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Abstract: We prove the existence of a nontrivial Renormalization Group (RG) fixed
point for the Dyson-Baker hierarchical model in d — 3 dimensions. The single
spin distribution of the fixed point is shown to be entire analytic, and bounded by
exp(-const x t6) for large real values of the spin t. Our proof is based on estimates
for the zeros of a RG fixed point for Gallavotti's hierarchical model. We also present
some general results for the heat flow on a space of entire functions, including an
order preserving property for zeros, which is used in the RG analysis.

1. Introduction and Main Results

One of the basic assumptions in the modern theory of critical phenomena is
the existence of nontrivial renormalization group (RG) fixed points, associated
with certain universality classes of interactions. Within the framework of statistical
mechanics, this assumption is actually a conjecture, and it should be possible to
either prove it or disprove it. However, even for the simplest classes of "realistic"
interactions, such as the one represented by the three-dimensional Ising model, the
rigorous construction of a nontrivial RG fixed point seems beyond the reach of
presently known methods. In addition, there is a lack of good numerical results in
this area, which indicates that even at a quite fundamental level there are still gaps
in our understanding of RG transformations.

The traditional approach in such situations is to try to first understand some simpler,
and thus necessarily less realistic, class of interactions. In this case, the model with the
longest history is Dyson's hierarchical model [1-4]. For the Dyson-type hierarchical
analogue of the nearest-neighbor (continuous spin) Ising model in d = 3 dimensions,
which was first considered by Baker [3], the full RG transformation 3f reduces to
the third power of the following nonlinear operator 3%\

oo

= K [ e~2σχ2d x e ~ 2 σ χ 2 h ( a t + x ) h ( a t - x ) , t e R . (1.1)
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Here, h is the density of the single spin distribution, K and σ are arbitrary but fixed
positive real numbers, and

More details about the connection between the transformations <Γ and & will be
given in Section 5. Our main result is the following.

Theorem 1.1. 3% has a fixed point which is the restriction to R of an even entire
analytic function hIR. Given any 7 > 6, the function hIR satisfies the bounds

0 < hIR(t) < cxe~c^ , W G R, (1.3)

\hIR(t)\ < c3e
c^\ VteC. (1.4)

for some positive constants cx,..., c4 .

In what follows, we choose the values K = 2a and σ = (2a2 — l)/(4α2 — 1)
for the normalization constants that appear in the definition of M. This can be done
without loss of generality, since any two transformations of the type (1) are conjugate
via a scaling of the form h ι-> ah(b.).

Let now hIR be the fixed point of JB described in Theorem 1.1. Then we can
define an entire analytic function fIR by the equation

hIR(t) = eσt2 - ί ds e-liσstfIR(is), t e R. (1.5)
π J

—00

A straightforward calculation shows that fIR satisfies the fixed point equation for the
following transformation jy\

00

1 f 1 2

- /32)τr J
— OO

with β = ψ-.= 2~5/6. Conversely, if fIR is some given fixed point for J^, one can
try to use Eq. (1.5) in order to obtain a fixed point hIR for JB. This is exactly the
strategy which we have adopted here. The main problem is to estimate the function
fIR along the imaginary axis. The following lemma, together with Eq. (1.5), implies
Theorem 1.1.

Lemma 1.2. Jf has a fixed point fIR with the following properties. fIR is entire
analytic, fIR(i ) is a function of positive type (i.e., the Fourier transform of a finite
positive measure), and for every positive q < 6/5 there are constants b 1 ? . . . , 64 > 0
such that

\fIR(t)\<bιe
b^/\ V ί e C , (1.7)

\fIR(it)\<b3e~b^\ VίGR. (1.8)

We note that the same result, but without the bound (1.8), was already obtained in [7].
To prove only that part of Lemma 1.2, the analysis can be restricted, modulo a finite
dimensional problem, to a neighborhood of the high temperature fixed point fHT = 1.
The result is sufficient to show that there exists a nontrivial "weak" solution of the
fixed point equation for J8. But in order to establish the regularity of this solution, as
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implied by the bound (1.8), it becomes necessary to analyze the transformation Λ" on
a more global scale. Roughly speaking, the infrared fixed point hIR of JB inherits its
asymptotic behavior (fast decay) from the high temperature fixed point hHT(t) — <5(ί),
and its local regularity from the ultraviolet fixed point huv = const. This is indicated
e.g. by the fact that the fixed point fIR is "close" to fHT only with respect to its
relatively slow growth; its behavior (1.8) along the imaginary axis is qualitatively
much closer to that of the ultraviolet fixed point fuv(t) = exp(σt2 + const). This may
be regarded as a consequence of the generally believed fact (which we think could
be proved with the methods developed here) that the ultraviolet fixed point lies on
the boundary of the stable manifold of the infrared fixed point.

As was already shown in [7], the transformation .///* has the following interesting
property P: If all zeros of a polynomial / lie on the imaginary axis, then the same is
true for y//χ/). In addition, we have the bound (1.7) on the growth of fIR. Thus, since
it seems likely that there exists at least one polynomial (e.g. close to the ultraviolet
fixed point) which has only imaginary zeros, and which lies on the stable manifold
of the fixed point fIR, it is natural to conjecture that the infrared fixed point of.// '
can be written as a canonical product

k=0

with purely imaginary zeros ± i ^ 0 , ±zz/ l 5.... This conjecture is indeed correct, but it
appears very hard to prove. In fact, our first attempt contained an error [7, Lemma
4.2]. A new proof, which follows the argument given above (not for JΫ\ but for a
contraction with the same property P and the same fixed point fIR) can be found in
[8].

Theorem 1.3. .//'" has a fixed point fIR of the form (1.9), with 0 < u0 < vγ < . . .
and fIR(0) > 0. Furthermore, given any p < ^, there are positive constants ax and a2

such that for k = 1,2,...

This theorem implies Lemma 1.2., even though for a general product of the form
(1.9), the bounds (1.10) are not sufficient to guarantee decay along the imaginary
axis. In order to get (1.8), we also need to use that fIR is a fixed point of.//'.

Our proof of Theorem 1.3 uses input (see Theorem 3.2) from a computer-assisted
analysis, which is described in detail in [8]. In particular, it requires upper bounds on
the first 80 gaps j k = vk — vk__x for the fixed point fIR of JV\ Given these bounds,
we use an order preserving property (for zeros) of the heat flow, and estimates on
the evolution of polynomial approximations to the hyperbolic functions, in order to
inductively estimate the gaps ηlk and 72fc+i in terms of the gaps near vk. This method
is suggested by a connection between the heat flow and the evolution of a system of
interacting charges on a line.

The results stated so far will be proved in Sect. 3. We shall now describe some
general results on the one-dimensional heat flow, which we use in our RG analysis,
but which may be of independent interest. The proofs and further details will be given
in Sect. 4.

Denote by W the set of all entire analytic functions / that satisfy

ίϊϊn |^Γ 2 ln|/(^)| = 0 , (1.11)
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and whose zeros all lie on a straight line μ(f) + iR parallel to the imaginary axis.
For every / £ W and for every λ > 0, define a function Hxf by the equation

s ) , z e C , (1.12)

and let Hof = f.

Lemma 1.4. Let f £ W. Then for all \ > 0, the function Hλf lies in *& and has no
multiple zeros. The set of solutions (λ, z) of the equation (Hχf)(z) = 0 is a union of
curves λ ι—> z(X) which are continuous on [0, oo) and real analytic on (0, oo).

In what follows, we will assume that the zeros of a function / £ W have been
arranged into an indexed set {μ(f) + ^/c(/)}fce/ > w n e r e multiple zeros are repeated
according to their multiplicities. We also assume that / is a set of consecutive integers,
and that the zeros are labeled in such a way that the gaps

- * * - ! ( / ) , if {fc - l,fc} c J α l 3 )

otherwise U }

are nonnegative, for all integers k. When indexed this way, the zeros of / determine
a double-sided sequence 7(/) of numbers in [0, oo]. On the set of such sequences,
one has the following canonical partial order relation.

Definition 1.5. 7 ^ 7 ' <=> ηk<Ίr

k, Vfc £ Z.

We note that by Lemma 1.4, if / is a function in W with zeros indexed by /, then there
exists a canonical (unique) way of indexing the zeros of the entire family { i J λ / } Λ > 0

by the same set /, in such a way that the curves λ 1—> uk(Hxf) are continuous for all
he I.

Theorem 1.6. Let f and g be functions in <§f with indexed zeros. If the functions Hλf
and Hxg are indexed canonically, then η(f) -< η(g) implies j(Hxf) -< η(Hxg), for
all λ > 0.

Remarks.
• In [8] it is shown that the fixed point fIR described here is unique in a small open
subset & of some Banach space. Previously, in [7, Sect. 3], we proved the existence
of a nontrivial fixed point for JV* in some other set G Θ H. We have no doubt
that @ is contained in G Θ H, but we did not try to prove this, since we have no
uniqueness result on G 0 H. On the other hand, the fixed point properties derived
in [7, Sect. 4] hold for any non-constant fixed point of J^ in a function space that
is much larger than (and contains) the spaces considered here. Thus, all these results
apply to fIR. This includes the following stronger version of the estimate (1.7). If we
define lit1) = ( / T n ί Γ 6 / 5 \nfIR(β-nt), then the limit ί(x) = lim in{x) exists and

n—>oo

is nonzero for all x £ R+, and the function s \-+ £(es) is periodic with period \n(β~2).
In fact, it can be proved that the same holds if R + is replaced by C \ (—00,0].
• We would like to stress that the hierarchical model discussed here is not a
mean-field model, and that the infinite-volume measure associated with the function
hIR is an exact fixed point for the Wilson-Kadanoff transformation, without any
approximations. The "only" flaw of this model is the lack of translation invariance and
its consequences (no anomalous dimension). Apart from that, the model fully supports
the general RG picture, down to the numerical value of the critical index of the free
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energy (y — 0.6495704... from non-rigorous numerical computation), which differs
only by 2% from what is believed to be the correct value for translation-invariant
models such as the Ising model in d = 3 dimensions (υ ~ 0.638).

2. Canonical Products and J^

In this section, we will use Theorem 1.6 in order to show that the gaps for an
./F-invariant canonical product of the form (1.9) decrease like vk — vk_x = s(k~p),
if a finite number of these gaps satisfy a certain bound.

In addition to the convolution operators Hλ defined in Eq. (1.12), consider
now also the map Qβ : / ι-> /2(/3.) Let / G <§f, and assume that the zeros
ωk(f) = μ(f) -f ivk(f) of / have been indexed by a set / of consecutive integers
(the intersection of Z with a connected subset of R), such that the gaps defined by
Eq. (1.13) are non-negative. Then we will index the zeros of Qβ(f) by setting

"2k{Qβ(f)) ="2fc+i(<?/?(/)) = j9~W/)> V& € L (2.1)

With this convention, it is clear that Qβ is order-preserving, in the same sense as
the operators Hχ. Thus, since yV* = Hλ o Qβ for λ = (β~2 — l)/4, we obtain the
following as a consequence of Lemma 1.4 and Theorem 1.6.

Corollary 2.1. Let f and g be functions in W with indexed zeros. Then yV\f) and
yV\g) are also functions in *&, and if their zeros (which are all simple) are indexed as
described above, then j(f) -< η(g) implies 7(Λ^(/)) -< ^ ( )

In order to take advantage of this property of JV\ we need a class of functions g
such that the gaps for J^{g) can be estimated. The following functions hf , and their
translates, turn out to be ideal for this purpose.

Definition 2.2. For any fixed K > 0, define h+ = cosh(ftτr.), h~ = sinh(ftπ.), and
define h^hf,... by the equation

(2.2)
^2^2"

fc=l

Notice that hf —• hr0 pointwise, as ί tends to infinity. The image under J^ of the
limit can be computed explicitly:

The important observation here is that for large values of K, the gaps between the
zeros of y^Xh^1) are approximately a factor of 2β = 21//6 smaller than the gaps
between the zeros of h±. The following proposition will be used to show that the
same is true for the "middle" gaps for yV(hf), if ί is sufficiently large. Define

2(1 - /?V + ̂ e-^2^2] . (2.4)
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P r o p o s i t i o n 2 . 3 . Let K > 0 a n d ί e N . I f t i s a real n u m b e r that satisfies lίl < 7 5 - ,
ΔK

then
1 Λ\—β )κ π c) c\

Proof Let σ = " + " . We estimate first the difference between the function φ£ =
[h°/hσ]2 and the constant function 1. For real values of s, we obtain

ΪΦ'M =
d 2 2

1/2)2

2 2

1/2)2

<4/^2 (2.6)

and thus

0

By using this last bound, the left-hand side of (2.5) can be estimated as follows:

l.h.s. = l

—00

00

<— l— ί
Λ/(1 - β2)π J

dse"^κ° %m (Λσ(s)) [ l-^(s)]

2 2κ2s2

ds e ι~β (cosh(κτrs))
ί+l

(2.8)

After substituting the maximum value γ~ for |ί|, we get precisely the bound given

in (2.5). The proof for the case σ = "—" is similar. D

The resulting bound on the middle gaps for yV(hf) will now be formulated more

generally, for functions that have a sufficiently long sequence of gaps of size < κ~ι.

Definition 2.4. If g is a function in & with indexed zeros and gaps Ίj(g), we define
for every k G Z and I e N,

%(g,i) = max{7j((?) : k - i < j < k + ί+1} . (2.9)

Definition 2.5. Define <% to be the set of all triples («, 0, t) in M + x l + x N such that

(2.10)
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Proposition 2.6. Let («, θ, ί) e %. Then for every f e W with indexed zeros, and for
every k E Z, the following holds:

1 • Λ l - ' ( 2 . 1 1 )

Proof Consider a fixed k G Z. Then, for any given I G N, we index the zeros of h^

and /î Γ in increasing order of their imaginary parts, by successive integers ranging

from k — ί — 1 up to /c -f- £ and k + t + 1, respectively. Define ^ — y~ ( 073 +

We claim that under the given assumptions,

Notice that the gaps considered in (2.12) are the ones between the two zeros of hf
that lie closest to the origin. By assumption, we have

cos(2«π/3ί) + e - α - * W < _ ^ 1 ) ( 2 . 1 3 )

and If I < J-. Thus, it follows from Eq. (2.3) and Proposition 2.3 that

(^(/ι±))(if) < - ° ^ • I e ( i - Λ " 2 ' 2 < μ ^ * ) ) ^ ) - {jr(hf)){it), (2.14)

which implies that (yV^ihf^iit) < 0. Since the function (/Γ(hf))(i.) is even and
takes a positive value at the origin, we conclude that it has at least two zeros in the
interval [—£,£]. This proves the bounds (2.12).

Assume now that 7fe(/,i) < κ~ι. Then, since the (finite) gaps for the functions
hf are all of size n~ι, we have η(f) ~< ^y(hf). But by Corollary 2.1, this implies
that η- (/V(f)) < Ύj (/V*(hf)) for all j . Thus, the assertion follows from the bounds
(2.12). D

The statement (2.11) will now be used to inductively estimate the gaps for a fixed
point / of JΓ. Given the hypotheses of the lemma below, we can assume that the
zeros iVk(f) of / are indexed by Z, in such a way that

Vk-iif) < vkV) = -I'-fc-iί/), Vfc G Z. (2.15)

Lemma 2.7. Let f be an a non-constant even function in <ξ that satisfies the fixed
point equation for yK, and let (κ0, #, £0) be an element of %. If

Ίk(f) < ^o"1 > no-io<k< 2n0, (2.16)

for some n0 > ί0 + 1, then for every positive p < 1/6 ί/ẑ re x̂wi.s α constant b such
that

Ίk(f)<M~P> A; = 1,2... . (2.17)

/ Assuming that the hypotheses of this lemma are satisfied, we shall first show
that the conclusion holds for some (as opposed to all) positive p < 1/6.

Depending on a choice of p, define two sequences n \—> n(n) and n ι—» £(n) as
follows:

n
no

£(n) = (2.18)
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where [r\ denotes the integer part of a real number r. Below we will prove that

(«(n - £(n)), 0, ί(n)) e % (2.19)

for every n > n 0 , provided that p > 0 is sufficiently small. Our goal now is to show
that for arbitrary n > n 0 , if

ΊjU) < <JΓl , n - *(n) < j < 2n , (2.20)

then

ΊόU) < <JΓl, 2n < j < 2n + 1. (2.21)

This is sufficient to prove the assertion, since for n = n 0 , the bound (2.20) follows
from the assumption (2.16), if p > 0 is sufficiently small.

Let now n > n0 be fixed, and assume that (2.20) holds. Then ηn (/, £(n)) is less

than or equal to κ(n — l(n)) , and we obtain the bound

Jβ +
from Proposition 2.6. Thus, in order to prove (2.21), it suffices to show that

1 φ, - ί(n))

2β+θ<

 K(2n+l) ' Vn^n° ( 2 ' 2 3 )

To this end, choose an arbitrary positive real number ε. Then for every n > n 0 , we
have

/ p

 = / l_\p ( _ V

\ 2 + i ; Vκ{2n +1) V 2n + 1

> 2-* (l - ^—) (l ~ ̂ Y > 2-p(l - ε), (2.24)
V 2n + iy V nj

if p > 0 is sufficiently small. Thus, since the left-hand side of (2.23) is less than 1
by assumption, and since ε was arbitrary, it follows that (2.23) holds for sufficiently
small p > 0. This shows that (2.20) implies (2.21).

In order to prove (2.19), choose again ε > 0, and denote by nx the largest value
of n for which ίo(n/no)

1/2 < £0 -f 1. Since the inequalities (2.10) in the definition of
^ are strict, the condition (2.19) holds for n 0 < n < n1, if p is sufficiently small.
And if n > n 1 ? we have the bound

κ(n-t(ή)f < 4

ί(n) +1 - £0 + 1 (ί(n) + I)(n/nor
4ϊ> \ 1 - ίjno

1

4p

<_^_( i ) < _ ϋ o _ ( i + e ) ( 2 2 5 )

- £ 0 + l Vl-V"o/ -^o + l

for sufficiently small p > 0. Thus, since the factor a(κ) in (2.10) is a decreasing
function of K, we find that the condition (2.19) also holds for n > nι, if p is
sufficiently small.
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After having proved (2.17) for some p > 0, we will now choose new values for the
parameters (κo,θ,£o), and then proceed as above, but with "fixed p and sufficiently
large n 0 " instead of "fixed n 0 and sufficiently small p."

Given some positive p < 1/6, let θ be a positive real number satisfying

γβ + θ < 2~p . (2.26)

Then choose κ0 and i0 such that (κo,θ,£o — 1) e %, and define two sequences
n i—> κ,(n) and n ι-» ^(n) as in (2.18). Given any ε > 0, a bound similar to (2.25) can
be obtained for all n > n0, if n 0 is chosen sufficiently large:

( 2 2 7 )

Thus, if n 0 is sufficiently large, we have again (2.19) for all n>n0. Under the same
condition, the bound (2.20) holds in the case n — n 0 , since 7j(/) —* 0 as '̂ —> cx>.
And as shown before, (2.20) implies (2.21), provided e.g. that (2.23) is satisfied. But
for sufficiently small ε > 0, the inequality (2.23) follows from (2.26) and (2.24); and
the latter holds for all n > n0, if n0 is chosen sufficiently large. D

3. Proof of Theorems 1.1 and 1.3

The proofs given in this section use Lemma 2.7, together with the following two
theorems. The first theorem is a reformulation of two results from [7, Sect. 4].

Theorem 3.1. Let f φ 0 be an even entire analytic fixed point for yV*, whose
restriction to M. is real-valued, and whose Taylor coefficients (at the origin) are

bounded in absolute value by those of the function z \—> K exp ί - z2 J, for some

constants K > 0 and r > (4a2 — l)/(2α2 — 1). Then f is the Fourier transform of a
positive measure on R whose moments are all finite, and there are constants bλ and b2
such that

\f(z)\ < b^f'5, Vzec. (3.1)

Theorem 3.2. The transformation JV* has a fixed point /* with the following proper-
ties:
(a) /* is an even entire analytic function which takes real values when restricted
toR.

(b) The Taylor coefficients at zero of f* are bounded by the corresponding coefficients

of the function z ι—» i ^ e x p ^ z 2 ) , for some positive constant K.
(c) All zeros of f* of lie on the imaginary axis.
In addition, there are positive real numbers y0 < yx < ... < yΊ9, such that
(d) /*(i2/jb) = 0/orfe = 0 , l , . . . ,79 .
(e) The function f*(i.) has exactly 5 zeros in the interval [0, y4].
(f) y f c - y f e _ 1 < | , / < ? r f c = 5,6,...,79.

A proof of Theorem 3.2 is given in [8]. In addition, we verify in [8] that

( | , ^ , 3 5 ) € ^ , (3.2)

where ^ is the set specified in Definition 2.5.
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Proof of Theorem 1.3. First, we note that (4a2 - l)/(2a2 - 1) < 4. Let fIR = /*,
where /* is the fixed point of JV described in Theorem 3.2. Since the properties (a)
and (b) of this fixed point (and (e), which implies that fJR φ 0) verify the assumptions
of Theorem 3.1, we obtain for / = fIR the bound (3.1) and the inequality /(0) > 0.
Thus, given that fIR is even and satisfies (c) as well, it follows from Hadamard's
factorization theorem that fIR can be represented as a convergent canonical product
of the form (1.9). The lower bound on vk in (1.10) is obtained from (3.1), by using
the standard inequality which bounds the number of zeros of an entire function / in
the disk \z\ < r by the logarithm of the maximum modulus of / on the disk \z\ < er,

/(

Finally, if we set (κ,0,θ,£0) = ( | , ^ , 3 5 ) and n 0 = 40, then the last three
statements in Theorem 3.2, together with (3.2), imply that the hypotheses of Lemma
2.7 are satisfied. But the conclusion of this lemma is precisely the upper bound on
the gaps r)k~vk~~ vk-\ m (110). Thus, Theorem 1.3 is proved. D

In order to show that the function fJR decreases along the imaginary axis as
claimed in (1.8), we need the following simple fact.

Proposition 3.3. If h is a Cn function that has n > 0 zeros in an interval [0, x], then

\h(x)\ <
n\

sup (3.3)

Proof Let t0 = x_{ = x. For k = 0 , 1 , . . . , n — 1, if we define xk to be the largest

zero of h^k) in [0, xk_χ], then h{k+l) has at least n — k — 1 zeros in [0, xk]. Thus,

ί d t { f d t 2 ••• / d t n h { n \ t n ) < ί d t ι [ d t 2 ••• [ d t n sup \h{n\t)\ ,
J J J J J J te[o,x]
x0 x\ xn-i 0 0 0

and the assertion follows. D

Proof of Lemma 1.2. Let fIR be the fixed point of JV* described in Theorem 1.3.
Then the hypothesis (and hence the conclusion) of Theorem 3.1 is clearly satisfied
for the function / = fIR . Thus, the only thing that remains to be proved is the bound
(1.8).

Given that fIR(i.) is the Fourier transform of some finite measure μ, we have
l//π(^)l ^ I//R(0)I f° r every t <G R. The same inequality holds for all even derivatives
of fIR, since the moments of μ are finite. Thus, by Cauchy's formula and (3.1), there
are constants dλ, d2 > 0 such that

1
< dx{d2n)~5nl(>, ί e 1 , n 6 2N. (3.4)

Let us now choose an arbitrary q G ( l , A — - < r < 1, and define

p = (q — r)/(l -f q — r). Since p < 1/6, it follows from Theorem 1.3 that
vk < d3k

ι~p + d4 for some positive constants d3,d4. By combining this inequality
with the second bound in (1.10), we find d5 > 0 such that if t is sufficiently large
and vk> t -tr', then

- V• f c - 1 ^
h -dΛ (3.5)



Nontrivial Renormalization Group Fixed Point 637

Thus, the function fIR(j») has n > d5t
q zeros in the interval [t — tr,t] for large t.

Now we can apply Proposition 3.3 and the bound (3.4) in order to estimate the value
of the function h = fIR(i(t - tr + .)) at x = tr'. The result is that

\fIR(it)\ < d6exV(-dΊt
q\nt), t > 0, (3.6)

for some positive constants d6 and dΊ . D

Proof of Theorem LL Let / / Λ be the function described in Lemma 1.2. By analytic
continuation, we can write the fixed point property of fIR in the form

oo

To be more precise, consider the operator Si which maps an entire function / to the
function f(i.). A group property of the heat flow λ ι-> Hλ, which will be proved
in the next section, implies that S~ιHxSiHλf = /, for every entire function / that
satisfies (1.11). Thus, given the bound (1.7), it follows that (3.7) is equivalent to the
equation yi^(fIR) = fIR .

Let now hIR be the function defined by Eq. (1.5). From (1.8) it is clear that this
function is entire analytic, and that it satisfies the bound (1.4). In order to prove (1.3),
consider the Fourier transform φ of the function t h-» fIR(zt)2. Below we will show
that φ satisfies the bound

\φ(t)\<dλe-d2t\ ίeR, (3.8)

for some constants dud2 > 0. By Eq. (3.7), this leads to an analogous estimate for
the Fourier transform of fIR, from which the upper bound in (1.3) follows. Given
now that JB(hIR) is well defined, it is easy to check that the function hIR satisfies the
fixed point equation for M. In addition, for every ί e l w e have hIR(t) > 0, since
fIR is a function of positive type; and hJR(t) = 0 is excluded by the fact that hIR is
a fixed point for JB.

We will now turn to the proof of the bound (3.8). From the fact that fIR is the
Fourier transform of a positive measure, it follows that the function φ takes only
non-negative values on R. In addition, since φ and — φ" are themselves functions of
positive type, we have the bounds

\Φ(t)\ < \φ(0)\ = b2 , \φ"{t)\ < \φ"φ)\ - 2c2 , (3.9)

for all t e R. The constants 6, c > 0 are defined by (3.9). Let now t be an arbitrary
real number larger than 2b/c, and define a — φ{t)χl2. Then the even moments of φ
can be bounded from below as follows:

oo a/c

/

/ a \ 2 n ί
dx x2nφ(x) > (t- -) dx [φ(t -f x) + φ(t - x)}

0

— . (3.10)



638 H. Koch, P. Wittwer

On the other hand, we have a bound on the Taylor coefficients of the function fjR,
which follows from (1.7), and which implies that

oo

j dxx2nφ(x)= |(Λ2

H) ( 2 n )(0) n = 1,2,... , (3.11)

for some constant d3 > 0. The two inequalities (3.10) and (3.11) can now be combined
to yield an upper bound on ψ(t): For any δ > 0 with the property that n = δt6 is a
positive integer, we get

i^/2 44{^ft6. (3.12)
Thus, if δ is chosen appropriately, the bound (3.8) follows. This completes the proof
of Theorem 1.1. D

4. The Heat Flow on W

Denote by & the vector space of all entire analytic functions / that satisfy the bound
(1.11). On 3? we define the following directed family of seminorms:

p , p > 0 . (4.1)
zee

Equipped with the natural topology defined by these seminorms, 3^ is a Frechet space.
We note that a linear operator L on 3^ is continuous (bounded) if and only if for
every p > 0 there exist c, r > 0 such that | | £ / | | p < c | | / | | r for every function / G J?\

Examples of continuous linear operators on 3^ are differentiation D : / ι—> /',
translations T λ : / ι-» /(. — λ), and, as shown below, the operators Knrn, defined
by the equation

h l ^ « S m , 1 6 C . (4.2)

Here, Γz is a closed curve in C with winding number 1 with respect to the points
0 and z. The proof for the continuity of D and T λ is similar to the proof of the
following proposition.

Proposition 4.1. Let n < m be nonnegative integers. Then the operator Kn is

continuous on &, and for every p > 0, it satisfies the bound

\\Kn,mf\\P < 2 - m + 1 e 1 / " | | / | | 4 p , fejr. (4.3)

Proof. Let / G 3? and p > 0. Given any z G C, let Γz be the positively oriented

circle of radius 2(\z\2 + I) 1 / 2 around the origin. Then for every ζ G Γz we have

\zn/Qm\ < 2 ~ m , \ζ-z\> i | C | , and

1/(01 < ll/ll4Pβ^lc|2 = \\f\U//pMA2/p. (4.4)

Thus, we can bound the right-hand side of (4.2) by exp(|^|2/p) times the right-
hand side of (4.3), as claimed. Since / and p were arbitrary, it follows that Kn m is
continuous. D
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We shall now consider the heat flow λ ι-> Hx defined in (1.12), but extended to
complex values of λ.

Definition 4.2. For every f G JF and for every X G C, define a function Hxf by the
equation

{Hj)(z) = f(\, z)=-— j dse's 'Af(z -VXs), z e C. (4.5)
— oo

Notice that this definition is independent of the choice of the square root function,

and that / is analytic in both of its arguments.

Proposition 4.3. Let X G C, p > 0, / G i^, and define r = p + 4|λ|. Then Hx is a
continuous linear operator on .^, and it satisfies the following two bounds:

p (4-6)

\\HJ - / - Xf'X < \\Ά\rlpΫ'2\\Γ"\\r (4-7)

Proof The inequality (4.6) is obtained by replacing f(z — y/Xs) in Eq. (4.5) by the
bound | |/ | | rexp(|2 - y/Xs\2/r), and then computing the resulting Gaussian integral.
The second inequality can be obtained from the first one by using the identity

1

{Hλf)(z) = f(z) + λ/"(2) + X2Jdt(l - t)(HtXf""){z), zeC. (4.8)

o

D

The following proposition shows, among other things, that the heat flow on the
space J ^ is invertible.

Proposition 4.4. HXχHxJ = HXι+xJyfor every f G ̂  and Xλ , Λ2 e C.

Proof Given any positive integer n, consider the vector space £Pn of all polynomials
of degree < n, equipped with some norm. On this space, differentiation D is a
bounded linear operator. An explicit calculation shows that λ H-» HX , λ > 0, is a
semigroup of linear operators on & which leave 9^n invariant. Thus, it follows from
(4.7) that Hλf = exp(λD2)/, for every / G ̂ n and λ > 0. By analyticity, the same
holds for every λ G C. This proves the assertion in the case where / is a polynomial.
But polynomials are dense in i^ . This follows e.g. from the fact that l — Knn projects
.^ onto £Pn_\, and that K f converges to zero as n —• oo, for every / G ̂ . The
latter is a consequence of Proposition 4.1. Thus, the assertion is proved. D

Let us now consider the λ-dependence of the zeros for Hxf. We start with
properties that hold for every function / G ̂ . The next proposition is an immediate
consequence of the implicit function theorem, given the fact that the function /,
defined by Eq. (4.5), is entire analytic.

Proposition 4.5. Let f G & and (λ0, z0) G C xC. If HλQf has a simple zero at z0,
then in some open polydisk U x V containing (λ0, z0), the set of solutions (λ, z) of the
equation (Hxf)(z) = 0 is the graph of an analytic function from U to V.

Proposition 4.6. Let m > 1, and denote by hm the mth Hermite polynomial. Then
for every p > 0 there exists a constant K > 0 such that the following holds. If f is a
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function in & that has a zero of order m at the origin, and if ε is a complex number
of modulus < I, then

ε^

p

Proof. Let |ε| < 1, and for every / G & define Sεf = /(ε.). In order to prove the
bound (4.9), we may assume that / satisfies z~mf(z) —> 1 as z —>• 0. Then we can
write

(Sj)(z) = εmzm + εm+ιzm+ι (K0>m+ιf)(εz), (4.10)

where Ko m + 1 is the operator defined by Eq. (4.2). For every n G N and z G C,
define pn(z) = z n . An explicit calculation shows that H_ι/2p7n = ftm. Thus, by
using (4.10) and Proposition 4.1, we obtain the bound

\\SeH_ε2/2f - εmhj\p = | | t f _ 1 / 2 S e / - e m f c j | .

\\Pm+l •

8 / C + 1 6 (4.11)

for some positive constant K. D

Proposition 4.7. Let ω and r be continuous functions on some compact set A C C,
with values in C and [0, oo), respectively. Furthermore, let f G 3^, and denote by m(λ)
ί/ie number of zeros of Hχf in the disk \z — ω(λ)\ < r(λ). Here, and in what follows,
zeros of order m are counted as m zeros. Then, given any sufficiently small ε > 0,
there exists an open neighborhood U of f in ^, such that for every g G U and for
every X G Λ, the function Hχg has exactly m(λ) zeros in the disk \z — ω{\)\ < r(λ)+ε.

Proof For every δ > 0 define U(S) = {g G & : | |/ - g\p < δ}, where p is the
maximum value of 1 -h 4|λ| on A. The assertion follows by a standard argument, if
we can show that for every sufficiently small ε > 0 there exists a δ > 0, such that a
bound of the form

\{Hχf)(z) - (Hχg)(z)\ < \cε < \(Hχf)(z)\ (4.12)

holds on the circle Ce(λ) of radius r(λ) + ε centered at ω(λ), for every g G t/(ό) and
for every λ G Λ. Consider first the second inequality in (4.12). Since the functions
ω and r are continuous, it follows that the set Cε = {(λ,z) : λ G Λ, z G Cε(λ)} is
compact for every ε > 0. Thus, the continuous function | / | has a minimum value cε

on Cε, and c ε is positive for sufficiently small values of ε > 0. In order to get the
first inequality in (4.12), we can use the bound

\(Hxf)(z) - (Hxg)(z)\ < <Vpe'*l2, g G U(δ), (4.13)

which follows from Proposit ion 4.3. Since \z\ is uniformly b o u n d e d on the c o m p a c t
set Cε , it suffices to take δ small enough. D

We shall n o w work towards a proof of T h e o r e m 1.6, in the case w h e r e the functions
involved have only a finite n u m b e r of zeros. Here, only real values of the heat flow
parameter λ will b e considered, unless specified otherwise.
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Definition 4.8. Denote by ^ the set of all functions in <§ that have only a finite
number of zeros, and denote by Wp the set of all polynomials whose zeros all lie on
the imaginary axis. In order to simplify notation, define fχ — Hxf.

Let / be a function in ^ . Then by a standard argument, there exists a polynomial

g e (?p such that

f(z) = ebzg(z-μ), z e C, (4.14)

for some constants b G C and μ e R. A short calculation shows that

fλ(z) = eb2χebzgλ(z - μ + 2bλ), ^ C , (4.15)

which implies that the zero sets for / λ and gx are related to each other by a translation,
for every λ. Thus, if we prove the assertion of Theorem 1.6 for polynomials in £?p,
then the same holds for every function in Wj .

Let now g be a nonzero polynomial of degree d > 2. Then the functions gλ are
polynomials of the same degree d, and we may write them in the canonical form

gx(z) = α(λ) J J [* ~ ™k(9\)] > ^ C . (4.16)
fc€/

Here, the zeros ivk(gx) of # λ have been indexed by some set I of d consecutive
integers, in such a way that the curves λ ι—> vk(gx) are continuous (not necessarily
real-valued, at this point). That this is possible follows e.g. from the implicit function
theorem and Proposition 4.6. Assume now that the kth zero of gx is simple, for
some given value λ0 of the parameter λ. Then, by differentiating the equation

0 = gx(ivk(gx)) with respect to λ, and using that πτgχ = g'χ , we obtain the identity

d , . .g'li

for every λ near λ0. Notice that if all numbers vk(gx) are real and distinct from each
other at λ = 0, then the same remains true for all λ > 0.

The following definition makes precise what we mean (e.g. in Theorem 1.6) by a
function with indexed zeros.

Definition 4.9. Λ function in W with indexed zeros is a nonzero function f E &,
together with a pair (/, φ\ consisting of a set I of integers and an onto map φ from I
to f~ι(0), with the following properties: For all j and k in I, ifj < k then fc — 1 E I
and lmφ(k — 1) < lmφ(k); and for every zero z of f, the cardinality of φ~ι(z) is
equal to the order of z.

Remark. To simplify notation, if a quantity q depends on a function / with indexed
zeros (/, φ), we will write q(f) instead of #((/, (7, φ))). In particular, the real and
imaginary parts of φ(k) will be denoted by μ(f) and ^ ( / ) , respectively. We note that
if / has only a finite number of zeros, then the function φ is uniquely determined by
the choice of /. In addition, / can be reconstructed from the corresponding sequence
of gaps, defined in Eq. (1.13).

Proposition 4.10. For every λ > 0, Hx maps ^ to W^, and the following holds. Let
g and h be functions in W^ with indexed zeros, and assume that the zeros of Hxg and
Hxh have been indexed by the same set of integers as the zeros ofg and h, respectively.
Then η(g) -< j(h) implies η{Hxg) -< j(Hxh).
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Proof. As was mentioned earlier, it suffices to prove the assertion for polynomials
g, h G <§y We may also assume that g is of degree > 2. Consider first the case where
all zeros of g and h are simple. Then by Eq. (4.17), gx and hλ lie in Wv for all λ > 0.
From the same equation it follows that

iM ^hMM (4 18)

where

I
jei\{k-ι,k}

Assume now that η(g) -< 7(/ι). Consider the set A of all x > 0 such that
l(9\) ~< Ί(hχ) f° r a ^ λ < x, and assume that this set contains a maximum value λ0.
Then there exists a non-empty set K c Z such that Ύk(gχ0) = Ίk(hXo) < °° f° r a ^
A; G if. At λ = λ0 we have for all k G K,

^ bk(9χ) ~ Ίk(hχ)} = 7k(gλ) [Sk(gx) - Sk(hx)}. (4.20)

But Sk(u) < Sk(v) whenever η(u) -< η{v\ and the inequality is strict whenever
ηk{u) = ηk(v) and η(u) φ 7(7;). Thus, it follows that j(gx) -< Ί(hx) for all λ in some
interval (λ0, λ0 + ε). This contradicts the assumption that the set A has a maximum.

In the case where g has multiple zeros, the same argument can be used first to
prove that /y(g(

x

)) -< Ίi^), where g ( n ) and /ι(n) are defined such that

for all zeros of g and h, respectively. Taking n —•» 00, the assertion now follows from
Proposition 4.7. D

Consider now an arbitrary function / in <§f with indexed zeros (/,</?). By
Hadamard's factorization theorem and a theorem of Lindelof [9], / can be represented
as a convergent product

f(z) = aebz J\ G(μ(f) + «/fc(/), z) , ^ G C , (4.22)

fee/

where

G(α;, z)=\βZ ω^λ~ zlω^' if ̂  ̂  0 ^4 2 3 ^
[ 2:, if α; = 0 .

For every n G N, denote by In the intersection of / with the set {—n, — n + 1 , . . . , n } ,
and define the n t h partial product / n for / by the equation

fn(z) = aebz [ ] G(μ(f) + zι/ fc(/), z) , z G C . (4.24)

In what follows, the zeros of fn are always assumed to be indexed by the set In.

Proposition 4.11. Let / 1 ? / 2 , . . . fre ί/ϊ̂  partial products for a function / G S Γ/zβn
/ n -> / w Λe topology of<F.

Proof The task is to show that | |/ - / n | | —> 0 for every p > 0. We shall only

consider the case / = {0,1,2,...} here; the other cases are either similar or trivial
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(if / is finite). Let now p > 0 be fixed, and let N be some positive integer such that
uk = μ(f) -f ivk(f) is nonzero, for all k > N. By using that \ez(l — z)\ < exp(2|z|2)
for all z G C, we get for all n > N the bound

n n

\fn(z)/fN(z)\= Π \G(ωk>z)\<exp(2\z\2 Σ μ f c | " 2 ) . (4.25)
k=N+l k=N+l

From the convergence of the product in (4.22), it follows that the sum over all k
of ωk

2 converges. But since all ωk's have the same real part, this implies that the
oo

sum Σ \ωk\~2 converges as well. Consequently, if N is chosen sufficiently large,
k=0

we have ||/n//jvl|4P = 1 whenever n> N, and thus

fJfNK < W/NKWU/NK = 11/ivlUp (4-26)
Under the same condition on N and n, we get now the following bound:

oo

= Σ
k=n+l

oo

Σ
k=n+\ k=n+\

(4.27)

The last sum in (4.27) converges and tends to zero as n —> oo, since we can extract
a factor ωk

2 from the term

G(ωk,z)-l=ωϊ2[z2(KQi2G(l,.))(z/ωk)] , (4.28)

and bound the 2p-norm of the remaining factor [ •] uniformly in k. The latter follows
from Proposition 4.1, by using the fact that \z/ωk\ < \z\ for sufficiently large k. D

We are now ready to prove the first part of Lemma 1.4.

Proposition 4.12. Let f be a function in <§> and let λ > 0. Then the function Hxf
lies in £?, has the same number (cardinality) of zeros as /, and all its zeros are simple.

Proof Let / be a function in <§f with indexed zeros, and let / u / 2 , . . . be the partial
products for /, defined in Eq. (4.24). By Proposition 4.10, the functions Hxfn all lie
in &j . And from Proposition 4.3 and Proposition 4.11 it follows that Hxfn —> Hxf
in ^ , and that the zeros of Hxf are limits of zeros of the functions Hxfn . Thus, the
difference between any two zeros of Hxf lies in ίR, which proves that Hxf G &.

The discussion after Definition 4.8 shows that the following holds for every
nonnegative integer d, and for every λ G R: If / has d zeros then Hxf has d
zeros. The converse is also true since Hχ

ι = H_x, by Proposition 4.4. Thus, the
same holds for d = oo as well.

Assume now for contradiction that Hxf has a zero zQ of multiplicity m > 1, for
A = Λo > 0. Then by Proposition 4.6, the function Hxf has m zeros close to z0 for
λ near λ 0 , and 2 [m/2\ of these zeros approach z0 on curves that are tangent to the
line z0 + R, as λ t λ 0 . This contradicts the fact that Hxe % for all λ > 0. Thus, the
zeros of Hxf are simple for all λ > 0. D

Let / be a function in % with indexed zeros (/, φ). By using Proposition 4.6,
together with the implicit function theorem, we can find, for every k G /, a positive
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real number Xk and a continuous function λ h-> ωk(f, λ) from [0, Xk) to C, such that
the following holds:
(a) ωk(f, 0) = φ(k), for every k € I.
(b) (Hλf) (ωk(f, λ)) = 0, for every k G / and for every λ < λk .
(c) Imωk_γ(f, λ) < Imωk(f, λ), whenever {A; — l,fc} C / and λ < min(λfc_1, λfe).
The functions ωfc(/,.) will be referred to as the local zero curves for /.

Proposition 4.13. Let f be a function in & with indexed zeros let cjfc(/,.) be one of
the local zero curves for /, and let / l 5 /2, be the partial products for /. Then there
exists εk > 0 such that the zero curves cjfc(/n,.) for fn converge to ωfc(/,.) uniformly
on [0, ε j .

Pro*?/ By Proposition 4.6 there exists εfc > 0 and nk e N, such that for every
positive ε < εk and for every n > nk, the zero ωfc(/, ε2/2) lies within a distance ε3/2

of ω / c(/n,ε2/2), and all other zeros of Hε2/2f
 a r e a t a distance 3ε3/2 or more from

ωk(f,ε2/2). Given any positive ε < εk, we can now use Proposition 4.7, with Λ =
[ε2/2, εk] and r = 0, in order to find N > nk such that \ωk(f, λ) - ωk(fn, λ)| < ε3/2

for every λ < εk and for every n > N. D

The proof of Lemma 1.4 is completed with the following proposition.

Proposition 4.14. Let f be a nonzero function in *&, and assume that (Hx f)(z0) = 0,
for some z0 G C and some λ0 > 0. Then there exists a unique continuous function
ω : [0, oo) -> C JMCΛ ί/wί α;(λ0) = 2:0, and such that (Hxf) (ω(\)) = 0/or α// λ > 0.

Proof First, we note that the uniqueness follows from the fact that all zeros of Hxf
are simple, if λ is positive. Let now Vo be the largest subinterval of [0, oo) containing
λ 0 , on which there exists a function ω with the desired properties. By Proposition
4.5, the intersection of Vo with (0, oo) is open.

Assume for contradiction that 0 ^ Vo, and denote by λ{ the largest real number
that is smaller than any element of Vo. Since / is analytic, we must have |α;(λ)| —• oo
as λ I \γ. Consider the function g = Hx /. Given that g has zeros (by Proposition
4.12), we can index them and choose a local zero curve ωk(g,.) for g. According to
Proposition 4.13, there exists a positive δ < λ0 — λj such that for any given ε > 0, the
fc* zero curve for the partial product gn satisfies the bound \ωk(g, X) — ωk(gn, λ)| < ε,
whenever n is larger than some number no(ε). Define λ2 = Λx + <5. Then, by
Proposition 4.7, there exists an εx > 0 such that Hx f has no zero other than ω(\2)
within a distance ε{ of cj(λ2), and such that for every positive ε < ε1 ? the function
Hδgn has a unique zero ζn in the disk \z — ω(X2)\ < ε, if n is larger than some
number nx(e) > no(ε). In addition, we have ζn = ω-n{gn^δ) for some index j n ,
since all zero curves of gn are defined on [0, oo). In order to show that j n + ι = j n

for large n, consider an open disk D € C, such that both D and its closure contain
the straight line segment L connecting the two points α>(λ2) and ωk(g,δ), but none
of the zeros of Hδg that lie outside L. By Proposition 4.7, there exists n 2 e N such
that the function Hδgn has the same number of zeros in D as the function Hδg, for
all n > n2. But since the (imaginary parts of the) zero curves of gn cannot cross,
it follows that j n = j for some fixed index j , whenever n is larger than n ^ ε ^ and
n 2 . Now, we can use that by Proposition 4.9, η(Hxgn+{) -< η(Hxgn) for every n
and for every λ > 0. This shows that the sequence n >-> \ω-{gn,X) — ωk(gn,X)\ is
non-increasing as n -^ oo, for every λ in the interval [0,6], i.e., that the functions
ωj(9n> •) remain bounded on this interval. On the other hand, if λ = δ then co3(gn1 λ)
converges to ω(g, λ) = ω(f, λγ + λ), as n —> oo; and by Proposition 4.7, the same
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holds for every positive λ < 6. But this contradicts the assumption that 0 §£ Vo, which
implied that |α;(λ)| —> oo as λ j Xλ.

A similar argument shows that the set Vo cannot have a finite upper bound. •

Proof of Theorem 1.6. Let / and g be functions in <S with indexed zeros (/, φ)
and (J, ψ), respectively. As we just proved, there exists a family (indexed by /)
of continuous function λ ι-> ωk(f,λ) from the interval [0, oo) to C, such that
( i ί λ /)(z) = 0 if and only if z = ωk(Hxf) for some k G /. An analogous statement
holds for g, and for the partial products fn and gn for / and g, respectively. In addition,
we have Hλfn -+ Hλf and Hxgn —> Hλg for every λ > 0, as a consequence of
Proposition 4.11 and Proposition 4.3.

Let now λ be a fixed positive real number, and assume that η(f) -< η(g). Then for
every n we have 7(/n) -< 7(#n), and η(Hxfn) -< η(Hxgn) follows from Proposition
4.10. But by Proposition 4.13 and Proposition 4,7, the zeros ωk(Hxfn) and ωk(Hxgn)
converge to ωk(Hxf) and ωk(Hxg), respectively, as n tends to infinity. Thus, we
conclude that η(Hxf) < η{Hxg). D

5. The Dyson-Baker Hierarchical Model

Following parts of [3], we show in this section how the transformation M derives
from the full RG transformation 3f for the Dyson-Baker hierarchical model in 3
dimensions, and how the latter relates to a general RG transformation for continuous-
spin lattice models. We do not consider any specific properties of the IR fixed point
for 3F, since the results of [6, Sect. 4] are easy to adapt to the present situation, as
the following discussion will show.

A statistical mechanics model of real-valued spins on a set A C Z d may be
represented by a parameterized family of measures μ on the space of all possible
spin configurations φ G RΛ, such that the quantities of interest can be obtained
from the partition function J dμ by differentiating it with respect to the parameters
of the family. The RG transformations considered below are maps μ ι-> μ with the
property that J dμ = J dμ, which can be used for an iterative computation of partition
functions. Here, μ represents a model on a smaller set A, whose spins are averages
of the original spins.

One of the standard RG transformations is obtained by choosing the following
averaging operator A on l2(Zd):

(Aφ)(y) = N-d?2

x:[x/N\=y

where N is some integer larger than 1, and where \z\ is the point in Ίβ obtained from
z G Rd by taking the integer part of its coordinates. In order to simplify notation,
assume now that A = 7Ld. This will lead to integrals that are not well defined, but
the cure to this is well known; see e.g. [6]. In addition to A, we can also choose
a Gaussian measure μc, with mean zero and (some given) covariance C, which
will become a trivial fixed point of the RG transformation. Whenever possible, a
given spin model will now be represented by the function F, defined by the equation
dμ(φ) = dμc(φ)F(φ). Let a > 0 be such that the operator Γ, determined by the
equation

C = Γ + (a2N)-d(C-ιAC)*C(C-ιAC) , (5.2)
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has no negative eigenvalues. Then the following defines a Wilson-Kadanoff type RG
transformation £Γ\

= F(φ) = I'dμΓ{ψ)F{(a2NΓd/\C-ιACyψ + ψ) , (5.3)

where μΓ is the Gaussian measure on WίΛ with mean zero and covariance Γ. It is easy
to check that / dμcF is equal to J dμcF, as required. Thus, the partition function
for F may be computed by iterating the transformation M. This is particularly useful
in cases where C is unbounded but Γ is bounded.

In hierarchical models, the covariance C is chosen in such a way that the integral
J dμΓ factorizes over blocks B(y) = {x e A : [x/N\ = y}. And if one wants
to mimic the short-range Ising model, the matrix elements C(x, y) should decay
roughly like the two-point function of the Ising model; or like the kernel of the
inverse Laplacian, if η = 0. In order to define such a choice, consider the operators
U and Ao on £2(Λ), given by

2,...,xd) = φ(x2,x3,...,xd,x{),

0(2/!, % , , 2 / d i ^ d ) » ( 5 ' 4 )

and for n = 1,2,3 . . . let

Notice that AnA^ = 1 for all n, which implies that the operators A^An are orthogonal
projections. By using this fact, it is easy to check that the P n ' s are also a family of
orthogonal projections, and that PmPn = δmnPn for all m and n. Let now C = C^ ,
where

α 2 JV) n - 1 P n , (5.6)
n=\

for some fixed σ > 0. Since τ4d^4d_1 4 = A and A*PnA = Pn+d, the covariance
C satisfies the equation

C = Γ + {a2N)dA*CA, (5.7)

with Γ = Cd. A straightforward calculation shows that C~ιAC = (a2N)dA, i.e.,
that C = C^ and Γ — Cd also satisfy (5.2). Using the decomposition of A and Γ
given above, we can now write 3Γ — £Fd o t$J_1 o . . . o j [ , where

= y dμΓn(φ)F(aN^2A*nφ + φ), (5.8)

with Γn = -^(1 - A;A n ). We note that if α = AΓ1/^-i/2ί t h e n t h e spectrum of C,
as given by (5.6), has a scaling property analogous to that of the inverse Laplacian.

The property that distinguishes hierarchical models from more realistic models is
the fact that Gibbs factors of the form

F(φ) = JJ αγ/2^/ι(0(x)) (5.9)
xeΛ
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are mapped to Gibbs factors of a similar form by <F. In the case considered here, the

integral in (5.8) factorizes into a product of (TV - l)-dimensional integrals associated

with blocks of size N. In particular, it is easy to check that for TV = 2,

(5.10)

where JB is the transformation given in (1.1), with K = lot.
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