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Abstract: We derive the topological obstructions to the existence of non-Cliffordian
pin structures on four-dimensional spacetimes. We apply these obstructions to the
study of non-Cliffordian pin-Lorentz cobordism. We note that our method of deriva-
tion applies equally well in any dimension and in any signature, and we present
a general format for calculating obstructions in these situations. Finally, we inter-
pret the breakdown of pin structure and discuss the relevance of this to aspects of
physics.m
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I. Introduction

Suppose we are given a manifold, M, with tangent bundle τM which can be reduced
to a bundle with structure group "0" say. Then one of the first things we might
notice is that we generally have π\(O) ~ G φ {!}. What this means is that at a
point/? G M there exist paths 0ι, 02 G 0, which might act on the fibre τM\P "equi-
valently" (in the sense that, for x G τM\p9O\(x) = O2(*)), but with the property that
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O\ and 02 (viewed as curves in O) are not homotopic, i.e., cannot be continuously
deformed into each other. This might disturb us, and so we may be inclined to
represent the information contained in the tangent bundle in a simply connected
manner. What this amounts to locally (in a neighbourhood about p) is finding some
bundle ςM, with structure group 0 given by the exact sequence 1 — > π\(O) — >
0 — > O -+ 1. Then locally the bundle ςM "encodes" all of the information that was
contained in %M> However, we may not be able to find such a bundle globally , i.e.,
there are topological obstructions to globally "re-representing" the information of
τM in a simply connected way.

In this paper, we are going to concentrate on spacetίmes, M, which are not
necessarily orientable. What this means is that the tangent bundle, TM, can at most
be reduced to an O(p, q) bundle. When the metric, gab, has signature ( — f- + +)
then the structure group will be 0(3, 1). When the metric has signature (H — -- )
then the structure group will be 0(1, 3) (actually, 0(3, 1) ~ 0(1, 3), but as we shall
see, it is necessary to keep the distinction when we pass to the double covers). Since
πι(0o(3, 1) ~ πι(0o(l, 3)) c± 2£2, we are interested in finding all groups which are
double covers of 0(3, 1) and 0(1, 3). However, there are eight distinct such double
covers [2] of O(p, q)\ Following Dabrowski, we will write these covers as

with a, b, c £ {+, — }. The signs of a, b, and c can be interpreted in the following
way:

Recall, first, that O(p, q) is not path connected; there are four components,
given by the identity connected component, 0o(/>, q), and the three components
corresponding to parity reversal P, time reversal Γ, and the combination of
these two, PT(ι.Q., O(p, q) decomposes into a semidirect product1, O(p, q) ~
OQ(P, q) Θ (^2 x ^2)). The signs of α, b, and c then correspond to the signs of the

squares of the elements in Pin*' b' c(p, q) which cover space reflection, Rs, time re-
versal, RT and a combination of the two respectively. (Recall that parity P is written
P — RxRyRz, the product of reflections about the three spacelike axes).

With this in mind we can, following Dabrowski [2], write out the explicit form

of the groups Pinα'6'c(/?, q)\ they are given by the semidirect product

where the Cα'ό?c are the four double coverings of Έ2 x Z2;i.e., C f l'6'c are the groups
Z2 x Z2 x ^2 (when a = b = c = -j-), £>4 (dihedral group, when there are two
plusses and one minus in the triple a, b, c), 2^ x 2^ (when there are two minuses
and one plus in α,6,c), and ^4 (quaternions, when a = b = c = — ). Interestingly,
the only groups which can be obtained from the Clifford algebras Cl(p, q} (in the
usual way) are

and

1 That is O (p, q) is the disjoint union O (p, q) = (O0(p, q))UP(O0 (p, q}) U T (00 (P ,#)) U
PT(UQ (p, q)), and the four element group {1, P,Γ,PΓ} is isomorphic to 2^2 x ^2-



Obstructions to Non-Cliffordian Pin Structures 67

These pin groups are therefore called "Cliffordian," and the obstruction theory for
Cliffordian pin structure was worked out by Karoubi [3], see also [1]. We are
concerned with the obstruction theory for the non-Cliffordian pin groups. To see
how to approach this problem, let us first review the structures involved.

Recall, first of all, that O(p, q) decomposes as a semidirect product O(p9 q) ~
OQ(P, q) Θ (2^2 x Z2). Likewise, the pin groups decompose into semidirect products

a h c (Spinnz?, q Θ Ca'b'c)
via Pin ' ' (p, q) ~ —— , where Spin0(/?, q) is the 2 — 1 cover of

OQ(P, q) ~ SOo(p, g)andCα?Z)'c are 2 - 1 covers of Zζ2 x Z2. These semidirect prod-
ucts are naturally associated with the homomorphisms

;ι . £a,b,c —> Aut (Spin0 (p, q)}

\2 : Z2 x Z2 —* Aut (SO0(p9 q)) ,

i.e., for example, if e\ represents time reflection in Pinfl'6'c(/>, q\ then h(e\) is equal
to the map (automorphism) on Spin0 (p, q) given by conjugation:

and similarly for h2. In other words, if (ς\,c\) G Spin0 (p, q) Θ Ca' b'c and (ς2,c2) €
Spin0(/?, q) Θ Cα'6?c, then multiplication of the two elements of the semidirect prod-
uct is given by

fei? c\) (ς2, c\) = (ς\ c\ς2 c^ ,c\ c-i)

and so on.
What this means [4] is that we obtain exact sequences:

Furthermore, because the elements of the top sequence are 2 — 1 covers of
elements of the bottom sequence, we see that we must have the following (com-
mutative) diagram:

1 —-> Pin^'c (;?,<?) —+ PwLa'b'c(p,q) —-* Ca^c —> 1
I I I (2)

1 —> 0Q(p,q) —> 0(p,q) —> Z2 x Z2 —> 1

Thus, diagram (2) "fixes" the structure of Pma'b'c(p, q), given Cα?6'c.
Including the short exact sequences which "express" the fact that

PinflΛc (p, q) and Pin£*'c (/?, ^) are 2 - 1 covers of O (p, q) and <90(;?, q\ we ob-
tain the commutative diagram
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1

1
αo *'C (P> ?)

1
00 (P, q)

I

1
— > Pinα'*'c (p, q) — >

i
— > 0 (p, q) — >

1

i
C"'6'c — > 1

I
Z2 x Z2 — )• 1

(3)

At first glance, the above diagram looks innocuous. However, as we shall see,
when we view the algebraic structures in the diagram as sheaves, we will obtain a
commutative diagram of sheaves, from which we will obtain a commutative diagram
of sheaf cohomology groups, with which we will be able to derive our obstructions.
Before we do this, however, it is useful to review sheaf cohomology.

II. Discussion of Sheaf2 Theory

"Sheaf theory" is, broadly speaking, a mathematical technology that allows us to
connect information which is local with information which is global. A sheaf is
roughly something that tells us about localized information on M. To pass to global
information, we need sheaf cohomology.

To make this more precise, let M be a topological space. Then a presheaf
S over M is an assignment of a set S(U) to every non-empty set U C M, such
that for every pair of open sets U\ C U C M we have restriction homomorphίsms
r% : S(U) —> S(Uι) which satisfy

(a) rjy = "identity map on £7,"

(b) For any open sets U2 C U\ C £7, r^2 = r^ o r^ .

Definition. Let <$# and $ be presheaves over M Then we define a morphίsm
of presheaves to be a set of mappings fu : j/(£7) —> Sί (£7), /or eαc/z 0/?e« set
U C M, such that the diagram

ru
rUl

is commutative, where U\ C U C M, U\ open. We write such a morphism as
f:st — >#.

Let {Ui} be any collection of open subsets of M such that U = (j£/z . A presheaf
/

j/ is a sheaf iff it satisfies the following two "Sheaf Axioms":

Axiom 1. I f a , b G tf(U) and Vz,r^. (a) = r%. (b\ then a = b.

Axiom 2. If for at G ̂  (Ui) and UlnUkή=9 we have

This discussion is taken primarily from Wells [5], Chapter II.
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for any i, then there exists a e stf(U) such that r^(a) = αz , Vί .

Intuitively, Axiom 1 says that sheaves encode their information locally, whereas
Axiom 2 says that we can "piece together" local information to get global infor-
mation.

A mapping of sheaves, sϋ —> ,̂ is a morphism of the underlying presheaves.
Now, there are many interesting examples of sheaves and their applications in

geometry and mathematical physics, and we refer the reader to [5] and [6] for a
thorough treatment. For our purposes, we shall be concerned with constant sheaves,
i.e., sheaves which are simply the assignment U —> & of some group 0 to any
connected open set U C M.

Consider, now, the structure j/x obtained from a sheaf, j/ via

sίx = lim
*€ί/,

where "lim^t/ refers to the direct limit of the restriction homomorphisms over
nested neighbourhoods U\ C UΊ C ... C Ul\ c. ... about x. The jtfx is called the
stalk of si at x e M.

If s$, 3S9 and^ are sheaves of groups on M, the sequence of morphisms

is exact if the corresponding sequence on stalks

j*x JϋL> ax JUL> <gx

is exact, Vx G M. A short exact sequence is a sequence of morphisms

i -̂  j^ -̂  a -^ <e -^ i (4)

with Im(/) =ker(#), Im(^) = Ker(/z), Im(/z) = ker(y). Sheaf cohomology is, roughly
speaking, concerned with measuring "how exact" (4) is, i.e., to what extent
Im(/z)φker(7). We now can develop sheaf cohomology theory [6] from the "Cech"
point of view. The point now is that the coefficients for the cohomology will
be sections of the sheaf, 5, in question (i.e., sections are elements of S(U)).
That is to say, we view (Cech) g-cochains as maps Cq : UQ Π U\ Π ... Π Uq —>
S(UQΓ\ U\ Π ... Π Uq)9 where UQ9U\9...Uq are q+\ open sets in M with non-empty
intersection. We can define a coboundary operator, δ: Cq —>• Cq+l

9 in the usual
way and so in an appropriate limit [6] we get the sheaf cohomology groups of M
with coefficients in S:

H*(M\ S ) .

Now, since our sheaves are all going to be constant, this cohomology will in
fact reduce to the usual cohomology.

We now state the main result which we will need to calculate the obstructions
in the next section:

Theorem [5]. Let M be Hausdorff and paracompact3. Then

(a) For any sheaf <stf over M,

Recall that by Geroch [7] all spacetimes have these properties.
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H\M\ S) = Γ(M; S) = "sections of S over M" .

(b) For any sheaf morphism

h:^ — > &

there is, for q > 0, a group homomorphism

hq : Hq(M\ sf) — > Hq(M\ J>)

such that

(1) hQ = hM:
(2) hq = identity if h = identity, q^Q.
(3) gq o hq = (g o h)q, Vg^O, if g : & — > Ή is another sheaf morphism.

(c) For each short exact sequence of sheaves

1 — >*/ — >@ — >% — > 1 .

there is a group homomorphism δq : Hq(M'9<g) — > Hq+l(M;^)^q^Q such that

(1) The induced sequence

1 — > H\M\ sf) — > H\M\ «)

(2) A commutative diagram

ιι

induces a commutative diagram

1 —»
I

i

1

Proof. Wells [5], page 57.

The "connecting homomorphisms," δq, are known as Bockstein homomorphisms,
and will play a crucial role in our discussion in the next section.
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III. Derivation of the Obstructions to Non-Cliffordian Pin Structures

First, let us adopt the shorthand P = Pma'b'c(p, q\ P0 = Pwβb'c(p, q\ O0 =
Oo(p, <])>O — O(p, q\C = Ca>b'c in order to more efficiently describe the groups
of Sect. I; associated to these groups are then constant sheaves ^,^o>$o> $ and #.
Associated to diagram (3), then, is the following commutative diagram of sheaf
morphisms:

I I
I I I

I I I

I I i

1° I ' l
! I I

where the horizontal and vertical sequences are all exact. Combining diagram (5)
with the above theorem, we obtain the following commutative diagram of sheaf
cohomology groups:

I I I
I I I

#°(M; Z2) H\M\ Z2) H\M\ Z2)
i I o 1

I l' l'
1 -» #°(M; 00) -» H\M\ Θ) -> //°(M; TL2 x Z2)

;2) Hl(M\ 7L2) H\M\ Z2)
 (6)

I I If
9) -> Hl(M; <g)

-> H\M\ ΦQ) -* ^^M; (9) -+ Hl(Mι TL2

H2(M\ Z2) H2(M\ 12) H2(M\ Z2)

We are interested in the bottom part of this diagram (where we have labelled the
maps between cohomology groups). Recalling that the vertical sequences in this
diagram are exact, the derivation of the obstructions proceeds as follows.

Let ξ E//!(M;(P), i.e., ξ is a principal O(p, #)-bundle over M. We are con-
cerned with the obstruction to the existence of a principal Pin(j?, q) bundle,

Thus, suppose that such a Pin(/?, q) bundle, ξ9 exists. Then α(<f) £
and so by exactness

That is, if α(|) = ξ, then we must have that //2(M; TL2) 3 δ%(ξ) = 0. Likewise,
if OQ(ξ) = 0, then such a ξ e Hl(M;^) exists, and so we see that the obstruction
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to the existence of a Pin(p, q) bundle ξ is the vanishing of the class δ^(ξ) = 0 G
H2(M\7L2) (here we are regarding 7L2 additively, i.e., Z2 = {0, 1}).

The point now is that we can "transfer" the above argument over to the vertical
exact sequence on the far right in diagram (6). In other words, if ξ G Hl(M\&}
exists over M, then by the commutativity of (6),

β(pΦi) =X«(|)) G Hl(M;Z2 x Z2) ,

and so the obstruction is now

δ2(β(p(ξ))) = δ2(p(«(ξ))) € #2(M;Z2) .

Now, by Milnor and Stasheίf [8] the general form of this obstruction must be

H2(M Z2) 3 w2(τM) + W!(TM) - m(τM) , (7)

where WI(TM) and w2(τM) are the first and second Stiefel-Whitney classes of τM,
respectively.

Decomposing the tangent bundle τu as

τM ~ τ+ Θ τ~

(where the "plus" and "minus" signs of the subbundles refer to the behaviour of
sections of these bundles with respect to the Lorentz metric) we obtain

wi (τM) = W!(T+ Θ τ~) = wi (τ+) + wi (τ") (8)

and

w2 (τM) = w2(τ+) + w2(τ~) -f- wi (τ+) — wi (τ~) . (9)

Combining (8) and (9), and adopting the conventions WI(T+) = WI",WI(T~~) =
>^Γ' W2(^+) — w£ , w2(τ~) = w^~ we see that the obstruction must have the general
form

— w t -f βw^ — w^ = δ2(p(p(ξ)) G #2(M; Z2) ,
(10)

where a, b, c, d, e G Z2 are constants yet to be determined. Clearly, then, the de-
termination of a, b, c, d , and β depends upon the nature of the double cover given
by the exact sequence

1 —> Z2 —> Cfl'*'c —> Z 2 x Z 2 —> 1 , (11)

that is to say, the values of a, b, c ,d ,e G 2£2 depend upon the choice of Ca'b'c.
We will treat each of these choices in turn. First, however, we need to understand
the "Bockstein" homomorphism δ2 : Hl(M;Z2 x Z2) —> H2(M\ΊL2):

To begin, recall the interpretation of w+ and wf :
Once we have decomposed the tangent bundle τM via τM — τ+ Θ τ~, we have

the notions of tίme-orientabilίty and space-orientabilίty [9]. Then wj1" and wj~ are
cohomological data which tell us about the orientation of M. For example, if the
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signature is (—h-h-h) then (i) wj~ = 0 <=> M is time-orientable, and (ii) w+ =
0 <=$> M is space-orientable.

More formally, what this means is that wj1" and wj~ define a Z2 x Z2 — valued

Cech 1-cochain,
(w+,wf): £ / β n £ 4 — > Z 2 x Z 2

(where t/fl and £4 are two non-empty open sets in some arbitrary simple cover
of M). In other words, (w+, wf) £ H\M\ TL2 x Έ2\ We therefore expect the

Bockstein homomorphism, £2, to relate the elements (w^, wj~) £ Hl (M; Z2 xZ2)

to the elements in w^ ̂  w^, wf ^ wf, etc. in .ίΓ2 (M; Z2). To see how this occurs,
recall the formal definition of δ2 [5].

First, consider the following commutative diagram of exact sequences:

A 1

τ2.
1 —> (

where Cn(sf) is the set of w-cochains with coefficients in stf.
Let c E ker(y). Then ^^(e1), for some c1 £ C1^), by exactness (c gives

us a cohomology class in C!(Z2 x Z2)). By commutativity, we get gl(β(c1)) —
y(g(c1)) = 1, and so β(cl) =fl(ά), for some a G C2(Z2). We then get an induced
mapping

δ: Hl(M 7L2 x Z2) —> H2(M; Z2)

from the map given above,

C'(Z2 x Z2) 9 c — (fl)~l o β(g-\c)) = ae C2(22).

Since the homomorphism inducing g depends on the choice of Ca'b'c, we see that
δ2 depends upon our choice of Ca*b>c.

In fact, the above construction shows us how to calculate the images of (w^,

0), (0, wf) E Hl (M; TL2 x 7L2) in H2 (M; Z2) under δ2. For example, if we

take the signature to be (—h++) then (w+, 0) and (0, wf) are related to the
transformations (Rs, 0)and (0, RT) in the obvious way, i.e., (wj1", 0) tells us whether
or not we can continuously distinguish between systems under the operation (R$,
0), and likewise for time reversal. Now, the elements (Rs, 0) and (0, RT) are double
covered by elements ±RS and ±Rτ (respectively) in Ca'b>c. Corresponding to the
way the elements (Rs, 0), (0, RT) <E Z2 x %2 are covered by elements in Cfl'^'c,
there is also a "lifting" of the elements (w+, 0), (0, wf) £ H1 (M; TL2 x Z2) to
elements ±w+, ±w_ £ H1 (M; #) (corresponding to the map gΓ1 in (12) above).
Next, we apply the Steenrod square operation Sql (corresponding to the map β in
(12)), i.e.,

Sql(wf)= w f - wf £C2(^).

Finally, we pull the elements ^^wi) to elements w^ ^ w^1 £ //2 (M; Z2) (cor-
responding to the map (fl)~l). The point is, when we pulled back (w+, 0) (say) to

vϊ>ί~ £ C1 (̂ ), we did so in a way compatible with the homomorphism Ca>b>c ^—^
TL2 x TL2, i.e., if the 1-cycle, c1? dual to (w^, 0) satisfies ((w^, 0), c\) = α, then the
1-cycle, c i 9 dual to w^" must satisfy (vPj", c;) = α, where ±5 covers a under the
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homomorphism/*. When we then apply Sql to w| we obtain w4" — w~t, with the
property that for some 2-cycle, c2, dual to wf ^ w|" we have {w^ ^ w f , 02) =(w~]~,
"front 1-face of c2" } (w^~, "back 1-face of c2") = a2. In other words, the pull
back of w+ ̂  w+ G C2(^) to δ2 (w4", 0) G #2 (M; Z2) will depend upon whether
or not a2 G Ca> b> c pulls back to 0 or 1 in the group 2£2 under the homomorphism
/*. If a1 pulls back to 0, then δ2(wf)=Q. Otherwise, e=l.

Furthermore, we see from the above construction that the class w2(τM) — w J +
W2~ + wί " WΓ is unaffected by the choice of Ca'b>c, i.e., we always have a — b =
d=\.

We now proceed with a case by case analysis.

C«>b,c ~ %2 x %2 xZ 2 . Recall that taking Ca>b>c ~ 7L2 x ^2 x ^2 is equivalent
(in Dabrowski's notation) to considering the groups Pin+?+'+ (p,q) We are then
concerned with seeing how (wj1", wj~) G /ί1 (M; Z2 x Z2) "pulls back" under the
sequence of homomorphisms

Hl (M; Z2) -̂  //! (M; Z2 x Z2 x 7L2) -^ Hl (M; Z2 x Z2)

induced by the exact sequence of homomorphisms 7L2 — *-* Z2x Z2 x Z2 -^ Z2 x
1L2. Recall, however, that the homomorphisms/* and g* can be given explicitly as
shown here in this example (signature ( — h++)):

ϊ

a = + (1? °' 0)

c - , 0> 1> 0)
(1, 1, 1)

Now, since the squares of all the elements covering (Rs, 0), (0, RT), and (Rs, RT) are
always (0, 0, 0)= "the identity in %2 x Έ2 x ΊL2\ we see that we can always pull
back the elements (w4", 0), (0, wf) G Hl (M; Z2 x Z2) to elements vv+, wj~ G
Hl (M; #) with the property that w4" — w4", wj~ ^ wj~ G H2 (M; <£) are both zero
cocycles. Thus, pulling these cocycles back under / (induced by /* given above)
we get

<S2(w+, 0) - δ2(0, wf) - 0 G H2 (M; Z2).

In other words, c — e =0, and so the information contained in (w4", 0) and (0, wf)
is not relevant to the obstruction class in this situation. Thus, we have shown

Theorem 1. Let M be a spacetime with tangent bundle ΊM an O(p,q) bundle.
Then M admits Pin4"'+'+ (/?, q) structure if and only if

where w^, w^ are defined as above.
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Ca,b,c ^p4 Recall that taking Ca>bc~D4 yields the Cliffordίan pin groups

Pin4"'"'+ (p, q) and Pin~'+ + (p, q). Although the obstructions to these structures
have been worked out [3], we present our approach here for completeness.

Thus, recall that D4 can be regarded as a semidirect product, Z)4 ~ Z4 Θ Z2,
where Z4 c Z)4 is a normal subgroup, i.e., elements (a\, b\), (α2, ^2) € D4 ~ Z4 Θ
2£2 multiply according to (a\, &ι) (α2, b2) = (a\b\aιb\l, &ι&2). If we regard a as
the generator of the "Z4 part" (a4 = 0) and b as the generator of the "Z2 part"
(b2 — 0), then what this means is that there are two different cases, corresponding
to either the groups Pin+'~' + (1, 3) and Pin~'+' + (3, 1) or the groups Pin+'~' +

(3, 1) and Pin"'+'+ (1, 3). For the group Pin+'"'+ (1, 3) we get the sequence of
homomorphisms

TL2 ^ D4 -̂  Z 2 x Z 2

? =: $ - (o,o,

&
<(ί,

Now, note the elements covering (Rτ, 0), (α, 0) and (α3, 0), both satisfy
(Λ, 0) (β, 0) = α2 = (<23, 0) («3, 0), i.e., their squares are not equal to the identity el-
ement (0, 0) G D4. It follows that (wj1", 0) pulls back to wf ^ wj", i.e., <52O^, 0) =
wj1" ^ w^and so e — 1, c — 0. Thus, we have shown

Theorem 2. Lei M be a spacetίme with tangent bundle τM either an 0(3, 1)
bundle or an 0(1,3) bundle', then M admits either Pin~'+'+ (3, 1) or Pin"1"'"'^ (1,
3) structure (respectively) if and only if

When we consider the sequence of homomorphisms corresponding to the groups
Pin+'~'+ (3, 1) and Pin~'+j+ (1, 3), we see that now it is (0, wf ) that pulls back,
and so c = 1, e — 0.

Theorem 3. Let M be a space time with tangent bundle IM either an 0(3, 1)
bundle or an 0(1,3) bundle', then M admits either Pin+'~'+ (3, 1) or Pin~'+'+ (1,
3) structure (respectively) if and only if

Ca,b,c ~ %2χ %4 Recall that taking Ca^c ~ Έ2 * %4 corresponds to considering

the groups Pma>b>c (p^ q), with two minuses and one plus occurring in the triple
β, b, c. Now, we can as usual regard Z2 x Z4 as the group given abstractly as

This means that the homomorphisms associated with the exact sequence (11) are
given, for the group Pin~'~'+ (3, 1):
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0 -
1 —

a = —

b = -

c = +

-» (0, 0) 1

(a, b) \
(α3, b)}

(a, 0) \
(a3, 0)J

(0, 6) \
ί«2 Λ^ f

— ̂  (0, 0)

- (*,<>)
— > (0, Λ r)

— > (Λs, Λr)

It follows that both (w+, 0) and (0, wl ) pull back, and so c = e = 1. Further-
more, this same result clearly holds for the group Pin~'~' + (1, 3). Thus, we have
shown

Theorem 4. Let M be a spacetίme with tangent bundle XM cm O(p,q) bundle',
then M admits Pin~'~ j+ (p,q) ίf and only if

wj + w^~ + w^ ̂  wj~ -h w^~ -̂ w^ + wj~ ^ wj~ = 0 .

For the groups Pin+'~'~ (3, 1) and Pin~'+'~ (1, 3), we see that only (0, wj~)
pulls back, hence

Theorem 5. Let M be a spacetime with tangent bundle τM either an (9(3, 1)
bundle or an 0(1,3) bundle; then M admits either Pin+'~'~ (3, 1) or Pin~ j+'~
(1, 3) structure (respectively) if and only if

Finally, for the remaining cases we obtain

Theorem 6. L£/ M be a spacetime with tangent bundle IM either an 0(3, 1)
bundle or an 0(1,3) bundle; then M admits either Pin"'"1"'" (3, 1) or Pin+'~'~
(1, 3) structure (respectively) if and only if

that taking Ca'b'c c± β4 is equivalent to considering the groups

Pin~'~'~ (p, q). Clearly then, both (w^, 0) and (0, wf) always pull back. Thus,

Theorem 7. Let M be a spacetime with tangent bundle τM an O(p,q) bundle;
then M admits Pin~'~'~ (p^q) structure if and only if

= 0 .

IV. Applications of the Obstructions to Pin-Lorentz Cobordism

In this section, we use the obstructions developed above in Sect. Ill to derive the
obstructions to pin-Lorentz cobordism. First, however, we review some elementary
concepts from differential topology.

Now, recall that the existence of an everywhere non-singular Lorentz metric
on M is equivalent to the existence of a global non-vanishing (smooth) line field,
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{v, —v}, on M (when M is time-orientable, it suffices that M possess a global
non- vanishing vector field ύ). The vectors ±u then have the usual interpretation as
timelike vectors (see [9]).

Recall also the notion of kink number: Let Σ C M be a three-dimensional,
connected submanifold. Since dim (I1) = 3, we can always find a global framing
{ui\ i = 1, 2, 3} of Σ. Furthermore, even if M is not orientable we can always
find a unit line field {n, — n} which is normal to Σ (note that n has unit length
with respect to the underlying Riemannian metric on M, g%b, i.e., g^bu

aub = 1). We
can extend this tetrad framing (n, HΪ) of Σ to a collar neighbourhood

N ^ Σ x [0, 1]

(we extend to N to deal with the case Σ = dM). Let v be the timelike vector (line
field) determined by gab. The v can be written as

v — vQn + ι/wz ,

such that XX i^)2 = 1. Clearly, the v determines a map
i

Γ S3, if M is time-orientable
' - * i λ

L 1RF , if M M not time-orientable

by assigning to each point p G Σ the direction in TPM (a point on the S3 or 1RF3

determined by the tetrad («, M/)) that i^ points to. We then define the kink number
of gab with respect to Σ by the formula

where deg (K) is "the degree of the mapping K" If v is a timelike vector determined
by #Λ£, we shall often write

kink(Z; gab) = kink(Z'; v) .

For our immediate purposes we shall be concerned with kinking with respect
to dM, the boundary of our spacetime. In particular, we shall be concerned with
the case M compact, with dM = ΣQ (J Σ\ U . . . U Σn, where the Γ/'s are closed,
connected three-manifolds and "U" is the operation of disjoint union. We wish to
define the quantity kink(3M; gab) = kink(Γ0 U Σ\ U . . . U Σn\ gab). On differential
topological grounds (see [10]) we see that it makes sense to write

kink(<9M; gab) = ^kink^; gab) .
i

Now suppose v is a smooth vector field on M which vanishes on some discrete
set of points p\, p2, . . .pn £ M. Associated to each of these vanishing points pi is

the index of v at p^ which is precisely the degree of mapping given by - — -

which takes a little sphere s(pi) about pt into the unit sphere. We write "
mean "the sum of the indices of v" We then have the following formula [10]:

; t;) ,
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where e(M) is the Euler number of M and kink(3M; v) is as above. In particular,
if M is a spacetime then the timelike line field {v, —v} is non-vanishing and so
Σ iv = 0, hence,

e(M) = -kink(δM; gab). (13)

Now, a direct application of Wu's formula ([1] or [8]) shows the following
identity: For any x2 G H2(M\ 7L2\

w2(M) — x2 — (wι(M) ̂  wι(M)) ̂  x2 — x2 ^ x2 . (14)

Writing the intersection pairing as h\H2(M\ 2£2) x H2(M; Z2) —» Έ2 (defined ex-
plicitly via h(x, y) = x y = (x2 ^ y2) ^ w, where x2, y2 G H2(M; %2) satisfy x2 ̂
w = x and y2 ^ w = y, where w G H^(M\ Z2) is the fundamental homology class)
we recall the important

Lemma (Milnor and Kervaire, [11], page 517). Let M be a smooth manifold of
dimension 4. Let u(dM) (the mod 2 Kervaire semichar act eristic) be given by

u(dM) = dimz2(//o(dM; Z2) Θ Hι(dM; Z2)) mod 2 .

Then the rank of the intersection pairing, h, satisfies

rank(/0 = (u(dM) + e(M)) mod 2 .

Note. Actually, our version of the above lemma differs slightly from that in [11]
in that we allow M to be non-orientable. However, the lemma is still true since
Poincare-Lefshetz duality still holds in 2ζ2 coefficients for non-orientable M.

From the definition of h and Eq. (14) it follows immediately that rank(/z)=0 if
and only if w2 + w\ ^ w\ = 0. If M is a spacetime, then the lemma together with
Eq. (13) then give us

Lemma 1. Let M be a spacetime with tangent bundle τ^ Then

0

(u(dM} + kink(3M; gab)) mod 2 - 0 .

Combining Lemma 1 with Eqs. (8) and (9) and the above set of theorems, we
obtain the following:

Definition. Let Σ\9 Σ2. . .Σn be a collection of closed three-manifolds. Then we
say that there exists a Pinβ'^'c (p, q) cobordism for {Γ,: i — 1, . . . n} if and only
if there exists a spacetime M admitting Pinα' b> c (p, q) structure and satisfying

dM ^ Σι U Σ2 U . . . U Σn .

In the below Corollaries, {£/ :/=! , . . . « } always denotes some collection of
closed three-manifolds.

Corollary 1. There exists a Pin+?+'+ (/>, q) cobordism, M, for {Σt:i = 1, . . . n}
if and only if the following holds:
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(u(dM) + kink(5M; gab)) mod 2 = 0

Corollary 2. TTzere ejdsta ezϊ/zer α Pin~'+! + (3, 1) or a Pm+'~'+ (1, 3) cobordίsm
M for {Σi\ i = 1, . . . n} if and only if the following holds:

(u(dM) 4- kink(δM; gab)) mod 2 = 0 ^=^ wf — wf = 0 .

Corollary 3. Γ/zerβ ex/ste ezϊ/zer α Pin+'~'+ (3, 1) or a Pin ~'+rf (1, 3) cobordism
M for {IV z=l, . . . «} if and only if the following holds:

(u(δM) + kink(5Af #fl6))mod2 = 0 <=> w+ — wj1" = 0 .

Corollary 4. There exists a Pin~'~'+ (p,q) cobordism M for {Z/: i-\, . . . «} if
and only if

(u(dM) + kink(δM; gab))mod2 = 0 .

Corollary 5. There exists either a Pin +'~'~ (3, 1) or a Pin ~'+'~ (1, 3) cobordism
M for {Σj. i=l, . . . n} if and only if the following holds:

(u(dM) + kink(<3M; 0β6))mod2 - 0 <=> w+ — w^ - 0 .

Corollary 6. TTzeπ? exists either a Pin ~'+'~ (3, 1) or a Pin +'~'~ (1,3) cobordism
M for {Σ/: ί-\, . . . n} if and only if the following holds:

(u(dM) + kink(<9M; gab))mod2 = 0 <=> wf — wf = 0 .

Corollary 7. There exists a Pin~'~'~ (/?,#) cobordism M for {Σz: /=!, . . . n} if
and only if

(u(dM) + kink(3M; #flό))mod2 = 0 .

Thus, we see that the topological obstructions to Pina'b>c (p,q) cobordism depend
only upon boundary data (i.e., kink number), the values of a, b, c G {±}, the
choice of signature, and the behaviour of the 1-cocycles wf under the cup product
operation.

V. Interpreting the Breakdown of Pin Structure

We now interpret the breakdown of pin structure on M in two different ways:
First, by examining the behaviour of pinor fields as we parallel propagate them
around closed loops in M and secondly, by examining the behaviour of the deter-
minant of the world line Dirac operator (the fermion effective action which arises in
the quantization of a point particle possessing world line supersymmetry) in these
situations.

Now, first recall that since we are generically dealing with non-orientable space-
times M in this paper, we automatically have πι(M)φO, i.e., M cannot be simply
connected. This means that there exist loops (closed curves), y, in M with the prop-
erty that when we parallel propagate some tetrad ea around y we will reverse the
orientation of ea.

Explicitly, suppose that we are given an "initial" tetrad e^ at some point p G y,

and that after we parallel propagate around y we are left with a "final tetrad" efn.
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The two tetrads will then be related by the equation e^ — e^L^, where 7,f G O(p,q)

is some general Lorentz transformation (note that 7,£ cannot lie in the identity con-
nected component, O$(p,q), since the final tetrad will genetically have a different

orientation than the initial one). For example, if e^ has a different spacelike orien-

tation than e?fr then L« must lie in P(O§(p,q)) (the component of O(p,q) containing

parity reversal), and so on.
Now, we wish to view γ as the initial (and final) curve in a continuous family

of curves, {y(ϋ)|υ E [0,1]}, which begins and ends at y i.e., y(0) = y(l) — γ. This
family of curves sweeps out a smooth 2-cycle Γ. Thus, for each D G [0,1] we have
a curve γ(υ) and for each γ(υ) we parallel propagate some tetrad e^(ύ) around γ(υ)

n n a

to obtain a new tetrad eϊΛΌ), related to the old one by e^(υ) = L^(υ)e^(υ), where

LK(Ό) G O(p,q) for each value of Ό.

Clearly then, since y(0) = y(l) = y we must have if(0) = if(1) = 7«f.
Now, consider the elements of some "pin bundle" (covering the bundle of

frames) which "represent" the tetrads e^(υ) (which, we note for completeness, con-

stitute a smooth field of tetrads on T as we vary υ), and write these elements as
ψf(Ό). Then we can consider the problem of parallel propagating these initial "pinor
fields" around each y(υ) to obtain final pinor fields (ψf) which are related to the

initial ones (on each curve y(o)) by some transformation ^j (υ) = LΛ(Ό)\l/f(υ)9 where
±Zα(ϋ) G Pma*b'c(p,q} are the elements of the pin group Pinfl'*»c (p,q) covering the

corresponding Lorentz transformations L^(Ό) G O(p, q). The point is, again since we

have y(0) = y(l) = y, we expect to have Zα(0) = 7α and Zα(l) = 7α; however, if

there is a breakdown of pin structure we will have £α(0) = -f/α but £α(l) = — 7α.
Now we saw above (in Sect. Ill) that such an anomaly occurs depending upon
the value of a certain obstruction class, which in turn depends upon the choice of
signature and the values of a,b,c, G {+, -} (the symmetries of the pinor fields).
Because of this, it is useful to consider an explicit example in order to have a clear
picture of what is going on.

Thus, let M be a spacetime, with signature (—h -|—h), which is neither space nor
time-orientable (w+ = wf φ 0), and consider the problem of putting a Cliffordian
pin structure on M, i.e., let the pin group be Pin+'~'+ (3, 1). Then from Sect. Ill
(Theorem 3) above we know that the obstruction to putting this sort of pin structure
on M is that the following hold:

W2 + W2 ~^~ Wΐ ^ WΓ + WΓ ^ WΓ " 0

A natural question is, why does wj~ — wj~ contribute to the possibility of an
anomaly but not w^ — wf? To see how to answer this question, assume that there

exist 2-cycles, T and Γ;, such that wf — wf[Γ]φO and w^ — wj" [Γ;]φO (here
we are regarding Z2 additively). It follows that there are closed curves, y and y',
embedded in T and T' respectively, with the property that when we parallel propa-
gate a tetrad e^ around y the final tetrad has opposite time-orientation (i.e., assume
for simplicity that β(/) can be written e^ = Rτe^, where RT is time-reversal);
also, it follows that when we propagate some tetrad e'^ around y; the final tetrad

is related to the initial one by some reflection, RL, about a spacelike axis L, i.e.,
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e'^ft = Rie'φ. In terms of the pinors ψ,ι//' representing e,e' (respectively) we then
have (using now gamma matrix notation since our pin group is Cliffordian)

(on/). (13)

where of course yo represents time reflection and yι represents reflection about axis
L. Now, since we have chosen a — +,b — — recall that we have

7o = -Identity = -/

and
γ I = +Identity = / .

We now wish to view γ and / as the initial and final curves in the two fam-
ilies of curves {(y(υ)|υ G [0,1]} and {/(u)|υ G [0,1]} which sweep out T and T'
respectively. We are then concerned with the following question: To what extent
is an anomaly on T or T' determined simply by insisting that wj~ ^ wj~ [Γ] Φ 0 or
w+ — w+ [Γ'] ΦO and that a = +,& = -?

First consider the curves y'(υ) sweeping out T'. Suppose (for the purpose of
contradiction) that there was an anomaly. Then we would have

) , (14)

l) - (15)

Furthermore, because w~^ •— - wj1" [Tf] ΦO it follows that there is a curve C'(Ό) in
T' (generated by the parameter υ) with the property that propagating tetrads around
c' also reverses spacelike orientation, i.e., we have

0) , (16)

(17)
However, combining Eqs. (15) and (17) we obtain

but this contradicts (16)! Thus, we see that wj1" ^ w^ [Tf] ΦO together with
+/ imply that we cannot have an anomaly (arising from the "parity reversal" part of
some arbitrary pin transform). But this is exactly why w^ ̂  w^ is not relevant to
the obstruction class. If w^ = 0, then yL does not even arise in our considerations,
and so the question of an anomaly in yι becomes moot.

On the other hand, consider the curve y(υ) sweeping out T. Now suppose (for
the purpose of contradiction) that there is no anomaly. Then we have

- γ0\l/i(0) , (18)

= wA,(i). (19)
Furthermore, the assumption that wj~ ^ wj~[T]Φθ again implies

= Ά/(θ) , (20)
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However, combining Eqs. (19) and (21) now gives us

However, Eq. (20) is equivalent to

and so again we have a contradiction. But this means that wf — wj~ [Γ] φO to-

gether with 7Q = — / imply that we must have an anomaly on Γ! But this is exactly

why wf — wf w relevant to the obstruction class. In other words, we have shown
the following

Fact. Suppose there is a two-cycle, Γ, in M such that wf ^ wf [Γ] ΦO (where
d can be + or — ). Then the values of a,b G {±} α/orce can affect the anomalous
behaviour of pinor fields on T (and hence on M).

Indeed, we now see that the above constructions can be used to rederive the
results of Sect. III.

Now, however, let us briefly go one step further and analyse the breakdown of
pin structure by generalising a construction of Witten [14] (see also [15] and [16]
for related reading).

Recall that Witten (in [14]) interprets the breakdown of spin structure in terms of
anomalies in the fermion effective action which arises when one quantizes a point
particle with world line supersymmetry.

Explicitly, Witten takes the world line of the particle to be a closed curve γ in

the spacetime. He then constructs the fermion effective action, γ/det(Z))(y), where
D is the "world line Dirac operator,"

J dt

where Snj is the spin connection. Thus, to define ^/det(£>) we need only know
the eigenvalues of D. Now, let us (following Witten) just consider the relationship

between anomalies in y/detφ) and the breakdown of Pin(4) structure; that is, we
do not decompose the tangent bundle τM into "spacelike" and "timelike" parts
determined by some Lorentz structure on M (i.e., we are concentrating here simply
on lifting the 0(4) structure of the tangent bundle). Then the first thing we must
recall is that there are two types of Pin(4)-structure, which we write Pin+(4) and
Pin~(4). Pin+(4) is the 2 — 1 cover of 0(4) with the property that the element y+,
which generates the non- identity connected component of Pin+(4), satisfies y2

+ = Id.
The obstruction to Pin+(4) structure on M can then be calculated using the above
constructions, and we can see that the obstruction is that the following hold:

w2(τM) = 0

(see also [17] for another derivation).
On the other hand, Pin~(4) is the 2 - 1 cover of 0(4) with the property that

the element y_, which generates the non-identity connected component of Pin~(4),
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satisfies y2_ = —Id. Thus, the obstruction to Pin" (4) structure is that the following
hold:

W2(>M) + WI(TM) — WI(TM) = 0 .

Now, as Witten notes, with the choice of 0(4) for tangent bundle structure group

we have that Aj = ^jτS\j is on <9(4)-in variant gauge field on γ. We are concerned

with how choosing our pin group (i.e., boundary conditions) affects this gauge field
and hence the eigenvalues of D (and thus the value of det(Z))). To see how this
happens, let us again consider an explicit example.

First, let M be a manifold with W2(τM) = WI(TM)Φ and let there be a 2-cycle T
in M such that wi — wι[Γ]Φθ. Then M does admit Pin~(4) structure but does not
admit Pin+(4) structure. This means we must differentiate between the determinants
used in the two situations; thus, let det±(Z)) denote the determinants obtained using
the groups Pin±(4), respectively.

Now, for det+(D) we see that we get the same boundary condition as the one
that Witten considers (i.e., he takes his gamma matrix to have square equal to plus
the identity). It follows that A can be gauge transformed into the form

0 0

0
-Θ2

regardless of the fact that wi — w\ [Γ] Φ 0 (here we are again regarding T as being
swept out by a continuous family of world lines y(u)). Thus, using [14] we obtain

(22)

The relevance of the fact that w\ ^ w\ [T] φ 0 becomes clear when we realise that

the form of γdet~(D) is exactly the same as expression (22), but the boundary
conditions satisfied by the angles 0ι,02 are different. Explicitly, the total amount

that the angles change in \/det~(D) (as we interpolate from y(0) to y(l)) must

differ from the amount they change in ι/det+(D) by π.

In our example, we are assuming there is an anomaly in \/άet +(D) (i.e., there
is no Pin+(4) structure). It follows that one of the angles must change by 2π while
the other stays fixed, that is, we must have something like

0ι(0) = θι(l),

02(0) = 02(1) + 2π.

However, the angles appearing in \/det~(.D) (1) have an extra π added in. But

this means that the total change in both angles appearing in \/det~(£>) is essentially
/ π \

π, and so there is no anomaly in the expression f j ?=1sin ί -̂  1. Thus, we see that

as expected there is an anomaly in \/det+(Z)) but not \/det~(Z)).
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When w\ ^ wι = 0 then the boundary conditions are the same for both pin
structures (which is what we expect since the obstruction classes are identical when
wi -̂ w\ = 0).

VI. Format for Solving the General Problem

In the general situation, we will be given a manifold M with tangent bundle τM

an "0"-bundle satisfying π\(O) ~ G φ {!}. We are then concerned with globally
lifting IM to another bundle with structure group 0 satisfying

1 —> πι(O) —> O —> O —> 1 .

Using the theorem from Sect. II, we will again obtain a commutative diagram
of sheaf cohomology groups.

If 02\ Hl(M\(9) —> H2(M\π\(O)) is the Bockstein homomorphism for the ver-
tical sequence in the diagram (as above) and ξ £ H l ( M ; ( 9 ) denotes a choice of
principal 0-bundle, then we see that the obstruction to lifting to a principal O-
bundle is now the element (52(0 € H2(M\π\(O)).

For example, if we take a four-manifold with "Kleinian" metric gab (signature
(+ + )) then τM has structure group O(2, 2) satisfying π\(O(292)) ~ZxZ.
Thus, the obstruction to representing (globally) the information in IM in a simply
connected way is, in this case, an element of//2(M; ΊL x Έ). The point is, we could
again write out the general form of this obstruction, and then use the commutative
diagram of cohomology groups (analogous to (6)) to calculate the explicit form the
obstruction takes in the various cases corresponding to how the "discrete" part of
0(2, 2) is covered by the discrete part of the cover, 0(2, 2).

Finally, some readers may be worried about how far we have extended the
vertical sequences in (6). However, it is shown ([6]), p. 207) that we can always
extend as far as we need to (i.e., to //2(M;πι(0))) as long as π\(O) is abelian
(regardless of whether or not Ca>b>c is abelian).

VII. Conclusion

Finally, we mention one further application of these results, namely, the calculation
of amplitudes in the Hartle-Hawking approach to treating gravitation in a quantum-
mechanical way ([12, 13]).

Recall that in this approach the basic idea is to take Feynman's "sum over
histories" philosophy to its logical conclusion, in other words, we sum over mani-
folds as well as metrics. We allow the topology of the universe to fluctuate. More
explicitly, suppose that {Σj, ψj, hj)\j — !,...«} is a collection of three-manifolds
Σ\, Σ1

2, ... Σl

n with matter fields ιjjl and three metrics hj (representing an "initial"

configuration) and {(Σ^, ψk, hk)\k= 1, ...m} is a collection of three-manifolds

Z j , 2/2, - Σm wim matter fields ψk and three metrics hk (representing a "final"
configuration). Then the amplitude to go from the initial state to the final state is
given, in this picture, by

ψ1, h')) = ̂
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where the sum is over all manifolds M with boundary

dM ^ Σ{ U Σ{ U ... U Σf

m U Σ{ U Σ1

2 U ... U Σ^ ,

weighted by v(M), with / the Euclidean action for matter fields φ and metrics g on
M inducing the given configurations on the boundary. The point is, we might want to
use the "selection rules" derived above (Sect. IV) to assign "weight zero" (v(M) = 0)
to those manifolds which do not admit some pin or spin structure, i.e., which are not
Pin '̂c (/?,#) (or spin) cobordisms for the boundary three-manifolds. If we demand
the three surfaces 2/5 Σl be everywhere spacelike, then kink(3M;^) = 0, and so
we see that such restrictions would be perhaps non-trivial. The precise effect such
a procedure would have on the class of manifolds appearing in the path integral is,
however, at present unclear.
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