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Abstract: We give a new condition for uniqueness of Gibbs states of quantum spin
models on lattices.

1. Introduction

In this paper, we propose a new method for proving uniqueness of Gibbs states of
quantum spin models on lattices. Our method is based on the ergodicity of Markov
semigroups (semigroups of completely positive maps on C*-algebras). This is
a standard method in classical spin models, but has never been developed in
quantum cases. Our motivation was to find a quantum analogue of Dobrushin's
uniqueness condition for Gibbs measure ([4 and 5]), though the condition we
obtained in this paper is still a perturbation theory near the infinite temperature.

In our opinion, we encounter two types of difficulties originating from the non-
commutativity when considering the uniqueness theorem for quantum models.

(i) The problem of entire analyticity: Let (xt(Q) be the time evolution of a local
observable Q, formally written as <xt(Q) = eιtHQe~ιtH, where H is the infinite volume
Hamiltonian. The notion of quantum DLR equation was first introduced in [1].
The DLR equation for a quantum state φ is

φ(Q) = t*i®Ψ(ΛTQΛI), (1)

where trj is the normalized trace on the volume I, ψ is a (possibly non-normalized)
positive linear functional of the observables supported outside I, and Aι is an
operator given by the help of the relative modular operator of the modular theory
of von Neumann algebras. Aj has a formal expression,

Λ, = exp(- 1/2(H-Hj))exip(l/2H), (2)

where Hj is the finite Hamiltonian on the volume I with boundary terms.
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The fact that the operator Λj is defined dependent of the choice of the state is an
obstacle for considering uniqueness, which is absent in classical spin models. If the
time evolution (xt(Q) as a function of t is extendible to an entire analytic function on
the complex plane, ΛI is defined as an element of the C*-algebra independent of the
state chosen and this problem does not emerge.

(ii) Nature of Markov property of quantum states: In classical spin models, the
local Markov property implies that the measure concerned is Gibbsian while
non-commutative systems seem to have no analogous result. Alternatively saying,
in classical spin systems, the Gibbs distribution is a superposition of the finite
volume states for the various boundary conditions while we have not yet known
a good notion of boundary condition useful for the quantum DLR equation. The
quantum Gibbs state is not characterized by conditional expectations. It is known
that any completely positive map reversible with respect to (satisfying the detailed
balance condition for) a KMS state (= Gibbs state) commutes with the time
evolution (modular automorphism). (See Lemma 2 of [3] and Proposition 1 of [6].)
This is a constraint to construct Markov semigroups for which reversible states are
Gibbs states of a given interaction.

We have not yet obtained satisfactory results on the first problem of analyticity
in this paper. As for the second problem, our strategy is as follows. The starting
point is that we do not consider states of the algebra of local observables si but
those of the tensor product si ® si. By use of the modular conjugation operator,
we can associate a canonical pure state of si ® si with each Gibbs state of pure
phase. This procedure is called purification. Once we go to the purification, the
constraint from the modular theory of von Neumann algebras disappears. Next we
introduce Hamiltonians for which any ground state is necessarily the purification
of a Gibbs state. We also construct a Markov semigroup on si ® si for which the
purification of any Gibbs state is reversible. (The reversibility is defined in a stan-
dard way as in Definition 3 of this paper.)

Thus, our proposal is simple. Consider the purification of quantum Gibbs
states and prove the ergodicity of the Markov semigroup for which the invariant
state is a purified Gibbs state. Our condition for unicity of the invariant state of our
Markov semigroup then follows from the idea of [7].

Both Markov semigroups and Hamiltonians considered in this paper are not
canonically defined and there lies a room of modification of the construction of the
semigroup and the Hamiltonian. We are expecting the improvement of results at
this step. In the classical spin language, this corresponds to the point that we have
still some choices for spin flip rate functions in interacting particle systems.

In Sect. 2 the basic idea will be explained. Our main result is Proposition 2. In
Sect. 3, we give estimates which imply that our unicity condition is valid for the
high temperature short range interactions.

2. Purification of KMS States

In what follows, we consider the spin 1/2 system. The higher spin case may be
treated analogously, for example, in [7] we considered the ZN symmetric systems.
There are various ways to handle higher spin models depending on the symmetry
of Hamiltonians.
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We use the C*-algebraic framework of quantum spin models. (See [2].) Let
si be the C*-algebra of quantum observables for spin 1/2 on the d dimensional
regular lattice Zd. More precisely, si is the C*-algebra completion of the infinite
tensor product of the algebra of 2 by 2 matrices M2{C\

(3)

zd

Each component of si is labeled by a point j of the square lattice Zd. Let Q be
a 2-by-2 matrix. By QU) we denote an element of si with Q in the j component and
the identity in the other. We also denote the dense algebra generated by strictly
local elements (polynomials of QU) by s#ϊoc and for a subset A of Zd, siA will be the
subalgebra generated by QU) (jeA, QeM2(C)). The translation τk is an auto-
morphism of si determined by τk(QU)) = Qu+k) (k,jeZά).

We regard si as the set of continuous functions on a non-commutative space.
We will use a calculus on this non-commutative space. Set

X = Zdx{x,z} .

By σψ (α = x, y, z) we denote the Pauli spin matrix on the site;. For b = (aj) in
X and Q in si, we define the differential δb by the equation,

^Qσ^-Q). (4)

Then it is easy to check that

H{Q)=~δb{Q), (5)

II <Vβ) II = 1/2II [></>, β] | | . (6)

We also consider n times differentiable elements, smooth elements etc.
Let Fn be the set of subsets with n elements in X. For A = {k1,k2 . . . kn}eFn, we

define

δA(Q) = δkιδhδk,...δt.(Q). (7)

We set

For a non-negative integer n,

i ii eii I. = Σ n^(β)iι (8)

An n times differentiable element should be Q such that \\\Q\\\n is finite, so we set

(9)

(10)

If Q is a local element, \\\Q\\\n vanishes for n sufficiently large.

Lemma 1. Let Q be an element ofCf(stf) with λ>\. Then Q can be written in the
following form:

Q=Σ CΛB(Q) II σ<PYlσ?, (11)
A,B jeA jeB
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where the sum is taken over all the finite sets ofZd and CAB(Q) is a complex number
determined by

jeB jeA

The sum of (11) is convergent in the norm of the C*-algebra srf and

Σ\AuB\k\CAB(Q)\<™ (13)
A,B

for any positive k.

Proof Suppose that leA, iφB. By use of anticommutativity of Pauli matrices and
l = l/2{l + σ<?2}, we have

1/2 U Π °¥ Π ^βVtrf Π °$ Π ^ of Q
I \jeB jeA J \jeB jeA

= l/2tr Π <*$ Π σψ(-
\jsB jeA

(14)
jeB jeA

Thus we have

C (Q) = — trί ΓT σ^ Γϊ σ^δ (Q) ) (15)
\jeB jeA ' /

Other cases iφAleB, or leA, leB can be treated in the same way, and we arrive at
the estimate,

\CAB(Q)\ύ\\δ{juX)δUί,x) . . . δUn,x)δ{iuz) . .. δ{im,z)(Q)W , (16)

where the elements of the sets A and B are labeled as follows:

As a consequence,

X \AvB\k\CAB(Q)\<>Σnkλ~n(SUPrnλm I 116 Him)
A,B n

D

Next we consider the time evolution. We will always consider the translation-
ally invariant interactions, but the non-translational invariance causes no trouble.

Let h be a selfadjoint element of si determined by

A,B jeA keB
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The selfadjointness implies

h7B=(-ir^hAB,

where | >4uJB| is the number of points in AKJB. The (infinite volume) Hamiltonian is

H=Σ hj9 hj=τj(h). (19)
JeZ*

Consider the derivation δH determined by

H (20)

Using the ideas of [7] we can prove the following results. If the following condition
is satisfied, the derivation δH is well-defined on C 1 ^ ) ,

Σ (21)
A,B

Moreover, the interaction satisfying the decay condition,

X l ^ B | M u 5 | 2 < c x ) (22)
A,B

gives rise to the time evolution αί?

Strictly speaking, the closure of the derivation δH is the generator of the 1-
parameter group of automorphisms at of s/. αf leaves C1 (stf) globally invariant and
for Q in \

(See [7].) However, it is not yet known whether the set J/ 1 O C of (strictly) local
observables is a core for the generator of αf. It may happen that oct(Q) does not
admit a complex holomorphic extension as a function of t. As the KMS boundary
condition of Gibbs states is involved with complex holomorphic extension of the
time dependent correlation functions, this situation is troublesome. So we assume
a stronger decay condition for the interaction from now on. Namely,

Σ (23)
A,B

for a positive ε.
For the Hamiltonian satisfying (23), the notions of Gibbs states and KMS states

are equivalent. The Gibbs state is also characterised by the variational principle for
free energy. These results were first established in the 1970's in [1] and in a sub-
sequent work of Araki. (See the historical explanation and the references in [2].)
Here we just recall the definition of the KMS state.

A state φ of srf is a β KMS state for αf if

= φ(a-iβ/2(B)*ip/2{A)) (24)

for any A, B in a dense * subalgebra of entire analytic elements.
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Here β is the inverse temperature. It is known that a KMS state is faithful
(separating) in our situation as si is simple. (Corollary 5.3.9 of [2]) and the state for
a pure phase is a factor state.

Definition 1. Let φ be a faithful state of'si. Let {π, Ω, 2tf} be the GNS cyclic
representation associated with the state φ. (Ω is the cyclic separating vector for the
von Neumann algebra π{si)" on the Hilbert space J f.) Let J be the modular
conjugation operator associated with Ω.

Let Γ be the complex conjugation of si. More precisely, Γ is a conjugate linear
map on si satisfying

and

Γ(σ<P) = σψ{a = x, z) Γ(σf) = - σψ .

Consider the C*-algebra stf = si ® si and the state φ determined by

φ(Λ <g> B) = {Ω, π{A)Jπ(Γ(B))JΩ), (A, Best) . (25)

Then we call φ the purification of φ.

We also introduce some notations for analysis on «s?. Set

X = {(ocu oc2j)\ocu α2 = 0, x, y9 z jeZd}

andσ(

o

k) = l.
Then for α = (α l 5 α2),

$ M ® σ^-Q) . (26)

Then Cn(<s3) and Cf(s&) are defined as in the same way for si.
The next task is the characterization of states on sϋ which are the purification of

KMS states of si. Here we make technical assumptions for the interaction.

Assumption 1. We assume that

(i) for any strictly local element Q in si, the time evolution oct(Q) a s a function oft is
extendible to a function az(Q) which is holomorphic on the strip Dβ = {ze%>\\z\ <2β}
and continuous on the closure ofDβ, and
(ii) for any Qesiλoc, otz(Q) is in Cf{sί) with λ>ί.

We believe that this assumption is valid for any finite range translationally
invariant interaction and any inverse temperature β, but we are unable to prove it.
This assumption holds trivially for classical finite range interactions (diagonal
interactions). We will see its validity for the high temperatures in Sect. 4.

We now present a Hamiltonian H for which any ground state is the purification
of a KMS state.
For a = x9y, zjeZd, we set

a<P= 1/2{1 -σψ ® Γ{*iβ{σψ))}eJ, (27)

Σ ctfΫ}, (28)
a = x,y,z

H=Σ % • (29)
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If Assumption 1 is valid, the Hamiltonian H yields a well-defined time evolution

on J / .

Definition 2. We say that a state φ of \3 is a ground state for H if

φ{a<P*a®) = 0 (30)

for any oc = x,y,z and any jeZd.

We next construct a Markov semigroup which we might call the stochastic
Ising model on the non-commutative space srf. In this paper, a Markov semigroup
always means a semigroup of completely positive maps on the C*-algebra si.

Set

Dj(a,y) = Cjσy®Γ(θLίβ(σψ)), (31)

C, = 2 ( l - α ? ) ( l - α ^ ) , (32)

Σ DJ(«> y)*QDM> y)\ > ( 3 3 )

LJ(Q) = EJ{Q)~{Q9EJ{1)}9 (34)

L(Q)=Σ Lj(Q)9 (35)
jeZd

L(Q) is well-defined on C 1 ^ ) . The closure of L(Q) is the generator of a Markov
semigroup St due to Assumption 1 and results of [7],

S(Q) S{L(Q)) (36)

Definition 3. We say that a state φ of ^ is reversible for St ifφ(ASt(B)) = φ(St(A)B)
for any A, B in s3.

The reversibility is often called the detailed balance condition.

Proposition 1. Suppose that Assumption 1 is valid for the interaction hA,B.
(i) a state \j/ of si is the purification of a KMS state if and only if it is a ground state

for H.
(ii) the purification \jί of a KMS state φ is reversible for St. Furthermore, for the GNS
representations (π(), Ω, Jf) associated with φ and the representation π associated
with \p, we have

(37)

for t > 0 and Qes/, where Hφ is a selfadjoint operator determined by the following
limit (in the strong resolvent sense):

H ψ =lim X π(hj). (38)
N \j\gN

Proof All the statements are the consequences of the following identity:

= J{ JΔ 1>2)Δ ~ ll2π(σψ)Δ 1/2Ω

(39)
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Equation (38) implies

π(αα)Ω = 0 . (40)

Here, we check only (ii).

Note that aiβ is an endomorphism from s0λoc. to si. So we have

[_σψ ® 0L±Λσψ\ σψ ® <x.iAσψχ\ = 0 , (42)

and

etc. Then we can show

n(Dj(a, y))Ω = 0 (α, γ = x9 y, z, α φ y) . (44)

For example, if α = y, y = x,

fζ(C'(τ^ ® <Xι (σ^))Ω = τί((l β ^ W ^ (x) oc. ( ί τ ^ ) ί ϊ ^ ) Ω = 0 . (45)

Equations (40) and (44) tell us the following identity:

The reversibility of xp for St follows from this. •

The next thing we explain is the ergodicity criterion of the Markov semigroup
St. We introduce the free motion for the infinite temperature state,

L J(Q) = trj(PjQPj) — Q , (47)

where tr,- is the normalized partial trace on the site 7, σo = 1,

1

* " oc,β = 0,x,y,z

and

)σψ){l+σij)®σi

x

j)). (49)
L

If the inverse temperature β is zero, we can show

,Then set

LF(Q)= X I f ( β ) . (50)

It is easy to see

(51)

We have the following estimate. (See [7].)

| | | e x p ( ί I F ) ( 0 | | | ^ e - t | | | β | | | . (52)

We next consider

AJ(Q)=LJ(Q)-L^Q) . (53)
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Proposition 2. Let {γ(j}\leZi

9j, ieX} be a non-negative matrix satisfying

Set

Ify<l, we have

329

( 5 4 )

(55)

(56)

for any Q in C1^).
As a consequence, St has the unique invariant state and the Gibbs state is unique.

Remark 1. (i) It is possible to show that Assumption 1 implies the finiteness of y.
(ii) By the estimate obtained in the next section, y is the order of β (the inverse
temperature) for small β. So the above proposition is valid at least for high
temperatures. At the moment, we have no other example of y< 1.

Proof of Proposition 2. The proof of Proposition 2 is more or less standard in
classical spin models. The proof of the page 184 of [8] works for our non-
commutative case. Here we give its sketch.

Set

V=L-L J, S(

t

j) j

Then

j s es S £ 5
)SS(Q) (57)

( j )
By integrating s from 0 to ί, we obtain

\\e'δkSt(Q)\\^\\δk(Q)\\ \
o

Taking the sum in k, we arrive at

This implies (56).

(β) ds . (58)

(59)

D

3. Analysis on Quantum Spin Algebra

The aim of this section is to verify Assumption 1 for the case of the high
temperature Gibbs state. So we consider the time evolution of quantum observ-
ables and its analytic extension. Our estimate is far from best possible, but its proof
is very simple.
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We introduce some notations. For a pair of finite subsets A and B of the lattice
Zd, we set

C = Ax{z}κjBx{x]eX, (60)

\\σ^\\σψ. (61)
keA jeB

F o r ; in Z d , we set

C+j = {A+j}x{z}v{B+j}x{x}eX 9

so

The Hamiltonian is now

j c

Proposition 3. Let H be the translationally invariant Hamiltonian (19) satisfying the
decay condition of (23) with ε = log(l + 2/l) (λ>0). Let Q be an element ofCf{s/)

Then, the time evolution oct(Q) of Q as a function of t can be extended to
a holomorphicfunction ocz(Q) on the disc {zeC \Z\KR~1}, where

jΣ (62)

and

ίΛ (63)

Proposition 3 shows if λ > 1 and β is small, Assumption 1 is valid.
Proposition 3 is an immediate consequence from the following estimate.

Lemma 2.

λ*\\\lH9Q]\\\n£R(n+l) sup ^IHQIIIfc. (64)

Proof In the case of n = 0, we have

£ \\δb{Q)\\ 9 (65)
j J beC + j

where we used the following inequality:

Σ (66)
beC

In the above, consider a fixed b in X and the number of j which contributes to the
sum is |C | , so we get

Σ Σ ι^(δ) i=ιc ι ι ι iβ i ι i i . (67)
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As a consequence, we obtain

| | | [ff,β] II l o ^
c

The case of n larger than or equal to 1 can be handled in the following way.
First,

ΣΣl Λ (C)iμ 6 l a f c <UI>(c+y),£l)ll • (68)
j C

\\δblδb2 . . . δbX

(69)

If bi = (k, α) and k belongs to supp(C+y),

I I M * δbn(lσ(C+j),Q])\\ύ\\δbί . .. 6bi_Ai+. W[σ(C+;),β]) | | .

(70)

where we used

<5zA' = δb'δb,

«5b(σfβσf = σf^(0σf
for any b in X, k in Zd and α = x, y, z.

So if &j = (αi, ii) and izesupp(C+j) (1^/^m) ΐ^supp(C+j) ( m + l ^ / ^ n ) ,

11^ ^( [σ(C+j) ,Q]) | | ^ | | [σ(C+;) ,^ m + 1 . . . δ^(β)] || . (71)

We now obtain
\\\ίσ(C+j)9Q]\\\n

min(«,|C|)

\\c

L
£n-k2»-k Σ \\ίσ(C+j)9δhι...δhk(Qm\9

)k=l {} j

(72)

where the factor 2"~k comes from the assignment of x and z components to points
in C+j. Thus

j

^ Σ Σ \c\Cn-k Σ I I M c + j ) , s b ι . . . δ b k
j k=l A = {bί...bk}eFk,AuC

^2 Σ ιc,cM_fcΣ Σ Σ
k=ί j beC + j AeFkbφA

^2 Σ ic,CM_ f c |C|{n-fe+l}2«- f c | | |a| | |k + 1 , (73)
k=l

λ"\\\lH,Q]\L

ί2\(Σ\C\\h(C)\ΣnCkλ
k2k)( sup (n-l+WlUQUu). (74)

This last estimate implies our claim. Π
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Proof of Proposition 3. We just expand α z ( 0 by z. Using the lemma just proved
above, we get

d\ι

•'(4-Ί ι

l\\dxj ί-x x=\z\R

sup

sup A11

=π i\pv( s uPo^<«^iiieiiio. (75)
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