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Abstract: The ^-deformations of the universal enveloping algebra of sl{my n) are
considered, a Poincare-Birkhoff-Witt type theorem is proved for these deforma-
tions, and the extra relations which are needed to define sl(m, ri) as a contragredient
algebra in addition to the Serre-type relations are identified with proof.

1. Introduction

The f̂-deformations of the enveloping algebras of some classical Lie superalgebras
have been discussed by several authors (see [1, 3,4,9] and the references therein). It
has been realized that in general the Serre-type relations are not sufficient to define
G = sl(m, n) as a contragredient Lie superalgebra (see [4,9]), and extra conditions
must be added. In order to define the ^-deformation of the enveloping algebra
U(G\ it is necessary to deform these extra relations. Though some extra relations
were introduced in [4, 9], it has not been proved that the Serre-type relations
together with these extra relations are the defining relations of G as a contragredi-
ent Lie superalgebra with the standard Cartan matrix of G (we will see that this is
a tensor problem in Sect. 4 below). Also, a Poincare-Birkhoff-Witt type theorem
for the g-deformation of U(G) (defined in [4] or [9]) is still lacking. As indicated in
[9], an adequate Poincare-Birkhoff-Witt theorem is important in showing that
a ^-deformation of U(G) is a decent deformation.

In this paper, we consider a somewhat different approach to the problem of
deforming the enveloping algebra of a classical Lie superalgebra. We start with the
following characterization of a Lie superalgebra [5]: every Lie superalgebra can be
specified by three objects: the Lie algebra Go, the G0-module Gl9 and the
homomorphism of G0-modules φ: S2G1 -> Go, with the sole condition

φ(a, b)c + φ(b, c)a + φ(c, a)b = 0 for a, b, ceG^ . (1.1)

Our observation is that, since for a classical Lie superalgebra G = Go + Gi, the even
part Go of G is a reductive Lie algebra, the ^-deformation Uq(G0) of U(G0) is well
understood, and for the finite dimensional G0-module Gu there is the corresponding
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(/g(G0)-module, which is the ^-deformation of Gί9 thus, in order to deform U(G\
we only need to deform (1.1). In the present paper, we only consider the case
sl(m9 ri), the other classical Lie superalgebras will be treated in another paper.

In Sect. 2, we describe the ̂ -deformations of U(G) (the deformation is not
unique, see the definitions in Sect. 2 and the discussion at the end of Sect. 2). These
algebras tend to U(G) as q tends to 1. In Sect. 3, we prove a ^-analog of the
Poincare-Birkhoff-Witt theorem for our deformations of U(G). In Sect. 4,
by considering the decomposition of the G0-module S2GU we will prove that
the g-deformation of U(G) defined by [4,9] is isomorphic to one of our deforma-
tions, and thus prove that it is a reasonable g-deformation of U(G) and
a Poincare-Birkhoff-Witt type theorem holds for this algebra.

2. Deforming U(sl(m, ή))

Recall that ([5]) G = sl(m,ή) can be viewed as the set of all (m-j-n)2 matrices

e ) over the complex number field C, where α is an m x m matrix, β is an m x n
γ δ J

matrix, γ is an n x m matrix, δ is an n x n matrix, and trα = tr(5.The even part Go of

G consists of matrices of the form I ), the odd part Gi of G consists of matrices

f th f I *~ j d Gl()®l(ri)®C L t
/0 β\

of the form I *~ j , and G0^sl(m)®sl(ri)®C. Let

m

ua2,. . .,am+n): £ a{=

Then If is a Cartan subalgebra of G. The corresponding root system will be
denoted by R. The roots can be expressed in terms of linear functions εi,. . . ,εm;
δι =εm+i> - ,δn = εm+n. Let Ro be the set of even roots, let Ri be the set of odd
roots, then

R0 = {εi-εj; δt-δj: iΦj}, / ^ { i f e - t y } .

Let

#o ={βi-βj ; δi-δj'. ί<j}9 Rt={Si-oj} ,

and let # 0 , = - # o , Rϊ = -Rΐ We choose

{ε1-ε2, £2-^3, -^m-δί, δ1-δ2, . -,δn-1-δn} (2.1)
as a simple root system.

For λeH*, let V(λ) be the irreducible highest weight G0-module with the
highest weight λ. As a G0-module, Gx^Viλ^φV^), where λ1 = s1— δn,
λ2=— (εm—δι), and the corresponding highest weight vectors are elim+n and
em+1, m respectively, where etj denotes the (m + ri)2 matrix with 1 at the i/-entry and
0 elsewhere. Denote the representation of Go on G1 by φ and identify e^ with its
image in F(/Li)0 V(λ2). The map φ: S2G1 -> Go is given by

φ(eΦ ets) = exieu + eteέ?y = δjteis + δsietj, (2.2)

where either m + l ^ ΐ ^ m + n and l^ j^m, or l ^ ί ^ m and m + l ^ / ^ m + n, and
similar conditions hold for t and 5. Formula (2.2) can also be given by using the
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following basis of Go: eij9 iή=j, with ί^i^m and ί^j^m, or
m+l^ji^m + n;hi = eii —ei + lfi +191 f^i^m—1,or m+1^i^r, where r = m + n — 1,
and /ιm = £ w m - e m + i , w + i . With this basis, (2.2) becomes

. . . ._f t ._ l 5 i = s<j = t^ (2.3)

δjteis + δsietj, otherwise .

We rewrite it as

φ(eij9 ets) = Σ d£eab + £ cf5 hf . (2.4)

Then cίf = 0,1, and cyίs = O, ± 1 .
Let Uφ(G) be the associative algebra with 1 generated by the vector space

G0ΘK(Ai)φF(A2) subject to the following relations:

(1) The usual defining relations of Go hold for the elements of Go.
(2)

xv — vx = φ(x)υ . (2.5)

(3) For v1 and υ2eV{λ1)®V{λ2\

2) . (2.6)

Then as an associative algebra, Uφ(G) is isomorphic to ί/(G), the enveloping algebra
of G.

Let q be an indeterminate over C, let j / = C[g, g " 1 ] and let F be the quotient
field of s/. Let Uq(G0) be the associative algebra over F with 1 generated by Eh Fh

ie{l, 2 , . . . ,r}\{m}, and K?1, ie{ί9 2 , . . . ,r}, with relations:

KiKi =Ki Kι=l, KiKj = KjKif

KtEjKΓ1 = q?Έj, KtFjKΓ' = qf 'Fj,

EιFj-FJEi = δu

Kl2Ki! , (2-7)

EtEj^EjEi, FiFj=FjFh α y = 0,

f ^ jEf^O, \ί-j\ = l ,

where a l} is the (ί/)-entry of the Cartan matrix (αίy ) of G corresponds to the simple
root system chosen in (2.1) and

if 1

The comultiplication A, the antipole S and the counit ε of E/e(G0) are defined by

Fi) = Fi®Kf1 + l®Fi , (2.9)

i) = Kr\S(Ei)=-Kr1EhS(Fί)=-FiKi, (2.10)

= l (2.11)
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By [6], the G0-modules V{λι) and V(λ2) admit g-deformations V^ω^) and
Vq(ω2\ which are simple highest weight Uq(G0)-modules with highest weights

ω1=(q1,U. . .,l,qm+n) = (q>U' - A,q),

a n d

, . ,1) = (1,. . .,q,q>. . . ,1) ,

respectively. Let ί£=ϊ£(ωi)φϊ£(ω 2 ), denote the ί7^(G0)-action on ϊj by φq. Fix
a highest weight vector of Vq(ωχ) and denote it by Eltm+n9 fix a highest weight
vector of Vq(ω2) and denote it by Em+lttn.

We use the action of Uq(G0) on J£ to construct a basis of

{Etj: l ^ i ^ m , ro+l^/gm + w} ,

and a basis of Vq(ω2)

as follows. For l ^ z ^ m and m + l ^ / ^ m + n, set

+ ^ (2.12)

where we have adopted the following convenience: if z = 1, F, _i f̂  = 1, and if
j = m + n, Fj - • F m + n _ 1 = l. For m + l ^ z ^ m + w and l ^ j ^ m , set

Eij = (-ϊr-Jφq((Fj'"Fm-1){Fi'"Fm+1))Em+ltm9 (2.13)

where iϊj = m, Fj F m _ ! = l and if ί = w + l , F, F m + 1 = l.
According to [7], there exists a braid group action on U0(G0). By using this

braid group action, we can construct root vectors of Uq(G0). We denote the root
vector corresponds to Si — Sj by Eφ where ί'Φy, l ^ i ^ m and 1^/^m, or

l ^ z ^ m + w and m + l ^ / ^ m + π. Note that according to our notations,
= Ei, Ei+Ui = Fi9 z + m, l ^ z ^ r .
UqtJg(G0) be the j^-algebra of Uq(G0) generated by Eh Fu Kf, and

[X ι ; θ]=fc^. (2.14)

Let /i be the ideal of UqyS,(G0) generated by q — 1 and Kt — 1, l ^ z ^ r , then
t^ t j/(G0)//i = t/(G0). And by [2, Prop. 1.5], under this isomorphism, JBy -• βί7 , [X t ;
0] ->/zi? where Λi = e « - β ί + l f / + 1 , z + m, and hm = enm + em+Um+1. Let ff^CXf; 0],

Let VQf jj be the j^-submodule of Vq spanned by the £ f/s. Observe that one can
define ^/-module homomorphisms

such that as q -• 1, φ c ( ί ) -• φ, that is one can deform φ. For example, one can choose
elements cilts{q)esί suitably (e.g. cilts{q) = cilts\ such that

(1) cfs(q) = 0 if both ei} and eifeK(A,), z = l, 2; and

(2) cιlts -• c^'ίs under isomorphism C^jtf/{q-1),
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where c * ί s e C are defined by (2.4), and then define an ^-module homomorphism

by
φc{q)(EΦ £ s ί) = Σ c^(q)Eab + Σ cfs(q)Hf . (2.15)

Since the Et/s form an P-basis of Vq, φciq) can be extended to an F-linear map from
S2(Vq) to Uq(G0).

Remark. The condition (1) on cι£s(q) is to ensure that

Ψc(q) (*, y) = 0, for all x, ye Vq{(θi\ i = 1, 2.

We shall assume this condition for our choice of φc{q).
Now we are ready to define the ^-deformation of U(G) corresponding to a fixed

φc{q). Let Uψc(q)(G) be the associative F-algebra with 1 generated by Uq(G0) and
Vq with the following conditions:

(1) the multiplication restricted to Uq(G0) is the same as the multiplication in
Uq(G0)9

(2) for xeUq(G0) and for the generators Eu Fh Kt of Uq{G0%

KivKΓ^ΦtiK^EiV-vE^φ^EJv, FiV-vF^φ^FJv , (2.16)

(3) for υl9 v2eVq,

v1v2 + v2v1 = φc(q)(vu v2) . (2.17)

Let £ m = £ m , m + 1 (eK β (ω 1 )) , and let Fm = Em+Um{eVq(ω2)). We have

Lemma 2.1. 4̂5 an associative F-algebra Uψc(q)(G) is generated by Eu Fu

1 ̂  i ̂  r, and 1. Furthermore, these generators satisfy relations (2.7) with the following
modifications: when i = m,

, (2.18)

where cm(q)e<srf is chosen in the definition ofφc{q), and

E2

m = F2

m = 0. (2.19)

Proof By definition, Uq(G0) is generated by Eh Fu l<Li<^r, iή=m, and Kf1,
ί^i^r. Also, an an irreducible C4(G0)-module, Vq(a>i) is generated by any nonzero
element ve Vq(ω1), in particular, it is generated by Em. Similarly, Vq(ω2) is generated
by Fm as a l4(G0)-module. Thus the first statement follows. The second statement
follows directly from the definition of φciq). •

We will discuss the generating relations of Uψc(q)(G) in Sect. 4.
Fix a φciq)9 let Uψc{q)^{G) be the j/-subalgebra of Uψc(q)(G) generated by

UqtSf(G0) together with Em and Fm. Then Uφc{q)f^(G) => Vq^, and we have

Proposition 2.2. As C-algebras, Uq>m^{G)II1^{U{G\ where Iλ is the ideal of
UφeL^AG) generated by K^-l , l ^ i ^ r , and q-\.

Proof We know that Uqt j/(G0)//i = U(G0) and the image of VQt * is isomorphic to
Gί=V(λ1)®V(λ2) as a £/(G0)-module (see [6]), so we can identify them. With
these identifications, Όψc(ιι)^{G)llγ is generated by t7(Go)Θ^(Ai)ΘK(A2) with the
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same generating relations as Uφ(G), since conditions (2.15)—(2.17) induce conditions
(2.4)-(2.6). Hence the proposition follows. •

The algebra Uφc{q)(G) is a Z2-graded algebra with the grading given by

deg(£ l) = deg(F,) = 0, ί + m; deg (K t l ) = 0, l£i£r ,

and

deg(EM) = d e g ( F m ) = l .

The F-algebra Uψc(q){G) is a Hopf algebra with comultiplication Δ, antipode
S and counit ε defined as in (2.9)—(2.11) without the restriction iΦm for Et and F f .
The adjoint action of Uψc(q)(G) on itself is denoted by a d r Thus for x, ye U9c(q){G), if
J x = ̂ α i ®fe ί , then

Since Uφc{q)(G) depends on the definition of φ c ( α ) , Uψc{q)(G) is not unique. For
example, in Lemma 2.1, the choice of cm(q) makes it clear that one may choose cm(q)
up a factor f(q)ejtf and a term g(q)ejtf such that / (#)-• 0 as q-+l. Different
choices of the c^s{q) lead to nonisomorphic deformations of U{G).

3. A ̂ -Analog of the Poincare-Birkhoff-Witt Theorem

Choose a deformation φc(q) of φ, and define t/^c(β) (G) as in Sect. 2. Let ̂  = t/φc(4) (G),
* ^ = U9^AG\ %=Uq(G0% ^ o , ^ = UqtJg(Go). Let ̂ + , ̂ ~ , ̂ r0 be the subalgeb-
ras (with 1) of % generated by the Eh the Ft and the Kf respectively. Note that since
Em is a lowest weight vector of V^ω^ we have °lί+ => ̂ (ωO, and by our definition
of φC(q), for any I?! and ι;2e ^(ωi), φc(q)(^i, v2) = 0 (see the remark in Sect. 2), hence
F| and Ktφ%+. Similarly, m~ 3 ϊ^(ω2), £ f and K{φ%'.

We order the root vectors £ 0 (of %) corresponding to the positive roots of
Go (i.e. ί <j) as follows:

Eij<Est iff i<s or z = s b u t ; < ί . (3.1)

Let N = [n(n — 1) + m(m —1)]/2. Denote these positive root vectors according to the
ordering defined by (3.1) as

£,,,£,,,...,£,„, (3.2)

and the corresponding negative root vectors of % as

Fβi,Fβ2,...,Fβiι. (3.3)

We also order the elements £i<7 , l gj'^m,m + l rg j^m + n, of ^ ( ω x ) according to
relation (3.1) and denote them by

The elements £ 7 ί of Vq(ω2) are ordered correspondingly as

F y i , F V 2 , . . . , F V m π . (3.5)

The proofs of Lemma 3.1 and Lemma 3.2 below are similar to the proofs given
by [8, II].
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Lemma 3.1. The monomials Kτ = f ] ί K with τ running through all functions
{1, 2 , . . . ,r} ->Zform a basis of%°. •

Lemma 3.2. As vector spaces, °U^°U~ ®^°<g)^ + . Thus % = <%-

For σ:{ l ,2, . . . ,JV}->Z + , let £5 = Π , £ ? . ( 0 and FS = Γ L F ? ( ° F o r

d: {1, 2 , . . . ,mn} - {0,1}, let Bί = Π ι < ° and F{ = ΓL ^ ( °

Lemma 3.3. TTie elements E%E{ (resp. Fσ

QF\)form an Έ-basis of%+ (resp. Φ " ) wίίfc
σ running through all the functions {1,. . ., AT}) -» Z+ αwd rf running through all the
functions {1 , . . . ,mn} -> {0,1}.

Proof We prove that Eσ

0E{ is a basis of <^+, the proof for Fσ

0F{ is similar. We first
prove that the elements Eσ

0E{ span %+. Note that by [7], the ££'s form a basis of
°lίo, the subalgebra of %+ generated by Et with iΦra. Thus we only need to prove
that the elements of the form uE\ with ue%l span ^ + . Let us call these elements
standard. The elements of °U* can be written as linear combinations of monomials
of the form XiX2*' 'Xk, where x*e^o or Xi = E7j (see (3.4)), and if XfG^o? then
xt- i and xi+ίφ%o whenever applicable. A monomial X = xγx2 * xk of this kind
is called semistandard.

Let X = x1x2- ' 'Xk be a semistandard monomial. For l ^ i < j ^ k , set

f 0, if either X; = £V s, Xj = E7t with s^t; or
lJ 1 1 , if either Xj = £V s, Xj = Eyt with s>t; or Xi = EΊs and

Define the index of X by

Note that i(X) = 0 iff X is standard. Note also that Eγ Ey =0 . We use induction on
k and i(X) to prove that a semistandard monomial X is a linear combination of the
standard ones. The case k= 1 is clear. Assume the statement is true for <k with
fc^2. Let X = xλx2' ' 'Xk be a semistandard monomial.

If i(X) = 0, there is nothing to prove. Assume i(X)>0. Then we can find xf and
Xi+1, such that either xf = Eγ$ and x f + 1 = Elt with s > t; or xf = £T s and x 4+ x e%o In
the first case, let X' = x1 x i + 1 x i xfc, consider

Note that i(X')<i(X) and Fis a linear combination of semistandard monomials
which are shorter than X, so by induction hypothesis, X—Y—X1 is a linear
combination of the standard ones. In the second case, let x ί + 1 = w, then we can
assume that u = Eiχ- Eit, and use induction on t as follows. For t=l,u = EJ9 define
X' as above, then by (2.16)

X = Xf-x1--φq(Ej)xr-xk.

Thus X can be written as a linear combination semistandard monomials of lower
index or shorter length (let us call them lower terms). Assume that for < ί, X can be
written as a linear combination of lower terms. Consider the case ί > 2 . Let
u' = Ei2- - Eίt. Then by (2.16),

X = ( ΈiχXiU' - φq{Eh)XiUf- - •) .
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Note that the induction hypothesis (on u) is applicable to the second term on the
right, thus we have

X = ( Έ^XiU'' - - -) (modulo lower terms).

Continue like this ί-times, we arrive at

X = (χί u%i - - xk) (modulo lower terms).

Since i(x1 w v xk)<i(X\ we see that in this case X can also be written as
a linear combination of lower terms. Thus by induction, X can be written as
a linear combination of the standard monomials. Hence we have proved that the
monomials Eσ

QE\ span %* A\ remains to prove that they are linearly independent.
Suppose that we have a finite sum

for some ασ, deF\{0}. By clearing denominators of aσy d and factoring out a suitable
power of q — 1, we may assume that all aσfdejtf and at least one of them does not
vanish at q=l. By [7], Eσ

oeWo^, thus Eσ

0E
d

ίe%i = %+ π « r f . By Prop. 2.2,
Qίjlh = U(G). Denote the image of Eσ

0E\ under this isomorphism by e%e\, then

Σ «σ.<(l)eS*ί=0.

But by the Poincare-Birkhoff-Witt theorem of U(G\ eσ

oe\ are linearly indepen-
dent over C. Thus we arrived at a contradiction. Hence Eσ

QE\ are linearly indepen-
dent. The proof of the lemma is now complete. •

The following theorem is an immediate consequence of Lemma 3.1, Lemma 3.2
and Lemma 3.3.

Theorem 3.4. The monomials KτFσ

0F\Eσ

0E\ with τ running through all func-

tions{l,. . ., r} -• Z, σ and σ' running through all functions {1,. . . , JV} -• Z + , d and

d! running through all functions { 1 , . . . ,mn} -> {0,1}, form a basis of °U. •

The basis of % described in Thm. 3.4 corresponds to the decomposition
qi = W~<%°<%+. The following theorem corresponds the fact that % is generated by
% and Vq, it gives a ^-analog of the Poincare-Birkhoff-Witt theorem for % (cf.
[5]).

Theorem 3.5. The monomials KτEσ

0F
σQ E{F{ with τ, σ, σ', rf, d' as in Thm. ZAJorm

a basis of%.

Proof We only need to prove that any monomial u = KτEσ

0E\Fσ

0 F* is a linear
combination of the monomials in the theorem, and the monomials in the theorem
are linearly independent. We first prove that u is a linear combination of the
monomials in the theorem. We only need to work with E{FQ. Write
E\ —X\X2' ' ' Xk> where Xi = Eym such that s(l)<s(2)< < s(k). By writing Fσ

0 as
a linear combination of the monomials F i ( 1 ) F / ( S ), we can assume that
Fσ

0=Fi(1)- '^(s). Now we use induction on k and 5 to prove that y = Ed

0F
σ

0 is
linear combination of elements of the form Kauoul9 where X α e^° , uoe%ό and
t*! is product of elements of Vq(c0i).

For 5 = 1, Fσ

0=Fh if k= 1, then by (2.16) we have

(3.6)
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and the right side is in the desired form. For k> 1, by using (3.6), we have

and by induction of fc, we see that the left side can be written as a linear
combination of the desired terms for the case 5 = 1 and any k^l. For s > l , by
applying the case 5 = 1 to F ί ( 1 ) , we have

where αeF, Kae<%°, uoe%o and ux is a product of elements in Vq(ω{). By writing
uγ as linear combination of the E% and use induction on 5, we can write

and we see that y is a linear combination of the desired terms. Hence u is a linear
combination of the monomials in the theorem.

It remains to prove that the monomials described by the theorem are linearly
independent. The proof of this fact is similar to the proof of Thm. 3.4 by taking into
account of the fact that %/h = U(G) and the fact that the images of these mono-
mials form a basis of U(G). The proof of Thm. 3.5 is now complete. •

4. Defining Relations

In this section, we first analyze the generating relations of G as a contragredient Lie
superalgebra with the standard Cartan matrix (α^), where (see [9])

then discuss the relationship between the ̂ -deformation of U(G) given in [4,9]
with the deformation of U(G) given in Sect. 2. We assume

Let

Then it is easy to see that in addition to the Serre-type relations,

[fcιΛ] = 0, ίeijj^δijht,

[hh e^ = aijeji [hh /}] = -a^fj, (4.1)

the following relations hold (compare with [4,9])

l>m-l, l>«, [e»+l, *«]]] = [/»-!, [/«, [/m+l, /m]]]=0 . (4.2)

The question is whether (4.1) and (4.2) form a complete set of generating relations of
G. We approach this problem by studying the G0-module S2 Gx.

Lemma 4.1. As a G0-module,

S2G, * V(λ1+λ2)φ V{2λ,)® V{2λ2)® V(λ3)

Θ V(λ4)® V(λ5)@ V(λ6)® V(0),
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where V(λ) denotes the highest weight simple G0-module of highest weight λ, and the
λi9s are given by their numerical marks with respect to the simple root system chosen in
in (2.1) (see also [5, p. 83]) by the following:

^ =(1,0, . . . ,0 ,1) , A2 = ( . . . , 0 , l ; 1 , 0 , . . . ) ,

A 3=(0,1,0,. . . ,0,1,0), A 4 = ( . . . ,0,1,0; 0,1,0,. . . ) ,

A5 = (1 ,0 , . . . ,0 ,1 ; 0 . . . ) , A6 = ( . . . , 0 ; 1,0,. . . ,0,1).

Proof We have

GX®GX^ V(λx)® V(λ,)® V(λ2)® V(λ2)

®V(λ1)®Y(λ2)®V(λ2)®V(λ1) .

Thus,

S2G1 * s2 v{λx)®s2 v(λ2)® v(λxy v(λ2),

where V(λχ) V{λ2) denotes the symmetric component of

V(λ1)®V(λ2)®V(λ2)®V(λι).

We claim that

S2V(λ1)^V(2λ1)®V(λ3), (4.3)

S2V(λ2)^V(2λ2)®V(λ4), (4.4)

λ2)® V(λ5)® V(λ6)® V(0) . (4.5)

We will prove (4.3); the proofs for (4.4) and (4.5) are similar.
From our notations in Sect. 2, we see that elt m+n is a highest weight vector of

V(λχ)9 and the vector eUm+n®eUm+n generates a copy of F(2A1) in iS2F(/l1).
Computation shows that

v = (eUr®e2fm+n + e2im+n®eUr)-{elfm+n®e2fr + e2ίr®eUm+n) (4.6)

is a maximal vector (i.e. GQ{V) = 0) of weight A3 in S2 V{λi). Thus there is a copy of
V(λ3) in 52F(A!). By using the Weyl's formula, we find that d i m F ^ )
= mn(m + l)(n + l)/4 and dimV(λ3) = mn(m-l)(n-l)/4. Hence dimF(2A1)
+ dimF(/l3) = dim52F(/l1). Thus (4.3) follows. The lemma follows from (4.3)-
(4.5). •

As a consequence of Lemma 4.1, we conclude that the G0-module homomor-
phism

φ: S2 Gx -+ Go ^ sl(m) Θ sl(n) φ C

is given by

V(λ± +λ2)® ¥(21,)® V(2λ2)® V(λ3)® V(λ4) -> 0 , (4.7)

sl(n), F(0)->C. (4.8)

The algebra Go ? the G0-module V(λx)® V(λ2), the G0-module homomorphism
φ defined by (4.7) and (4.8) together with (1.1) define G completely. We check that
(4.1), (4.2) and (1.1) together imply these conditions as follows.
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It is easy to see that (4.1) implies that em generates a copy of V(λι) and
fm generates a copy of V(λ2). We claim that

(4.9)
V(λ5)-+sl{m),

lem, eml =

V(0) -> C .

\=0^>V(2λι)φV(2λ2)^0. (4.10)

(4.11)

The equivalence of (4.10) follows from the fact that em®em and fm®fm are
generators of V(2λi) and V(2λ2) respectively. The element

(4.12)

is a generator of V(λ3) (a lowest weight vector), the element

is a generator of V(λ4) ( a highest weight vector), φ maps F(/l3) and V(λ4) to 0 is
equivalent to φ(ι;3) = φ(i;4) = 0, which in turn is equivalent to (4.2). Hence (4.11)
holds. Similarly, one can prove (4.9) by using the generators of the simple
Go-modules in (4.9). We list a highest weight vector for each of the simple
Go-modules in (4.9), but omit the proof:

m+1 , (4.14)

V(λs):
ΐ = l

(4.15)

(4.16)

V(0): (4.17)

Remark. Condition (4.2) must be added to the Serre-type relations to define G as
a contragredient Lie superalgebra. This reflects the fact that φ: V(λ3)(& K(Λ,4) -• 0
does not follow from the Serre-type relations. We further note that (similarly, for
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The first term on the right side (call it x±) was introduced in [4], the second term on
the right side (call it x2) was introduced in [8]. If we denote the left side by x, then it
is easy to see that (e^=0 and x = 0) iff (e^ = 0 and x1 = 0), and iff ((^^ = 0 and x2 = 0).
Thus any one of the conditions x = 0 o r x 1 = 0 o r x 2 = 0 (and similar conditions for
the fis) can serve as one of the extra relations that are needed in the definition of
G as a contragredient Lie superalgebra.

Lemma 4.2. One can choose φc(q) such that°U= Uφc(q)(G) is generated by Ei9 Ft, Kf,
l^i^r, with generating relations (2.7) (allow i = m for Et and Fi) and

E2

m = F2

m = 0, (4.18)

adq(Em^) [ £ m , fldg(£m+1)£M] = 0 , (4.19)

adq(Fm^) [F m , adq{Fm+1)Fm-] = 0 , (4.20)

where we have used adq and [x, y~\ =xy + yx to shorten our notations.

Proof. Let us denote the Uq(G0) action on S2 Vq also by φq. Note that as a Uq(G0)-
module, S2Vq decomposes as in Lemma 4.1. Thus in order to define φC(q), we only
need to specify the images of a set of generators of each component (which are given
in (4.12)-(4.17) by using the bases constructed in (2.12) and (2.13)), and require that

φq{u)v0 -• [w, <pc(β)(t>o)] > ( 4 21)

where ueUqtJ^(Go ) (or eUqtJj/(Go))9 and v0 is a highest weight vector (or a lowest
weight vector) of some simple component of S2Vq. We let c ^ + 1 ' m ' m ' m + 1 ( ^ ) = l.
Then

This is sufficient to define the images of the highest weight vectors of the compo-
nents Vq{ω1*ω2\ Vq(ω5), Vq(ω6) and Vq(ω0), where Vq(a>i) is the ^-deformation of
V(λi) (note ω0 = (1,. . ., 1)). The images of the highest (lowest) weight vectors of the
other components are given by (4.18)-(4.20). •

Let Uq(G) be the associative algebra (with 1) over F generated by Eh Fh Kf,
l ^ ί ^ r , with relations (2.7), (4.18)-(4.20). Let C/βiJ/(G) be the j3/-subalgebra of
Uq(G) generated by Uqt ^(Go) together with Em and Fm. Then by Lemma 4.2, we have

Theorem 4.3. (i) Uq^(G)lh £ ί/(G), where h is the ideal of UqtJ,{G) generated by
q-l and Ki-1, iki^r. (ii) A Poincare-Birkhoff-Witt type theorem (Thm. 3.5)
holds for Uq{G). •

Note added in proof. After the submission of this paper, the author noted reference [10], in which
it is indicated that a Poincare-Birkhoff-Witt type theorem holds for the ^-deformation of
U(sl(m, n)) defined in [4, 9].
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