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Abstract: The so-called Ginzburg-Landau formalism applies for parabolic systems
which are defined on cylindrical domains, which are close to the threshold of
instability, and for which the unstable Fourier modes belong to non-zero wave
numbers. This formalism allows to describe an attracting set of solutions by a
modulation equation, here the Ginzburg-Landau equation. If the coefficient in front
of the cubic term of the formally derived Ginzburg-Landau equation has negative real
part the method allows to show global existence in time in the original system of all
solutions belonging to small initial conditions in L°°. Another aim of this paper is
to construct a pseudo-orbit of Ginzburg-Landau approximations which is close to a
solution of the original system up to t = oo. We consider here as an example the so-
called Kuramoto-Shivashinsky equation to explain the methods, but it applies also to a
wide class of other problems, like e.g. hydrodynamical problems or reaction-diffusion
equations, too.

1. Introduction and Results

We consider evolutionary problems over a domain with one unbounded space-
direction close to the threshold of instability. If a spatially homogeneous solution
of a dissipative system becomes unstable, a whole band of Fourier modes with
positive growth rates appears. In classical bifurcation theory with discrete spectrum
the bifurcating solutions can be described by a finite dimensional system (ODE) using
center manifold theory (see e.g. [He81]). In our case the spectrum of the linearization
at the trivial state is continuous.. Hence new problems appear: First the criticial
eigenspace is infinite dimensional and second it cannot be separated from the uncritical
part by a spectral gap. Thus, center manifold theory is no longer available. One way to
handle such systems is given in [Mi92] leading to PDE's with nonlocal terms. Another
way is the so-called Ginzburg-Landau formalism [IMD89] which is based on multiple
scaling and on the assumption that the unstable Fourier modes belong to non-zero
wave numbers. A formally derived PDF called the Ginzburg-Landau equation takes
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the role of the finite dimensional ODE in center manifold theory. A general set-up
for applying the Ginzburg-Landau formalism can be found in [Sch93].

A good model equation for studying the Ginzburg-Landau formalism is the so-
called Kuramoto-Shivashinsky equation:

dtu = -(I + d2

x)
2u + ε2u + udxu = X(idx,ε

2)u + ρ(idx)u2 (1)

with t > 0, x E R and 1 > ε2 > 0 the bifurcation parameter. The trivial
solution u = 0 is unstable, and linearizing at u = 0 we find solutions of the form

u(x,t) = e~xt+ίkx, where λ(/c,ε2) = -(1 - &2)2 + ̂  We observe that λ(/c,ε2) is
positive for k close to ±1 with height ^(ε2) and width &(ε). Therefore, by inverse
Fourier transform we expect that for small ε2 > 0 there are solutions of (1), which are
small modulations in time and in space of the critical modes e±ϊx. Using the scalings
T = ε2t and X = εx we suppose that

u(x,t,έ) = ψε(A) + ^(ε32) - [εA(X,T)elx + εΆ(X,T)e~ix] + ̂

By a formal calculation we find that the complex valued amplitude A:R x R+ — » C
has to satisfy the Ginzburg-Landau equation

ΘTA(X, T) = A(X, T) + 4d2

xA(X, T) - (1/9) A(X, T) \A(X, T)|2 . (2)

Contrary to the spatial periodic case, where center manifold theory applies, the
amplitude A depends now also on the slow space variable X. This kind of
approximation was introduced by Newell and Whitehead (see [NW69]) in 1969 for
Benard's problem (see also (diPESTl]). In other hydrodynamic problems, like the
Taylor-Couette problem or Poiseuille flow such an approximation is also possible,
due to the form of the spectrum. For all these problems the remaining information
about the system is contained in the coefficients of the Ginzburg-Landau equation.
These are in general complex valued. As a first step in making this formalism rigorous
in several papers (see [CE90, KSM92, vH91, Sch92b, Sch93j) the approximation
property was shown:

On an &(l)-tίme scale of the formally derived Ginzburg-Landau equation (here
(2)j the approximation ψε(A) is &(ε3//2)-close to a solution u of the original problem
(here (I)).

The proof for the general case is based on the separation of critical and uncritical
Fourier modes and on the fact that the convolution of critical Fourier modes which
belong to non-zero wave numbers gives uncritical Fourier modes.

A second step in making this formalism rigorous is the proof of the attractivity
of the set of solutions which can be described by the Ginzburg-Landau formalism:

Solutions u to initial conditions of order &(έ) develop in such a way that there
exists at a time T0/ε2 an initial condition AQ of the formally derived Ginzburg-
Landau equation (here (2)), so that the associated approximation ψε(A) possesses
the approximation property defined above. We have T0 = &(V) > 0.

W. Eckhaus has shown this property in [Eck93] for initial conditions whose Fourier
transform is in I/1 Π I/00. A combination of these two ideas allows to show the global
existence principle:

Suppose the coefficient in front of the cubic term of the formally derived Ginzburg-
Landau equation (here (2)) has negative real part. Then all solutions u of the original
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system (here (I)) which belong to initial conditions of order &(ε) exist for t G [0, oo)
and are uniformly bounded for all time.

The idea is as follows: Let Kt be the nonlinear evolution operator of the original
system in a Banach space Z and Gτ the nonlinear evolution operator of the associated
Ginzburg-Landau equation in a Banach space Y. Let ψε:Y — > Z be the map
which maps the solutions of the Ginzburg-Landau equation to the Ginzburg-Landau
approximation. For M C Z we define Uδ(M) = ίz G Z inf \\y — z\\z < δ\.

I yeM J
We show now that a sufficiently large ball Bε™ with radius εRQ in Z in the original
problem is mapped in itself after a certain time. Therefore, all solutions to small initial
conditions stay bounded. The attractivity principle we formulate in the following way.

(ATT) There exists C,/?,T0,ε0 > 0 and a ball B^ with radius ^ in Y for the
Ginzburg-Landau equation such that for all 0 < ε < ε0,

sup inf \\KTo/ε2(uQ) - φ£(AQ)\\z < Cε1^
"o^ *>**%

and
sup sup \\Kt(u0)\\z<Cε.

The approximation property is formulated as

( APP) For all T^d > 0 there exists C, ε0 > 0 such that for all 0 < ε < ε0 the
following holds. Let A0 G B^ and UQ G Z with \\u0 - Ψ£(AQ)\\Z < dεl+β , then

sup ||Λ>0) - ψε(Gε2t(A^\\z < Cεl+β .

We assume that the real part of the cubic coefficient is negative. So we expect

(GL) There exists a ball B^ in Y such that for all R2 > 0 there is a T3 > 0 with

GT3(B^2) C £ 3̂ and (J GT(B^2) is a bounded set.
T<E[0,T3]

The space Y has to be chosen such that (GL) is valid. So we cannot take the space
used in [Eck93]. It remains to combine these principles. We choose RQ independent
of ε, so large that ψε(B%) is contained in Bεπ,2 for all 0 < ε < ε0. Then by (ATT)

MI = Kτ,/^(BeR^ C UCε,+β(φ£(B^)). By (APP) and (GL) follows that

^τ3/ε2(^ι) C UCεl+β(ψε(GT3(B^))) C Uc^+β(φε(Bγ

R^ C Be\

for sufficiently small ε. We have demonstrated:

Theorem 1. // (ATT), (APP), and (GL) are valid, then there exists ln,T3,ε0 > 0
such that for all 0 < ε < ε0 and R$ sufficiently large ^(To+τ3)/ε2 ^εR^ c ^εR0

Therefore, solutions Kt(uo) with initial conditions UQ in BεR stay bounded and exist
for all time.

In the third section we give some versions of (ATT), (APP) and (GL) for the
Kuramoto-Shivashinsky equation (1). Doing this we have shown the global existence
principle for the Kuramoto-Shivashinsky equation (1). To write this down, we recall
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the functional analytic set-up of [Sch93]: The spaces H™u are introduced with norm

= SUP INI^((m,m+2),o Note that L°° C L\u = Hf^. Hence, we can

treat fronts and spatially quasiperiodic solutions. Moreover, these spaces allow to
handle hydrodynamical problems, too. In these spaces our global existence result is
given by

Theorem 2. There exists ε0, C, R0 > 0, such that for all 0 < ε < ε0 and all solutions
Kt(u0) of (1) with \\u0\\ H4 (RR) < RQε the estimate sup ||J^(w0)||^4 (RR) <
n ^ . ,., *'n t€[0,oo) Z 'u
Cε < oo is valid.

Now we come to the second aim of this paper. For every time interval [(T0 +
nT\)/£2, (T0 + (n + IJTΊVε2], (n G N), there exists an initial condition An+l G H^u

of the Ginzburg-Landau equation such that Kt(u0) and Ψε(Gε2t__(T +nT)(An+l )) are
nearby on this time interval. This can be shown by using (APP) and (ATT) parallel.
Obviously the jumps from one approximation to another at a time t = (T0 + nT^/ε2

are small. A delicate problem is to show that the jumps of the associated solutions
of the Ginzburg-Landau equation are small, too. The space we take to estimate these
jumps is HIU and not only L^u. For initial conditions AQ G Ή.\u we can show the
approximation property (APP). Moreover, the solutions depend continuously on the
initial conditions. We show

Theorem 3. There exists T0 > 0 such that for all Tλ > 0 and all initial conditions
UQ G Hfu(^ R)/or (1) with H ^ o l l f f 4 (MR) < ^oε the following holds. There exists a

sequence (An)neN of initial conditions An G H] for the Ginzburg-Landau equation
(2) and there are ε0, C > 0 only depending on RQ and Tλ such that for all 0 < ε < ε0

the pseudo-orbit

φ = φ(t) = {^(Ge2t_(nTl+To)G4n+1))}

for

t e [(T0 + nT,)/ε2, (T0 + (n + l)Γ,)/ε2] , n e N

fulfills

sup ||ίft(«o)

Moreover,

This theorem allows to follow the attracting set in the original system by pseudo-orbits
of Ginzburg-Landau approximations for all times. We hope that this theorem allows
to draw conclusions about the relations between the attractor of the Ginzburg-Landau
equation and the attractor of the original problem.

To explain the methods we study the Kuramoto-Shivashinsky equation as a model
equation, but nevertheless, these methods developed here can be generalized to a
wide class of other problems, like hydrodynamical problems or reaction-diffusion
equations, too. This will be done in a forthcoming paper.

The plan of this paper is as follows. In the next section we present some
prerequisites, like the functional analytic set-up, the spaces and the so-called multiplier
theory. Also, it is shown that the Ginzburg-Landau equation possesses an attracting
ball in H\ . The third section contains the proofs of (APP), (ATT), Theorem 2, and
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Theorems. The last section contains a discussion about possible generalizations and
applications of the result.

Throughout this paper many different constants are uniformly denoted by C.

2. Prerequisites

2.1. The Functional Analytic Set-Up and Mode Filters

In this section we give the functional analytic set-up to show the above theorems.
One difficulty for unbounded domains is the choice of a good space in which the
solutions should be. It should include all interesting solutions, like fronts or spatially
periodic solutions. It should make Fourier transform available, since Ginzburg-Landau
formalism depends heavily on it, and for more complicated problems it should allow
to use the analysis of the in general well known spatially periodic case. To our opinion
the functional analytic set-up founded in [Sch93] is a good choice. So we recall and
extend this set-up in the following.

Fourier transform is defined for tempered distributions u with help of testfunctions
and is denoted by u or 3^u. The Fourier transform of an integrable function u is given

by T— f elkxu(x)dx. As usually the space L2(R, C) denotes the space of square-
2π

integrable functions. We define the space HS(R, C) for s > 0 as the subspace of
L2(R, C) for which the norm

I (\ -4- 1c \^ rJlc\^ 1 i Av J Gt/u

is finite. This space coincides for s G N with the usual definition of Sobolev spaces
(see [LM72]). Moreover, the space of n-times continuously differentiable functions
with bounded derivatives is denoted by C£. It is equipped with the natural norm.

To define the spaces we want to work in, let χn = χ(x — n) be a smooth, periodic
partition of unity where χ has compact support [—1,1]. We define now the space

= ίu:
I

C u Hf (M,C) - sup uχnHS(^C) < oo

We write I^n(R,C) instead of J^°U(R,C) and remark that L°°(R,C) C L2

n(R,C).
Therefore, these spaces have the above demanded property of containing all interesting
solutions. The indices l,u stand for locally and uniformly.

The second demanded property of making Fourier transform available is fulfilled
with the help of the so-called multiplier theory. To define operators in iff U(R, C) we
cite some theorems of [Sch93]. We call operators multipliers if they are defined
by multiplying the Fourier transform ύ = ^u by a function M 6 L°°(R,C).
Using the following lemma allows us to define operators in the physical space by

Lemma 4. Let q, s > 0 and k ι-> (1 + /c2)^)/2M(/c) e C2(R,C). Then M:
ff^(R, C) -> Hf.u(R, C) is well defined with the estimate

where C(q, s) does not depend on M.
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An operator M defined in this way is translation invariant, i.e. rhM = Mrh,
where rhu(y) = u(y + h) for all h G R. Multipliers in Fourier space are denoted with
a s in physical space without ".

We use this lemma to define special multipliers which allows us to separate critical
from uncritical Fourier modes, but we remark that a differential operator or an analytic
semigroup can also be interpreted as a multiplier. To extract modes in Fourier space
we use an even cut-off function φQ G CQ° which is defined by

( 1 for fee [-1/6, 1/6],
Φ0(k) = I 0 for fcg[-l/3,l/3],

I G [0, 1] else.

According to Lemma 4 we associate to φQ an operator which extracts the Fourier
modes belonging to wave numbers in [—1/3, 1/3]. To extract the critical modes we
define Eλ(k) = φ0(k - 1), E^k) = φ0(k + 1) and Ec = Eλ + E_v. We call these
operators mode filters. Since the Ej are no projections we need auxiliary operators

defined by E?(k) = φG((k - l)/2), E^k) = φQ((k + l)/2) and E% = E? + E\.

We have for example ECE^ = Ec. For the uncritical modes we define Es = Id. — Ec

and E%(k) = 1 - φQ(2(k + 1)) - φ$(2(k - 1)). Using Lemma 4 it is easily seen that
EjU G Hfu for all s > 0 if u G l|u.

To deal with the slow spatial scale X = εx we need a scaling operator Sε

defined by (Sεu) (x) = u(εx). With help of this operator we define the scaled spaces
Htu by u G #f,ί(M>C) & Sι/εU e ffz%(R,C) with the norm \\u\\H*^Q :=

(R,C) Obviously u G H^u gives Sεu G ίff^CR, C). Scaling a multiplier

leads to
Sl/εMu =

which is easily seen by applying test functions. Moreover, we define Vk\Hfu — » iff n,

u(x) »-> u(x)elkx. Applying the above lemma on the new multiplier ^~l(SεM}^
we get

LemmaS. Let q,s > 0 and k t-> (1 + \k\2)(s~^2M(k) G C^(R,C). Then M:
Hf.^(R, C) -* H^(R, C) w we// dφied with the estimate

where C(q, s) does not depend on M and ε.

Remark 6. If additionally M(k + fc0) = ̂ (fcs) for k -+ 0 and s < m. Then

This follows by simple calculations.
Obviously we have to estimate a scaled function by its unsealed version and so

we recall [Sch93] that we have only ||5eu||L2 (RC) < CmaxCε"1/2, 1) \\u\\ L2 (E)C).

Hence, for 0 < ε < 1,

(3)
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Since Hf^u can be imbedded in L°° for s > 1/2, we get easily ||5ew||L2 (MC) <

Example. Take A G ff/>u, then

2n/2\k\2

Remark. In Lemma 4 we gave two different estimates for the operator norm. This is
necessary since

sup (-
k

2t\ + sup|(-2t
k

< Cmax(l,\/M).

On the long time scale 1/ε2 this is of order ^(1/ε2). Remark that

2 7

dx dl<C.

Therefore we can estimate the semigroup eμt generated by the multiplier μ = — k2

for all t > 0 by ||βμt||^(ίf4 HΛ } < C. This problem will not appear on the long time

scale if we apply the semigroup on scaled functions (estimate \\e~ε k t\\C2), since the
6

diffusion happens on longer time scales. Moreover, if the semigroup is exponentially

damped (estimate \\e~σte~k t\\C2) we again obtain good results.

2.2. The Ginzburg-Landau Equation

In this section we will show that the Ginzburg-Landau equation possesses an
exponentially attracting ball in £Γ/W(R, C). To show this calculations made in [CE90]

were used. They can be used, since the norm \\u\\\γ - sup(u,u)ha with weight
α

function ha(x) = 1 /(!+(#— α)2) and inner product (u, υ)ha = J uvh2

adx is equivalent

to the above defined norm in L2

n(R, C). On one hand we have

/2

(RC).U

On the other hand

a \ (- Γ
\u\2h2

adx < Csup ( ]Γ / u\2h2

aχ
2

ndx
/ α \ n J

^ ^ /V^ ^2\ / /"< C sup ( > sup Ai^ ] sup ί /
α \ yG[n,n+2] y n \ J

u\2χ2

ndx
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and so the equivalence of the norm follows. Let A now be a solution of the Ginzburg-
Landau equation. Define Sa = / AAh2

adx and Sa = f AxAxh
2

adx. From the
calculations made in [CE90] one can conclude that

Sa(T)<e~2TSa\τ=Q+C and Sa(T) < e~2TSa\τ=Q + C, (4)

where the constant C does not depend on α. Taking now on both sides the supremum
we can summarize

Theorem 7. Let A be a solution of the Ginzburg-Landau equation (2) then there exists
a constant Cb, such that

To show the approximation property for initial conditions for the Ginzburg-Landau
equation in Hlu we have to make use of the smoothing properties of the Ginzburg-
Landau equation. Using the variation of constants formula to transform the differential
equation into an integral equation we can conclude

Lemma 8. Let A e C([0, 1], JH/U(R,C)) be a solution of the Ginzburg-Landau

equation, then \\A(T)\\H\+S < CS/T8/2 + Cs, where Cs is a constant depending on

0 < s < 2.

Remark 9. Theorem 7 is also true for the complex Ginzburg-Landau equation

(c,eC), (5)

if the coefficient c3 has negative real part. To get (4) Lemma 4.2 of [CE90] is
needed to control the linear part of (5). It applies also in this situation since it is
sufficient to have D^c2 > 0, where 9lc2 denotes the real part of c2, as it is assumed in
[Ho85] Theorem 18.1.14-15 which is used to prove this lemma. We have 9k2 > 0
since the Ginzburg-Landau formalism only applies in these situations of supercritical
bifurcations.

3. The Proof

To show the main principles of the introduction and the existence of a pseudo-orbit
as asserted in Theorem 3 three lemmas are given. The first lemma allows to choose
an initial condition of the Ginzburg-Landau equation and to start the approximation
process. The second lemma brings us into a situation which allows to copy more or
less the proof of the approximation theorem of [Sch92b]. The third lemma shows the
approximation property. The differences between this lemma and previous works are
explained below. By a combination of these lemmas the assertions will follow.

Before we start we recall that we consider real systems. Therefore it is sufficient
to estimate either E^u or E^u. The lemmas are proved in a succeeding section.

3.1. Statement of the Main Lemmas and Proof of Theorem 2

By previous works it is known that it is essential to separate the critical modes from
the uncritical modes of a solution. The critical modes are strongly related to the
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solutions of the Ginzburg-Landau equation. In a first step we show that solutions
develop in such a way that the critical part can be taken as the initial condition for
the Ginzburg-Landau equation.

Lemma 10. Let UQ be an initial condition for (1) with ||^oll/ί4 — ̂ oε Then there

exists 1 > T0, ε0 > 0 such that for all 0 < ε < ε0 the following holds:
a) There exists C > 0 only depending on RQ such that

sup sup \\Kt(uΌ)\\H4 <C.
0<t<T0/ε2 | |uollH4 <#()£

b) For t - T0/ε2 the solution Kt(uQ) can be written as

with wc - E^wc and ws = E^ws. There exists constants Clf C2 only depending on
R0 and not on ε or u0 itself such that \\V_lEζ'wc\\ π\,ε < Cl and \\ws\\H* < C2.

" l,u l,u

This lemma allows to take Al = Sl/εV_lEγwc e H^u as the first initial
condition of the Ginzburg-Landau equation (2). For a technical reason the mapping
ψε which maps A G H\ u to the approximation ψε(A) is not given by Uψ(A) =

εA(X,T)elx + c.c. The chosen mapping t/>e is close to i^, but has much better
properties. First, ψε(A) is highly regular, and second, it makes the so-called residuum

Res(^) = — dtψ + λψ + ρψ2

small. This residuum appears as inhomogenity in the equations for the error R and
contains all remaining terms which do not drop out after inserting ψε(A) in (1), if A
is solution of (2).

In a classical way the order of the residuum can be made small by taking more
terms into the approximation. By applying appropriate mode filters on this extended
approximation we obtain a highly regular approximation ψε(A) nearby Uψ(A).

To derive formally the Ginzburg-Landau equation we insert as normally

εx,ε2t)eix + ε2AQ

2(εx,ε2t)e2ίx + c.c.) + ε2A°(εx,ε2t)

Upon elimination of A^_2 we arrive at the Ginzburg-Landau equation (2). Formally in

the coefficient in front of eιx all terms of order ^(ε3) and for 1 and e2ιx all terms of
order ^(ε2) have vanished. Now Lemma 5 allows us to smooth ψ without changing
it very much. Therefore we define another mode filter E defined by the multiplier
k H-+ 00(3&) in Fourier space. Moreover, we define E0 = ESε. We modify the formal
approximation by applying this mode-filter and take finally

in (1) and get in lowest order the modulation equations

5TA? = (1 + 4d2

x) A? + iA^AΪ + i

0 = -9A°2 + αX , (6)
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where A\ = (i/9)(A°l)
2. Note that E%ψc = 0 and E%ψ8 = 0. Using Lemma 5 and

(3) we have
sup ||^(A?)-^(

if A? G ff/>u. Moreover, ψc(A$ is of order (̂1) in ff/^ Π ff£u and ψ8(A$ is of
order <^(1) in f/J^ for all n G N. This follows by applying Lemma 4 to E.

Let AQ G HIU be an initial condition for (2). The error made by the approximation
ψε(Gε2t(AQy) of a solution u is given by

R(t) = Kt(u\t=TQ/ε2 ) - ψε(Gε2t(AQ)) .

It is estimated as solution of the differential equation dtR - F(R, t) it fulfill. We
separate R = Rc(t) + Rs(t), where Rc and Rs are defined to be the solutions of

For AQ = Aγ the initial conditions are given by Rs(0) = £2ws — ε2ψs(Al) and by
RC(Q) = εVj(l —E) V_lEι"wc+c.c. Applying Lemma 4 and Lemma 5 we can estimate

< Cε~l/2\\k

x

< Cε3/2\\εV_{EΪwc\\Hι,ε < ̂ (ε3/2) . (7)

In general Ra(t) = E R(t) and Rc(t) = EcR(t) is not true for t > 0, since Ec

and Es are no projections. But, from EgE8 = E8, E^RS = Rs follows. Similarly
E%RC = Rc follows. Since ^s(0) = ̂ (ε2) the ideas of the approximation theorem
of [Sch92b] are not available at this point. An intermediate step is needed.

Lemma 11. Let AQ G HIU be an initial condition for the Gίnzburg-Landau equation
(2) with 1 1 AO I l^i < C3 and UQ an initial condition for (1). We write Kt(UQ) as

Kt(ΰ0) = Vε(GΛ(A,)) + Rc(t) + Rt(t)

with RS=E%RS and RC=E^RC. Suppose \\Rc\t,0\\Hf^c^3/2 and \\Rs\t^\\H^ <

C4ε
5/4. Then there exists C5, C6, ε0 > 0, only depending on C3, C4, and C'4, such that

for all 0 < ε < ε0, the following estimates are valid:
a) sup

0<ί<l/e'/4

At the end of this small approximation interval we are in a situation to prove the
approximation property as in [Sch92b]. The only difference is that we only assume the
initial conditions for the Ginzburg-Landau equation in if/u instead of H f u . Contrary

to previous work we also point out that the error V_1E^RC is in H]^ instead of being

only in Hfu at the end of the approximation interval. I.e it is a function of the slow
space variable X. We use this to control the jumps Gτ An — An+l .
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Lemma 12. Let A$ G if/ u be an initial condition for the Ginzburg-Landau equation
(2) and UQ be an initial condition of (I). We write Kt(uQ) as

Kt(u0) = ψ£(G£2t(AQ)) + Rc(t) + R8(t)

with RS=E%RS and RC=E^RC. Assume \\Rc\t=Q\\H4 <C5ε
5/4 and \\Rs\t=Q\\H4 <

C6ε
9/4. Then for all T2 > 0 there exists Ca, Cc, ε0 > 0, only depending on T2,

H - A - o l l f f 1 > ^5> αnd Cfr sucn that for all 0 < ε < ε0 the following estimates are valid:

a) sup \\Rc(f)\\rt <C^I\
0<t<T2/ε2 ''"

b) sup \\Rs(t)\\Hf <Csε
9'\

0<t<T2/ε2 l'U

c) \\V_^Rc\t=T2/^\\H^<C^/\

By a combination of these lemmas and of Theorem 7 the main principles of the
introduction can be shown.

(ATT), (APP) and (GL): The demands of the introduction can be fulfilled with
β = 1/4, Z = #f u, and Y = H^u. (GL) is given by Theorem 7, (ATT) is given by
Lemma 10, and (APP) is given by a combination of Lemma 11 and Lemma 12. This
proves Theorem 2.

We remark that Lemma 12 c) is only needed to prove Theorem 3. It is proved at
the end of this section.

3.2. Proof of the Lemmas

To make the notation more general we write (1) as

dtu = \(idx ,ε
2)u + B(u,u), (8)

where B(u, u) - ρ(ίdx)u2 and λ = —(1 + cξ)2 + ε2. Before we prove these lemmas
we have to do some work in advance.

3.2.1 Properties of the Analytic Semigroup eλt

To solve (1) we will use semigroup theory as it can be found in [Si85]. Since λ is
a sectorial operator in £2

U(M, C) it generates an analytic semigroup (eλt)t>0 in this

space. This semigroup can be represented by a multiplier e^(/c'ε }ί in Fourier space. We
remark that by their definition with scalar multipliers the semigroup and the operators
E%, Eft commute. These assertions can be shown with the help of multiplier theory
and test functions. We summarize the later needed properties in the following lemma.

Lemma 13. There exists σ > 0 such that for 0 < ε2t < 1 the following estimates are
valid:
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a)

b)

c)

d)

e)

f)

feW-^EΪw ι(r) dr

Hι max(l,t~3/4),

<Csup\\u(τ)\\Hι ,
r<t

' ίe^^E^wXT) dr <Cε2tsup\\u(τ)\\L2 ,
Γ<t

t=l/ε2

<Csup\\u(τ)

H τ<t

Proof. With help of Lemma 4 and Lemma 5 we have the following estimates:

a)

b)

t

j eX(t-r)Eh

su(ι

p^V^i0

r<t

e)

fc- 1 2\ 1/2

cl

f)
t=l/εl

6~ 1/ t

/
dr sup \\u\\ Γ2,ε

I r<t Ll,u

Since |H|L2,e < C||^||L2 , it remains to estimate the norm of the multipliers.

We will only estimate them in the C^-norm to make the ideas clear. The derivatives
can be estimated in the same manner. Due to the remark at the end of Sect. 2.1 the
semigroup is exponentially damped in a) and b) and it acts on scaled functions in e)
andf).

For a) we get

due to the fact that E% extracts only uncritical modes.
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To estimate b) we look at

i

i

τ

2)3/2\dr < I CeΓστ

o o

This semigroup formates peaks in Fourier space. So we can show e),

Q11Γ>oUU

k

λ(/c,ε2)ί T^/TΛ Λ
c- "̂ 1 \ / 1

V
fc-1

ε )
1/Z

ί=l/ε2

< C sup e~k * t=ι/ε2 + C sup
\k\<\/2 \k\<\/2

e-Λ

and f)

/ε^ / sup

o

1 +
k- 1 1/2

<ε2(7

t=l/ε 2

/ sup
| fe |<l/2

sup
| fc |<l/2

For showing c) and d) we define the multiplier E by k ι-» φQ(k/l5) in Fourier space.

Since < C||fe + |/c|2Γ2||C2 the rest of the

,

proof of c) and d) is clear if we use the second estimate in Lemma 4. D

3.2.2. Proof of Lemma 10

In a first step we show that the solution Kt(u0) filtered by E^ is of order <^(ε2) after
a very short time 1/ε1/4. Starting again, now with this configuration it is shown in a

second step that the solution filtered by E± is in H\^ for a time t = T0/ε2.

Assume now an initial condition u0 with < RQε.

1st step: a) We set vγ(^ 0) = - EcuQ and υ2(-,0) - - EsuQ. Inserting u = εv{ + εv2

in (8) we obtain

xt

•/•
X(t~s} B(vl

v2)ds =:

v2)ds =:

We remark that there is no need for separating the system in this way, since Ec and
Es are no projections. For ε sufficiently small F = (Fl, F2) is a contraction in a ball

with center (extvl |t=0 , e
λS2 t=0) and radius of order ^(ε1/2) in C0

6([0,1/ε1/4], H[u x

ίί4

u). Therefore, F has a fixed point and this system possesses a solution in this space

with sup ||^||#4 < 2R0 for ε sufficiently small.
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b) For the time t = — we have

and

IKUl/εlΛ \\Hfu ^ Ce~σ/£ j

if ε is sufficiently small, since the semigroup ext filtered by E% is exponentially
damped. The constants Cl9 C2 depend only on RQ and not on UQ itself.

2nd step: a) In the next step we set w2\t=Q = - v2 t = 1 / ε ι/4 and Wι| t =o = v ι \ t = ι / ε

1 / 4

Inserting now u = εw{ + ε2w2 into (8) we separate the resulting equation in

t

ηn _ pλt I 2 / pλ(t—r) 171 CJΌ(ηn ηn \ Λ. c'Rίηi , an \\dτ
CC/1 — C U/j \+-(\ >^ & I & J^C\^JLJ\(JU^^ VU2J τ CjL/^U/ 2 5 UU2JJUjl 5

(9)

w2 = e w2 t=0 +

o

Remark that E^B(wlίwl) = 0 due to the supports in Fourier space (see [Sch92b]).
Obviously this system possesses solutions locally in time. The <^(l)-boundedness
and the existence on a long time interval [0,T0/ε2] with T0 = ̂ (1) < 1 is not clear.
We take f0 < 1 to have an upper bound for some estimates. To show the <^(1)-
boundedness we set S^t) = sup ||^(«s)||#4 for i = 1,2 and recall that T = ε2t. We

8<t l'U

obtain from the second equation

S2(t) < sup l |e λ s iϋ 2L 0 I I H 4 + CSλ(t)2 + εC(Sl(t)S2(t) + εS2(t)2),
Z,^- ' — A II Z l t — U 1 1 xl 7 1 A ^ ^

s<ί z'w

and from the first equation

t

S^f) < sup He^w, t=0 11^4 + ε2C /(51(r)52(r) + εS2(r)2)dr.
S^t ' I/

We look now for a Γ0 = ̂ (1) > 0, such that 51(Γ0/ε2) < C3 and 52(T0/ε2) < (74

for some constants C3 and C4. Choose now

<7 3 =4 sup ||eλχ|t=0||H4 =
1/£2>S

 l'U

C4= sup ||eλ>|ί=0||H4 + CC\ + 1 =
1/£2>S ''"

and ε such that εC(C3C4 + εC\) < 1. This gives

t

2C ί ̂ ^T) [sup||eλsu;2|t=0\\H4 + CC\ + l\\ + ε(?^τ,
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and by GronwalΓs inequality

171

t>s
> Λl\t=Q\\H4

We choose now ε again smaller such that εCC\ < C3/4. Then we choose T - T0

such that

and so Sl < C3 as demanded and hence S2 < C4 by construction. Therefore, we have
^(l)-bounded solutions in C#([0, T0/ε2), #Z

4

U x Hζu). Again C3 and C4 depend only
on RQ.
b) Using Lemma 13 to estimate the right-hand side of (9) we get for t = T0/ε2,

(10)

with C5 only depending on R0. We set T0 = T0 + ε7/4, w - ^ =ι £ = τ 0 /ε 2

2 t=

3.2.3 Estimates for the Residuum

For later computations we need exact estimates for the residuum.

Lemma 14. Let A G C([0,1], Hf ) be a solution of the Ginzburg-Landau equation.
Then we have

a) sup
0<i<t/ε2

b) sup
0<ί<l/ε2

ί

I eX(i-r^Eh

c^^(φε(A))dτ

o
t
I λ(t_r) h

C)

t=L/ε
r

Γ r5/4
oRpcεRes

ί By inserting ψε(A) into (1) we compute the residuum. We denote by δjn a

term in front of eux, that is Res(/0ε(A)) = ^ jn
j=-4 n=l

δjne
zjx. By using the formulae

X(-idx,0)B(εx)einx = -einx[(l - n2)2 B + 4εin(l - n2)dxB

+ ε2(2 - 6n2)d2

xB + ε34ind3

xB + ε4d4

xB] ,

2ρ(dx)B(εx)einx = einx[ίnB + εdxB] ,
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the abbreviations Eξ = l~E0, and the fact that the A® are solutions of the modulation
equations (6) we get

δol=ε3dx((E0(A°l)(E0A°_l)),

δ02 = ε5dx((E0A
0

2 )(E0A°_2)),

δl5 = -

= -ε2(-24iεdx - 22ε2d2

x

= ε

δ25=9ε2Ec

QA°2,

δ26 = -

Siε3d3

x

= ε3(3i + εdx) ((EQA\)

= \ ε\4i + εdx) ((E0A°2) (E0A°2)) ,

Now the terms 5 n are estimated in various norms. By using the smoothing properties

of the semigroup ext generated by λ and of the flow of the Ginzburg-Landau
equation it is also possible to show that SlιεV_lE^Rc lies in HIU at the end of

the approximation interval, contrary to previous work.

We define another multiplier E by k »-> φQ(k/l5) in Fourier space. By applying it
on the terms of the lemma it is easily seen with help of Lemma 4 that it is sufficient to
show the estimates only in L2

lu instead of Hfu, since the δ n have compact support
in Fourier space by construction. To get the estimate b) we have to look at 6jn with
j ^ 1. For the estimates a) and c) we have to look at <5ln.

We start with b). Except for the estimate of the time derivative <521 it is sufficient

that EQAQj G C([0, l],ff/^). Since fΓ/'J is an algebra, the product of such terms is

also in H]^. To estimate these terms we get by Lemma 4,

fJ
τ 2Lι,u

<C f e-^-^dr sup ||ίy |
«/ t

< Cε-'^ sup

This can now be estimated by Lemma 5 with q = 0, s = I and with the succeeding
Remark 6 with ra = 5 = 1 on different multipliers. In <501, <502, <524> ^3i> and in δ4l we
take ρ minus its first Taylor coefficient. In <526, <525 we take Eξ as multiplier and in <S22

we take λ minus its first Taylor coefficient. The estimate of <523 is clear. Summarized
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we have sup ||<5jrJ|L2 = ίf(ε5/2) for j / 1 or (j,n) i (2,1). To estimate the

time derivative δ2l we use that Γ
Lemma 5 we have to estimate

1

l],#/°n) Applying again

(£2r)l/2

Cl

t

f

and therefore,

sup
0<t<l/e2 /'

To show a) more refined methods are necessary. The main idea is as follows. At the
beginning of the considered time interval we have high enough powers of ε because

of Remark 6. At the end of the time interval where the error should be in H]^ we can
use the smoothing properties of the semigroup and of the Ginzburg-Landau equation
to get high enough powers of ε.

By the used functional analytic set-up one loses ^(ε"1/2) due to

ll-E^II/ί4 < CΊI^ i—> Φ0(k/i5)(i + \k\2)~~2\\C2 \\u\\L2 < c ε~1'2 \\u\\ L2,ε.

To estimate <5Π we apply Lemma 5 with q = 0 and s = 11/4 to the multiplier λ.
Since the multiplier Λ(l + k) minus its Taylor polynomial of order 2 can be estimated

by at least |/c|11/4, and since T ι-> T7/8^ <G ff/J/ 4 we have to estimate

=/
o

C
dτ.

Because of notational complexity we will only look to the sup-norm. The derivatives
can be estimated in the same way, since the multiplier acts on scaled funtions. We
get

t

sup

1 +
11/4 (ε25)7/8

ds

sup
K (S)7/8

dS

sup
K

c
dS

< ε7/4 c
dS < Cε'ί1/8.
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In the same way we estimate <512 with ρ instead of λ. To estimate <513 note that

Γ h-* T7/*dτA°l G C([0, l],#f5C). By applying Remark 6 to the multiplier Eg we

win another <^(ε3/4). By the same computations as for δn this estimate follows,

too. Since T ̂  T7/8<$14 G C([0,1), ff^4'*) this is also true for 514. To estimate <515

note that ||EgA§|| 2>e - ^(ε), ||E#A§E£A?|| 2>e < ||E7gA?|| 2,e ||E#A5|| ι,e, and
l,u l,u l,u l,u

T f-> Tl/2E^A]E^ G C([0, l],ff/p. Since ||E7gA?||L2 fe = ̂ (e) the estimate of

615 is no problem at all.
To prove c) we look on δn as an example. Here, we apply Lemma 5 directly

with q - 1 and s = 5/2 without losing ^(ε"1/2). Again only the sup-norm of the
multiplier is estimated. We get

/
ciinsup

0

T=l

<? c-""1 1 ci

J f
0

T=l

< ε3/2 / si
J 1
0

1

< rv3/2 /<Cε J

^(t—s) I J U I 5 / 2 /or

Λ + *|V/ 2 (ε2s)3/4

V e|J

e-ΛΓ2(T-S) |ε|5/2|^|5/2

? (1 + |K|)5/2-l

Λ O /- /nrr'. ^ , . W//C/ -̂ ^yo

C ^
03/4 d^

!/2

cί5

The other terms δln can be estimated similarly to a). We remark that this is the
essential estimate to show Lemma 12 c). It is possible, since the singularities appear
on different ends of the integration interval. D

3.3 Proof of Lemma 11

In the small time interval at the beginning of the approximation the error Rs decays
rapidly as the solutions converge to the center manifold in case of discrete spectrum.

We denote constants coming from the semigroup by Cj, from the approximation

by Cψ and from the residuum by CRes. Inserting u = ε5/4Rc + ε5/4Rs + ψε into (8),

where Rc = E^RC, Rs = Es

hRs and R = Rc + Rs we get the system

dtRc = \RC + 2εEcB(R, ψ£/ε) + ε5/4EcB(R, R) + ε~5/4Ec Res(^),

dtRs = XRS + 2εEsB(R, ψ£/ε) + ε^4EsB(R, R) + ε~5/4Es Res(^ε),

with the initial condition (Λc, Rs)\t=Q = (ε~5/4^c|ί=0 , ε~5/4Rs\t=Q). With Lemma 14
we get

5/4 /
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and

^.j^-r,

0

<

uniformly on the required time interval [0, 1/ε1/4]. Using Lemma 13 and
l l^c l t=ol l# 4 - Cf

4ε
1^4 it is easily seen that this system possesses solutions in

C%([0,l/el?*],HfuxH}u)wiih sup (\\RC\\H4 + ||ΛJH4 )<C 5, where the con-
[ 0 j l / el/4 '•<* '•«

stant C5 only depends on C3, C4 and C(. For t = 1/ε1/4 we have ||-Rc | t :=1/eι/4 ||H4 <

C5. For Άs\t=ι/εi/4 we get by Lemma 13,

? + εCRes

if we choose ε so small that CjC4e-σ/εl/4 < ε and εl/4CjCl < 1.

5.4. Proof of Lemma 1 2

On the long time interval we can prove the approximation theorem similarly to the
proof of the approximation theorem of [Sch92b]. To simplify notation we take T2 = 1.
A solution of (8) can now be written as

u = ψε + R = εψc + ε2<φs + ε54£c + ε94£s , (11)

where Rc = E^RC and Rs = E^RS. Inserting, this in (8) gives the system

3tRc = \RC + ε2Lc(R) + ε9/4Nc(R) + ε~^Ec Res(^) ,

dtR, = XRS + LS(RC) + εl'4Na(&) + ε~

with the abbreviations

LC(R) = EC(2B(RC, <φ8) + 2B(R8,<ψc» ,

- EC(B(RS,2RC

This system is solved in CQ([U, l/ε2],fί4

u x #4

n). Since the system can be solved
locally in time it remains to show the ^(l)-boundedness of the solutions on the
required time interval. We abbreviate Sc(t) = sup ||βc(τ)||H4 and Ss(t) =

0<r<ί Z'u

sup Hήsίr)!!^ . Again we denote constants coming from the semigroup by CJ9

from the approximation by Cψ and from the residuum by CRes. Writing the second
equation in integral form and using Lemma 14 gives

Ss < CjCφSc + M, (13)
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with

MI = M2 + CRes + CjC6 ,

M2 = e1/4C./[e3/4C^5c + ε^4CφSs + 5C

2

 + εSs(Sc

The first equation gives

j

t

Sc < ε2Sj (CφSc(r) + CψSs(τ))dτ + M3

0

with

Later on we choose ε small enough such that Mi < 1 with ί = 2,4. By inserting the
above expression for Ss into that of Sc we obtain

Sc < M3 + ε2 I C/CψS, + C^CjC+SJdT + ε2 J CjCφM,dτ

<M3 + CJC^ +ε2 Cj(Cψ

By Gron wall's inequality one gets

Sc < (M3

< (M3 +

Inserting this in (13) gives

S

Next we choose ε so small that

M2 < e1/4CJ[ε3/4C'ψC'c +

M4 < εl'*CjCa(Cc + ε3/4Cψ + εCs) < 1 .

It remains to estimate V~lEl

hRc e H]'^ for ί = 1/ε2. By the above computations

we have \\LC(R)\\L^ < C, \\NC(R)\\^ < C, and PeUolL^ < C. Using also

Lemma 14 we can apply Lemma 13 to the variation of constants formula which
transforms (12) into an integral equation. There we estimate the right-hand side in
Hl ^ as in (9) and (10) and so the assertion follows. D

If we would have inverted the linear part of (12) as has been done in former
works, the estimates for the residuum would have been much more complicated. So
we choose this way.
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3.5. Proof of Theorem 3

With help of these lemmas we start now to construct the pseudo-orbit of approx-
imations. Using Lemma 10 we have constructed the first initial condition for the
solution A{ of our sequence of initial conditions for the Ginzburg-Landau equation
(2) at a time t = T0/ε2. We solve the Ginzburg-Landau equation on the time interval
[T0, TO + TJ. The associated approximation is given by ψε(Gε2t_TQ(Al)). On the time

interval [T0/ε2, T0/ε2 + 1/ε1/4) we use Lemma 11 as the approximation theorem. On
the time interval [T0 + 1/ε1/4, (T0 + T^/ε2) we take Lemma 12. The critical resp. the
uncritical part of the error on the time interval [T0/ε2,(T0 + T^/ε2] is denoted by
Rc l resp. Rs l. To get the new initial condition A2 for the Ginzburg-Landau equation,

we add the critical error ε~lSl/εV_lEflRc \\t=(τ +τ )/e2 £ ίf/u to the actual solution
Gτ (A }) of the Ginzburg-Landau equation. By changing from GTι(Aj) to A2, the error
Rc l changes to Rc 2 and the error Rs j to Rs 2. By construction we have

El

hRcΛ\tίs(TQ+Tύ/ε2 +c.c.

Therefore | |-R C 2lt=(τ +τ^/ε2 \\π4 — C'Gcε
7/4 as in (7). Hence we can apply Lemma

11 and Lemma 12 again and estimate the difference ψε(G£2t_^τ +τ ~)(A2)) — Kt(uQ}

on the time interval [(T0 + Tj)/ε2, (T0 + 2T1)/ε2]. The sequence of initial conditions
is defined inductively by

An

 = GTo+(n+1)Tl (An_l) + ε Sl/εV_lEhR^n_l\t=(TQ+(n_l}T{}/£2 .

It remains to show that the constants of Theorem 3 are bounded uniformly in time. We
show that the initial conditions An and the errors Rs n, Rcn are bounded uniformly
in time. Since all constants can be controlled by G3, C4 and C4 of Lemma 11, we
will be finished. We first estimate the initial conditions An.

Lemma 15. There exists ε0 > 0 such that for all ε < ε0 we have

Proof. Since \\ε-{Sl/εV_^Rc\τ^Tι \\H^<C^/\ and since 1

Cb + e-'||Aι||Hι for T\ > 1, we have

u Cb + e~}\\A,\\Hlu < max{3C6) iμ,!!^}

for ε sufficiently small. For n > 2 the assertion follows by induction. D

For the uncritical part we obtain

Lemma 16. There exists G7, ε0 > 0 such that for all 0 < ε < ε0 we have

\\Rs,n+\ lί^To+nTO/ε2 \\H*u - Cl^^ < C4β
5/4

with C4 := max{l, ||ε-5/4βS)1|t._To/ε2 1|̂ }.

Proof. We get

Rs,2 t=(T0+T,)/e2 = Rs,\ MT0+T1)/ε2 + ^"Φ8(
GTλ (A\ » ~ ^Vs(^2)

= ^lUcTo+T^ + (ε2^0(-^2 + (GTl A1)
2)e2- + c.c.) ,
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and so by Lemma 1 1 and Lemma 12,

- o + ,

<ε9/4C s +ε9/4CC c<C7ε9/4. '

For n > 2 the assertion follows by induction. D

For the critical part we obtain

Lemma 17. There exists C8, ε0 > 0 such that for all 0 < ε < ε0

8 := max{l, \\

Proof. We have already obtained

ll^c,2 ίKTo+TO/ε2 \\Hfu - Cε H^ll^OΓo+TO/ε2 ll#4^

< Cεl/2Ccε
5/4 < CCcε

7/4 < C8ε
3/2

for ε sufficiently small. For n > 2 the assertion follows by induction. D

Now we have constructed the pseudo-orbit ψ with the required properties of
Theorem 3 and so this theorem is proved. Since all constants are bounded uniformly,
the pseudo-orbit stays bounded in Hfu and so the shadowed solution, too. D

4. Discussions

It is possible to make the error smaller in powers of ε by taking more terms into
the approximation. To do this one has to include more peaks in Fourier space into
the analysis. As in [Eck93] the larger peaks have to be chosen more regular than the
smaller ones. So various approximation theorems and various theorems for attract! vity
are possible. Also various combinations of these theorems are possible to prove global
existence of solutions of the original system.

It is clear that the above conclusions can also be drawn for every other exponen-
tially attracting set of the Ginzburg-Landau equation. Also diffusive stability can be
sufficient to apply the above theory. It is a subject of further research to apply this
method to concrete sets of functions. It can be applied in the spatial periodic case,
especially with very large spatial period, where more or less complicated attractors
are known.

Using the whole functional analytical set-up of [Sch93] allows to generalize this
method to situations where u(x) is vectorvalued, e.g. has values in a Hubert space. In
fact this allows us the handling of Benard's problem or of Taylor-Couette problem.
This will be the subject of a forthcombing paper.
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