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Abstract: The so-called Ginzburg-Landau formalism applies for parabolic systems
which are defined on cylindrical domains, which are close to the threshold of
instability, and for which the unstable Fourier modes belong to non-zero wave
numbers. This formalism allows to describe an attracting set of solutions by a
modulation equation, here the Ginzburg-Landau equation. If the coefficient in front
of the cubic term of the formally derived Ginzburg-Landau equation has negative real
part the method allows to show global existence in time in the original system of all
solutions belonging to small initial conditions in L°°. Another aim of this paper is
to construct a pseudo-orbit of Ginzburg-Landau approximations which is close to a
solution of the original system up to ¢ = co. We consider here as an example the so-
called Kuramoto-Shivashinsky equation to explain the methods, but it applies also to a
wide class of other problems, like e.g. hydrodynamical problems or reaction-diffusion
equations, too.

1. Introduction and Results

We consider evolutionary problems over a domain with one unbounded space-
direction close to the threshold of instability. If a spatially homogeneous solution
of a dissipative system becomes unstable, a whole band of Fourier modes with
positive growth rates appears. In classical bifurcation theory with discrete spectrum
the bifurcating solutions can be described by a finite dimensional system (ODE) using
center manifold theory (see e.g. [He81]). In our case the spectrum of the linearization
at the trivial state is continuous.. Hence new problems appear: First the criticial
eigenspace is infinite dimensional and second it cannot be separated from the uncritical
part by a spectral gap. Thus, center manifold theory is no longer available. One way to
handle such systems is given in [Mi92] leading to PDE’s with nonlocal terms. Another
way is the so-called Ginzburg-Landau formalism [IMD89] which is based on multiple
scaling and on the assumption that the unstable Fourier modes belong to non-zero
wave numbers. A formally derived PDE called the Ginzburg-Landau equation takes
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the role of the finite dimensional ODE in center manifold theory. A general set-up
for applying the Ginzburg-Landau formalism can be found in [Sch93].

A good model equation for studying the Ginzburg-Landau formalism is the so-
called Kuramoto-Shivashinsky equation:

Oyu=—(1+ 8925)2u +e%u + ud,u = /\(iaw,az)u + g(i@m)u2 ¢))

with ¢ > 0, x € R and 1 > > > 0 the bifurcation parameter. The trivial
solution u = 0 is unstable, and linearizing at v = 0 we find solutions of the form
w(z,t) = e’k where \(k,e2) = —(1 — k?)? + £2. We observe that A(k,2) is
positive for k close to 1 with height (%) and width @(¢). Therefore, by inverse
Fourier transform we expect that for small €2 > 0 there are solutions of (1), which are
small modulations in time and in space of the critical modes e*'. Using the scalings
T = €* and X = ez we suppose that

w(z, t,€) = P (A) + OE?) = [cAX, T) e + cAX, T)e @] + O(Y?).

By a formal calculation we find that the complex valued amplitude A:R x R* — C
has to satisfy the Ginzburg-Landau equation

OpAX,T) = AX,T) + 40% A(X, T) — (1/9 AX, T) |AX, T)[*. )

Contrary to the spatial periodic case, where center manifold theory applies, the
amplitude A depends now also on the slow space variable X. This kind of
approximation was introduced by Newell and Whitehead (see [NW69]) in 1969 for
Bénard’s problem (see also (diPES71]). In other hydrodynamic problems, like the
Taylor-Couette problem or Poiseuille flow such an approximation is also possible,
due to the form of the spectrum. For all these problems the remaining information
about the system is contained in the coefficients of the Ginzburg-Landau equation.
These are in general complex valued. As a first step in making this formalism rigorous
in several papers (see [CE90, KSM92, vH91, Sch92b, Sch93]) the approximation
property was shown:

On an @(1)-time scale of the formally derived Ginzburg-Landau equation (here
(2)) the approximation 1)_(A) is 7(e3/?)-close to a solution u of the original problem
(here (1)).

The proof for the general case is based on the separation of critical and uncritical
Fourier modes and on the fact that the convolution of critical Fourier modes which
belong to non-zero wave numbers gives uncritical Fourier modes.

A second step in making this formalism rigorous is the proof of the attractivity
of the set of solutions which can be described by the Ginzburg-Landau formalism:

Solutions w to initial conditions of order (9(g) develop in such a way that there
exists at a time T /€* an initial condition A, of the formally derived Ginzburg-
Landau equation (here (2)), so that the associated approximation 1_.(A) possesses
the approximation property defined above. We have T}, = (7(1) > Q.

W. Eckhaus has shown this property in [Eck93] for initial conditions whose Fourier
transform is in L! N L>. A combination of these two ideas allows to show the global
existence principle:

Suppose the coefficient in front of the cubic term of the formally derived Ginzburg-
Landau equation (here (2)) has negative real part. Then all solutions u of the original
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system (here (1)) which belong to initial conditions of order (9(c) exist for t € [0, 00)
and are uniformly bounded for all time.

The idea is as follows: Let K, be the nonlinear evolution operator of the original
system in a Banach space Z and G- the nonlinear evolution operator of the associated
Ginzburg-Landau equation in a Banach space Y. Let ¢.:Y — Z be the map
which maps the solutions of the Ginzburg-Landau equation to the Ginzburg-Landau

approximation. For M C Z we define Ug(M) = {z € Z1 1€nl’{“4 ly —zll, < 6}.
y

We show now that a sufficiently large ball BEZRO with radius €R,, in Z in the original
problem is mapped in itself after a certain time. Therefore, all solutions to small initial
conditions stay bounded. The attractivity principle we formulate in the following way.

(ATT) There exists C,3,T,e, > 0 and a ball B}tfl with radius R, in' Y for the
Ginzburg-Landau equation such that for all 0 < e < g,

sup inf | K e () — (Al 7 < Ce'*f

ug€BZ, A0€BR,

and
sup  sup [ Ky(uy)l|; < Ce.
t€(0,Ty /2] uOEBEZRO

The approximation property is formulated as

(APP) For all T},d > O there exists C,e, > 0 such that for all 0 < € < g, the
following holds. Let Ay € BY, and uy € Z with |lug — ¥ (Ap||; < de'*?, then

sup | K,(tg) = ¥o(Gay(Ag)|; < C=M7
0<t<T) /e?
We assume that the real part of the cubic coefficient is negative. So we expect
(GL) There exists a ball Bgs in'Y such that for all R, > 0 there is a Ty > 0 with

Gr(BL)CBY, and | ) Gp(BY) isabounded set.
T€[0,T3]
The space Y has to be chosen such that (GL) is valid. So we cannot take the space

used in [Eck93]. It remains to combine these principles. We choose R, independent
of ¢, so large that w6(3§3) is contained in BEZRO /2 for all 0 < € < g,. Then by (ATT)

M, = Kp 2(B%.) C Ug.iss (.(BY,)). By (APP) and (GL) follows that

Kp,/2(M)) C Ugres (G, (BE ) C Ugeies o(Br,)) C BZg,
for sufficiently small €. We have demonstrated:
Theorem 1. If (ATT), (APP), and (GL) are valid, then there exists 1j,,T5,6, > 0
such that for all 0 < ¢ < e, and Ry sufficiently large K g 1) .2 (BZp)) C BZg.
Therefore, solutions K (u,) with initial conditions u, in BfRO stay bounded and exist
for all time.

In the third section we give some versions of (ATT), (APP) and (GL) for the
Kuramoto-Shivashinsky equation (1). Doing this we have shown the global existence
principle for the Kuramoto-Shivashinsky equation (1). To write this down, we recall
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the functional analytic set-up of [Sch93]: The spaces H}*, are introduced with norm
- 2 _ o
||u|[HZLu(R’(C) = SIépZ lull g (m,m2),cy - Note that L C Lj, = H} . Hence, we can
’ m

treat fronts and spatially quasiperiodic solutions. Moreover, these spaces allow to
handle hydrodynamical problems, too. In these spaces our global existence result is
given by

Theorem 2. There exists ,, C, Ry > 0, such that for all 0 < € < ¢, and all solutions
K, (uy) of (1) with HuOHH? ®E) < e the estimate sup |K, (u0)||H4 JRR) <
sU o)

. . t€[0,00
Ce < oo is valid. [

Now we come to the second aim of this paper. For every time interval [(T}, +
nTy)/e*, (Ty + (n + 1)T}) /€], (n € N), there exists an initial condition A4,,,, € H},
of the Ginzburg-Landau equation such that K(ug) and ¥, (Go2y_ (g sn;) (Ans)) are
nearby on this time interval. This can be shown by using (APP) and (ATT) parallel.
Obviously the jumps from one approximation to another at a time ¢ = (T, + nT})/&*
are small. A delicate problem is to show that the jumps of the associated solutions
of the Ginzburg-Landau equation are small, too. The space we take to estimate these
jumps is H}, and not only L7 . For initial conditions A, € H/, we can show the
approximation property (APP). Moreover, the solutions depend continuously on the
initial conditions. We show

Theorem 3. There exists I}, > O such that for all T} > 0 and all initial conditions
uy € H (R, R) for (1) with ||u,|| o ®RRB) < Ry¢ the following holds. There exists a

sequence (A,,),cn of initial condzttons A, € H} 1w Jor the Ginzburg-Landau equation
(2) and there are 4, C > 0 only dependmg on Ro and T\ such that for all 0 < € < g,
the pseudo-orbit

¥ =) = {¥ Gy, sy Ans N}

for
t € [(Ty +nT))/e*, (T + (n+ DT))/e*],n € N
Sulfills
sup [ K (ug) — (@)l < C7*.
tZTo/Ez L
Moreover,

Sup ||GT‘An - An+l “Hllu S C€1/4 .

This theorem allows to follow the attracting set in the original system by pseudo-orbits
of Ginzburg-Landau approximations for all times. We hope that this theorem allows
to draw conclusions about the relations between the attractor of the Ginzburg-Landau
equation and the attractor of the original problem.

To explain the methods we study the Kuramoto-Shivashinsky equation as a model
equation, but nevertheless, these methods developed here can be generalized to a
wide class of other problems, like hydrodynamical problems or reaction-diffusion
equations, too. This will be done in a forthcoming paper.

The plan of this paper is as follows. In the next section we present some
prerequisites, like the functional analytic set-up, the spaces and the so-called multiplier
theory. Also, it is shown that the Ginzburg-Landau equation possesses an attracting
ball in H l17u. The third section contains the proofs of (APP), (ATT), Theorem 2, and
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Theorem 3. The last section contains a discussion about possible generalizations and
applications of the resuit.
Throughout this paper many different constants are uniformly denoted by C.

2. Prerequisites
2.1. The Functional Analytic Set-Up and Mode Filters

In this section we give the functional analytic set-up to show the above theorems.
One difficulty for unbounded domains is the choice of a good space in which the
solutions should be. It should include all interesting solutions, like fronts or spatially
periodic solutions. It should make Fourier transform available, since Ginzburg-Landau
formalism depends heavily on it, and for more complicated problems it should allow
to use the analysis of the in general well known spatially periodic case. To our opinion
the functional analytic set-up founded in [Sch93] is a good choice. So we recall and
extend this set-up in the following.

Fourier transform is defined for tempered distributions u with help of testfunctions
and is denoted by @ or .% u. The Fourier transform of an integrable function u is given

1 )
by 7 f efry(z)dz. As usually the space L*(R,C) denotes the space of square-

integrable functions. We define the space H*(R,C) for s > 0 as the subspace of
L*(R, C) for which the norm

el = / \Ful (1 + K dk
R

is finite. This space coincides for s € N with the usual definition of Sobolev spaces
(see [LM72]). Moreover, the space of n-times continuously differentiable functions
with bounded derivatives is denoted by C}'. It is equipped with the natural norm.
To define the spaces we want to work in, let x,, = x(z —n) be a smooth, periodic
partition of unity where x has compact support [—1, 1]. We define now the space

H},(R,C) = {UfR — C‘ ”uHHiu(R,C) = S‘ég lux,ll sw.cy < OO}-

We write L}, (R, C) instead of H},(R,C) and remark that L>(R,C) C L} (R, C).
Therefore, these spaces have the above demanded property of containing all interesting
solutions. The indices [, u stand for locally and uniformly.

The second demanded property of making Fourier transform available is fulfilled
with the help of the so-called multiplier theory. To define operators in H} (R, C) we
cite some theorems of [Sch93]. We call operators multipliers if they are defined
by multiplying the Fourier transform @& = %u by a function M € L®(R,C).
Using the following lemma allows us to define operators in the physical space by
M:u— Z Y NF ).

Lemmad. Let q,5s > 0 and k +— (1 + k>)=9/2N[(k) € C2(R,C). Then M:
H{ (R,C) — H}, (R, C) is well defined with the estimate

IMull s @) < Clg, s)minq [k — (1+ |k]2)(s_Q)/2M(k)H02 R,C)’
Lu b( ,0)

/‘/M(k)e“”(l + K| 2 dk

where C(q, s) does not depend on M.

iz | fulg, .0
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An operator M defined in this way is translation invariant, i.e. 7, M = M,
where 7, u(y) = u(y + h) for all h € R. Multipliers in Fourier space are denoted with
a %, in physical space without *.

We use this lemma to define special multipliers which allows us to separate critical
from uncritical Fourier modes, but we remark that a differential operator or an analytic
semigroup can also be interpreted as a multiplier. To extract modes in Fourier space
we use an even cut-off function ¢, € C§° which is defined by

1 for k € [—1/6,1/6],
dok)=40 for k ¢ [—1/3,1/3],
€ [0,1] else.

According to Lemma4 we associate to dAJO an operator which extracts the Fourier
modes belonging to wave numbers in [—1/3,1/3]. To extract the critical modes we
define E,(k) = @o(k — 1), E_ (k) = ¢o(k + 1) and E, = E, + E_,. We call these
operators mode filters. Since the E; are no projections we need auxiliary operators
defined by EM(k) = ¢o((k — 1)/2), E* (k) = Bo((k + 1)/2) and EF = El + EP|.
We have for example E,E" = E_. For the uncritical modes we define E, = Id. — E,
and E’f(k) =1- g50(2(k +1)) — q39(2(k — 1)). Using Lemma 4 it is easily seen that
Eue H} foralls >0ifue€ Lj,.

To deal with the slow spatial scale X = ex we need a scaling operator .S,
defined by (S,u) (x) = u(ex). With help of this operator we define the scaled spaces
H); by u € Hy(R,C) & S, .u € Hf,(R,C) with the norm ”uHHZ’i(R"C) =
151 /e ull 113 m,c)- Obviously u € Hy,, gives S.u € H/(R,C). Scaling a multiplier
leads to ) )

SijeMu = eF IS (MFu) = ?’I(SsM)ﬁSl/Eu
which is easily seen by applying test functions. Moreover, we define V,: Hf , — H}},,
u(z) — u(z)e’**. Applying the above lemma on the new multiplier % ~!(S_M).7
we get

Lemma5. Let ¢,s > 0 and k — (1 + |k[>)~9/2N(k) € CXR,C). Then M:
H{"(R,C) — H, if(R, Q) is well defined with the estimate

”V—kO(M(VkOu))”HZ*j(R,C)

< C(g,9) ||k = (L + k2 Mk + ko)l a0 lull g .oy

where C(q, s) does not depend on M and e.
Remark 6. If additionally M (k + ko) = @(k®) for k — 0 and s < m. Then

Ik = U+ [k 20 ek + ko)l o ) = ).

This follows by simple calculations.
Obviously we have to estimate a scaled function by its unscaled version and so
we recall [Sch93] that we have only [|S.ufl;; g c) < Cmax(e~"/2,1) lullz2 @y

Hence, for 0 < ¢ < 1,
1

—1/2
C ”“”Lf;ﬁ(R,C) < ”“HL}u(R,C) < Cmax(e™'/%,1) ““”Lii(R,@' A
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Since H}, can be imbedded in L* for s > 1/2, we get easily ||S.uf| 2. ®o <
Cl'“ilHﬁu(R,C)'
Example. Take A € H|,,, then

|BES, Al < Ollk > BEGY QO + K2 [ 15,4l < CllAlLy

Remark. In Lemma 4 we gave two different estimates for the operator norm. This is
necessary since

|]e“k2tl|0§ = sup |e¥°t| + sup |(—2kt) e‘k2t| +sup |(—2t + 4k2t2)e‘k2t|
k k k
< Cmax(1,Vt,1).

On the long time scale 1/&? this is of order (7(1/€?). Remark that

/l/e‘theikmdk dx < C/l/e"s2 esds

Therefore we can estimate the semigroup e#! generated by the multiplier 2 = — k?
for all ¢ > 0 by ||e#t|| G HD ) < C. This problem will not appear on the long time

d<C.

. . . . 22 .
scale if we apply the semigroup on scaled functions (estimate ||e =% t||C§), since the
diffusion happens on longer time scales. Moreover, if the semigroup is exponentially
. 2 . .
damped (estimate ||e~7te~*"¢|| C,E) we again obtain good results.

2.2. The Ginzburg-Landau Equation
In this section we will show that the Ginzburg-Landau equation possesses an

exponentially attracting ball in H II‘U(R, C). To show this calculations made in [CE90]
were used. They can be used, since the norm |[ul|f, = sup(u,u), with weight
a

function h, () = 1/(1+(z—a)?) and inner product (u,v), = [uoh?dz is equivalent
to the above defined norm in L%,u(R, C). On one hand we have

1/2
nuuw=sup( / |u|2hidx) > Cswp o, lime = Ol mo-
a

On the other hand

b = s (| '“'Zhid“”)l/ 3 Sup<2 [ uehiia )1/2

< ngp (Zye[snugm hi) Slrlzp (/ |u|2xf1dx)

<
= C“uHLf)u(R,C) )
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and so the equivalence of the norm follows. Let A now be a solution of the Ginzburg-
Landau equation. Define S, = [ AAh2dr and S, = [A, A, h’dz. From the
calculations made in [CE90] one can conclude that

S.(T)<e S, |ro +C and S (T)<e T8, |r +C, )

where the constant C' does not depend on a. Taking now on both sides the supremum
we can summarize

Theorem 7. Let A be a solution of the Ginzburg-Landau equation (2) then there exists
a constant C,, such that

1Al @0 < Co+ e T 1AO @y

To show the approximation property for initial conditions for the Ginzburg-Landau
equation in H ll,u we have to make use of the smoothing properties of the Ginzburg-
Landau equation. Using the variation of constants formula to transform the differential
equation into an integral equation we can conclude

Lemma8. Let A € C([0,1],H ll,u(R,C)) be a solution of the Ginzburg-Landau
equation, then ||A(T)|| s < C,/T*/* + C,, where C, is a constant depending on
0<s<2. ’

Remark 9. Theorem 7 is also true for the complex Ginzburg-Landau equation
OpA = c,A+c,0% A+, A|AP, (¢, €0), )

if the coefficient c; has negative real part. To get (4) Lemma4.2 of [CE90] is
needed to control the linear part of (5). It applies also in this situation since it is
sufficient to have Re, > 0, where PRe, denotes the real part of c,, as it is assumed in
[Ho85] Theorem 18.1.14-15 which is used to prove this lemma. We have Rec, > 0
since the Ginzburg-Landau formalism only applies in these situations of supercritical
bifurcations.

3. The Proof

To show the main principles of the introduction and the existence of a pseudo-orbit
as asserted in Theorem 3 three lemmas are given. The first lemma allows to choose
an initial condition of the Ginzburg-Landau equation and to start the approximation
process. The second lemma brings us into a situation which allows to copy more or
less the proof of the approximation theorem of [Sch92b]. The third lemma shows the
approximation property. The differences between this lemma and previous works are
explained below. By a combination of these lemmas the assertions will follow.

Before we start we recall that we consider real systems. Therefore it is sufficient
to estimate either E{’u or Eﬁlu. The lemmas are proved in a succeeding section.

3.1. Statement of the Main Lemmas and Proof of Theorem 2

By previous works it is known that it is essential to separate the critical modes from
the uncritical modes of a solution. The critical modes are strongly related to the
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solutions of the Ginzburg-Landau equation. In a first step we show that solutions
develop in such a way that the critical part can be taken as the initial condition for
the Ginzburg-Landau equation.

Lemma 10. Let u be an initial condition for (1) with ||u,| Ht < Rye. Then there
exists 1 > T;, €y > 0 such that for all 0 < € < g the following holds:
a) There exists C > 0 only depending on R, such that

sup sup [th(uo)HH? <C.
0<t<Ty/e? )IuollH? <Rge i

b) Fort =T,/e* the solution K,(uy) can be written as
2
Ky, je2(up) = ew, + e*w,
with w, = EMw, and w, = EMw,. There exists constants C,, C, only depending on
R and not on € or vy itself such that ||V_1E{1u)6[(Hl;,5 < C, and st”H;‘u <G,

This lemma allows to take A, = S /EV_IE{‘wC € H}, as the first initial
condition of the Ginzburg-Landau equation (2). For a technical reason the mapping
¢, which maps A € H ll,u to the approximation t_(A) is not given by u,(A4) =
eA(X,T)e*™ + c.c. The chosen mapping 1), is close to u,, but has much better
properties. First, ¥_(A) is highly regular, and second, it makes the so-called residuum

Res(yp) = =00 + A + o?

small. This residuum appears as inhomogenity in the equations for the error R and
contains all remaining terms which do not drop out after inserting 1_(A) in (1), if A
is solution of (2).

In a classical way the order of the residuum can be made small by taking more
terms into the approximation. By applying appropriate mode filters on this extended
approximation we obtain a highly regular approximation 9 _(A) nearby u,,(A).

To derive formally the Ginzburg-Landau equation we insert as normally

P = (EA‘I)(e:c, %) e’ + 62Ag(sx, 2t)e*® + c.c) + szAg(ex, £2t)
in (1) and get in lowest order the modulation equations
OpAY = (1+40%) A% +4iA° | AD +4AQAY,
0=—9A49+i4%4%, ©6)
0=—A).

Upon elimination of AOi2 we arrive at the Ginzburg-Landau equation (2). Formally in
the coefficient in front of e%® all terms of order @(¢3) and for 1 and €%** all terms of
order (?(¢?) have vanished. Now Lemma 5 allows us to smooth 1) without changing
it very much. Therefore we define another mode filter E defined by the multiplier
k +— ¢,(3k) in Fourier space. Moreover, we define E,, = ES_. We modify the formal
approximation by applying this mode-filter and take finally

Y (A]) = epe(A}) + 79, (AD)
e (AY) = (B AV )) e + e(BEyA° (%)) e ™,
2 (AY) = 2B A (?t)) €% + eX(E, A% ,(e%t)) e %%



166 G. Schneider

where AJ = (i/9) (A9)%. Note that ER, = 0 and EMip, = 0. Using Lemma 5 and
(3) we have
sup ([ (A]) — uy (Al < OE),
t€[0,Tp /€] v
if A% € H},. Moreover, ¥.(AY) is of order (1) in Hllv’j N Hy, and ¥ (AY) is of
order 2(1) in H}*, for all n € N. This follows by applying Lemma 4 to E.

Let 4, € H} Lu be an initial condition for (2). The error made by the approximation
¥ (G.2,(Ay)) of a solution v is given by

R() = Kt(u|t=T0/52) — (G2, (Ap)).
It is estimated as solution of the differential equation 0,R = F(R,t) it fulfill. We
separate R = R (t) + R(t), where R_ and R, are defined to be the solutions of
O,R . =EF(R,+R,,1),
O,R,=EF(R,+R,t).
For A, = A, the initial conditions are given by R_(0) = ezws — squs(Al) and by
R.(0) = eV,(1-E)V_, Elw_+c.c. Applying Lemma 4 and Lemma 5 we can estimate

1ROy, < CIRO) 13, < Ce™V_ B RO 2
< Cem Pk (1 + K72 (1~ EEk) EF (L + ek 2
h
X HEV—IEI wc”Hll,’i
< C¥?|eV_ Ehw,| mbs S @E?). O

In general R (t) = E,R() and R (t) = E_R(t) is not true for ¢ > 0, since E,
and E, are no pro;ectlons But, from E"E = E,, E'R, = R, follows. Slmllarly
EhR = R, follows. Since R (0) = @(52) the 1deas of the approx1mat10n theorem
of [Sch92b] are not available at this point. An intermediate step is needed.

Lemmall. Let Ay € H ll,u be an initial condition for the Ginzburg-Landau equation
(2) with || Ayl u) < Cs and @, an initial condition for (1). We write K (i) as

K, (Uy) = ¥.(Ge24(Ag)) + R (D) + R, (D)
with R,= E"R_ and R_= E"R,_. Suppose ||R,|,. 0“1—14 <Cie’? and “Rs|t=o||H;‘ <

C,e3/*. Then there exists Cs, Cq, £y > 0, only dependmg on Cy, Cy, and C}, such that
for all 0 < € < g, the following estimates are valid:
d)  sup (IRl +IRllgs )< Cse™4,
0<t<1/el/4 i i
b) ”Rslt=1/el/4 ”Hfu < Cge”/t.

At the end of this small approximation interval we are in a situation to prove the
approximation property as in [Sch92b]. The only difference is that we only assume the
initial conditions for the Ginzburg-Landau equation in H; ,, instead of Hﬁu. Contrary

to previous work we also point out that the error V_ E R_isin H; 1‘5 instead of being
only in H}, at the end of the approximation 1nterval leitisa funcuon of the slow
space vanable X. We use this to control the jumps Gp, A, — A

n+l*
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Lemma 12. Let Ay € H}, be an initial condition for the Ginzburg-Landau equation
(2) and iy be an initial condztwn of (1). We write K, (i) as

Ky(ty) = (G2, (Ag)) + R (1) + R,y (D)

with R,= E"R_ and R_= E"R_. Assume [1Relieo ll 4 <Cse’* and [Rglemoll s <

Cee/*. Then for all T, > O there exists C,, C,, €, > 0, only depending on T,
HAOH Hl Cs, and Cg, such that for all 0 < e < g, the following estimates are valid:
a) sup R, (t)HH4 < O34,

0<t<T, /e?
b)  sup R, s < Cie¥4

0<t<T, /€2 Lu
©) “V—lEfchlth/az HHLLE < 0085/4'

By a combination of these lemmas and of Theorem 7 the main principles of the
introduction can be shown.

(ATT) (APP) and (GL): The demands of the introduction can be fulfilled with
=1/4, Z = H4 . and Y = H! . (GL) is given by Theorem 7, (ATT) is given by
Lemma 10, and (APP) is given by a combination of Lemma 11 and Lemma 12. This

proves Theorem 2.

We remark that Lemma 12 c) is only needed to prove Theorem 3. It is proved at
the end of this section.

3.2. Proof of the Lemmas

To make the notation more general we write (1) as
d,u = M40, e*)u + B(u,u), ®)

where B(u,u) = 0(i0,)u? and A = —(1 + 82)* + £2. Before we prove these lemmas
we have to do some work in advance.

3.2.1 Properties of the Analytic Semigroup e**

To solve (1) we will use semigroup theory as it can be found in [Si85]. Since A is
a sectorial operator in L} ,(R,C) it generates an analytic semigroup (e**), in this
space. This semigroup can be represented by a multiplier A*:t in Fourier space. We
remark that by their definition with scalar multipliers the semigroup and the operators
E", E" commute. These assertions can be shown with the help of multiplier theory

and test functions. We summarize the later needed properties in the following lemma.

Lemma 13. There exists 0 > 0 such that for 0 < €2t < 1 the following estimates are
valid:
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a) ||e’\tE?U0||H;‘u < e—ot”“o“H}u max(1,¢73/%),

t
b) / D EM(r)dr
0

< Csup (g
I <t Lu
Lu

c) ||e>‘tE£L“0”H;‘u < CHUOHLlZu >

¢
d) 52/6’\““”Efu(7)d'r < Ce*t sup [lu(nl 2
T<t ™

0 Hz‘,u
&) [I(V_ 1M Elrug)l,., 2 “Hzl,’i < C”“O“L%’u ,
t=l/62
B [e2v / BN dr| < Csupllum
9 Hll,s <t Lu
U

Proof. With help of Lemma 4 and Lemma 5 we have the following estimates:
&) lleMEluglls < Cl BB (1 + k2 02 uolly

b)

t
/ eA(t—T)Egu(*r) dr
0

4
Hl‘u

¢
2 N
< C/ ”e/\(k,s )(t—r)E;‘(k')(l + Ik|2)3/2”c§ dr Slip HU(T)“Hl] s
<t et
] <

e) “(V-—le)\tE?uo)lhl/az “Hll@
U

o, k— 112\ /2
< C|eMeke )tE{l(gk;) (1 + ) HUOHLZ,E s
t=1/2 lIC? l)‘"
t=1/€2
f |2V, / D Eru(rydr
0 H);
t=1/e? R b— 112\ /2
<oc | Hem,g =) B ek (1 . ) dr sup ] 2.
] cp <t bu

Since [|ul| 2. < Cllull 13 » it remains to estimate the norm of the multipliers.
Lu "

We will only estimate them in the CP-norm to make the ideas clear. The derivatives
can be estimated in the same manner. Due to the remark at the end of Sect. 2.1 the
semigroup is exponentially damped in a) and b) and it acts on scaled functions in e)
and f).

For a) we get

sup |EAFEER () (1 + B[] < Cs2p|e—‘”e—°k4t(1 + k]|
< Ce % max(1,t™/%,

due to the fact that E” extracts only uncritical modes.
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To estimate b) we look at
t

t

/sup |e;\(k’€2)“_T)Ef(k)(l + |k|2)3/2[d7 < /Ce“‘” max(1, 7/ dr < C.
k

0

This semigroup formates peaks in Fourier space. So we can show e),

z>1/2
<C sup eyl +C sup
|k|<1/2 |k|<1/2

Iy N —_ 1
sup eMk"“z)tEf(k) (1 + ‘—k .
k

t=1/€2

—k%t

k
e p—

€

<0,

t=1/¢2
and f)

—R-n|k

<elC sup le_szldT + Ce? sup |e

|kl<1/2 S Iki<i/2

dr < C.

For showing c) and d) we define the multiplier £ by k qASO(k /15) in Fourier space.
Since ||EEhu||H4 < Cllk = Po(k/15)(1 + |E[?) Zucz HEhulle the rest of the
proof of c) and d) is clear if we use the second estimate in Lemma4 O

3.2.2. Proof of Lemma 10

In a first step we show that the solution K,(u,) filtered by E” is of order 7(e?) after
a very short time 1/¢'/4, Starting again, now with this configuration it is shown in a
second step that the solution filtered by Ef is in H,¢ for a time ¢ = T} /<>,

Assume now an initial condition u, with ||u|| Hi S Rye.

1 1
st step: a) We set v,(-,0) = - E_uy and v,(+,0) = - E u,. Inserting u = ev; +¢€v,
in (8) we obtain

At A(t— .
v; = eyl + €EC/€ E=S B, + v, + vy)ds = Fy(vy,v,),

At A(t— .
Uy = €y y g + 5Es/e =9 B(v, + vy, v, +v,)ds =1 Fy(v,0,).

We remark that there is no need for separating the system in this way, since £, and
E are no projections. For ¢ sufficiently small F' = (F}, F}) is a contraction in a ball
with center (e*v,|,.,, €M, ],_,) and radius of order @('/2) in C([0, 1/€'/4], H}, x
H l“,u), Therefore, F" has a fixed point and this system possesses a solution in this space

with  sup  |[jv;|| g« < 2R, for € sufficiently small.
tef0,1/e1/4 bu
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1
b) For the time ¢ = —77 We have
gl/4

”vllt=1/51/4 ”H?u < CRy+ 063/4R(2) <C

and
aleerjerse s, < Ce/='" Ry + CeRE < Ce

if € is sufficiently small, since the semigroup e*t filtered by E” is exponentially
damped. The constants C,, C, depend only on R, and not on u itself.

1
2nd step: a) In the next step we set Wyly_g = — V|, jc1/a a0 Wy leng = Vylyy er/a -
€

Inserting now u = ew, + 2w, into (8) we separate the resulting equation in

¢
w, = eMw, |,y + eZ/ex(t‘T)ECQB(wl,wz) + eB(w,, w,))dT,
° ©)

t
w, = e’\th[t=0 + /e*(t'T)Es(B(wl,wl) +2eB(w;, w,) + szB(w2,w2))d7'.
0

Remark that EfB(wl,wl) = 0 due to the supports in Fourier space (see [Sch92b]).

Obviously this system possesses solutions locally in time. The 2(1)-boundedness

and the existence on a long time interval [0, TO /€] with To = @(1) <1 is not clear.

We take To < 1 to have an upper bound for some estimates. To show the @(1)-

boundedness we set .S;(t) = sup ||w,(s)| HY for i = 1,2 and recall that T = £2t. We
s<t et

obtain from the second equation

S,(t) < sup lle**w, ],z | Bt CS,(t)* + C(S,(t) S, () + €S, (t)*),
s<t e

and from the first equation
t
S < SLlp [|e’\sw1|t=0 HH? + €2C/(SI(T) S,(1) + €S, (T))dT .
s<t o
- 0

We look now for a Ty = 9(1) > 0, such that S,(T/e?) < Cy and S,(T,/e?) < C,
for some constants C; and C,. Choose now

Cy=4 sup [[e"swllhollm =@(1),
1/e2>s bu
Cy= sup ||eMw,l,pllys +CCs+1=0(1),
1/e2>s bu

and ¢ such that eC(C;C, + eC2) < 1. This gives

Sy(t) < sup [[e**w, ], ”H;‘
t>s o

t
+e2C | (S,(1) | sup [|e**wy|yeo I s + CC3 + 1]) +eCldr,
; t>s lLu
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and by Gronwall’s inequality

3 A~ 2
S1 < [sup e w g g, +£CCF] €7 COCEVT
t>s U

We choose now ¢ again smaller such that eCC? < /4. Then we choose T = T, =
@(1) such that

eC(C4+CC*§+1)T0 <2,

and so S; < Cj as demanded and hence S, < C, by construction. Therefore, we have
(7(1)-bounded solutions in C§([0, Ty /€?), H},, x H},)). Again C; and C, depend only
on R,.

b) Using Lemma 13 to estimate the right-hand side of (9) we get for t = T, /€2,

”V—lElelt:To/sZ ”H}’j <Gs, (10)

with Cs only depending on Ry. We set Ty = Ty + €/4, w, = w|,.p, /2 and
w, = w2lt=T0/52 -0

3.2.3 Estimates for the Residuum

For later computations we need exact estimates for the residuum.

Lemma 14. Let A € C([0,1], H, ll,u) be a solution of the Ginzburg-Landau equation.
Then we have
l

a)  sup / AT EN Res(y_(A)) dr < Cree /Y2 < Cgo e,
oi<t/e? | H}  R,C)
t
b)  sup / e DB Res(y,(A)) dr < O@E?) < Creee™?,
0<t<1/e2 H;“u(R,(C)
t=1/s2

c) < OEY?) < Cree'*.

HS®R,O)

/ V_ XD ERr Res(y, (A))dr
0

Proof. By inserting 1,(A) into (1) we compute the residuum. We denote by 6,,, a

. 40 g
term in front of e¥*, that is Res(y.(4) = Y. 6;,€”%. By using the formulae
j=—4 n=l
A(—40,,0) B(ex) '™ = —e'™®[(1 — n*)? B + 4ein(1 — n*) 0y B
+€%(2 — 6n?) 0% B + 24ind% B + ¢*9% B],
20(0,) B(ex)e™™ = ¢™™*[inB + 0y Bl
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the abbreviations E§ = 1— E,, and the fact that the Ag are solutions of the modulation
equations (6) we get

b1 = £ 0x (By(AD (B, A))),

8op = €205 (B A (EyA,)),

8, = (—e*4i0% — °0%) E,AY,

812 = £ 05 (B A (EyA ),

8,3 = 0 ESAY,

614 = — (3 +4620%) ESAY

85 =~ i((BpAD) (EGAL,)) + (B5 AD (ByAL)) + (E5 A (E5AL))),

8y = —€*0p By A

by = —€X(—24ie0y — 226%0% + 8i*0% + £*0% ) EyAY,

b3 = €' EGAY,

8y = €% 5 Ox(ByA)) (E,AD)

by5 = 9 ESAY

bsg = —2(2(E AN (ESAY) + (ESAY) (ESAY)),

8, = 53(3z +e0y) (B,A%) (E,A9)),

641 = 5 %(4i + e0x) (EoAY) (EyAY)

=6;p

Now the terms 6 jn are estimated in various norms. By using the smoothing properties

of the semigroup e** generated by A and of the flow of the Ginzburg-Landau
equation it is also possible to show that S, /EV_IE?RC lies in Hllyu at the end of
the approximation interval, contrary to previous work.

We define another multiplier £ by k +— <Z>0(lc /15) in Fourier space. By applying it
on the terms of the lemma it is easily seen with help of Lemma 4 that it is sufficient to
show the estimates only in L7 instead of Hl“u, since the 6, have compact support
in Fourier space by constructxon To get the estimate b) we have to look at 4,,, with
j # 1. For the estimates a) and c) we have to look at §,,,

We start with b). Except for the estimate of the tlme derivative 0, it is sufficient

that EOA‘]’» e C(10,11, H, I E) Since H* 1 18 an algebra, the product of such terms is
also in H llj. To estimate these terms we get by Lemma 4,

¢
/e)‘(t_T)E;‘(SjndT
0

t
< C’/e“"“"”dv'supuéij“Lz
12 t Lu
lLu 0

< Csupll8,,llzy < Ce™'2sup 8, e

This can now be estimated by Lemma 5 with ¢ = 0, s = 1 and with the succeeding
Remark 6 with m = s = 1 on different multipliers. In 6, 8y,, 0,4, 65, and in 6,; we
take o minus its first Taylor coefficient. In 0,4, 6,5 we take E§ as multiplier and in 6,,
we take A minus its first Taylor coefficient. The estimate of §,; is clear. Summarized
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we have sup I|6]n||L2 = @(E/?) for j # 1 or (j,n) # (2,1). To estimate the
t€l0,1/€2]

time derivative 6, we use that T' — T0,A3 € C([0,1], H},). Applying again

Lemma 5 we have to estimate

t
)\(k )(t T) Hhh
0/ DL s dr

t
< Ce! /e“”(t‘T)T“l/sz <CJe
0

2
Cb

and therefore,
t

/ MTDEN,dr|| = 0.

4
Hl,u

sup
0<t<1/e?

To show a) more refined methods are necessary. The main idea is as follows. At the
beginning of the considered time interval we have high enough powers of € because
of Remark 6. At the end of the time interval where the error should be in H . We can
use the smoothing properties of the semigroup and of the Ginzburg- Landau equation
to get high enough powers of ¢.

By the used functional analytic set-up one loses @(¢~'/2) due to

1Bullyg, < Clik = dotk/15) (1 + (K |z llull 3, < Ce™lul e

To estimate 6,, we apply Lemma5 with ¢ = 0 and s = 11/4 to the multiplier A.
Since the multiplier A(1 + k) minus its Taylor polynomial of order 2 can be estimated

by at least |k['!/*, and since T — T7/8AS € H, ''/* we have to estimate

t
77)
€ dr.
O/ Cg ((527-)7/8

Because of notational complexity we will only look to the sup-norm. The derivatives
can be estimated in the same way, since the multiplier acts on scaled funtions. We
get

e:\(ak) (t—‘r)E{l(Ek)Ell/‘tkll/“
(L KP)I7A

/ k“(t—s) |]€|”/4 C
€ sup ds
[k|<1/2 ( k )”/4 (e2s)/8

0 1+

€
e~ K*(T-5) |4 KA ¢

(1 +|K[)t/4 (S)7/8 a5

~K¥T-8) c
(5)7/8

as
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In the same way we estimate §;, with g instead of A. To estimate §,; note that
T — T80, A) € C([0, 1], H, l3 24). By applying Remark 6 to the multiplier E§ we
win another @(¢3/%). By the same computations as for &,, this estimate follows,
too. Since T +— T7/35,, € C([0, 1), H3/4 ) this is also true for §,,. To estimate &5
note that ”ECA(]JHLz,’i = Oe), HE*AOEgAOHLz,s < |IESAYI, 2 ”ES(AO-“HI e, and
T — Tl/zE(’,kA(}EgA? € C([0,1], H1 ). Since “ECAO”L25 = @(5) the estimate of

0,5 is no problem at all.
To prove c) we look on §;; as an example. Here, we apply Lemma 5 directly

with ¢ = 1 and s = 5/2 without losing @(¢~'/?). Again only the sup-norm of the
multiplier is estimated. We get
ekz(t—s) 'k|5/2 C p
su s
|k|<[1)/2 <1 k )3/2 (e2s)3/4
+ —

€
e~ KAT-9) |s|5/2]K|5/2 c
(1 + IKDS/Z—I (S)3/4

das

C

G as

e—K?‘(T—S)(l + !Kl)l

ds < Cce?.

3/2
< Ce /l ____(5)3/4

The other terms §;,, can be estimated similarly to a). We remark that this is the
essential estimate to show Lemma 12 c). It is possible, since the singularities appear
on different ends of the integration interval. [J

3.3 Proof of Lemma 11

In the small time interval at the beginning of the approximation the error R, decays
rapidly as the solutions converge to the center manifold in case of discrete spectrum.
We denote constants coming from the semigroup by C;, from the approximation

by C,, and from the residuum by Cg,. Inserting u = e%/4 R, +&¥/* R, + 1), into (8),
where B, = E"R_, R = E;R, and R = R, + R, we get the system

O,R, = \R_+2¢E,B(R,%,/e)+&/*E,B(R, R) + e™>/*E_Res(y,),

O,R, = \R_+2¢E_B(R,¢_[e) +/*E,B(R,R) + e ™%/*E, Res(v,)
with the initial condition (R, R)|,.o = (6 /*R,|,0,€>*R,|;.o)- With Lemma 14

we get

< CRes
4
Hl U

¢
8_5/4/6’\“_”EC Res(y,)dr
0
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and

S CRes€

¢
5_5/4/6A(t—7)E3 Res(y,)dr
0

Hy,

uniformly on the required time interval [0,1/¢'/4]. Using Lemma 13 and

1R, |:z0 |l B S Cie'/* it is easily seen that this system possesses solutions in
U

Co(10,1/€/*), H} , x H} ) with  sup (||RC|IH? + “Rs“H;‘ ) < Cs, where the con-
[0,1/¢1/4 i o
stant Cs only depends on C;, C, and Cj. For t = 1/e'/* we have ]]Rc|t=l/€1/4 ”Hf <

Cs. For Rs't:l/el/“ we get by Lemma 13,

~ —o/el/
||Rs”t=1/51/4 ”H;‘m <Cje /e Cy+ ECJC¢CS + 55/4CJ052 + ECRes
<e+C,C,Cs + Cgey) =: eCy,

if we choose ¢ so small that C,C,e~/=""* < ¢ and £1/4C,C2 < 1.

3.4. Proof of Lemma 12

On the long time interval we can prove the approximation theorem similarly to the
proof of the approximation theorem of [Sch92b]. To simplify notation we take 7, = 1.
A solution of (8) can now be written as

u=1, + R=ep, +ep, +*R_+ /R, (11)
where Rc = E?Rc and f?,s = EL‘RS. Inserting, this in (8) gives the system
O,R. = AR, + &L (R)+&*N,(R) +e*E_Res(,),
B,R, = AR, + L (R, +€'/*N (R) + ™ /*E_Res(¥,),
with the abbreviations
L.R) = E,2B(R,,) + 2B(R,,.),
LyR,) = E,2B(R,,%.),
NR) = E(B(R,,2R, +23/*_ +€R)),
N,(R) = E,e**B(R,,,) + 2¢*/*B(R,,.) + B(R,, R,)
+eB(R,,2R, + 23/, + eR))).

12)

This system is solved in C{([0,1/€?], H},, x H}},). Since the system can be solved

locally in time it remains to show the @’(1)—boundednes§ of the solutions on the

required time interval. We abbreviate S.(t) = sup ||R.(7) HY and S,(t) =
<7<t "

. iug ) | R (M| HY - Again we denote constants coming from the semigroup by C,
ST o

from the approximation by C,, and from the residuum by Cg.,. Writing the second
equation in integral form and using Lemma 14 gives

S, <C,C,8, + M, (13)
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with
M, = My + Cges + Cy G,
M, = 61/4C’J[63/4C¢SC + 53/4C¢Ss + 8% +eS,(S, + 63/4C¢ +eS,)].

The first equation gives
S, <eS, / (CyS,(7) + CyS () dr + My
0

with
My = My + Cges + C5Cy
M, =€"4C,8,(S, +e¥4C, +€8,).

Later on we choose ¢ small enough such that M, < 1 with 7 = 2,4. By inserting the
above expression for S, into that of S, we obtain
S, < My+é? / C,(C,5,+CyC,C S dr +&° / C,CyM,dr
< M, +C5C, M, + 52/CJ(C¢ +C,C)) S dr.
By Gronwall’s inequality one gets

S, < (My + C3C, M,)eC7CurChonT
< (M, + C3C, M) 7w 0D —: ¢,
Inserting this in (13) gives
Sy <M, +C;C,C.=C;.

Next we choose ¢ so small that

M, < 51/4CJ[€3/4CwC’C + 53/4chs +C?+eC(C, + 53/4C’¢ +eCHI <1,

M, < 61/4CJJCS(OC + 53/4C¢ +eC) < 1.
It remains to estimate V~'ELR, € H,>° for t = 1/¢2. By the above computations

we have ||L, (R)I[Lz < C, ||N, (R)”L2 < C, and ||R,|,. 0|le < C. Using also

Lemma 14 we can apply Lemma 13 to the variation of constants formula which
transforms (12) into an integral equation. There we estimate the right-hand side in
H ll,f as in (9) and (10) and so the assertion follows. [J

If we would have inverted the linear part of (12) as has been done in former
works, the estimates for the residuum would have been much more complicated. So
we choose this way.
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3.5. Proof of Theorem 3

With help of these lemmas we start now to construct the pseudo-orbit of approx-
imations. Using Lemma 10 we have constructed the first initial condition for the
solution A, of our sequence of initial conditions for the Ginzburg-Landau equation
(2) atatime t = T,/ 2. We solve the Ginzburg-Landau equation on the time interval
[Ty, Ty + 111 The associated approximation is given by (G 52t_TO(Al)). On the time
interval [T, /2, T,/e? + 1/'/*) we use Lemma 11 as the approximation theorem. On
the time interval [T, +1/e'/* (T, + T})/€*) we take Lemma 12. The critical resp. the
uncritical part of the error on the time interval [T}/ €2, (T, + T/ 2] is denoted by
R, resp. R ;. To get the new initial condition A, for the Ginzburg-Landau equation,

we add the critical error 'S, 'V By R, |, (7,72 € H],, to the actual solution
G, (A)) of the Ginzburg-Landau equation. By changing from ,GTN A, t0 Ay, the error
R, changes to R, and the error R, ; to R, ,. By construction we have

- 1
Rc,2!t=(T0+Tl)/52 - ‘/1(1 - FE) V~1Eth,1|t=(T0+T1)/52 + C.C.

Therefore || R.,|,_z.1)/e2 I HS < CC,e"/* as in (7). Hence we can apply Lemma
11 and Lemma 12 again and estimate the difference ¢ (G.2;_ (7 .7,y (A2)) — K, (ug)

on the time interval [(T}, + 1)) /52, Ty +2T7) /€*1. The sequence of initial conditions
is defined inductively by

—1 1
A, = GT0+(n+1)T1 (A,_+e SI/EV—IEth)n——l|t=(T0+(n——1)T1)/62 .

It remains to show that the constants of Theorem 3 are bounded uniformly in time. We
show that the initial conditions A4, and the errors R ., R, ,, are bounded uniformly
in time. Since all constants can be controlled by C;, C, and Cj of Lemma 11, we
will be finished. We first estimate the initial conditions A,,.

Lemma 15. There exists €, > 0 such that for all € < €, we have
14y, < max{3C, 1A gy} = €y
Proof. Since ||e™'S, . V_ | EYR |q_q .1, HHll,u < C,e'/*, and since |G, (AI)HHzl,u <
Cy+e! |IA1]|H11’H for T}, > 1, we have
HAanll)u <eC, + Cy+e! ||A1HH})u < max{3C,, HAllngu}

for ¢ sufficiently small. For n > 2 the assertion follows by induction. O
For the uncritical part we obtain

Lemma 16. There exists C,, £, > 0 such that for all 0 < € < g, we have
”Rs,n+1 ‘t=(TO+nT1)/52 “Hﬁu < C’759/4 < 04’55/4
with C, := max{l, ||5"5/4R311|t=T0/52 “H?,u}'
Proof. We get
Rosli-ayemyye = Reilieayeryye + 52¢3(GT1 (AD) — eMp(Ay)

i
= R\ liecmperyye2 + 9 (e Ey(— A3 + (G, AP e +cc),
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and so by Lemma 11 and Lemma 12,
HRs,2|t=(T0+T1)/52 HHf,u
< ”Rs,llt=(T0+T1)/sz ”H?,u +eC(||Gr, (Al)”Hl]’u + ’|A2||Hl"u)
x “V—IE{IRc,IIt=(T0+T1)/52 HH,‘,’S
<, + 40O, < Clet.
For n > 2 the assertion follows by induction. [l
For the critical part we obtain
Lemma 17. There exists Cg, €, > 0 such that for all 0 < € < g, we have
||Rc,n+1 ’t:(T0+nT1)/52 ||H;1’u < 0853/2
with Cy := max{1, [le"**R,|7_g, .2 'lH;{u}-
Proof. We have already obtained
I1R.2

1/2
t=(Ty+T1)/e? ”H?u <Ce / ”Rc,llt=(T0+Tl)/€2 ”H?u
< Ce'2Ce¥* < CCe* < Cged/?
for ¢ sufficiently small. For n > 2 the assertion follows by induction. [J

Now we have constructed the pseudo-orbit ¢ with the required properties of
Theorem 3 and so this theorem is proved. Since all constants are bounded uniformly,
the pseudo-orbit stays bounded in Hﬁu and so the shadowed solution, too. [J

4. Discussions

It is possible to make the error smaller in powers of ¢ by taking more terms into
the approximation. To do this one has to include more peaks in Fourier space into
the analysis. As in [Eck93] the larger peaks have to be chosen more regular than the
smaller ones. So various approximation theorems and various theorems for attractivity
are possible. Also various combinations of these theorems are possible to prove global
existence of solutions of the original system.

It is clear that the above conclusions can also be drawn for every other exponen-
tially attracting set of the Ginzburg-Landau equation. Also diffusive stability can be
sufficient to apply the above theory. It is a subject of further research to apply this
method to concrete sets of functions. It can be applied in the spatial periodic case,
especially with very large spatial period, where more or less complicated attractors
are known.

Using the whole functional analytical set-up of [Sch93] allows to generalize this
method to situations where u(x) is vectorvalued, e.g. has values in a Hilbert space. In
fact this allows us the handling of Bénard’s problem or of Taylor-Couette problem.
This will be the subject of a forthcombing paper.
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