumption
4.3 and c is real by Lemma 5.5, thus we get c = 1. Q.E.D.

Finally we show c — 1, without assuming that 5/ is the fixed point of p.

Lemma 5.7. We get c = 1.

Proof Suppose
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Ai — • — > Bι <— <— Aι+j

P V )

Aβ')

pι+k(oc) PI+k(β)

for some l,k,j\a,β,a\βf. We will derive a contradiction.

Choose a positive integer p large enough so that there exists a path from Bι to
C with length p. Set

Consider the following quantity.

+v)

C/+y ,

P\β')[

Pι+k(β)

where y,γ' are taken from the set K. We compute the value (4.1) in two ways.

On one hand, we take a sum in the way ] ζ y Σ'y, then the value is Σ y (—1) =

— |AΊ by unitarity of the connections.

On the other hand, we get / = y if the diagram has non-zero value, by Lemma
5.2. Thus the value of (5.1) is equal to
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4 > > B > < B < <

p7(

1 1

i i

Bι+k T~* * V " B ι + k

*() k()

We have \K\ terms here and each term is dbl by Lemmas 5.4 and 5.5. But the sum
must be —\K\, which means that all the terms must be —1. But among these \K\
terms, there exists a term for which r(γ) = C by definition of p. For such a term,
the value must be 1 by Lemma 5.6. This is a contradiction. Q.E.D.

Thus we have proved the following.

Theorem 5.8. The orbifold subfactor D0,oo C A,oo defined in Sect. 4 has the higher
relative commutants φk,o)k under Assumption 4.3.

We end with three remarks.

Remark 5.9. For automorphisms of a factor fixing a subfactor globally, P. Loi
introduced an invariant in [Lil], which is an action of the extended automorphism
on the higher relative commutants. He showed that an outer action of Z on an AFD
subfactor of type II i with finite index and finite depth with his invariant trivial is
unique up to outer conjugacy. The result of the second author in [Ka] shows that this
kind of uniqueness fails for Z2 actions on subfactors of type ^4rt_3 because Loi's
invariant is always trivial for subfactors of type An. Furthermore, we can prove that
our Z3 action above also has Loi's invariant trivial. Indeed, Equality (4.3) gives
that the higher relative commutants for the subfactor Coj0o C C\fOO in the double
sequence at the beginning of Sect. 4 is spanned by the elements J^^= o P^(tf), where
σ is any string with the starting vertex A$. The extended action of our p on the
Jones tower is exactly the same as our original p, so it acts trivially on the higher
relative commutants. So our action changes (actually increases) the higher relative
commutants by making the simultaneous fixed point algebras (or crossed product
algebras) while it has Loi's invariant trivial.

Remark 5.10. In [Li2, Lemma 4.2], P. Loi considered a symmetry of finite order
of a paragroup and a fixed point algebra under it and noticed that the higher rel-
ative commutants are computed easily. In his work arising from a classification of
subfactors of type IΠ^, he considers only symmetries fixing * of the paragroup. But
then a new paragroup obtained as a fixed point algebra has a symmetry moving *.
Our symmetry for paragroups of the Hecke algebra subfactors of Wenzl moves *.
Thus our construction here can be regarded as the inverse direction of Loi's work.
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This inverse direction is more interesting and difficult because the flatness is not

automatically satisfied.

Remark 5.11. So far, we have been unable to prove that (2) of Assumption 4.3 holds
for odd N in general with some rather trivial exceptions. But with slight modification
of the above arguments, we can prove flatness for the orbifold construction for
general odd prime N as follows.

In the construction of the double sequence Cβ, we used period N commuting
square sequences in the horizontal direction and period 2 sequences in the vertical
direction. But we have computed the paragroups for the Hecke algebra subfactors
of Wenzl in Theorem 3.5, so we can use the period 2 sequences in both directions
for the double sequence Cjk. Then we lose the Yang-Baxter equation, but we have
a flatness for the original paragroup, so the following weaker version of Assumption
4.3 (2) is enough for the arguments in Sect. 4.

(2)' The graph sί^ has no non-trivial graph automorphism with order

N fixing *.

If N is odd prime, then one can easily prove this (2)' by induction, and we get

flatness for the orbifold construction in these cases, which produces several new

series of orbifold subfactors.
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