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Abstract: We study the algebra Bq(§) presented by Kashiwara and introduce
intertwiners similar to ^-vertex operators. We show that a matrix determined by
2-point functions of the intertwiners coincides with a quantum .R-matrix (up to
a diagonal matrix) and give the commutation relations of the intertwiners. We also
introduce an analogue of the universal .R-matrix for the Kashiwara algebra.

0. Introduction

In a recent work [FR], Frenkel and Reshetikhin developed the theory of g-vertex
operators. They showed that n-point correlation functions associated to ^-vertex
operators satisfy a g-difference equation called the ^-deformed Kniznik-Zamolod-
cΐύkov equation. In the derivation of this equation, a crucial point is that the quantum
affine algebra is a quasi-triangular Hopf algebra. By using several properties of the
quasi-triangular Hopf algebra and the representation theory of the quantum affine
algebra, the equation is described in terms of quantum .R-matrices ([FR, IIJMNT]).

In [Kl], Kashiwara introduced the algebra Bq (g), which is generated by
2 x rank g symbols with the Serre relations and the ^-deformed bosonic relations
(see Sect. 1, (1.5)) in order to study the crystal base of ί/~, where U~ is a maximal
nilpotent subalgebra of the quantum algebra Uq(§) associated to a symmetrizable
Kac-Moody Lie algebra g. (In [Kl], Bq (g) is denoted by ^(g)). We shall call this
algebra the Kashiwara algebra. He showed that U~ has a Bq (g)-module structure
and it is irreducible. He also showed that Bq (g) has a similar structure to the Hopf
algebra: there is an algebra homomorphism Bq (g) -+ Uq($) (x) Bq (g). Thus if M is
a t/€(g)-module and N is a Bq (g)-module, then M®iV has a £β

v (g)-module
structure via this homomorphism.

The purposes of the present paper are the following: first we clarify the
algebraic structure of the Kashiwara algebras similar to the Hopf algebra and
develop their representation theory and then applying these to the affine case, we
obtain direct connection between the quantum .R-matrices and 2-ρoint correlation
functions for the affine Kashiwara algebra. From these results we can expect new
approaches for analyzing the quantum or other type K-matrices.
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The organization of this paper is as follows; in Sect. 1, we shall introduce the
algebras Bq($), Bq(§), Uq(o) associated to a symmetrizable Kac-Moody Lie algebra
g and algebra morphisms for such algebras. The algebra Bq is obtained by adding
the Cartan part to Bq and the algebra Bq is an algebra anti-isomorphic to Bq,
where we also call these the Kashiwara algebras. The algebra Uq is an ordinary
quantum algebra. The Kashiwara algebra has no natural Hopf algebra structure,
but these algebras admit a certain algebra structure similar to the Hopf algebra. In
fact, there are the following algebra homomorphisms, Uq-+Uq®Uq,
Bq-^Bq® Uq, Bq-> Uq®Bq, Uq->Bq® Bq, an antipode S: Uq -> Uq and an anti-
isomorphism φ:Bq-^Bq. By using these, in the former half of Sect. 2, we can
consider tensor products and dual modules of 5€-modules, 5^-modules and Uq

modules. In the latter half of Sect. 2, we discuss properties of the category of highest
weight £g-modules. In Sect. 3, we recall the Killing form of Uq due to [R, T] and
give a certain relationship between the algebra Bq and the Killing form. We also
introduce a bilinear pairing < | > for highest weight ^-module H(λ\ which is an
analogue of an ordinary vacuum expectation value. In Sect. 4, we restrict ourselves
to an affine case and consider the following type of intertwiners similar to ^-vertex
operators;

HomBq(H(λ\H(μ)®Vz), (0)

and examine the condition for existence of such intertwiners. By using the bilinear
pairing above for a composition of these intertwiners, we define 2-point functions.
By using the relationship between the algebra Bq and the Killing form, we can
explicitly describe a 2-point function as a matrix element of an image of the
universal ^-matrix. In other words, 2-point functions give matrix elements of the
quantum jR-matrix up to scalar factors. This result clarifies the new aspects of
quantum ^-matrices. Here note that we do not derive any type of equation. This
point differs from [FR]. Nevertheless, by pure algebraic method we can describe
2-ρoint functions.

In order to explain precisely, we prepare some notations. Let U'q be a sub-
algebra of a quantum affine algebra Uq without a scaling element, let V and W be
finite dimensional t/^-modules, let VZί and WZ2 be their affinizations, where z± and
z2 are formal variables, let Rvw(zί/z2) be the image of the universal K-matrix onto
VZι ® WZ2 and let uλ (resp. ur

λ) be a highest weight vector of an irreducible highest
weight left (resp. right) ^-module H(λ) (resp. Hr(λ}\

Theorem (Theorem 5.3). For Φf^v(z1)eHomB (H(λ),H(μ)® VZι) and Φv

μ

w(z2)E
UomBq (H(μ), H(v) ® W,J, we have

<ι/v|ΦΓfe)Φf(*ι)l^^

where σ: a®b^>b®a, and v0eV and w0e W are the leading terms of Φl^v(zi) and
Φv^(z2) respectively (see Definition 4.1).

From this theorem and the unitarity of a quantum .R-matrix, we can derive the
commutation relation of intertwiners of type (0).

The contents of Sect. 6 is divided from the ones^of the previous sections. In this
section, for the algebra Bq we give an element J^ which is an analogue of the
universal K-matrix .̂ This satisfies, for example, ^12^13^23 = ̂ 23^13^12? etc.
We also introduce a projector Γ associated to J>, which acts on H(λ) and singles out
only the highest weight component. In Appendix A, we list some formulae for
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algebra homomorphisms related to the algebras introduced in this paper and in
Appendix B, we recall the theory of the universal J^-matrix of Uq.

The author would like to acknowledge E. Date, M. Jimbo, M. Kashiwara and
M. Okado for discussions and helpful advice.

1. Preliminary

We shall define the algebras playing a significant role in this paper. First, let g be
a symmetrizable Kac-Moody algebra over Q with a Cartan subalgebra t,
(αt e t*}ίe/ the set of simple roots and {hi et}iel the set of coroots, where / is a finite
index set. We define an inner product on t* such that (α^α^eZ^o and

We call Q a root lattice. Let P a lattice oft*, i.e. a free Z-submodule oft* such that
t*^Q0zP, and P* = {/zet |</z,P>cZ}. Now, we introduce the symbols
{ei,e",fi,fi(iel\ qh(heP*)}. These symbols satisfy the following relations;

q° = l, and qhqh' = qh+h', (1.1)

(1.4)

(1.5)

(1.6)

where q is transcendental over Q and we set qi = q(ΰί"Cίι)/2

9 ti = q\\ [w]i = (#? — qϊ~n)/
fa-ίΓ1), [«](! = ΠZ-ιM« and A i") = Λ ?/[fi]ί!.

Now, we define the algebras jBe(g), 5g(g) and ί/β(g). In the rest of this paper, we
denote the base field Q(q) by F. The algebra J55(g) (resp. 5e(g)) is an associative
algebra generated by the symbols {V/>/i}iei (resp. {ei,fi}iel) and qh (heP*) with
the defining relations (1.1), (1.2b), (1.3a), (1.5) and (1.7) (resp. (1.1), (1.2a), (1.3b), (1.6)
and (1.7)) over F. The algebra Uq(o) is an associative algebra generated by the
symbols {eijί}iel and qh (heP*) with the defining relations (1.1), (1.2a), (1.3a), (1.4)
and (1.7) over F. We shall call algebras Bq(o) and Bq(§) the Kashiwara algebras.
([Kl]). Furthermore, we define subalgebras

(Q) (resp. Sβ

v(g)) = <e//,/ί (resp. e i,/ί) |i6/>c: JBβ(g) (resp.
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t/!(g) (resp. t/|(g)) = <βi(resp. /,), g" | ie/, /ιeP*>

= Bβ(g)n t/α(g) (resp. Bβ(g)n C/β(g)) ,

Bβ

+(g) (resp. B-(s)) = <Xi' (resp. /;)|i6/>cBβ

v(g)(resp Bβ

v(9)) ,

B|(g) (resp. Sf (g)) = <βί'(resp. /ί), ^]/E/, /zeP*>

cBg(g)(resp.Bβ(g)).

We shall use the abbreviated notations U, B, 5, £v, . . . for t/β(g), Bq(g), Bg(g),
Bq (g), . . . if there is no confusion.

For β = YjmίaίeQ+ we set \β\=Σmί

and call \ β \ a height of β and Uβ (resp. UIβ)a weight space of U+ (resp. U~) with
a weight β (resp. — j8). We also define Bβ and BI^ by the similar manner.

We shall define weight completions of L(1)® (x)L(m)

? where L(i} = B or
t/(see[T]).

L(1)® - ®L(m)-limL(1)(x) - - (g) L(m)/(L(1} ® - ®L(m})L+J ,

where L + ' / = 0,/M+ - .+,/,., ̂ , L(1)^ ® ® L^t (Note that ^^ ̂
and B^ £/~ ® Γ® B+.) The linear maps as below A, Δ(r\ S, φ, multiplication, etc.
are naturally extend for such completions.

Remark LI. The algebra By is introduced in [Kl] for studying the crystal base of
U~ and called the reduced ^-analogue. Note that in [Kl] the algebra defined by
the relation el

ifj = q~<*l"*^fje
r

i + δij is mainly studied, but there is no essential
difference since both are equivalently related to each other by q<^q~l.

We shall introduce the algebra homomorphisms related to the algebras defined
above.

Proposition 1.2. (1) If we define linear maps Δ\ U^U® U,A(r}: B-+B® U,A(l}: B
->U®BanάA(b}: U->B®Bby

(1.8)

Δ(fί)=fi ® t^ + 1 ® ft , (1.9)

1, Δ(*(fi)=fi®tΓl + l®ft, (1.10)

f\ , (1.11)

ί Γ 1

5 (1.12)

d extending these to the whole algebras by the rule: A(xy) = A(x)A(y) and
l}(xy} = A(l}(x)A(l\y) (i = r9l,b), then they give well-defined algebra homomor-

phisms.
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(2) If we define linear maps S: U-^U and φ: B-*B by

S(ei)=-t^eh S(fi)=-fith S(qh) = q~h (1.13)

= q~h , (1-14)
to-qi x

and extending these to the whole algebras by the rule: S(xy) = S(y)S(x) and
) = φ(y)φ(x), then these maps give well-defined anti-isomorphisms.

Note that in [Kl] a homomorphism similar to Δ(r) is introduced.

Proof. By direct calculations, we can check all the commutation relations. But it is
too complicated to check the Serre relations directly. Since the map A is an
ordinary comultiplication, we may assume that A is well-defined. The formulae
(A10), (All), (A12) and (A13) in Appendix A are useful for checking the Serre
relations. For example, from (A10) and the fact: A\ty* = A\v*9 we have

*=ι

^'-fcHβf1-^1-^
\ fc=ι /

Q.E.D.

Remark 1.3.

(1) If we define an algebra homomorphism ε: t/->F by ε(e;) = ε(fi) = 0 and ε^) = 1,
then (A, S, ε) gives a Hopf algebra structure on U.
(2) The following diagrams are commutative:

B — ̂ -»

/J ( r ) (R)l — 1 (x) zl(n —
B®U - ̂ U B®U®U U®B — — * U®U®B

Thus for a B (resp. 5)-module L, and [/-modules M and N, there is an
isomorphism of B (resp. B)-module;

(L®M)®N^L®(M®N) (resp. (M® AT) ® L^M® (N ® L}} .

Hence we write these L ® M ® N (resp. M ® N ® L). More generally, if M is
a β (resp. 5)-module and Λ/Ί, . . . , Nk are ί/-modules,_then M ® N^® - - - ® Nk

(resp. NI ® •_• (x) Nfc ® M) is a well-defined B (resp. β)-module.
(3) If M is a 5-module and TV is a 5-module, then M ® N has a [/-module structure
via /J(b).
(4) From (A8) (resp. (A9))_and the coassociative laws of A(r) (resp. A ( l } ) and A as in
(2), we know that B (resp. B) has a right (resp. left) [/-comodule structure, (see [A].)
(5) The algebra B- (resp. 5-) is isomorphic to U- (resp. {/-) as an associative
algebra, but B- (resp. B-) has no natural Hopf algebra structure, thus we do not
identify them.

We list several formulae for these operations in Appendix A.
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2. Representation Theory of the Kashiwara Algebra

We shall discuss the representation theory of the algebra Bq(§). In the rest of this
paper, we assume that all representations below have a weight space decomposi-
tion and each weight space is finite dimensional, where for a vector space M with
a Γ-module structure, a weight space Mλ with weight /let* is defined by {u e
M\qhu = q<h>λ>u(heP)}.

2.1. Dual modules. Let M be a left ^-module and h: B-+B an anti-isomorphism
(e.g. φ in Sect. 1). Then the dual space M* = HomF(M, F) has a left 5-module
structure by

(xu,v) = (u9h(x)v\ forxeS, ueM*,vεM . (2.1)

We denote it by M*h. Similarly, for a jB-module N and an anti-isomorphism g:
B-+B, the dual space N* has a left 5-module structure and we denote it by N*9.

Let M be a 5-module, N be a {/-module and g be as above. Then we can give
a left 5-module structure on HomF (M, N) by

(x/)(M) = Σx(2)/(^(x(1))ιι), for xeB, /eHomF(M,IV), ueM , (2.2)

where we denote A(r}(x) = Σx(l} (g) x(2>e B ® U. Note that there is an isomorphism
as a ^-module,

HomF (M, N) ̂  M *9 ® N . (2.3)

Similarly, for J5-modules M and JV, we give a {/-module structure on
HomF(M,JV)by,

foτyeU9feHom¥(M,N),ueM9

where A(b\y) = Σy(1} ® y(2}eB ® B.

Proposition 2.1. L^ί L be a B-module, M be a B-module, N be a U-module and φ:
B->B be as in Sect. 1. Then we obtain an isomorphism of vector spaces;

Homc/(L(χ)M,N)^Homβ(M,HomF(L,N)) . (2.4)

Remark that L®M has a U-module structure via A(b) and HomF(L, JV) has
a 5-module structure via A(r} according to (2.2).

Proof. We define a map Φ: Hom^L® M, Λf)->Hom#(M, HomF(L, N)) as fol-
lows: for /eHom^L® M, N), Φ(/) is given by

First we check the well-definedness of Φ i.e. B-linearity of Φ(/). For PeB, xeL
and yeM by the definition of Φ, we get (Φ(f)(Py))(x)=f(x ® Py). From (2.2) we
can act P on Φ(f)(y] as follows:

(2.5)
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where (1 (x) A(b}) A(r\P) = Σp(V ® P(2) ® P(3). From (A2) in Appendix A, the last
formula in (2.5) is equal to f(x ® Py). Hence Φ(f) is jB-linear. The injectivity of Φ is
trivial. For k<=HomB(M, HomF(L, N)), we define Ψ(k)eHomu(L<8) M,N) by
Ψ(k)(x ® y) = (k(y))(x) (xeL, yeM). We can easily check the well-definedness of
<Fand Φ°Ψ(k) = k. Q.E.D.

From Proposition 2.1 and (2.3), for a B-modules L, M and a [/-module JV, there
is an isomorphism;

Homυ(
rL*φ ® M, JV)^Homβ(M, £ ® JV) , (2.6)

where rL*φ is a restricted dual module of L defined by rL*φ = Q)λL*, Lisa weight
completion of L defined by L = ]\λLλ and note that as a ^-module: (rL*φ)*φ~* ^L
Similarly, we obtain

Corollary 2.2. For B- -modules L, M and U- -module N9 there is an isomorphism,

Hom^(ΓZ**® M,ΛΓ)^Homβ,(M,L® N) .

Λ^oίe ί/zαί /w ί/z^ r^5ί <9/ this paper the expression L ® N implies L® N.

2.2. Highest weight B-modules. We shall discuss highest weight B-modules.

Proposition 2.3. For λet*, we sef

(2.7)
i /zeP*

Then for an arbitrary λ, H(λ) (resp. Hr(/l)) is an irreducible highest weight left (resp.
right) B-module and is a free and rank one U~ (resp. B+)-module.

We denote the highest weight vector 1 modΣi^ί' + Σ/iep* B(qh-q<h>λ>) by

uλ and 1 modΣi/iB + Σ*6p (qh-q<h'λ>)B by ur

λ.

Proof. We show only for H(λ). In [Kl], it is shown that the subalgebra U~ c= C/has
a βv -module structure and it is isomorphic to an irreducible Bv -module Bv /
ΣΪ^V e" . Since By is a subalgebra of B, H(λ) is regarded as a J?v -module. We can
easily obtain the following isomorphism of B v -modules and then of the U~-
module,

X ^Xuλ, (2.8)

Hence H(λ) is irreducible as a Bv -module and then irreducible as a B-
module. Q.E.D.

Let 0(B) i (resp. Θr(B)) be the category of left (resp. right) J5-modules M such that
M has a weight space decomposition and for any element u e M there exists / > 0
such that e'^e"2 - - - e"ιu = Q(ΐQsp.ufiιfί2 - - /J/ = 0)forany ι'1? ι2, . . . , i/e/(see [Kl]).

Proposition 2.4. (See Remark 3.4.10 [Kl].) Thecategory 0(B) (resp. 0r(J3)) is semi-
simple, (i.e. any ob/ect is a direcί sum o/ simple objects) and for any simple object
M there exists A e t * such that M^H(λ) (resp. M^Hr(λ)) as a B-module.
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Proof. We shall show only for ®(B}. Let M be a simple object of Θ(B] and vλ be
a highest weight vector of M with a highest weight A, where a highest weight vector
implies a weight vector annihilated by any e" (i e /). Here we set uλ a highest weight
vector of H(λ). We can easily know that a map

is ^-linear and surjective. The kernel of π is a 5-submodule of H(λ\ and by
Proposition 2.3, the kernel of π is 0. Hence π is injective. Next we show the
semi-simplicity of (9(B). First note that if N c M are objects in &(B\ then M/N is
also an object in @(B). Let M be a non-simple object of Θ(B). Without a loss of
generality, we may assume that M has two highest weight vectors u and v. By the
argument in this proof, Bu and Bv are simple. We have M = Bu + Bv and then
B-module M/Bu has only one highest weight vector v and M/Bu^Bv. By the
argument in this proof, we have Bv^Bυ, since wt(v) = wt(ϋ). Thus the following
exact sequence splits:

Q-+BU-+M-+BV-+Q .
Therefore, we obtain the desired result. Q.E.D.

Note that lowest weight 5-modules, e.g. H(λ)* have similar properties.

3. Bilinear Forms

In this section, after recalling the Killing form of {/, we give an interpretation of the
Killing form of U by the algebra By. We also introduce a bilinear pairing similar to
a vacuum expectation value.

Proposition 3.1. ([R,T]) (1) There exists a unique bilinear form

( , ): l^xt^->F, (3.1)

satisfying the following properties',

) , (3.2)

U=), (3.3)

(3.4)

(3.5)

(ei,fj) = δij/(qΓl-qi), (3.6)

where (\) is an invariant bilinear form on t ([Kac]).
(2) The bilinear form (,) enjoys the following properties:

(xqh,yqh') = q~(hlkΊ(x,y), far xe t/=, ye U=, h, h'eP*. (3.7)

For any βeQ+, (,\u;xϋ-β is non-degenerate and (Uy , I/Ia) = 0, if y^δ . (3.8)

PFe cα// ί/izs bilinear form the Killing form of U.
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By using the relation (1.5), it is easy to see that the algebra Bv has the following
decomposition:

/ \
(3.9)

Hence for any xeBv there is a unique constant c such that x = cmoά
Σifiβv + L5Vί' We denote this c by ι(x).

There is the following connection between i and the Killing form of U.

Proposition 3.2. Let i be as above and (,) the Killing form of U. For any uεU+ and
uetΓ,

ι(φ(u)v) = ( u , v ) . (3.10)

Note that since t/e U+ =BV n U, φ(u)eBv and then (p(u)veBv.

Proof. We may assume u and v are weight vectors. If wt (u) + wt (ι;) φ 0, trivially
ι(φ(u)v) = (u,v) = Q. For we Uβ and i e UIβ(βeQ+), it is enough to show

We shall show by the induction on \β\ = height of β. Set ί = |j8|. Without a loss of
generality, we can set M = eϊ 1e,2 eit and v=fjJJ2 ' ' ' fjl9 where α / ] L+ +0^ =

_l_ V /7< f c.ι.«Jι+ • • • +a^-ι>^ e" - - e" f - f f * /
f Zj ^1 °ll,Jm^h ^hJjί Jjm-Jjm*l Jjl '

m=l

Thus, by the hypothesis of the induction,

= Σ ^β'l+> -"^-^w-ΦK ' ^)Λ ' •l-.L, - Λ

(3.12)
m= 1 ί

On the other hand, from the formulae (3.2)-(3.8) and the explicit form of A(ft),

= Σ (eί2 •••e,® e^fj, f^J^ •• f,,®t^ C .̂C, ' ' ' 'D
m = l

= Σ K e^fj, ••&_,&., • fj,)(ell,ς
1 ; CU-C, ' ' ' ί Γ 1 )
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i
= V 0<ΛJi+ +ΛJ"-i'αJ» >fe. f )(e - - e f - f f - - f)

JL "jm \Vliy Jjm'\Kl2 *V Λ/l Jjm-lJjm+l Jjl'

m = l

I a<hJί>«jι+ ••• +« J m-1> /5

- V Ήλ _ ''iJ* (e e f f f Π β 13)
~ Z^ / - ! _ Λ V^2 <V.//ι Jjm-ιJjm + ι Jji) ' \O.IJ)

From the equality of (3.12) and (3.13), we get the desired result. Q.E.D.

We shall define a bilinear pairing similar to vacuum expectation values. For
/let* we define a bilinear pairing < | >: Hr(λ) x H(λ)-+F as follows: similar to (3.9)
the algebra B has a decomposition,

(3.14)

Let Ω: B-+Tbε a canonical projection. Here we can define a T- valued pairing E:
BxB-+Tby E(x,y) = Ω(xy) for x, yεB. By the definition of £(,) and the asso-
ciativity of B, we have

E(xy, z) = E(x9 yz) for x, y, z e B . (3.15)

We define πλ: Γ-^F by tuλ = πλ(t)uλ for ίeΓ. A bilinear pairing < | >:
Hr(λ) x fί(A)-^F is given by <w|t;>-πA(£(P, β)), where u = ur

λP &ndv = Quλ(P, Qe
B). It is clear that this is well-defined, i.e. it does not depend on a choice of P and β.

Proposition 3.3. There is a unique and non-degenerate bilinear pairing < | >: Hr(λ) x
#(/l)-»F such that

<Mx|t;> = <M|xt;>,(xeB) and <ιfλ\uλy = l . (3.16)

Proo/. If we assume the existence, then the uniqueness immediately follows from
(3.16). The existence follows from the construction above and (3.15). We shall show
non-degeneracy. Let {Pj c= U+ and (βj c U~ be bases dual to each other with
respect to the Killing form such that each basis element is a weight vector. By
Proposition 3.2, we get

φ(Pi)QJ = δi,jmodΣfiB"+ΣB"eΐ - (3 17)
i i

Hence

Moreover, by Proposition 2.3, {u\φ(Pi)} and {QίUλ} are bases of Hr(λ) and H(λ)
respectively. Thus we have completed the proof of Proposition 3.3. Q.E.D.

From the property (3.1 6), we shall use the expression < w | x | υ > for < ux | υ > = <u | xυ >
(ueHr(λ\ veH(λ) and xeB).

4. Intertwiners

In this section and the next section, we restrict g to be an affine Lie algebra. We
shall study the following type of intertwiners, which is an analogue of so-called
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"g-vertex operators" ([FR, DJO]):

HomBq(Q)(H(λlH(μ)®Vz), (4.1)

where Vz is a representation of U= Uq(§) (see below).

4.1. Notations. We shall prepare notations. (See [KMN2, Kac, DJO].)

Set / = {0,!,...,«} and «ftί5 α/»o£ijgn coincides with an affine Cartan matrix in
[Kac] except for the type A(^. For this type we reverse the ordering of vertices
since we need that δ — α0e^"=1 Zαf for a generator of null roots δ. Let c be
a canonical center of g, {Λj ί6 l a set of fundamental weights and del a scaling
element. Now, since g is affine, dim t = # / +1. Thus we can write t = 0f Q/z f φ Qd,
t* = 0 iQΛί®Q<5, P = 0iZ/ti0Z(5 and P* = 0iZΛi0 Zd. We set t* = t*/Q<5
and (Pc/)* = 0"=oZ/Zj. Let c/: P-^Pcί be a canonical projection and set Pd = cl(P).
We fix a map α/: Pd-»P by af°cl(oLi) = ui (iφO) and α/°c/(Λo) = Λ0 so that
cloqf=id and fl/oc/(a0) = a0 —<5. For a fixed feeQ, we set (t*)fc =
{Λ,eα/(t*)|<c,Λ,> = fc} and we say that Λ,e(t*) fc has a kt e/ /c. The subalgebra of
Z7(resp. 5) generated by {ef(resp. e")> yj l f e / } and qh(he(Pd)*) is denoted by t/'
(resp. B').

For a finite dimensional ί/'-module F and a formal variable z, we define an
affinization Fz = F[z, z"1] ® Fwith a ^/-module structure as follows:

βi(f ® u) = zn+δ« (x) ^u, fi(z" ® u) = 2?-

wt (z" (x) M) = nδ + α/(wt M) . (4.2)

4.2. Condition for existence. We shall examine the condition for existence of the
intertwiners of β-modules of type (4.1) by the similar way of [DJO].

Definition 4.1. For λ, μe(ί*)k and ΦeUomB(H(λ)9 H(μ)® Vz) and the highest
weight vector uλ and uμ, write the image ofuλ by Φ

where - implies terms of the form u®v with ue@ξ^μH(μ)ξ. We call vit the
leading term of Φ.

Proposition 4.2. The map sending Φ to its leading term gives an isomorphism,

HomB(H(λ\ H(μ) <g> Fz) ̂  (Vz)λ-μ .

Proof. Let ¥uλ be one dimensional B--module with defining relations: e"uλ = Q
and qhuλ = q<h'λ>uλ. We prepare the following lemma.

Lemma 4.3. We have the following isomorphism',

Hom*(/ϊμ),H(μ)®Kz) ^ Homβ^ (Ftιλ, H(μ) ® Fz) (4.3)
Φ H> Φ |Fu

Proof of Lemma 4.3. By B-linearity of Φ, one gets B --linearity of Φ|Fu an(} jf

Φuλ = Q, then Φ^O. Hence the map (4.3) is well-defined and injective. To show the
surjectivity, take a vector veH(μ) ® Vz such that wt(v) = λ and e"v = Q for all iel.
By the property of the category Θ(B] (Proposition 2.4), the ^-module Bv is
isomorphic to H(λ) as a B-module. Hence we obtain the surjectivity. Q.E.D.
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From Corollary 2.2, we have the following isomorphism:

R.H.S. of (4.3)^Home/^ (rH(μ}*φ ® FuA, Vz) . (4.4)

Here note that Δ(b\U=)^ U= ® B=, and as a t/=( = jBnt/)-module Ή(μ}*φ is
isomorphic to

heP*

It is easy to see that R.H.S. of (4.4) is isomorphic to (Vz}λ-μ. Q.E.D.

5. 2-Point Functions and Commutation Relations of Intertwiners

In this section we show that a matrix determined by "2-point functions" coincides
with a quantum ^-matrix up to a diagonal matrix and give commutation relations
for intertwiners.

5.1. 2-point functions. First we shall define "2-point functions" for the intertwiners
of ^-modules introduced in Sect. 4. We fix fceQ. For Φ^zJeHom^H^),
H ( μ ) ® V Z ί ] and Φ^(z2)6Homι,(H(μ), H(v)®WZ2) (λ,μ,vε(t*)fc), we use an
abbreviated notation Φv

μ

w(z2)Φfiv(z,) for (Φv

μ

w(z2)®idvJΦfίv(zi). With this
notation, the following is called a 2-point function:

We shall give an explicit description of 2-point functions. For a J5-module H(λ\
Ή(λ)*φ means the restricted dual module @?(H(λ)*)ξ as in Sect. 2. Here Ή(λ)*φ is
an irreducible lowest weight left 5-module with a lowest weight vector denoted by
u* such that />*=0 for any ie/, qh = q~<h>λyu* for any /ιeP*? (u*,uλ)=l and
(wJ, v) = 0 for t e @μΦλH(λ)μ. From JProposition 2.1 and the formula (2.6), there is
an isomorphism for A, μe(t*) fc;

ίP: Hom^CT/(//)** (x) H(A), Fz)^> HomB(f/(A), H(μ) ® Kz) . (5.1)

We translate this in terms of dual bases as follows. Let {uι}c:H(μ) and
{u*} c r H(μ)* φ be bases dual to each other such that uμ e{ui}. Then for x eH(λ) and
φeHomu(

rH(μ)^ ® H(λ\ Vz\ Ψ is given by

Ψ(φ)(x) = ̂ Uί®φ(uf®x). (5.2)
i

The following lemma is immediate from (5.2) and the definition of the leading term.

Lemma 5.1. Let Ψ and φ be as above. Then φ(u* (x) uλ] is a leading term of Ψ(φ).

Lemma 5.2. Let {Pt} c= U+ and {Qι} c U~ be bases dual to each other with respect
to the Killing form such that each basis element is a weight vector and 1 e {Pj (and
then le{a}). Then for any /let*, {PittJ}c=r#(A)*?' and (QiUλ}c:H(λ) are bases
dual to each other.
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Proof. First note that for uerH(λ)*φ, υeH(λ\ xeBznάyeB,

) . (5.3)

From Proposition 3.2 and (5.3),_we get (Piu*,Qjuλ) = δiJ and from Proposition 2.3
(and a similar one for lowest 5-modules), we know that {PjW*} and {QiUλ} are
bases. Q.E.D.

Let ̂  be a universal R-matrix and St'(z] a modified universal R-matrix as in
(BIO) (see Appendix B.). Let Fand FFbe finite dimensional {/'-modules and VZl and
WZ2 their affinizations. We denote the image of the universal .R-matrix onto
a t/ module FZι ® WZ2 by Rvw(z) = πv@w(^f(z)\ where z = zί/z2. This coincides
with a quantum .R -matrix on V® W up to a scalar factor.

Theorem 5.3. For jntertwiners Φfiv(zί)eHomB(H(λ),H(μ)® VZι) and Φv

μ

w(z2)e
HomB(H(μ\ H(v)<§) WZ2\ we set v0e VZι and w 0e WZ2 be leading terms of Φfi

λ

v(zl)
and Φv^v(z2) respectively. Then the 2-poίnt function is given by

<ι4|ΦΓ(*2)Φf(*ι)|t^ = ̂

where σ: a® b-+b (x) a.

Proof. Let Ψ be as in (5.1). We set φ1 = Ψ~ί(Φ'iv(zί)) and φ2 = Ψ~l(Φv

μ

w(z2)). Let
and {Qi} be as in Lemma 5.2. From (5.2) and Lemma 5.2, for x e H(λ) we have

and then 2-point function can be written by

®W®V

*By the intertwining property of φt (i = 1, 2) and the fact that e'/w^O and /ίw
for any i e /, we have

Hence (5.4) can be rewritten by

(5.5)

From (B9) in Appendix B, on a vector u ® v (wt (u) = ξ and wt (v) = η) we have

£ = β-« '»χp (®β ί. (5.6)

From Lemma 5.1, φι(w* ® W Λ ) ® 02(w? ® u^) = v0 ® w0. Therefore by the for-
mulae (5.5) and (5.6), we obtain the desired result. Q.E.D.
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Fix bases C and C of V and W respectively such that each basis element is
a weight vector. For a pair (υh w7 )e C x C let Φ^(zl)e'ΆQmB(H(X)9 H(μt) ® FZι)
and Φ^j)(z2)eHomB(H(μί), H(VJ)® WZ2) be intertwiners with leading terms
ϋf and Wj respectively. Let S(zl9 z2), DeEnd(F(χ) PΓ) be matrices defined by

S(z l 9z2): ι;I (χ)

Z): ϋi ® w h^ '̂̂  ̂  <g) w, .

From Theorem 5.3, we obtain the following;

Corollary 5.4. With the notations as above, we have

5.2. Commutation relations. Let V and W be finite dimensional {/'-modules. We
assume that VZι ® WZ2 is an irreducible ^/-module. Let C and C be bases of V and
PF as in 5.1. Now, we fix υ0eC, w0eC", A, ve(t*) f c such that /I — v =
α/(wt(fo) + wt(w0)) and let ΦμF(z) and ΦχW(z) be intertwiners such that their
leading terms are v0 e C and w0 e C7 respectively. Here note that we identify t; e F
and weW with 1 (x) v e Vz and 1 (x) w e fFz respectively. We set

For a pair (Vi,Wi)eE9 we set Φ^(z) and Φ^(z) be intertwiners such that their
leading terms are vt and wt respectively.

For a t/'-modules V® W, from the uniqueness and the unitarity of quantum
^-matrices, there exists some function /(x) such that

Rvw(zJz2)σRwv(z2/z1)σ=f(z1/z2)idy9W. (5.7)

We define W i ( z 1 / z 2 ) by,

Σ^ (5.8)

Proposition 5.5. P^zί/i ί/ze notations as above, we have the following commutation
relation (in the sense of a matrix element):

Proof. From (5.7) and Theorem 5.3, we have

/(zι/z2)(»o ® w0) = Rvw(Zl/z2)σRwv(z2/Zl)σ(v0 ® w0)

= ς-<λ-" "-1'>R^(z1/z2)<Hr

ϊ|ΦJκ(z1)ΦΓ(z2)l«Λ> (5-9)

On the other hand, from (5.8) and Theorem 5.3,

(5.10)
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From (5.9), (5.10), the intertwining property of σ°Rvw(z) and J5-linearity of ele-
ments in HomB(H(λ), H(μ) (g) Vz\ we obtain the desired result. Q.E.D.

Example. Set Q = sΓ2 and V=¥u+ 0 Fw_ . A ^/-module structure of Vz is given by

wt(znu±=nδ±(A1-A0)

Set

An explicit form of the image of the universal .R-matrix onto VZί ® VZ2 is described
in [DFJMN], therefore 2-point functions are given as follows:

/

u+®u± if λ — μ = μ — v= ±(Aί—A0) ,

n~V—n r1 1—Zι/Z 2

-u+®u--\ ~— — u - ® u + uλ — μ = v — μ = AΛ—A0,
2 l-q2z1/z2

q-i-q ^ ._ , , ,
+ (x) w _ +- 2—Ί— u- ®u+ ύ λ — μ = v — μ = A0 — Aΐ ,

where we normalize intertwiners so that their leading term is u+ or w _ . Note that
we take the normalization (αf, α,) = 2, thus we have (Ai9 Λj) = <5α δ^ /2. The function
in (5.7) is given by

6. An Element ̂  and a Projector Γ

In this section we do not restrict g to be an affine Lie algebra. We introduce an
element Jl, which satisfies the properties similar to those of the universal jR-matrix.

6.1. An element &. We follow the notations as in Appendix B. We can define
(B ® U®n) and extend A(r} (x) I0 n by the similar manner as in Appendix B.

Let & be the universal .R-matrix of U (see (B8) in Appendix B.). We define

"
Here note that left components of Cβ belong to {/-, then the map φS~l: U- -> U-
->B- is well-defined, and formally we can write $ = (φS~l ® 1)̂  since φS"1 act
as an identity for the Cartan part.
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Proposition 6.1. J> enjoys the following properties;

$ is invertible and

J-ι= £ qU p\l®kp)(φ®l)(Cp)qH

9 (6.2)

(6.3)
(6.4)

(6.5)

. (6.6)

Corollary 6.2. We /zαi e ίfte following equation in (B ® C7 ® C/)Ί

^23^13^12=^12^13^23

Proof of Corollary 6.2. From the properties (6.4) and (Bl),

= 12
Q.E.D.

Proof of Proposition 6. L We can derive (6.2), (6.3), (6.4) and (6.6) from the property
of .̂ In fact, (6.2), (6.4) and (6.6) are immediate from (B1)-(B3). To show (6.3), we
only need the following:

), for any XeU= .

This is easily obtained by direct calculations. Hence

= (φS~1 <g) 1 (

In order to show (6.5), we shall prepare some lemmas.

Lemma 6.3. Let Cβ be as in Appendix B. Set Cβ = (φS~1 ® 1)C^. For any iel we
have,

Uι®lCβ+J = Cβ(ti®fi). (6.7)

Proof. We show the following lemma.

Lemma 6.4. For any iel, β<=Q+ and w e ί//+α., we have

"

- _

where v e Uβ is uniquely determined by A(u) = u® l+vti® eι+ , where - - -
implies terms whose right component is an element o/(J)/?*o ,α, ^/

Proof. For J? = Σj^jθtj, assuming that w is a monomial e;ιej2 ejl9 where / =
I β\ + 1, we can easily show by the induction on mf . Q.E.D.
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We return to the proof of Lemma 6.3. We write Cβ = Σr xβ

r (x) y~β. We shall show
the equality of (6.7) by applying 1 ® (u, ) to both sides of (6.7), where uεUβ and
( , ) is the Killing form,

H(^-αθ^
/

On the other hand, by Lemma 6.4 and the properties of the Killing form,

= φS-l(υ}ti/(q^-qί). Q.E.D.

Let us show (6.5). Multiplying q(β+*"β}(k_β_ΰίt(8) kβ) to both sides of (6.7), we
obtain

q(β+*»β+«)(f. g) tΓ1)^^ ® kβ+Λt)Cβ+Λt

= ̂ +* '+*>^^ (6.8)

From (6.8), (B6) and the presentation (B4) we obtain (6.5) Q.E.D.

6.2. Projector Γ. We set <# = ΣβeQ+<l(β'®(kβ1 ® kβ)Cβε U® U and set % =
(φS~l (x) l)<f. From the result of [T](Sect. 4), we know that

We write ̂  ~ l = Σk ak ® bk , where akeB- and bk e U- and set

k

This is well-defined as an endomorphism of objects in (9(B).

Proposition 6.5. For any /let*, we have

Γ2 = Γ, Γ lf(A) = F u A , (6.9)

and m particular, Γuλ = uλ .

Proo/. From (6.8) we obtain (ft (x) ίί~
1)(^ = ̂ (r)(/i) for any z, and then

" ~

(6.10)
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Applying w°σ(l ® S"1) to both sides of (6.10), where σ: a®bt-+b®a and m is
a multiplication, we have

Thus Γ fi = Q for any ϊ'e/. From this and Proposition 2.3, we get (6.9). Q.E.D.

Example. For g = sl25 we have

Γ= Σ ^»(»-D(- !)»/(») e"» . (6.11)
n^O

Note that an element similar to (6.11) is introduced in [Kl].

Appendix A

We list several formulae for the operations in Sect. 1, which are analogs of the
formula for a Hopf algebra:

φ ® 1)(1 ® J(6))^(r)(^H* ® 1 (*e£) , (Al)

(m® 1)(1 ® φ® 1)(1 ® zl^^Hl ® X (XeB)9 (A2)

(1 ® m)(l ® σ)(l ® φ-1 ® l)(zJ(b) ® 1) J(Z)(Jf ) = X ® 1 (XeB) , (A3)

(m® l)(σ® 1)(1 ® φ-1 ® l)(zl(δ) ® i)A(l\X}= 1 ® X (XeB) , (A4)

(Xe U) , (A5)

X (XeU), (A6)

(XeU), (A7)

(XeB), (A8)

(ε® l)zl(0(*Hl®^ (X®B), (A9)

(A 10)

(All)

(A12)

(A13)

where σ: a®b-+b®a and m is a multiplication m: α ® b-*ab.
These are obtained by direct calculations. We shall show, for example, (Al).

First we show for generators; this is trivial. Next, we assume that x and y e B satisfy
(Al) and write (1 ® A(b))A(r)(u) = ̂ u(ί) ® u(2) ® u(3). Then we have

φ ® ® ΔArxy = ® m

Thus we get (Al).
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Appendix B

In this appendix, we recall the theory of the universal ^-matrix of C/(see [Dl, T]).
Recall that for the Hopf algebra (U,Δ9S,ε) the universal ^-matrix & is an

element which enjoys the following properties ([Dl, T]):

A'(x)@ΐθΐ any x e Z 7 , (Bl)

(Zi ®l)^ = ̂ i3^23, (l®Z!)^ = ̂ i3^ι2, (B2)

(ε ® id)«= 1 ® 1 -(id ® ε)^, (S ® id)^ = ̂ ~ 1 -(id ® S]9t . (B3)

We need some preparation to write down the explicit form of $. Let U ® t/ be
a weight completion of t/® t/ as in Sect. 1. Let #et ® t be a canonical element
with respect to the invariant bilinear form on t. We extend the algebra U ® U by
adding formal elements q±H with the following properties:

qH.q-H = q-H.qa=l®l, q±H(qh ® qh') = (qh ® qh')q±H , (B4)

4 ± H fe®l) = fe®ίr)<?±H, <?±H(l®^ = (ίΓ®^)<?± H, (B5)

4±H(/i ® !) = (/, ® ίn<2±H, q±H(l ®fi) = (t? ®fi)q±H , (B6)

= q±H"q±H» , (B7)

where q±Hij's are elements corresponding to g±H on the zth and the/11 components
in tensor products and they commute with each other. Thus, for example, we
identify qHί2 with qH ® 1. We denote this algebra by (C7® 0) . From the property
(B7), we can also extend Δ®\ and 1 ® Δ to the algebra homomorphism
(U® U)-*(U® U® U). More generally, we can extend U®n to (U®n) by adding

By using the Killing form (see Sect. 3) we can carry out Drinfeld's quantum
double construction formally and get an explicit presentation of J>,

(B8)

where kβ is an element of Γgiven by kβ = f|7 tf for β = ΣJ WjUj and Cβ is a canonical
element of Uβ ® UIβ with respect to the Killing form.

Here, for [/-modules V and W, q±H can be regarded as an element of
End(F(χ) W) given by q±H(u ® v) = q±(ξ-η}(u ® ϋ), (we Fξ and ϋe H^). (See [Kac]
Sect. 2.) In such consideration, ^ makes sense as an endomorphism of tensor
products of [/-modules. For vectors u and v as above we get,

t?)

Therefore, we obtain

(B9)
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When g is an affine Lie algebra, we set

0t'(z) = q-**+c*d+d*c £ q(β^(z^kβl®kβ)Cβ, (BIO)
βeQ +

where c is a canonical central element of g and d is a scaling element of g. This is
used to describe the image of the universal ^-matrix onto a tensor product of
affinization for finite dimensional U'-modules (see [FR, IIJMNT]).

References

[A] Abe, E.: Hopf algebras. Cambridge: Cambridge Univ. Press, 1980
[Dl] Drinfeld, V.G.: Quantum Groups. Proceedings of ICM Barkeley, 1986, pp. 798-820
[D2] Drinfeld, V.G.: On almost co-commutative Hopf algebras. Leningrad Math. J.I,

321-431 (1990)
[DFJMN] Davies, B., Foda, O., Jimbo, M., Miwa, T., Nakayashiki, A.: Diagonalization of the

XXZ Hamiltonian by vertex operators. Commun. Math. Phys. 151, 89-153 (1993)
[DJO] Date, E., Jimbo, M., Okado M.: Crystal base and ^-vertex operators. Osaka Univ.

Math. Sci. preprint 1 (1991), Commum. Math. Phys. 155, 47-69 (1993)
[FR] Frenkel, I.B., Reshetikhin, N.Yu.: Quantum affine algebras and holonomic difference

equations. Commum. Math. Phys. 149, 1-60 (1992)
[IIJMNT] Idzumi, M., lohara, K., Jimbo, M., Miwa, T., Nakashima, T., Tokihiro, T.: Quantum

affine symmetry in vertex models. Int. J. Mod. Phys. A 8, No. 8, 1479-1511 (1993)
[KMN2] Kang, S-.J., Kashiwara, M., Misra, K., Miwa, T., Nakashima, T., Nakayashiki, A.:

Affine crystals and vertex models. Int. J. Mod. Phys. A7 Suppl. 1A, 449-484 (1992)
[Kac] Kac, V.G.: Infinite dimensional Lie algebras. 3rd ed. Cambridge: Cambridge Univ.

Press, 1990
[KK] Kac, V.G., Kazhdan, D.A.: Structure of representations with highest weight of

infinite-dimensional Lie algebras. Adv. in Math. 34, 97-108 (1979)
[Kl] Kashiwara, M.: On crystal bases of the ^-analogue of universal enveloping algebras.

Duke Math. J. 63, 465-516 (1991)
[K2] Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69,455-485

(1993)
[R] Rosso, M.: Analogues de la forme de Killing et du theoreme dΉarish-Chandra pour

les groupes quantiques. Ann. Scient. EC. Norm. Sup. 23, 445-467 (1990)
[S] Shapovalov, N.N.: On a bilinear form on the universal enveloping algebra of

a complex semisimple Lie algebra. Funkt. Analis. Appl. 6, 307-312 (1972)
[T] Tanisaki, T.: Killing forms, Harish-Chandra isomorphisms, and universal .R-matrices

for quantum algebras. Int. J. Mod. Phys. A7 Suppl. IB, 941-961 (1992)

Communicated by M. Jimbo




