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Abstract: We derive an ODE for the macroscopic evolution of a tagged particle in
models such as asymmetric simple exclusions and zero range processes. The
right-hand side of the ODE is discontinuous and its solutions are understood in the
Filippov sense. We establish the uniqueness of the ODE, and explore its relation-
ship with the hydrodynamic equation of the particle density.

1. Introduction

Imagine that every particle in a fluid moves with the velocity b(x, t). In other words,
if x(t) is the path traversed by a particle in the fluid, we have

dx

— = b(x{t),t). (1.1)

If no particle is destroyed or created, one derives the transport equation

df + div(bp) = 0 (1.2)
ot

for the macroscopic particle density p(x, t).
In general one needs to employ the other conservation laws, such as the

conservation of momentum and energy, to determine the velocity field b. If,
however, the total number of particles is the only microscopically conserved
quantity, it must be possible to express the velocity in terms of the particle density.
In this case (1.2) would look like

^ 0 (1.3)
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for a vector valued function F and, as a result,

There is a class of particle systems for which an equation like (1.3) has been
derived and we would like to derive an equation of the form (1.1) for the evolution
of each particle in the system.

The Simple Exclusion Process (SEP) is one of the particle systems for which we
will derive Eq. (1.1) with F(ρ) = γp(l—ρ) and b(x,t) = γ(l—p(x,ή), where γ is
a constant vector and p(x, t) is a solution to (1.3).

Roughly speaking, SEP is a continuous time particle system in which
particles move as random walks on a d-dimensional lattice but are excluded from
occupying the same site. The precise definition of SEP will be given in the next
section.

If the system consists of a single particle, it moves as a simple random walk with
mean γ. The Law of Large Numbers for a simple random walk implies that L" 1

times the position of the particle at time tL converges to x(0) + ty, as L goes to
infinity. Here x(0) is the initial macroscopic location of the particle. In particular
this suggests scaling time by a factor of order L and scaling space of order L" 1.
If the system consists of a large number of particles that has, after the same space
and time scaling, a macroscopic particle density p(x, t) then, because of the
exclusion rule, the speed of a tagged particle in the system will slow down to

y(l-p(χ,f))
Zero Range Process (ZRP) is another particle system for which Eq. (1.3) has

been derived with F(ρ) = yh(ρ\ where γ is a constant vector and h is a scalar valued
function. In this model particles move on a lattice where the rate of each jump
depends on the occupation number of the site the particle is jumping from, and the
location of the site it is jumping to. See [10] and references therein.

It is well known that Eq. (1.3) does not in general possess globally defined
smooth solutions. The nonlinearity of F leads to the development of discontinuities
in the solution.

It is necessary to interpret (1.3) in the distributional sense. Since there are
infinitely many distributional solutions to (1.3) that share the same initial data,
some additional conditions to the solutions are needed to ensure uniqueness.
Kruzkov [7] proposed the following entropy criterion: for every pair (φ, q) with
φ convex and q satisfying φfF' = q\ we assume

jtΦ(p) + div(q(p))S0 (1.5)

in distributional sense. We will say a solution p is an entropy solution if (1.5) holds
for all pairs (φ, q).

The discontinuity of b(x, ί), inherited from p(x9 i) poses the problem of
nonuniqueness for the initial value problem (1.1). A solution to (1.1) is understood
in the Filippov sense [3]: an absolutely continuous function x is a solution if for

almost all ί, —(ί) is between the essential infimum and the essential supremum of
at

b at the point (x(ί), t). See Sect. 2 for more details.
In Sect. 5, the precise form of b(x, t) as in (1.4) will be used to establish the

uniqueness of (1.1).
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We will assume that particles are initially located independently on the lattice.
If the macroscopic particle density is po(x\ then the probability density of the
position of each particle must be c po(x), where c is the normalizing constant.

The main result of this article asserts that the macroscopic evolution of a tagged
particle satisfies (1.1) with the random initial condition

Prob.

If the particles move on a one-dimensional lattice and they are allowed to jump
to adjacent sites only, we strengthen our results by deriving (1.1) with initial
condition x(0) = a, for a tagged particle that is conditioned to start from a. For this
we also assume that the initial density po(x) is positive in a neighborhood of a.

If in any of the above systems the particles are initially distributed according to
an equilibrium measure, then p(x, t) is a constant and in the case of SEP, the
problem was treated by Kipnis [5] and Saada [13,14]. They prove the law of large
number for the position of the tagged particle even if the particle is conditioned to
start from a fixed point.

We expect that the microscopic evolution of the tagged particle fluctuates
around the solution of the ODE (1.1) and one usually writes

dx 1
— = &(*, ί ) + — £ ( ί ) (1.6)

Λ./ -*•"'

to model such fluctuations, where ξ is the time derivative of some inhomogeneous
diffusion.

If in SEP we assume that the particles jump as symmetric random walks, then
the ODE vanishes (y = 0) and so simplifies the fluctuation problem. In this case the
problem was treated by Kipnis and Varadhan [6], assuming the model is in
thermal equilibrium. The nonequilibrium case was studied in Quastel [9] and
Rezakhanlou [11].

An important feature of ODE (1.1) is that for almost all ί, a solution will avoid
the discontinuity points of the density p, providing p is positive at that point.

It is well known that if p0 is in the class of functions of bounded variation, BV,
then p is also in BV and therefore the discontinuity set of p can be embedded in
a countable collection of rectifiable curves. The discontinuity set of p is called the
shock set.

It is of interest to study the microscopic structure of the shock set. In [12] we
derive an ODE of the form

ft=F'(p(y,ή) (1.7)

for the evaluation of a second class particle for some of the models discussed above.
For the definition of the second class particles and related results, see chapter 6 of
[16]. We will see in [12] that a Filippov solution to (1.7) follows either a character-
istic line or a shock of (1.3).

The organization of this paper is as follows: Sect. 2 is devoted to the statement
of our main results. In Sect. 3 and 4 an equation of the form (1.2) will be derived in
connection with the two-dimensional marginals of x(t). In Sect. 5 the uniqueness of
(1.1) will be established. In the last section the proof of our main results will be
presented.
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2. Notation and Main Results

The primary purpose of this section is the statement of the main results. We start
with the definition of the so-called processus misanthrope that includes the SEP and
ZRP.

Let (p(z): zeZd) be a probability density function of finite range. That is,

p(z) = 0, i f | z | > r ,

for some fixed r. We assume p(z)+p(—z) is irreducible, i.e.

Σ (p*"(z)+p*"(-z))>0.

Let &:N xN->[0, oo) be a bounded function with the following properties:

(i) fc(0, ) = 0

(ii) nι-*ft(n, m) is a nondecreasing function for each m

(iii) m\->b(n, m) is a nonincreasing function for each n . (2.1)

Given p and ft we define (f/f(w): ueΈd) as the unique Feller process with state
space £ = N Z ' and the infinitesimal generator Jδf, where Jδf acting on cylinder
functions, is defined by

&M= Σ P(v-u)b(η(u), η(v)) (f(ηuv)-f(η)), (2.2)
U, V

where
f^(tί)—1 if z = u

ηuv(z)=}η(υ) + l iϊ z = v

provided η(u)^l and u + v;ηUyV = η otherwise.
Formula (2.2) says that at transition times of the Markov process ηt, a particle

jumps from site utov with a rate equal to b(n, m), where n is the number of particles
at site u and m is the number of particles at site υ. To study the evolution of a tagged

particle, we assume that each particle at site u jumps with the rate — - — so that

the total rate of a jump from u to v is b(n, m).
Since the Markov process η keeps track of the occupation number of each site

and not the location of each particle, it is necessary to define a new Markov process
x that will provide us with the exact location of each particle in the system.

If the total number of particles in the configuration η is finite,

N = Ση(u)<co ,
u

we label particles from 1 to N, and we write xf(r) for the location of the ίth particle
at time t. Hence the state space is

J V = 1
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We also define the transformation

by TUz(xί . . . xN) = (yx . . . yN), where j/^X + z, and y, = X/ for j + L
We define the Markov process x(ί) as the Feller process with the infinitesimal

generator

) = X p(z) —— (/(T/t zx)-/(x)) , (2.3)

where
η(x;u) = {#i:xi = u} (2.4)

for every x = {xχ . . . XN)^E, and
It is not hard to see that 77 defined by (2.4) is also a Markov process with the

infinitesimal generator (2.2). To be more precise, if/ in (2.3) is merely a function of
the occupation numbers η, then <&f= S£f.

Some restrictions on b are needed to ensure that the invariant measures of the
process η are of simple form. For example we formulate conditions that guarantee
product measures are invariant.

Let g: N->[0, 00) be a given bounded nondecreasing function with #(0) = 0. For
such g, and any given λe[0, suρk g(k)) we define a probability measure Θλ on N by

Θλ(n) =
g(\) . . . g(n)

if n + 0

if n = 0 ,

(2.5)

where Z(λ) is the normalizing factor. Set

ΨW= Σ
Then

is strictly increasing, and

<p:[O,sup0(fc))->[O,oo)
k

lim φ(λ)= +00 .
A^sup fe g{k)

The inverse of φ is denoted by λ(-) and let Θp = Θλ(p). The probability measure vp is
obtained by taking the product of Θp,

so that vp(η{u) = k) = Θp{k), We certainly have

λ(p). (2.6)

For a given b as in (2.1), we assume that there exists a bounded nondecreasing
g such that

b(n9m-l)g{m) = b{m,n-l)g(n) (2.7)
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for rc, m ^ 1. We also assume

b(n9 m) - ft(m, n) = b{n, 0) - 6(m, 0) (2.8)

for n, m^O. The conditions (2.7) and (2.8) imply {vp: O^p < oo} are invariant with
respect to if.

If we choose b(n, m) = g(ή) we obtain the ZRP. In this case the rate of the jump
from u to v does not depend on the occupation number η(v). Note that if
b(n, m) = g(ri) both (2.7) and (2.8) are satisfied.

If we choose

, , . ί l if π = l , m = 0

(0 otherwise ,

and restricting the process η to {0,1}Έ\ we obtain the SEP. In this case there is at
most one particle per site. We also restrict the x-process to the set of configurations
x = (x1 . . . xN) with XiΦx; if zφj. The rate function in (2.3) can be written as

η(x; xt)

For the SEP, the invariant measures are {vp: ρe[0,1]}, where each vp is a product
measure with marginals Θp, where

—p if fc = 0 .

We now describe the type of initial distribution that we will consider for the process
x(ί).

Notation 2.1 Let μL be a sequence of probability measures on E and let
po:ΊR.d^[0, oo) be a bounded integrable function. We then write μL~p0 if the
following conditions hold:

(a) μL is symmetric. For each N and every permutation σ

= μL{(xσι . . . xσN)} .

(b) μL is a product measure.

(c) There exists a sequence pUt L such that

μL(η(x; u) = k) = θp' L(k),

lim J \ρ[xL],L
L->-oo |x|^/

for every positive /. ([xL] denotes the integer part of xL) / \
Note that if ρ0 is continuous, we may choose pu,L = Po[ γ I f° r

We define the constant vector γ as the mean of p, ^ ^

γ= Σzp(z),
z

and the scalar valued function h as the average of b with respect to the invariant
measure vp;

) = $b(η(u)9η{v))v>(dη)9 u±υ . (2.9)
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Since vp is a translation invariant product measure, the right-hand side of (2.9) is
independent of u and v.

In the case of SEP, we have h(ρ) = p(l — p), and in the case of ZRP we have

Let p(x, t) denote the unique entropy solution of

^ + y.Vh{p) = 0
dt V F ; . (2.10)
p(x,0) = po(x)

Here the initial condition is understood in the following sense: for each /,

lim J \p(x9 t)-po(x)\dx = 0 .
t-0|x|£/

A bounded integrable function p is an entropy solution of (2.10) if (1.5) holds for
every entropy pair (φ, q) with F given by F(p) = yh(p).

Let PL denote the distribution of the process x(ί) with the initial distribution μL.
In [10] we proved

Theorem 2.2. For every bounded continuous function J, and every t ^ 0,

lim J
L-* oo

(2.11)

It follows from our assumptions on the initial distributions μL that (2.11) holds
initially with p(x, ί) replaced with po(x). Thus Theorem 2.2 asserts that (2.11) also
holds at later macroscopic times with the density profile p(x, t) that is the unique
entropy solution of (2.10).

Note that the symmetry property of μL (part (a) in Notation 2.1) is redundant
for Theorem 2.2 because the expression

H/(τx'm)
is already symmetric. The symmetry property will however play an important role
for the proof of Theorem 2.7 below, that concerns the macroscopic behavior of
a tagged particle xf(ί).

Let φlp) be defined by

Φ(P) = { P (2.12)

fc'(O) if p = 0 .

Since h is smooth, it is not hard to see that ψ is also smooth. Define

b(x,t) = ψ{p{x,t)). (2.13)

Throughout this paper we assume any of the following assumptions:

Assumption 2.3. The initial density p 0 is of bounded variation in the direction γ:

Vary(po) = sup j f- dx<oo .
|r|>0 lrl
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Assumption 2.4. h is uniformly convex. That is, there exists a <5>0 such that
h"{p)^δ foτ all p.

It is known that Assumption 2.3 implies p, as a function of (x, £)> is also of
bounded y-variation. Indeed

sup f l p ( * + n γ + * ) P ( * , 0 1 , χ < V a r ) ί ) o _ ( 2 1 4 )

|r|>0,s>-ί Kl+5

If (2.14) holds, we say p is in BγV. If, for example, y = (1,0, . . ., 0), (2.14) implies that
p, as a function of x 1 and ί, is of bounded variation.

It is also known that under Assumption 2.3, there exists a constant C = C(δ)
such that

P(x + i7,ί)-p(x,ί)^cΛ+yV (2.15)

for every x = (xx . . . xd)eWLd, and every r, r>0.
See Smoller [15] for (2.14) and (2.15). Let us mention that (2.14) and (2.15) are

stated in [15] under the assumption d= 1. To establish (2.15) in our case, we note
that y, the only nonscalar part of the flux, is constant. So, for example, if
y = (1,0, . . ., 0), is the unit vector parallel to the x1-axis, one can solve (2.10) by
fixing x 2 . . . xd, and solving it for x1.

The main object of this article is to study the asymptotic behavior oϊjx^tt) as
L goes to infinity. We claim that the limiting behavior of each particle is governed
by the evolution of (1.1) where the initial condition is random and b is given by
(2.13).

As we mentioned earlier b is discontinuous and we interpret (1.1) in the Filippov
sense. Define

(ess lim sup b) (z) = lim inf sup b(z'),
δ^O |M| = 0 z'eBό(z)-M

where | | denotes the Lebesgue measure, the infinum is over all sets of zero
Lebesgue measure, and Bδ(z) denotes the ball of radius δ an center z = (x, t).
Similarly we define

(ess lim inf fc)(z) = (ess lim sup ( — b))(z) .

Definition 2.5 A Lipschitz function x: [0, Γ]-*IRd is a solution to (1.1) in Filippov
sense if for almost all t,

— e [(ess lim inf b) (x, ί), (ess lim sup b) (x, ί)] . (2.16)
at

Under Assumption 2.3, p is in ByV, therefore b is in ByV. In particular, if d= 1,
one can modify b on a set of zero Lebesgue measure such that

b + (x, t) = lim b(y, ή, b~ (x, t) = lim b(y, t)

exist for every x, t. Similarly we define ρ+ and p~. Hence, one can replace (2.16) with

~elb+ Λ6"(x, t), b+ ViΓ(x, ί)] , (2.17)

at
where b+ f\b~ denotes the minimum and b+ Vb~ denotes the maximum of b +

and b~.
Our first theorem treats the uniqueness problem for Eq. (1.1).
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Theorem 2.6. There exists at most one solution x(t) of the initial value problem

Έ=b(x>ή

x(0, a) = a .

Moreover for almost all ί, either p+(x(t), t) = ρ~(x(t), t), or p+(x(f), t) +
p~ (x(ί), t) and p+ (x(r), t) p~ (x(ή,t) = 0.

The proof of this theorem will be given in Sect. 5.
Since b is a product of a constant vector and a scalar function, it suffices to

prove Theorem 2.6 under the assumption d=l.
Let x(ί, a) denote the unique solution of (2.18). Let 3 = 3([0, oo), R d) denote

the space of right continuous functions with left limit that have values in IRA 3 is
endowed with the skorohod topology, and as before PL is the distribution of the
process *(•)• Let

yitL{t) = ̂ Xi(tL) (2.19)

and let the probability QL denote the distribution of J^L'S. We view QL as
a probability measure defined on 3.

Let R denote the probability law of x( , a) with a distributed according to

R(aeA) = Scpo(x)dx, (2.20)
A

where c is the normalizing constant

c ~ 1 = ί ρo(x)dx .

The main result of this paper identifies R as the asymptotic law of the
sequence QL.

Theorem 2.7. Under Assumption 2.3, we have

Γ f 1 V U Λ

l im — ) j(Vi) —

/or every continuous function J:<2ι-*WL.

(2.21)

The proof of this theorem will be given in the last section.
In the language of [17], Theorem 2.7 says that the sequence QL is R-chaotic.
Let Jί(β) denote the space of probability measures on 3). One can regard

XN=^ΣδyitL as a sequence of ,y#(^)-valued random variables, and (2.21) asserts
that this sequence converges in law to a constant random variable R.

Indeed it is known that a statement like (2.21) is equivalent to the following
([17], chapter 1): if Jλ . . . J f c :^->IR are k continuous functions then

lim I j^y,)... Jk(yk)QL(dy)= Π ί Ji(y)*(dy)
iV->oo i = l

As we mentioned earlier, the symmetry of μL plays an essential role in the proof
of the previous theorem. In the case of SEP with d=l, and if only the nearest
neighbor jumps are allowed, the symmetry assumption can be relaxed.



10 F. Rezakhanlou

Assumption 2.8. d=l, a n d p ( ) p ( )

Let QL be as in Theorem 2.7, and let Qα denote the measure QL conditioned
such that the first particle starts from the site [aL~\:

Theorem 2.9. In the case of SEP and under Assumptions 2.8 and 2.3, we have

l i m j -
L->oo ^

providing
a±ε
j po(x)dx + 0
α

/or f̂̂ ry ε > 0.

Theorem 2.9 and a variant of Theorem 2.7 (under Asumption 2.4) will be
established in Sect. 6.

3. Hydrodynamic Equation for the two color problem

To analyze the two-dimensional density of xh we consider

Σ l ( ^ (3.1)

where Jl9 J2 are two measurable functions. We may choose Jx (x) = tA(x\ where A is
a measurable subset of Rd, and J2 a smooth function of compact support. For ease
in notation let yUL(t)=^Xi(tL\ and suppose t2>t1. We can write (3.1) as

where the sum is now over i for which yUL{tχ)eA. We paint the ith particle blue if
yi,L(h)£A and we paint the remaining particles white. If we denote the density of
the blue particles by m(x, £), we have

m{x,tl) = p{x,tl)1ίΛ(x)

and p(x, t) — m(x, t) would be the macroscopic density of the white particles. Let ζt,
ξt denote the occupation number of blue and white particles respectively. It is not
hard to see that (ζ, ξ) is also Markov process with state space

and the infinitesimal generator

The main object of this section is to derive a hydrodynamic equation for the
density m(x, t).
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To prepare for this, we start with some definitions. Let αL(ί, dx)=γd

δa(dx\ i.e. if J is a smooth function

Initially the process (ηu ζt) is distributed according to the probability measure
yL(dη, dζ) such that the ^/-marginal of yL is a product measure as in Notation 2.1
while the ^-marginal is chosen such that for every smooth function J,

lim J
L->oo

1
yL{dη,dQ =

for some measurable function mo(x)Sρo(x). Hence mo(x) represents the macro-
scopic density of the blue particles at time t = 0. Let SL be the law of αL; SL is
a probability measure on the Skorohod space Z)([0, oo); Jί(WLd) where Jί(lSLd)
denotes the space of Radon measures on IRA We will show

Theorem 3.1. (a) {SL} is tight, (b) IfS is any limit point of{SL} then S is concentrated
on the set of measures α(ί, dx) such that

α(ί, dx)«dx

and if(x(t, dx) = m(x, t)dx, m(x, t) satisfies

—m{x, , t)m(x91)) =

where b is defined by (2.13).

The proof of this theorem will be given at the end of this section.
In the case of SEP, the Bernoulli measures are invariant. More precisely, for

every pair (pi,p2) with Pi,p2, p1-\-p2e[0,1], define the product measure vpuPl

such that

Then the measure vPuP2 is invariant for si.
In general, for every pair (λu λ2), we define

@λίiλ2(ku ^i) — T 7 Γ , V \ Ί T \ 7 7 7 , , , J

where k = k1+k2 and Z(λu λ2) is the normalizing factor. Θ is a probability measure
o n N x N .

Pi= Σ kiΘλuλ2(kuk2), and
kk

First we observe

Pi= Σ
kuk2

k% g{\). . . g{k) kt\ k2l
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We certainly have

dZ

Here Z = Z(λί9 λ2). Therefore

*i =—A(p) , (3.3)

where p = Pι + p2. We now define

with λί=— λ{p) and λ2=—λ(p). We also take vPl>p2 to be the product of θPl-p2:
P P

It is not hard to see that vpuPl are invariant with respect to si.
The main ingredients for the proof of Theorem 3.1 are the following

lemmas.

Lemma 3.2. For every u, v with uφv, we have

η(u) η U ' ' p Pl '

Proof. Set ζ(u) = nu ξ(u) = n2, ζ(v) = m1, ξ(v) = m2, ni+n2 = n, rn1+m2=m, λλ =
Ai(Pi, Pi)> λ2 = λ2(pu Pi\ Then the left-hand side of (3.4) equals to

1 „«! λnΐ λnf n\ λ^ λψ ml

Z2(λu λ2) ^ n H'm 0(1) . . . g(n) ntl n2l g(ί) . . . g(m) m j m2! '

where the sum is over nu n2, mx and m2. On the other hand

2^ —λι'λ2

2

Wi! n2l

which follows from the identity

(3.5)

after differentiating with respect to λγ. Therefore the left-hand side of (3.4)
equals to

ml
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Using (3.5) with n replaced with m, and using Z(λl9 λ2) = Z(λί+λ2), we can write
that the sum equals to

Z2(λ1 + λ2) g(l) . . . g(n) g{\) . . . g(m) λ1+λ2

= T^trib(η(u)9η(Ό))vp{dη)
λ1+λ2

λiip)

which equals to ̂ h(ρ) by (3.3). •

Lemma 3.3 (One block estimates). Let yL be a sequence of probability measures
satisfying the properties mentioned in the beginning of this section. Then for every
local function f (depending on finitely many coordinates), every test function J of
compact support and every t0 > 0, we have

to

lim lim J J
l-*co L->oo 0

1

ξ { v )

veTι(u) \IlW\veTι(u)

yL(dζ,dξ)dt = O, (3.6)

where ?(pup2) = jf(ζ,ξ)vpί>p2(dζ,dξl Γ,(M) is the d-dimensional cube in TLd with
center u, side length /, and volume \Tι(u)\, and τu denotes the space-shift.

The proof of this lemma is the content of the next section.
While Lemma 3.3 establishes some type of law of large numbers for the (ζ, ξ)

configurations at the microscopic level, the next lemma deals with the fluctuations

of the microscopic densities — - — X^^ΛΛ ηtL(v) on a macroscopic scale.

Associated with a configuration ηtL, we define the Young measure π L ' ι by

j Φ(x, 2)πL' % dx; dλ) = ̂ j Σ φ f e MTι{u) (ηtL)

The map ^ i L

| -^(^ L ' ι ) induces a probability measure 0lu ι on X, where X is the space
of measurable maps from [0, oo) into the space of Radon measures on R d x R + . It
is not hard to see that the sequence {&LJ} is tight as a sequence of probability
measures on X. First we let L go to infinity. Let {&1} be a sequence of limit points.
Then we let / go to infinity. Let M be any limit point. The following lemma can be
found in Sect. 5 of [10].

Lemma 3.4. For almost all π with respect to &, we have

j" Φ(x, λ)π(t, dx; dλ) = l Φ(x, p(x, t))dx ,

where p is the unique entropy solution o/(2.10), and Φ is any continuous function.

Symbolically this can be written as

π(ί, dx; dλ) = δp^ f)(dλ)dx .



14 F. Rezakhanlou

Proof of Theorem 3J. (a) Let J be a smooth test function. It is not hard to see

h

+ MtL, (3.7)

where M,L is a martingale with the quadratic variation

= 01 '

0 const.
E SUp M f

2

L^—ppy-

{Ld+1

By Doob's inequality

for every fixed ίo This and (3.7) implies

lim lim PLI sup >ε \ =

for every positive ε. This implies the tightness of the sequence QL.
(b) The absolute continuity of α with respect to the Lebesgue measure follows

from ζ ̂  η. Indeed the measure

converges to a measure that is absolutely continuous with respect to Lebesgue
measure and its density is p(x, t). Therefore

α(ί, dx)^ρ(t, x)dx

and this implies α is absolutely continuous.
Now let J:[0, oo) x Rd-^IR be a smooth function with compact support. Set

Since J has compact support, we have

MtL = J \§- B(s, Q + (Λ?B) (5, ζ., ξj\ ds + B(0, Co) (3.8)

o L δ s J

is a Martingale for large t, and its quadratic variation is

<M>(L = f (^B 2 - IBstίB) (ηs, ζs)ds .
0
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As in part (a), we have
lim EL sup MfL = 0 , (3.9)

L-*OO 0<:t<ίt0

for every t0. On the other hand the right-hand side of (3.8) equals to

(3.10)

with rL an error of order O(j). We know from Lemma 3.2 that the local function

^ (3.11)

in the second term can be replaced by its average with respect to the invariant
measures. Note that (3.11) in the case of SEP would look like

ζ(u)(l-η(u + z)).

In any case the average of (3.11) with respect to the invariant measure with

densities ρλ and ρ2 = p — pi equals to px. For simplicity we write G(ρ, pi) for

pγ. Now we can write the second term in (3.11) as
P

ijlΣ P&z V J ( s> f) G(MΓ|(ll)fo), MTl{u)(Q) + r>Ltl, (3.12)
0 ^ u,z \ L)

where r'LΛ goes to zero in probability if L goes to infinity and then / goes to infinity.
Our next goal is to replace Tt{u) in (3.12) with TLε(u).
First we define the Young measures πLJ(t, dx; dλ, dλj by

for every test function Φ. The elementary inequality

implies that as L-^oo, Z-»oo, the weak limits of the distributions of π L ' z are
concentrated on measures π(ί, dx; dλ, dλx) of the form

π(ί, dx; dλ, dλ1) = π(t, x; dλ, dλx)dx .

On the other hand Lemma 3.3 implies for almost all (ί, x\ the measure
π(ί, x; dλ, dλi) is concentrated on the set {p(x, t)} x [0, oo). This immediately
implies

J -y^ ^! π(ί, x; A rf/lx) = b{x, ί) J ^ π(ί, x; A dλi) = ft(x, ί) m(x, ί ) .
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This, (3.7) and (3.9) imply

lim limsup SL{x:\v(L, ε; J)\>δ}=0

for every positive δ, where

00 dJ
v(L, ε;J)=j J ~^~(

o vs

0

and this completes the proof of (b). •

4. One Block Estimates

In this section we shall prove Lemma 3.3. The idea of the proof is to show that the
distribution of (ζtL, ξtL) is close to a mixture of invariant measures for large L. This
can be done by showing that the entropy production of the process at time tL,
divided by the number of sites Ld, goes to zero. In fact we will show that the entropy
production per site is of order ±. Although a bound of order ^ is enough to prove
Lemma 3.3, it is not good enough to prove something like Lemma 3.3 for the
process ζ. Fortunately our hydrodynamic equation (2.10) is linear in "m" and only
nonlinear in p, so one block estimates for (ζ, ξ)9 and two block estimates for η will
provide us with all the necessary estimates.

The idea of the proof is not new. In the pioneering work of Guo et al [4],
entropy techniques were used to prove results of the type Lemmas 3.2 and 3.3.

By finite speed of propagation, we only need to prove Lemma 3.3 in the periodic
case (see for example Lemma 5.7 of [10]). In other words we assume yL(dη, dζ) has
a density fL(dη, dζ) with respect to vPup2{dη, dζ) that is periodic. For simplicity we
assume that fL and vPup2 are defined on the periodic lattice S i =
{u = (uι . . . ud)eΈd:UieSL}, where SL is the interval [0, L] with 0 and L identified.
We further assume that the entropy per site is bounded:

(4.1)
L L

for some constant C. Here vL denotes the periodic invariant measure.
Let// be the solution to the forward equation

dtfl = ̂ *fL (4.2)

where jtf* denotes the adjoint of j / with respect to vL. If initially (ζ, ξ) is distributed
according to the probability measure fLdvL, then at later times it is distributed
according to f[dvL. An easy computation leads to

δt \fllogfldvL = j log fl tf*fldvL . (4.3)

It is well known that the entropy is nonincreasing in time. Therefore

(4.4)
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for every density/- Equation (4.3) and the entropy bound (4.1) imply

^tL\\ (4.5)

If p1(z) = min(p(z), p( — z)) is irreducible, one can prove Lemma 3.3 by standard
arguments. More precisely, let us write p(z) = pί(z) + p2(z) for some p2(z)^0. Let
«$/l5 s$i denote the corresponding generators with p(z) replaced with pγ (z) and p2(z)
respectively. Then (4.4) holds for stu and $t2. Thus (4.5) implies

Since p1 is symmetric and irreducible, we can apply the arguments of [4] or
[16] (chapter 3) to deduce Lemma 3.3.

The general case can be treated with the help of some large deviations type
estimates.

Let ΓL(fL) denote the law of the process (C, ξ) such that initially it is distributed
according to vL(yL). We certainly have

- ^ ( U ) = / L ( C O , £ O ) , (4.6)

dΓL

where the left-hand side is the Radon-Nikodym derivative evaluated at (£, ξ), and
the right side is a function of (£0, ξ0) only.

Let FL denote the integrand of (3.6). Then (3.6) can be written as

lim lim sup J J FL(ζsL, ξsL) ds dΓL (ζ, ξ) = 0 . (4.7)
ί->oo L->oo 0

Now using the entropy inequality and (4.6) we have

ί ϊ° FL(ζs, ξs) dsdΓL(ζ,ξ)£~SfL log/L dvL
o α L

for every positive α. Therefore, it suffices to show

lim lim sup ̂  log f exp ( aLd jf FL(ζsL, ξsL) ds) dΓL (ζ, ξ) = 0 . (4.8)

Let «5̂  = i(j2/ + j2/*). In Lemma 4.1 below we show that the left-hand side of
(4.8) is bounded above by

lim lim sup sup | J uFLfdvL—L$L(f) | , (4.9)
1-+CO L-* oo f

where the supremum is over densities/such that $fdvL= 1, and

Now we apply the arguments of [16], chapter 3 to conclude (4.9) is zero for
every α positive.
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Lemma 4.1. For every function F and every ί > 0 , we have

expfj F(ζa9 ξs)ds) dΓL(ζ, ^ s u p Γ f FfdvL-SL{f)λ . (4.10)
\o / / L J

Proof. Let J / F denote the infinitesimal generator defined by

where Fu is the product of F and u.
Let Γf denote the semigroup generated by sίF. Then

ξo) = £(^ίo)eJίF(fo,ίo)Λ 5 (4.11)

where 11 denotes the constant function and £ °̂>£o) denotes the expectation with
respect to the distribution of (£, ξ), conditioned to start from (ζ0, ξ0) at time ί = 0.
Let u(ζ0, ξ0, t) denote the left-hand side of (4.11). By semigroup theory

Therefore

dt j κ2(ζ0, ξo, t)dvL{U ξ*) = 2\ u^udvL + 2^ Fu2

Let λF denote the term with the supremum. Hence

Thus

I udvL^e2λpt .

and this is simply (4.10). •

5. Uniqueness

This section is devoted to the uniqueness question for the ODE

— = b(x9t) for t>tCh and

and the PDE

'mt + (b(x9ήm)x = 0 for t>tθ9 and

where (5.1) is understood in Filippov sense and (5.2) is understood in the distribu-
tional sense.

As before
b(x,t) = φ(p(x,ή), (5.3)
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where p is the unique entropy solution of

where ψ is given by (2.12), i.e. if p + 0,

Here, for simplicity, we have assumed y = l, and d=ί. The general case can be
treated analogously.

Throughout this section, we assume that p is in the class BV, and poeZ/nL00.
Our main lemma toward the uniqueness problem of both (5.1) and (5.2) asserts

that if x(t) is a solution to (5.1), and m is a solution to (5.2), then

x(t) x{t0)

J m(y,t)dy= j m(y, to)dy . (5.5)
— oo — oo

It is well known that for a function in BV, each point is either a point of
approximate continuity or a point of approximate jump discontinuity, with the
possible exception of a set of zero 1-dimensional Hausdorff measure.

At a point of approximate continuity, we have

limS'2 j \p(y,s)-p{x9t)\dyds = O, (5.6)
δ->0 Bό(x,t)

where Bδ(x, t) is a ball of radius δ, centered at (x, t). At the jump point there are two
distinct values p±(x, t) and a unique direction v such that

lim <Γ2 J \p(y, s)-p±(x, t)\dyds = O, (5.7)
<5-0 Bδ(x,t)nH±

where
# v

+ - {z: zeR 2 , (z - (x, t)) v ̂  0}
and

See Zeimer [18] for a proof.
Let b+(x, ή = ψ(p±(x, ή). After modifying p o n a set of zero Lebesgue measure,

we can assume that for almost all t

\ and

exist for all x. Note that here we used superscripts but in (5.7) we used subscripts.
We define

U(x9 t) = msix(ψ(p-(x91))9 ψ(p + (x, ί))),

L(x9 ί) = min(^(p-(x, ί)X Ψ(ρ + (*, 0)) ,

ιι(x, i) = max-Wr(p-(x, ί)), ̂ (p + (x, ί))),

l(x9 ί) = min(^(p_(x, ί)), ̂ (p + (x, ί))) .
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Filippov [3] shows that for every x0, there exists a Lipschitz function x( ) such
that x(to) = xo, and

^ K (5.8)

for almost all t.
For our purposes we need a solution such that for almost all t,

dx
— e[i(x(i),t),"(x(0,0].

Note that since I and u are well defined on the complement of a set of zero
1-dimensional Hausdorίf measure, l(x(t\ t) and u(x(t\ t) are well defined for almost
all ί.

The following lemma implies that (5.8) always implies (5.9).

Lemma 5.1. Suppose x: [0, Γ]—>1R is any Lipschitz function. Then for almost all ί,

C/(x(t),ί) = u(x(t),ί),

L(x(ί),ί) = /(x(ί),ί). (5.10)

Proof. Stepl: Since b is in BV, we have

l i m _ L J b(y9s)dyds=Uu(x9t) + l(x9t)) (5.11)
ύ Bδ{x,t) Z

l i m L
5^0 π ύ

for every (x, t) that is either a point of approximate continuity or approximate jump
discontinuity (see [18]). In particular the set of points at which (5.11) does not hold
is of zero 1-dimensional Hausdorff measure. Therefore

lim —2 J b(y9 s)dyds=-(u{x{t\ t) + Z(x(ί), ί))
δ^0πo Bδ(x(t),ή l

for almost all t.
By boundedness of b we have

h 1 V2

lim J —2 J b(y, s)dydsdt=-§ (u(x(t\ t) + l(x(t\ t))dt. (5.12)

5̂ /7 2: Let yl denote the left-hand side of (5.12). By Fubini's theorem

,4 = lim $b(z)Hδ(z)dz,

where

where | | denotes the Lebesgue measure.
Let Γo = {(χ(ί), ί): tx ύ tύ h}9 and

Γδ is simply the set of points in the δ-vicinity of the set Γo. We can write Γδ as the
union of x-intervals Iδ(t) for each ίe^OS), t2{δ)'], where [ίi((5), ί2(^)] is the projec-
tion of the set Γδ on the ί-axis. Since t1(δ), t2(δ) are close to t1 and t2 respectively,
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we have

v4 = lim J J b(x, t)Hδ(x, ήdxdt .
a-o t! iδ(t)

Step 3: The midpoint of each interval Iδ(t) is the point x(t). For almost all t, b( , ί)
is in BV, and the left-hand and right-hand limits exists at every point x. One of the
limit is L(x, ί), and the other is U(x, t). We can write Iδ(t) = Iδ(t)κjIδ~(t% where

Therefore

j Hδ(x, t)b(x, t)dx= U{x(t)9 t)HΪ{x(t), t) + L{x{t), t)Hδ-(x(tl t) + o{l), (5.13)
hit)

where

,ί) = ί Hδ(x,t)dx.
iϊ (t)

Step 4: The value of Hf depend on x only. They are independent of the function b.
In particular if b is a piecewise smooth function, we have (5.10) and if li

± ±

α+(ί)£/(x(ί), ί) + oΓ(f)L(x(t), ί)=^(ί/(χ(ί)9 ί) + ̂ W ί λ 0)

Since fe can be any piecewise smooth function in this equality, we conclude

«±(ί)=i
Final Step: From (5.12), (5.13) and the previous step, we learn that

U(x(t% t) + L(x(t)9 t) = l(x(ή, t)+u(x(ή91) (5.14)

for almost all t. But we can repeat the above argument for the function
b(x9 t) = {b(x91))2 and obtain

(U(x(t)9 ί))2 + (L(x(t), t))2 = (l(x(t\ i))2Hu{x{t\ t))2

for almost all t. This and (5.14) imply (5.10). •

The overall picture of the geometric structure of a BV function is the following.
Most points in the set R i are either points of approximate continuity or first order
jump discontinuity. The set of points of approximate jump discontinuity can be
embedded in a countable union of the rectifiable curves.

When p is the entropy solution of (5.4), the set of points of jump discontinuity
Γ is called the shock set. At almost all points of Γ, (unit) normal vectors v can be
defined and if v = (v1, v2), we have

In particular if x(t) in any Lipschitz function, then for almost all t in the set

{t:(x{ή9t)eΓ}
we have

dxjrjp + ix(t\ t))-h(p-(x(tl ή)

dt~ p + (x(t)9t)-p-(x{t)9t)
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Our first theorem of this section asserts that a solution of (5.1) would avoid the
shock sets if the density p is nonzero. Recall that, by Lemma 5.1, p^- and p ± can be
used interchangeably.

Theorem 5.2. Suppose x is a solution to (5.1). Then for almost all t, either p+ (x(t), t) =
p~(x(ί), ί) or p+(x(t), ί)Φp~(x(ί), t) and p+(x(t\ t)p~(x(t), 0 = 0.

Proof. Since p is in BV, for almost all ί, either p+ (x(t\ t) = p~ (x(t)9 t), or (x(f), t)eΓ.
On the other hand if p + , ρ~ are two distinct positive constants, then

where

c =

Therefore if p + (x(ί), ί) p " (x(ί), ί) Φ 0, then

h(p+{x{t)9t))-h{p-(x(t)9ή)

ρ+(x(t\t)-ρ~(x{t\t)

Thus if p~ (x(ί), 0 P + (x(0> 0 Φ 0, we have p + (x(t), ί) = p~ (x(ί), ί) and this completes
the proof. •

An easy consequence of the above theorem is the following. If
p+(x(ί), 0Φp~(*(0> 0? then either p+(x(ί), 0 = 0 or p~(x(ί)ί, 0 = 0. If, for example,
we assume p~(x(ί), 0 = 0, then for almost all such t we have

^Mp+(*(0,0)-Mp-(*(0,0)
at L

The following theorem plays a central role in the proof of our uniqueness
results. Note by Lemma 5.9 below, the left-hand side of (5.5) is continuous in t.

Theorem 5.3. Let m be a weak solution of (5.2) such that 0^m(x,t)^p(x,t) for
almost all (x, t). Suppose x(t) is a Filippov solution of (5.1). Then

x(t) x(t0)

j m(y9t)dy= j m(y,to)dy
— oo — oo

for all t.

Proof. Step 1: For every test function J that vanishes at t = 0, we have

f f {Λ(x, t)m{x9 ή + Jx(x, t)b(x, t)m(x9 t)}dxdt = O . (5.15)
o

By approximation (5.15) holds for every Lipschitz function J.
Let ξ be a smooth nonnegative function of compact support with { ξ(ρ)dp = 1.

Choose k such that k' = ξ. Set J(x,t) = φ(t)k I j , where φ is a smooth

function of compact support in (0, oo). We then have
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for every point t at which — exists. Therefore (5.15) and Theorem (5.2) imply
at

JJ φ'fc
1 /v — χ(t)\

= J φ(t) J - ξ( ^ )(b(x(t)9 t)-b(x, t))m(x9 ήdxdt

d ) ( ψ ( p ± ( x ( t % ί))-ft(x, t))m(x9 ήdxdt

(5.16)

where Λ = {t:p+(x(t), t) = p~(x(ή91)} and B = (0, oo)-A

Step 2: First we show limε^0 h
 = ^- For this we estimate

1 (x — χ(t)\

It£Sφ{t)S-ξl ^)\b(x(t),t)-b(x,t)\m(x, ήdxdt
A ε V £ /

and by the Bounded Convergence Theorem, it suffices to show

limrβ(ί) = 0 (5.17)
£->0

for almost every teA.
If teA, the function b(x, t) is continuous as x = x(ή, which implies (5.17).

Step 3: If tφA, we have either ρ~(x(t\ ί) = 0 or ρ + (x(ή, ή = 0. Let us assume
p " (x(ί), ί) = 0, and p + (x(ί), ί) > 0. Since m(x, t) ̂  p(x, ί), we also have m" (x(ί), ί) = 0,
in the sense that the limy^ x{t)m(y, t) exists and is zero. Here some care is necessary
because m is merely a bounded measurable function. For almost all t, m(x, t) is well
defined as a function of x and we can choose a version of m(x, t) that is pointwise
less than p(x, t) for almost all t.

Now for each teB, we write

1 fχ — χ(t)\ x{t) +0°
f - d -)(ψ(p + {x(ή,t))-b(x,ή)m(x,ήdx = j + f .

ε \ £ / - oo x (ί)

The limit of the first term is zero because lim^ x(t) m(y,t) = Q. The limit of the second
term is also zero because limyix{t)b(x, t) = \l/(p + (x(ή, £)).

Final Step: From(5.16) and the previous step, we conclude that for every smooth
φ with compact support in (0, oo), we have

ίx — x(t)\
lim J J φ'(t)k ~ m(x, ήdxdt = 0 .
ε->0 \- ε /

On the other hand
/χ_χu\\ χ(t)

lim J k I I m(x, t)dx= j m(x, ί)dx
ε->0 \ β / -oo
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because m is bounded. Thus
x(t)

j m(x, t)dx
— oo

is independent of t. •

Remark 5.4. If the initial density po is positive, then the density stays positive for
all time. For example suppose there exists a continuous function / such that

and/(x)>0 for all x. Then by finite speed of propagation, it is not hard to show
that p(x, t)>0 for almost all (x, t). In this case if x(t) is a solution to (5.1), we have
p + (x(ή, ή = ρ~(x(t), t) for almost all t.

The next theorem settles the uniqueness question for the initial value problem
(5.1).

If the density p is positive, then we can apply (5.5) with m = p> and deduce that
x(t) can be determined uniquely in terms of x(0).

For general p, it is necessary to use Oleinik's criterion on the nature of the
discontinuity of p.

So for we know that the speed of the shock curve is given by (/z(p+) —/z(p_))/
(p+-p-).

Since p is an entropy solution, Oleinik's criterion holds: the graph of h lies
below the chord joining (p + , h(ρ+)) to (ρ_, h(p-)) whenever p_ >p + , and above
the chord whenever p-<p + .

In particular we have

ifp+=O<p_ thenιA(O) = l i m — ^ ^ ^ , and
p-o 9 P-

if p _ = O < p + then ι A ( O ) ^ ^ ^ . (5.18)
P +

This property can be utilized to prove uniqueness even if the density p vanishes
on some set of positive Lebesgue measure.

Theorem 5.5. The initial value problem

£ = b(x,t) t>t0
t (5.19)
(ίo) = *o

has at most one solution in Filippov sense.

Proof. Suppose x, y are two solutions to (5.19). Let

I = {t>to:x(t)Φy(ή} .

We want to show / is empty. If / is not empty, there exists an open interval
0̂ = ̂ 1^2) s u c n that x(tι) = y(tι\ and x(t)φy(ή for all telo. Without loss of

generality, we assume x(t)<y(t) for every telo.
On the other hand, (5.5) implies

y(t) y(h)

f p(x9t)dx= j p(x,tx)dx = O (5.20)
x(ί) x(ίj
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for every telo. Here we use the fact that p solves (5.2) with the initial condition
mo = po.

Equation (5.20) implies ρ(x, t) = 0 whenever (x, t)eD, where

D = {(x9t):t1<t<t2,x(t)<x<y(t)} .

Pick a point (z, s) in D and let τ denote the line of slope i^(0) emanating from the
point (z, s). More precisely,

dy
for some y such that y(s) = z, and — = ̂ (0). Therefore y is a solution to (5.1) as long
as (y(ί), ί) stays in the set D. l

The line τ intersects the boundary curve of D at some point. In other words,
there exists t*e[tl9 s) such that either y(ί*) = x(ί*) or y(t*) = y(t*). We may assume
x is differentiable at ί*, if not we choose another point (z\ sf)eD that is close to (z, s),
and the corresponding line τ would intersect the boundary of D at a differentiable
point. We also assume y(ί*) = x(ί*) because the other case can be treated in the
same way.

Since the line τ lies in the region D, and x(ή^y(t) for every ίe[f1? ί2]> we have

But

— ( ί * ) =
at p-{xμ ),L)

and p+ (*(£*), ί*) = 0 which is in contradiction with (5.18). Thus 1 = 0 and x(t) = y(t).

D

Remark 5.6. If the density p is positive almost everywhere, we also have a unique
solution to the terminal value problem

dx
— = b{x(t\t) 0<t<to
d t (5.20)

Indeed the positivity of p and

x(f) x(ίo)

J ρ(x,t)dx= J ρ(x,tΌ)
— oo — oo

allow us to uniquely determine x(ή in terms of x(t0).
The following example (part a) implies that (5.20) may have more than one

solution if p vanishes on a set of positive Lebesgue measure.

Example 5.7. Let h(ρ)=^p2.

(a) Suppose

fl if x<ί/2, and

\Q otherwise .
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Then if x(0) = x o ^0, the unique solution of (5.1) is x(t) = xo + it. If however x0 > 0,
then

|

xo ί<2x 0, and
1
-2t ^ 2 x 0 .

Therefore, solutions starting from positive x0 coincide on the line x=\t for

(b) Suppose

p(x,t) =

0 i f x < 0 ,

x
- if 0<x<£, and

1 if x > t.

Then for every x o >0, the solution of (5.1) is

-t if ί<2x 0, and

/2xot if ί^
x(t) =

We now address the uniqueness question for (5.2).

Theorem 5.8. There exists at most one distributional solution m to (5.2) such that

ί)^p(x,ί). (5.21)

Proof. Let x(t) be a solution to the terminal value problem (5.20). It follows from
Theorem 4 of [3] that such solution exists. By Theorem 5.3, the expression
J*_(ίim(y, t)dy is independent of t. On the other hand we show in Lemma 5.9 below
that the function G

G{x9t):= f m{y9t)dy
— oo

is jointly continuous. Therefore for every t<t0,

(5.22)

x (t)

J m(y,to)dy= J m(y, t)dy
— 00 — 00

Since x( ) is Lipschitz, we can pass to the limit t -> 0,

, to)dy=
x(0)

Here we used the fact that G(x,0) = $x mo(y)dy .
Now if m0 = 0 then

yo

j m{y,to)dy = 0
- 00

for every t0 and y0, which in turn implies m = 0.

Lemma 5.9. The function G defined by (5.22) is Lipschitz in x and t.

Π
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Proof. Since m is bounded, G is Lipschitz in x. Formally we have

—(x, ί)= J mt(y,t)dy
Vί - 00

= - ί {bm)x
— oo

= —b(x, t)m(x9 t) .

It is not hard to show that in fact G is weakly differentiable in t with a derivative
equal to — bm. Since both b and m are bounded, G is also Lipschitz in t. •

We end this section by giving a recipe for constructing the solutions of the PDE
(5.2) in terms of the solution of the ODE (5.1).

Let x(t, xo) = x(ί, xo; t0) denote the unique solution of (5.1).

Theorem 5.10. Let m(x, i) be a weak solution of (52) satisfying

for almost all ί ^ ί o Then for every measurable f

jf(x(t, a; to))mo(a)da = $f(x)m(x, t)dx (5.23)

holds for almost all t.

Proof It is shown in Fillipov [3] that for each point (x0, ί0) there exist two
solutions

y~(ή=y~(t,χo;to),

such that y±(t0) = x0, and every other solution passing through (x0, ί0) is between
y~ and y+. In other words if y is any solution of (5.1), then

Now if x1 is greater than x0, we have

xo^x(t, a)^x1 if and only if y~(t0, xΰ t)^a^y+(t0, x2\ t)

and

Thus
xi x{t,y + (t0,x1;t))

J m(y,t)dy= J m{y9t)dy
x0 x(t, y-(t0, xi; 0)

y+(t0,χι;t)

= j mo(a)da by (5.5)
y~(to,χΰt)

which implies (5.23) for / = U[Xθf X i ] . Π



28 F. Rezakhanlou

6. Proof of Main Theorems

Proof of Theorem 2.7. Step 1: In this step we established the tightness of the
sequence QL.

Let c be a fixed vector in IRA Let/(x)=χ x1 c where x = (x1 . . . xN). Then

f Xi(tL) c=4xi(0) .c+f j£/(x(s))ds + M ί L , (6.1)

where M is a martingale with quadratic variation

ELMfL = ) (J?f2-2fJ?f)(x(s))ds .
o

Here EL denotes the expectation with respect to PL.
A straightforward computation reveals

Therefore

and by Doob's inequality we even have

, ,, const.
EL sup MfL^ ——

Oίgt^ίo L

for every ίo Now this and (6.1) imply

lim lim sup QL I sup \y1(t)—y1(s)\>ε\ = 0
<5->0 L->oo \|ί-s|<δ /

for every positive ε. Recall that QL is a probability measure on the space of
configurations y = {yl9 . . . , yN), where each yt e^([0, Γ] ; lRd).

It is well known that the tightness of yi, L(ή = τXι{tL) is equivalent to the
tightness of

* L = 4 Σ *Λ>1 (6-2)
i V i= 1

as a sequence of Jt{βyvalued random variables. See for example Sznitman [17].

Step 2. By tightness we only need to identify the finite-dimensional distribution of
the limit points. This can be done by establishing (2.21) for functions J of the form

J(y)=JΛy(h))J2(y(ti)).. - Λ(yfe)), (6.3)

where 05Ξίj < ί 2 < <tk, and J\ . . . Jk:IR '-̂ IR. Let
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for a J of the form (6.3). If fc= 1, <XL, J> converges in measure to

J J1(x)p(x,t1)dx .

This follows from Theorem 2.2. Suppose fc = 2, J2 is any continuous and Ji(x) =
^Ax(y) f° r some measurable set A±. Then <XL? Ό converges to

J J2(x)m2(x,t2)dx ,

where m2(x, •) is the unique weak solution of

fdfm2 + (bm2)x — 0 for

This follows from Theorem 3.1, Theorem 5.8, and the first paragraph of Sect. 3.

Step 3: General k can be treated inductively. Take

Ά = ly4, Ϊ = 1, . . . , fc—1 ,

where Aγ . . . Ak-ι are measurable subsets of IRA Suppose Jfc is any measurable
function.

Let m; (x, ί), for t>tj-15 denote the density of particles that are in the set At at
time ti for i = 1, . . . ,7 — 1. Suppose that we have already determined mk- ^x, ί) for
t>tk-1. Then Theorem 3.1 can be applied to show that <XL, J> converges to

J mk(x, ί) Jk(x)dx ,

where mk is the unique weak solution of

0 for

Final Step: We need to identify the limit points as R. Recall that R is the law of
x(ί, a; 0) where a is distributed according to the probability measure cpo(a)da. Also
by uniqueness, we have the semigroup property

x(ί3, a; ίi) = x(ί3, x(ί2, α; *i); ^2),

for ί i ^ ί 2 ^ ί 3
We start with /c= 1. By Theorem 5.10 we have

j Ji(x(ίi, a; 0))po(a)da = $ Ji(x) p(x, ίi)dx

because p solves (5.1) with ί0 = 0 and mo = po. This implies that the one-dimensional
distribution of x(ί) with respect to R has density cp(x, t).

Now we consider the case fe = 2. We apply Theorem 5.10 and 6.3 to write

J ΛMίi , α; 0)) J2(x(ί2, Λ; 0))po(a)da

= J Ji(x(ί!, α; 0)) J2(x(ί2, x(ίi, α; 0); tO)po(α)Jα

= ί Ji(y) M*(ί2, y; ίθ) p(y5 ίi)^y

Now suppose Ji(y) = ̂ A1(y) a n d aPpty Theorem 5.10 once more

= $ J2(z)m2(z,t2)dz .

The general k can be treated inductively. Π
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Proof of Theorem 2.9. Step Γ. We paint all the particles in the interval ([aL]~
εL, [aL] + εL) blue, and the remaining particles white. If mε(x, t) denotes the density
of the blue particles, then by Theorem 3.1

(mε(x, 0) = poMl[fl-8

Let
Ae = {(x,t):mε(x,t)*0}

First we claim Bε — Λε has zero Lebesgue measure. Indeed, by Theorem 5.10,
mε(x, t) satisfies

J βJ V(x(ί, z; 0), t)po{z)dzdt = ]Sf{x, t)mB{x9 ήdxdt (6.4)
0 α-ε 0

for every measurable function/ On the other hand if ze\_a — ε, α + ε] then

x(t9a- ε; 0) ̂ x(t 9 z; 0)^x{t,a + ε; 0) .

This implies that the left-hand side of (6.4) is zero is / = tB

c

ε Therefore

j J mε{x, ήdxdt = 0 .
Bc

ε

This in turn implies Λε^Bε (almost everywhere) because m ε ^0.

Step 2: Under Assumption 2.8 particles do not cross each other. On the other hand
the particle densities on the left and right side of the tagged particle are positive.
This implies that the macroscopic location of the tagged particle is always in the set
Λε. Thus it suffices to show

ε>0

Final Step: It suffices to show that for every tθ9

sup x(ί0, a — ε)= inf x(ί0, a + ε) (6.5)
ε>0 ε>0

because x(tθ9 α — ε)^x(t0, a)^x(tθ9 α + ε). Suppose to the contrary there is some
z such that zΦx(ί, a), and

x(t0, a-ε)<z<x(t0, α + ε)

for all ε. Let y be a solution to the terminal value problem

But y(0)Φα because xΦx(t, a). Therefore y(0)<a — ε0 or y(0)>α-hεo for some
ε o > 0 . If, for example, y(0)<a — εo, then

contradiction. Thus (6.5) holds. •
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We now discuss that how under Assumption 2.4, a variant of Theorem 2.7
holds. A review of the proof of Theorem 2.7 reveals that we can still repeat steps one
to three. In order to complete the proof, what we really need is to uniquely identify
the finite dimensional distribution of the process XL. For this it suffices to establish
the uniqueness of the PDE (5.2) under the bound (2.15). In fact, this bound also
holds for the function b.

Lemma 6.1. There exists a constant C such that

b(x + ry,t)-b(x,t)^c(l+-]r (6.6)

for almost all t and r.

Proof. Since φ is smooth, it suffices to show φ is nondecreasing on the interval
[0, oo). First we write

~(-p)2h"(θ)

for some θ e [0, p]. Therefore

h(p)-ph'(p)S0.

On the other hand
ρh'(p)-h(p)

φ (p) = 2 = °
P

forallp>0. D
The following lemma will allow us to identify the limit points of the sequence

XL providing h is uniformly convex.
Lemma 6.2. Suppose (6.6) holds. Then there is at most one solution to the PDE (3.2).

The proof of this lemma follows Theorem 16.11 of Smoller [15]. Note that
Theorem 16.11 in [15] only asserts that there is at most one solution to the one
conservation law (5.4) if h is uniformly convex. However one can easily check that
the proof of this theorem implies Lemma 6.2.

Acknowledgements. I wish to thank L.C. Evans for pointing out the relevance of Lemma 6.2 to
this work. I am also grateful to S.R.S. Varadham from whom I learnt the proof of Lemma 4.1.
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