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Abstract: In this article we give an existence theorem for localized travelling wave
solutions on one-dimensional lattices with Hamiltonian

where V( - ) is the potential energy due to nearest-neighbour interactions. Until now,
apart from rare integrable lattices like the Toda lattice V(φ) — ab~l(e~b^ + bφ — 1),
the only evidence for existence of such solutions has been numerical. Our result
in particular recovers existence of solitary waves in the Toda lattice, establishes for
the first time existence of solitary waves in the (nonintegrable) cubic and quartic

lattices V(φ) = ̂  φ2 + | α</>3, V(φ) ~\ΦL^\ bφ4, thereby confirming the numerical

findings in [1] and shedding new light on the recurrence phenomena in these systems
observed first by Fermi, Pasta and Ulam [2], and shows that contrary to widespread
belief, the presence of exact solitary waves is not a peculiarity of integrable systems,
but "generic" in this class of nonlinear lattices. The approach presented here is new
and quite general, and should also be applicable to other forms of lattice equations: the
travelling waves are sought as minimisers of a naturally associated variational problem
(obtained via Hamilton's principle), and existence of minimisers is then established
using modern methods in the calculus of variations (the concentration-compactness
principle of P.-L. Lions [3]).

1. Introduction

Discrete Hamiltonian systems arising in mechanics and physics are notoriously less
amenable to analytic techniques than their continuous counterparts. Thus the majority
of work on solitary waves on lattices has centred on two areas. Firstly continuum
approximations; here the equation of motion reduces to a PDE [4-7] (and hence the
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equation govering a travelling wave simply becomes an ODE). And secondly, there
are numerical studies [1, 4, 5, 8].

The present paper addresses the issue of existence of such solitary waves on
lattices. The Hamiltonian we consider is

where qn denotes the displacement of the nth lattice site, pn = qn, and V( ) is the
potential energy due to nearest-neighbour interactions. Prototypical are the cubic and

quartic systems V(φ) = \φ2 + \ aφ3 (a > 0) and V(φ) = \φ2 + \ bφ4 (b > 0) studied

first by Fermi, Pasta and Ulam in their now famous 1955 Los Alamos report [2], see
also [4, 1]. We show that for these model potentials, as well as for a much larger
class of interaction potentials, the Hamiltonian system (1) admits an infinite family
of solitary waves, parametrised by the total amount of potential energy in the lattice.

Up until now, apart from numerical evidence [1], the only examples of discrete
systems known to posses solitary waves have been carefully constructed integrable
systems. Of these, only the Toda lattice V(φ) = ab~l(e~bφ + bφ - 1) [9] falls into
the class of lattices we consider. While our existence theory in particular recovers
existence of solitary waves for the Toda lattice, most interaction potentials will of
course not give rise to integrable systems; for example, see [10] for interesting
simulations of collisions of highly accurate numerically-determined solitary waves
indicating nonintegrability of the cubic and quartic lattice. Our results thus imply that
contrary to common belief, there are non-integrable discrete systems which possess
exact solitary waves, and show that (unlike integrability) the existence of these waves
is in fact "generic" in this class of nonlinear lattices.

Much of the interest in these lattice systems, and especially in solitary waves, has
been motivated by the remarkable observations of recurrence made by Fermi-Pasta-
Ulam (FPU) [2]. They performed numerical simulations of the cubic and quartic lattice
using a sinusoidal initial condition expecting the nonlinearity to promote mixing of
energy between the Fourier modes. Over a long period of time mixing did occur,
but the energy separated out again, and they saw the initial conditions almost recur.
This behaviour was thought to be very surprising at the time and no explanation was
known.

In 1965, a similar behaviour was noted by Zabusky and Kruskal [11] in numerical
solutions of the KdV equation. And here, for the first time an explanation was
given, namely in terms of the decomposition of initial conditions into the newly
discovered soliton waves. These solitons move around the system at different speeds
and due to special collision properties regain their shape and speed after interactions.
After a certain time the solitons reach their initial placements again, and the initial
conditions recur. Following the discovery of the inverse scattering method [12], all
these phenomena could later be understood analytically.

However, the KdV equation is quite different from the (discrete, nonintegrable)
systems studied originally by FPU, and despite much interest, the question as to
whether such systems also possess solitary waves has been left open until now. Here
we show that these lattices do possess exact solitary waves. If the explanation of
recurrence is indeed related to solitary waves (as in KdV and as suggested e.g. in
[13]), the next step would be to analyse their stability and interaction properties;
however this lies beyond the scope of this article.

Mathematically, the equation governing travelling waves of the discrete system
(1) is much more complicated than the ODE obtained for corresponding continuous
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systems: Hamilton's equations give the equation of motion as

Qn = V'(qn+l-qn)-V\qn-qn_l), (2)

and the equation for a travelling wave is obtained by looking for solutions of the form
<2nCO = Q(n - ct):

c2q"(z) = V'(q(z + 1) - q(z)) - V'(q(z) - q(z - 1)). (3)

That is to say, we are dealing with a second order forward-backward differential-
difference equation. Our approach relies on avoiding a direct study of this equation,
but instead recasts the problem of finding solutions to (3) as a variational problem.
This is performed by exploiting the underlying variational structure of the equations
of motion which comes from Hamilton's principle. This idea was also used in [14].
Existence of a minimiser is then established using modern methods in the calculus
of variations, namely the concentration-compactness principle of P.-L. Lions [3],
together with appropriate a priori estimates on minimising sequences.

The key hypothesis on the interaction potential V needed in the proof is
superquadratic growth; conversely, it turns out that for quadratic V the minimum of
the variational problem is not attained (and indeed the Hamiltonian (1) does not admit
any solitary waves). Here a beautiful, clear and quite nontechnical explanation of why
this transition from existence to nonexistence occurs, and of why the "threshold" is
given by the exactly quadratic potential, will be seen to be proved by the subadditivity
inequalities of P.-L. Lions (inequalities (S) in Sect. 2 below), introduced in a much
more general context in [3]. However, before the problem is reduced to inequalities
(S), some technical work is needed: in the low energy range (where superquadratic
potentials become close to their quadratic approximation and hence close to a potential
which does not admit solitary waves), the allowable error in the a priori estimates
becomes arbitrarily small, and so we need to "guess" the exact waveform extremely
accurately, which we do using the continuum approximation of the lattice. For high
energy waves the allowable error is large, making the proof easier. This is worth
noting, since up until now the main method of achieving theoretical insight has been
the continuum approximation which only works in the low energy limit.

The plan of this paper is as follows. The next section contains a precise statement
of our existence result (Theorem 1), a discussion of examples of specific interest (the
two FPU lattices, the Toda lattice, and the Lennard-Jones (6,12) potential relevant for
the microscopic theory of classical fluids), and an outline of the proof, which does not
assume any a priori knowledge about "concentration-compactness" and is written for
those interested in the main ideas rather than technical analysis. Section 3, which deals
with the existence of a minimiser of the associated variational problem, contains the
main technical work and forms the core of this paper. Section 4 is a brief derivation
of the travelling wave equation as the Euler-Lagrange equation of the variational
problem. We prove monotonicity of the minimising waves in Sect. 5. This fact is not
only interesting in its own right, but also needed to complete the proof of our existence
theorem. In Sect. 6 we extend our findings to singular interaction potentials such as
the Lennard-Jones potential. Nonexistence of solitary waves in lattices with quadratic
interaction is established in Sect. 7, complementing our existence theory and justifying
the superquadraticity hypothesis required by our variational approach. For the pure
quadratic potential the result is simple, since the travelling wave equation reduces to a
linear functional differential equation. Finally, Sect. 8 is a note on periodic travelling
waves which are also present in these systems and can be found by much simpler
methods, using a finite lattice.
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2. The Existence Theorem

We pose another problem, that of minimising a functional with a constraint, and show
that the solutions of this problem are also solutions of our travelling wave equation
(3). This reformulation is obtained by making the travelling wave ansatz in Hamilton's
principle, and imposing a constraint on the system, to parametrise the solution family.

To derive the variational formulation, note that the action of a path of the form
qn(t) = q(n — ct) in configuration space is

*2

S = I Σ (\ £® - ^fon+l(*) - 0n(*») dt ,

t, n^

and when taken over a time interval of length 1/c, reduces to a single integral over
the shape function q(z):

S = - J f - q'(z}2 - V(q(z + 1) - q(z))\ dz .

R

Hence (noting also that any multiple of the constraint may be subtracted from the
functional to be minimised) minimising action among paths of the above form is
equivalent to the following problem:

Minimise the average kinetic energy

Γfe):=i fq/(z)2dz
R (4)

subject to the constraint that the average potential energy is fixed

U(q) := / V(q(z + 1) - q(z))dz = K.
E

To be precise, for every path qn(t) = q(n — ct), T(q) = c~2(kinetic energy),
τj(q) = (potential energy), and cT(q) — c~lU(q) = action, where {•} denotes the
average over a time interval of length 1/c. In particular, for every travelling wave on
the lattice, U(q) is exactly its average potential energy regardless of the wave speed.

The travelling wave equation (3) is easily recognised as the Euler-Lagrange equa-
tion of this problem, with the inverse square of the wave speed (c~2) corresponding
to a Lagrange multiplier λ.

A careful analysis of the above minimisation problem, carried out in Sect. 3 below,
leads to the following existence theorem.

Theorem 1. Let V e C2(W), V > 0 in some neighbourhood (-6, δ) of zero, V(0) = 0,
and V superquadratic on at least one side, that is to say

(HI) —7r- increases strictly with \φ\ for all φ E Λ,
φL

where either A = (—oo,0) or A = (0, oo). Then there exists KQ > 0 such that for
every K > K0 the Hamiltonian system (1) possesses a nontrivial travelling wave with
finite kinetic energy and with average potential energy K (i.e. for every K > K0 there
exists a function qκ G C2(E) with T(qκ) < oo and U(qκ) — K which solves Eq. (3)
for some c = cκ^O.)Ifin addition V satisfies either

(H2a) V"(Q) = 0
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or the following nondegeneracy condition at zero:

(H2b) V(φ) = \ V"(0)ψ2 + ε\φ\p + o(φp) as ψζΛ,φ-+0,

for some ε > 0 and 2 < p < 6, then KQ can be taken to be zero, that is to say
nontrivial travelling waves qκ with average potential energy K exist for all K > 0.
Moreover regardless of whether or not (H2a), (H2b) hold, these travelling waves qκ

have the following properties:
(PI) They are monotone functions, increasing (i.e. expansion waves) if Λ — R+ and
decreasing (i.e. compression waves) if Λ = R~~.
(P2) They are localised, in the sense that φκ(z) := qκ(z -t- 1) — qκ(z) —> 0 as
Z —> ±00.

(P3) They are supersonic; that is to say their wave speeds cκ satisfy c2

K > V/f(0).
(P4) They minimise the kinetic energy T(q) among all functions q in the Sobolev space

Wlcjc (R) having the same "symmetrised" potential energy U(q) := J V(q(z -f 1) —
q(z))dzf where R

Discussion. Conversely, we prove that for exactly quadratic potentials, no solitary
waves exist (Sect. 6), thereby justifying hypothesis (HI). Hypothesis (H2) (and in
particular the bound p < 6) is open to improvement, at the expense of more technical
work, see the proof of Proposition 3; however, since (H2) is a "generic" consequence
of (HI) (it holds for every smooth potential which satisfies (HI) and whose cubic,
quartic and quintic Taylor coefficients at zero do not vanish simultaneously), we have
not pursued this, to keep the proof as simple as possible.

Applying the theorem to the Tolda Lattice (V(φ) = ab~l(e~bφ + bφ- 1), ab > 0),
we find solitary waves on one side of the potential well only (since the Toda potential

is superquadratic on one side of the potential well φ = 0 and subquadratic I i.e. —~—

decreasing with \φ\\ on the other; i.e. if b > 0 the solitary waves have φ < 0 and

vice versa. This agrees, of course, with the findings of Toda [9], while being derived
from a completely different method.

A similar lattice is given by the cubic polynomial interaction, V(φ) = ^ φ2 +

3 aφ3 (a ^ 0). Here again we have existence of solitary waves, confirming the

numerical observations in [1]. The sign of the waves depends on the sign of the
parameter α, (if α > 0, then φ > 0).

If we turn to the quartic lattice, V(φ) — \Φ2 + \ bφ4, we find a different story. If

b > 0 then solitary waves exist either side of φ = 0 (again confirming the findings
in [1]). However as b is reduced through zero, our existence result no longer applies,
and at b = 0, we have non-existence of solitary waves. Further, we conjecture
that for b < 0 there is no solitary wave. This is supported by the fact that the
variational problem no longer attains its infimum (see Proposition 2), and by some
formal asymptotics; though a rigorous proof has yet to be found. The vanishing of
solitary waves as 6 passes through zero can be thought of as a phase transition,
and is not particular to the quartic lattice. This phenomenon should occur for any
lattice where the interaction potential passes from super- to subquadratic (or where
the coupling force weakens from super- to sublinear) as a parameter is varied.
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As a final example, consider the paradigm interaction potential of the microscopic
theory of classical fluids, the Lennard- Jones (6, 12) potential VLJ(r) = ar~12 —
6r~6 (α, b > 0), where r is the distance between particles. To fit our setting, we
let d = (2a/b)1/6 - the equilibrium distance, change variables r = d -f φ (so that
φ denotes the deviation of the interparticle distance from the equilibrium distance)
and shift the energy scale to make the minimum energy equal to zero, giving
V(φ) = a((d + </>)~6 — d~6)2. Here φ is of course restricted to values φ > — d.
With this choice of V, Eq. (2) represents the evolution at the microscopic level of
a one-dimensional classical fluid in the nearest neighbour approximation. To check
super- or subquadraticity, calculate

(V(Φ}\ = V/(φ)φ-2V(φ)

\ Φ2 J Φ3

Clearly, for φ -^ 0 the second and fourth factors are always positive, the first and

third factors have the same sign as φ, hence ( — -r- J < 0 for all φ ̂  0. Thus the
\ Φ2 J

Lennard- Jones potential is superquadratic on the left side of the potential well, and
subquadratic on the right side. Correspondingly, we obtain existence of compression
waves (i.e. φ < 0), but not of expansion waves. (The precise existence result for the
Lennard- Jones potential and the technical details needed to adapt Theorem 1 to deal
with the singularity of V can be found in Sect. 6.) These findings correspond nicely
to the situation in macroscopic, one-dimensional fluid models such as KdV, where
negative solitons exist but positive ones don't, and to the experimental behaviour of
water in a narrow channel, where the observed solitary waves are compression waves
rather than expansion waves (for the first scientific account of these waves, see Scott
Russell's remarkable 1844 paper [15]).

The generality of Theorem 1 shows that solitary waves are generic in lattice
systems with a superquadratic potential energy. The existence of solitons (that is,
solitary waves which regain their shape after interactions) on the other hand is a
very special property of a system. The systems of FPU (i.e., the cubic and the quartic
lattice) fall into the former category, with no known special properties. Thus it seems
unlikely that the explanation of recurrence in these systems is due to solitary wave
interactions alone. However it may play an important part, and has already been
postulated [13]. A full explanation of the mechanism would require an analysis of the
interaction of solitary waves with each other, and with linear waves. This has yet to
be attempted, but some initial results suggesting the linear stability of solitary waves
have been found [16].

Outline of Proof. The key step in the existence proof is to solve the variational
problem, that is, to show there exist minimisers of T(q) subject to the constraint that
the "symmetrised" potential energy is prescribed, U(q) = K, (K > 0 fixed throughout
the proof). Once this is done, the rest of the proof is more less straightforward: we
then derive the Euler-Lagrange equation to this problem and demonstrate positivity
of the occurring Lagrange multiplier A so as to be able to identify the Euler-Lagrange
equation with the travelling wave equation (2) and λ with the inverse square of
the wave speed c~2 (Sect. 4), and finally show monotonicity of minimisers which
implies that (after choosing a minimiser of the desired sign) its difference function
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φκ(z) := qκ(z+1) — qκ(z) only attains values on the side of the potential well, where

V = V, so that it is a travelling wave for the original "unsymmetrised" Hamiltonian
(Sect. 5).

The core of the proof, the existence of minimisers, is dealt with in Sect. 3. Due to
the unboundedness of the domain of integration, this is delicate and cannot be inferred
by standard "soft" methods of the calculus of variations (e.g. weak convergence/weak
lower semicontinuity arguments); indeed we will see that for quadratic or subquadratic
interaction potentials (i.e. weak coupling) the minimum is not attained. At the expense
of boring experts in variational methods, let us explain what the main difficulty is
(and how to interpret the failure of the "soft" approach physically), and then recall the
gist of P.-L. Lions' concentration-compactness method which was devised to attack
this difficulty. As already emphasised in the Introduction, this method should not
be regarded as just a technical tool, but P.-L. Lions' subadditivity inequalities (S)
below are essential for understanding why the behaviour for super- and sub-quadratic
potentials is different and why the "threshold" is given by the exactly quadratic
potential.

According to the standard approach of the calculus of variations, one would take
a minimising sequence {qn} of T subject to the constraint1 that U(qn) = K, then
(since T(qn) is bounded) q'n is a bounded sequence in I/2(R), and we can pass to
a weakly convergent subsequence. Since the limit possesses a primitive q, we can
write q'n —^ q' weakly in L2(R). By weak lower semicontinuity of the norm in

L2(R), T(q) < inf T(q), and equality would hold, i.e. q would be a minimiser,
U(q)=K

provided we could show U(q) = K (survival of the constraint). It is exactly at this
last point where the standard approach fails: due to unboundedness of the domain,
the constraint is discontinuous with respect to weak convergence of the q'n , and it is

easy to write down minimising sequences where the constraint is indeed lost in the
limit. One class of examples where this happens, even if the minimum is attained,
arises from the translation invariance of T and U: simply take qn to be a sequence
of translates q( + n) of a minimiser q. Then the q'n converge weakly to zero in
L2(R), and thus U(q) = 0(^ K — \imU(qn)). Another mechanism of loss of the
constraint, typically associated with nonattainment of the minimum and known to
occur in various precedents of variational problems similar to the one studied here,
would be the flattening and spreading out of a part of, or the whole, potential energy
integrand V(qn( -f 1) — qn( -)), this phenomenon corresponding physically to excess
energy/mass/charge carried by the sequence {qn} moving off to infinity as n —> oo. A
collection of situations where this happens can be found in [17], interesting examples
being the Becker-Doring equations describing the kinetics of cluster growth [18] and
the Thomas-Fermi model of atoms and molecules [19].

Against this background, in his fundamental article [3], P.-L. Lions suggested a
general framework in which to analyse such problems, based on the following two
key heuristic ideas (which he made rigorous for some nontrivial examples, and which
- adapted to the present context - take the following form). First, there is a complete
list of possible ways in which the constraint can be lost. Namely, every minimising
sequence {qn} possesses a subsequence which satisfies one of the following three
possibilities:

1 For the remainder of this section, we shall drop the "tilde" above V and U, and let V be an
arbitrary C2 potential with V(0) = 0 and V > 0 elsewhere, for the moment not required to satisfy
(HI) or (H2)
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(i) (compactness) After replacing the qn by appropriately chosen translates qn( +
αn), the constraint U(qn) = K is preserved when passing to a weak limit (note that
by a retranslation one can prevent loss of the constraint by the region of interest being
shifted away to infinity as in the first example above),
(ii) (vanishing) the sequence of integrands V(qn( - + 1) — qn( -)) converges to zero

by flattening and spreading out, or
(iii) (splitting) the integrands "split" (in a sense, of course, to be made precise) into at
least two spatially separate parts, with the distance between them tending to infinity as
n —> oo, and the total amount of potential energy contained in each part converging,
respectively to a e (0, K) and K - a.

(This is stated rigorously in Lemma 2, with the notion of "compactness" given
above being implied by the rigorous notion via the proof of Proposition 1.) Second,
following [3] alternative (iii) can be excluded by considering the minimum energy
Tκ = inf{T(q):U(q) — K} as a function of K and verifying the subadditivity
inequalities

TK<Ta+TK_a fo ra l lαe(0 , ίO. (S)

In fact, no minimising sequence can split if and only if the above inequalities hold
true. Unlike the list of possible ways of losing the constraint, this second idea is on
a heuristic level obvious, and it is also not hard to make it rigorous (see the proof
of Lemma 3a). (In our case of solitary waves inequalities (S) - whenever they hold
true - suggest that it is unfavourable in the sense of least action for a minimising
wave to split into two waves. This could be taken as a type of stability of the wave;
numerical simulations suggest that these waves are indeed quite stable. In the related,
but analytically much simpler problem of standing waves in the continuous nonlinear
Schrodinger equation, inequalities (S) have indeed been made the basis of a rigorous
stability result [20].)

Now for our special problem, a similar strategy is possible to exclude "vanishing:"
no minimising sequence can vanish if and only if the minimum kinetic energy satisfies
the bound

TK < W(ΰj (E)

(see Lemma 3b). Here the expression on the right-hand side turns up as the limit
ε -> 0 of the infima Tκ ε := inf ίT(q): U(q) = K, sup \q(z + 1) - q(z)\ < ε\, that is

I 2EM J
to say, the infima of T over functions q whose potential energy density is more and
more flat and spread out.

Equipped with these ideas or tools (which reduce our problem to analysing whether
or not inequalities (E) and (S) hold true), it is now possible to establish existence of a
minimiser for superquadratic interaction potentials and nonexistence for subquadratic
potentials. Here the key to understanding why the behaviour of these two cases is
different is to look at P.-L. Lions' subadditivity inequalities (S): a relatively simple
scaling argument (using the fact that the kinetic energy T scales quadratically) shows
that inequalities (S) fail for subquadratic interaction potentials, but hold true in the
superquadratic case provided we can exclude vanishing; the reader is invited to have
a brief look at the proof (proof of Lemma 4). The main technical work in proving that
in the superquadratic case minimisers indeed exist goes into establishing the above
trichotomy, and into verifying (E) so as to exclude vanishing.

In order to establish (E), we have to "guess" a sufficiently good aproximate
minimiser which has lower energy than the limit K/V/f(0) =: Tκ Q of the Tκ ε.
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Fig. 1. The minimum kinetic energy Tκ (note its subadditivity!) and the "vanishing-energy" Tκ >0,

plotted here for the quartic lattice V(φ) = ^(φ2 + </>4). In Sect. 3 we show that these curves always

become tangent at K = 0, for any potential V € C2(R) satisfying V > 0, V(0) = 0, V"(0) ̂  0

If the prescribed potential energy K is large, then it suffices to choose a simple
piece wise linear approximation of the actual travelling wave (see Proposition 2), but
in the low-energy range these and similar crude guesses will have higher energy
than Tκ Q. The reason why much finer approximations are needed in the low-
energy range is the following: If K is small, then (by Lemma l(a) and Lemma l(d))
so is sup\q(z + 1) — q(z)\ whenever T(q) is near its infimum; but for small φ,

V(φ) ~ £ ^"(0)</>2, i.e. the potential behaves approximately like a quadratic, and for

quadratic V the minimum is not attained. That is to say, the smaller the prescribed
potential energy, the "closer" we are to a situation where the minimum is not attained
(see Fig. 1).

The fact that comes to our rescue is that in the low-energy range, the continuum
approximation of the lattice is valid. For example for our two model potentials

V(φ) = \φ2 + \ aφ3(a > 0), V(φ) = \ φ2 4- \ bφ4(b > 0) the standard continuum

approximations are, respectively, the Boussinesq and modified Boussinesq equation,
for which travelling waves exist and are known explicitly; e.g. for the Boussinesq

equation φtt — φxx -f ^ Φxxxx + (aΦ2)xx>
 mese waves have the form q = Λtanh(βz),

where φ = q f . Using these waves as "guesses" for the low-energy waves of the
corresponding discrete systems, one then indeed finds that their energy is lower than
Tκo (Proposition 3). This excludes vanishing, and completes the existence proof.

The method underlying our proof and explained here is quite general and should
also be applicable to other forms of lattice equations.

3. Analysis of the Variational Problem

This section is concerned with the existence of minimisers to our variational problem
(4), and forms the core of this paper. The natural class of functions in which to

seek minimisers is the domain of T, ίq G W^2(E): J q'(z)2dz < ool. Adding the
I R /

normalisation condition that g(0) — 0 makes domain T into a Hubert space

V 2 ϊ(z)2dz
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with the obvious norm and inner product (q,p) = / q'p', \\q\\ — ί / q 2>) . We then
seek to minimise T on the subsets ^ VR /

^κ := {q G X:V(q( + !)-?(•))£ L1^);^) = K} .

The following elementary lemma states that for the physically relevant potentials
V,V(q(- + 1) -<?(•)) automatically lies in L!(R) for all ς G X, collects together
various other basic properties of X, the Λκ, and the minimum values

Tκ := inf T,

for later use.

Lemma 1. Assume V G C2(R), V(0) = Q, V > Q, V > 0 in some neighbourhood
(-<5,<5)\{0} of zero. Then:
(a) For every q G X, the corresponding difference function φ(z) := q(z + 1) — q(z)
has the properties: φ G (70(R), sup \φ(z)\ < \\q\\, φ(z) -+ 0 as z -» ±00.

(b) Γ/z^ map q H-» F(0) A/zαpί X mίo L1 (R), α«J is continuous between these spaces.
In particular U is defined on the whole of X and is continuous, and ̂ κ = {q G
X:U(q) = K}.
(c) The sets ̂ κ are nonempty for all K G [0, oo), hence the minimum values Tκ are
well-defined.
(d) Tκ is a monotone increasing and continuous function of K G [0, oo), and Tκ > 0
for all K > 0.

Proof, (a) follows immediately from the Sobolev embedding Wj^2(R) <-+ C°(R),
together with the elementary estimate

z+\ , z+l 1/2

(5)

z , z ^

< ί W < ( /to7)2) ,

V /

which shows </>(z) — > 0 as z — >• =boo and \φ(z)\ < ||ς||.
To show (b), fix C > 0 and consider g1;g2 G X, ||gj| < C. Let

Qι( H- 1) - Qi('). By (a), max{ 1^(^)1, (02^)1} ^ c for a11 c' hence

sup |y/; =: CΊ and using F;(0) =

2\) \Φ2 -

Now the terms on the right-hand side can be estimated using (5) and the elementary
integral identity

t

f(s)dsdt = τ f(t)dt,
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valid for any / G Ll(R):

z+l

2 = M\2<C2, (6)

and analogously /(</>2 - 0,)2 < \\q2 — <?ιl|2. Consequently

q^\, (7)

proving (b).
To show (c), pick ΛQ > 0 s.t. V(A0) > 0, and consider the functions

i O, z<0

Λz, z G [ 0 , L ] (8)

ΛL, z> L

i
(Λ > 0,L > 1). Clearly qΛL e X, and E7(ςrΛ L) = (L - 1)^(4) + 2fV(Λz)dz,

o
in particular C/(gΛ L) — > oo as L — » oo. Now by the continuity of [/, U(qΛ^)(Λ G
[0, y!0]) attains each intermediate value € [0, U(qΛQ j)], and U(qΛQ^L)(L e [l,oo))
attains each intermediate value G [U(qΛ j), oo), proving (c).

Next, we show that Tκ is nondecreasing with K. Let a < K, and take q G ̂ κ.
Since U(Λq) = 0 at Λ = 0 and = K at Λ = 1, there exists Λ0 G [0, 1] such that
U(Λ0q) = a. Hence

Since ς G ̂ κ was arbitrary, TQ, < Tκ, establishing monotonicity. We now show
Tκ is continuous. In view of the monotonicity of Tκ, it suffices to show that there
exists η(δ) -+ 0(6 -> 0) such that Tκ+δ - Tκ < η(S) for all K > 0, δ > 0. Fix K
and δ. Given ε > 0, pick qκ G ̂ κ such that T(qκ) < Tκ + ε, and consider the
function

r ^ = Jfe(2:)' z-a

\qκ(a) + qAλ(z-a-\), z>a

(with <7Λ ! as defined in (8) and α to be specified shortly). Then q e X, and

α — 1 α

(^κ) + j V(φ) + U(qΛΛ) ,

— oo α— 1

where φκ := gκ( -hi) — ̂ ( ), φ := g( + 1) — g( )• Clearly the first term tends to K
i

and the second term to zero as α — > oo, thus {/(</) — > K+U(qΛ j ) = K+2 J V(Az)dz
o

as α — > oo. Assume without loss δ G (0, 2^(^/1 ι))» an(i define -Λj(ί) := infjyl >

0:U(qΛ ι) = 26}. Now by continuity of U, there exist a G R and Λ < A{(6) such
that U(q) = K + δ, and hence

- T(qκ) + ε <
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Now -Λj(ό) is independent of K and ε and tends to zero as 6 —>• 0 (because V > 0
near zero). Since ε was arbitrary, this establishes continuity. Finally, the fact that
Tκ > 0 for K > 0 follows immediately from setting q2 = 0 in (7). The lemma is
proved.

Now the starting point for addressing the question of existence or nonexistence of
minimisers is the concentration-compactness principle of P.-L. Lions [3]. As pointed
out in that article, this principle is only formal and an appropriate variant of it has to
be rigorously derived for each problem. Here the principle takes the following form:

Lemma 2 (concentration-compactness; compare [3, Lemma III. 1]). Assume that the

potential V satisfies V G C2(M), V(G) = 0, V > 0. Let {qk} be a sequence in W^(R)
such that

sup\\(qky\\L2(^<C, Vk = K,
k J

where K > 0 is fixed and Vk(z) — V(qk(z + 1) — qk(z)). Then there exists a
subsequence, again denoted qk , satisfying one of the following three possibilities:

(i) (compactness) 3yk G Rs.t. Vk( + yk) is "tight," i.e. Vε > 0 ΞLR < oo s.t.
Vk < εVk.

(ii) (vanishing) lim sup / Vk = QVR < oo.
fc->°° yER BR(y)

(iii) (splitting) 3a G (0, K) s.t Vε > 0, 3fc0 > 1 and
s.t for k > fc0,

), ||^||L2(R) < oo,

f Vfdx - a
J

Vfdx -(K -a)

> 0,

dist(supp(gf oc ,

Technical Remark. Under the stronger assumption that {qk} be bounded in VF1)2(IR)
/^and for simple local constraints such as f(qk)2 = K\ this is proved in [3,
V R /

Lemma III. 1]. The construction in [3] of qk, qk via cutoff-functions does not work
here, due to the lack of an a-priori bound on ||g

Proof. The first part of the proof goes as in [3]. We use the concentration functions
of the measures Vkdx, Qk(R) := sup / Vk. By passing to a subsequence we

yGR BR(y)

may assume Qk(K) -+ Q(R) pointswise \/R > 0 for some nonnegative nondecreasing
funtion Q, we let α := lim Q(R) G [0, K]9 and we note α = 0 =Φ> (ii), α = K = >̂ (i).

R— >oo

So all we have to show is "α G (0, K) => (iii)."
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Fix ε > 0, and choose R such that Q(R — 1) > a — ε. Then for k large enough,
Qk(R - 1) > α - ε, hence 3yk e R such that

ί Vk >a-ε. (9)

Furthermore since lim Q(R) = α, we can find Rk —» oo such that
R—>oo

Now for βf G [β, -R -f | (Rk — R)], βf £ [β + | (-R^ — β)? ^
fc], (β^ ^2 to ^e

specified later), define

Then

and distίsuppίgf)7, suppίg^)') — * co. It remains to verify the other statements of
(iii). These can be achieved by an appropriate choice of R\ and R%, as follows.

First of all, for every q e W^QR) with H^H^R) < C one has (letting 0(z) :=

q(z + 1) - g(^)) 0(z) < C for all z by (5), and hence ("letting sup \V"\ =: C^ and
using F(0) - V'(Q) = 0} ^

2V(φ(z)) <

Now recalling V^ = V(^) (̂  := ^(2: -f 1) - q^(z)), dropping the superscript k and
using (11) we have

Γ^f 7(H
R'-1 y/e-Rj-l V z /

ιT( /
yk-R}-l
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and similarly

2/fc+ Rι-ι yk+Rι~l

yk—/t 2 Vk— 2

ί γ <Cλ ί

yk-R2-\ J/fc-«2-l

(g')2 -
J ^ J

Now since /(g7)2 < C2,
R

min / Vj < δ(k),
f ? ι ( ^ Γ / ? F?J-1 ί??A;_f?\Ί J

min F2 < δ(jfe),

R^R^(Rk-R^Rk\yk~^-^k-R^

where
(7 (72 1

δ(k) = -V- Ί > 0 as fc -̂  oo .
2 i (βfc _ R} _ i

Choose Rl9 ^2 so mat me above minima are attained, then

f\v-vl-v2\= I \v-v,

[yk-R2,yk-Rl-\]U(yk+Rl,yk+R2-l]

<2δ(k)+ i V- ( V

< 2δ(k) + (α + ε) - (α - ε) = 26 (k) + 2ε .

Also,

V,+ / V , (12)

M [yk-Rι-l,yk-Rι](J[yk+Rι~l,yk+Rι] [yk-Rι,yk+Rι~l]

r
V, (13)
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where the first term in both (12) and (13) is less or equal to 6(k) and the second term
lies, respectively, in the interval

v, I v C (α — ε, α + ε)

and in

K- I V, K - I V C ((K - a) - ε, (K - a) + ε),

due to (9) and (10). Since δ(k) — > 0 as k — » oo, (iii) follows. The proof of the lemma
is complete.

Our next aim is to investigate whether or not alternatives (ii) (vanishing) and (iii)
(splitting) in Lemma 2 can occur if {g^} is a minimising sequence. A general strategy
as to how to exclude splitting is presented in [3]: Up to minor technicalities, it is clear
that here and in much more general cases, no minimising sequence splits if and only
if the subadditivity inequalities (S) in Lemma 3a below hold true.

For our problem, it turns out that a similar strategy is possible concerning
vanishing: No minimising sequence vanishes if and only if a certain bound on the
minimum energy ((E) in Lemma 3b below) is satisfied.

Lemma 3a (compare [3, Theorem II. 1]). Let V be as in Lemma 2, and let K > 0 be
fixed. Then the following two statements are equivalent:

(not iii) No minimising sequence {qk} C ./&κ of T splits (i.e. satisfies (iii) of
Lemma 2)

(S) TK<Ta + TK_a forallaε(0,K).

Lemma 3b. Let V be as in Lemma 1, and let K > 0 be fixed. Then the following three
statements are equivalent:

(not ii) No minimising sequence {qk} C Λκ of T vanishes (i.e. satisfies (ii) of
Lemma 1),

(not ii)~ There exists ε(K) > 0 such that every minimising sequence {qk} C Λκ

of T satisfies the a-priori estimate

(E) V"(0) TK<K.

Proof of Lemma 3 a. (S) =$• (not iii): Suppose there was a minimising sequence {qk} C
Λκ satisfying (iii) for some α E (0, K). Then defining ak := U(qk ) and βk := U(qk),
letting k — » oo and using the continuity of Tκ (Lemma l(d)) one would obtain

Tκ > lim inf(Γ(g) + Γfo*)) > lim inf(T + Tβ ) = Ta + Tκ_a ,
k— >oo k—>oo κ κ

contradicting (S).
(not iii)=>(S): Assume (S) does not hold, i.e. Ξlα E (0,JQ such that Tκ >

Ta -f Tκ_a; it suffices to construct a minimising sequence in ̂ κ satisfying (iii).

This is easy: Pick minimising sequences q^ C ̂ α, qχ_a C <s&κ-a °ΪT\ by arguing
similarly to the proof of the continuity of TV (Lemma l(d)), we may assume without
loss that the support of the derivatives (q^Y, (<&-&)' is contained in some balls
BRk(ΰ). Then the sequence qk(z) := qk

κ_a(z + Rk + fc) + qk

κ_a(z - Rk - k) + Ck

(Ck chosen so that qk(Q) = 0) has the required properties.
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Proof of Lemma 3b. This somewhat mysterious looking statement relies on the fact
that it is possible to explicitly calculate the limit ε \ 0 of the infima

TKf := inf{T(q):q e Λκ, \\q( + 1) - g( )||Loo(R) < ε} .

(Note that the above subsets of ̂ κ are nonempty and hence the Tκ ε well-defined,
because for small enough ε > 0 and appropriately chosen L(ε), qε L lies in the above
set.) Namely, we shall show

TK -+JL. as ε ^ O , (14)r\ .f. τ / / / / / ~ v \ ' ^ '

where the limit is to be understood as -foe in case V"(Q) = 0. To derive this formula,
we first extimate liminf Tκ from below, as follows: Let {qk} C ^&κ be an arbitrary

sequence such that H^H^oo^ — » 0 (where φk — qk( -f 1) - qk( ) as usual), then by
(6),

z+l

K = fv(φk)<\ sup \V"\ I ί((qk)')2

I HI0*Ίloo, H a l l o o ! I {
M. M. Z

sup \V" -T(qk), (15)
HlΛoo, Halloo]

thus K < V"(0)limMT(qk) and in particular
fc— >00

K < V/f(0)limMTKε.
k— >oo '

This estimate is so good that in the limit ε — >• 0 it becomes optimal. To show
this, consider again the functions qAL defined in (8). Recall that for L > 1,

TO?Λ,L) = \^L and U(qΛ)L) = (L - l)V(A) + 2fV(Λz)dz. Pick Λ0 so small
o

that U(qΛ j ) < K for all A G (0, y!0), then for every such A there exists L(A) > 1
such that U(qΛL) = K. Now

i
(L- l)V(Λ) + 2 (V(Az)dz

K o
- -

Since F(yl) = \ V"(Q)Λ2 + o(Λ2) and L(Λ) -+ oo as Λ -> 0, both the left-hand side

and the right-hand side in (16) converge to Vf/(0) as yl — > 0, consequently

K - y/7(0) lim T(qA

^ '

This establishes (14), and hence proves (not ii)~ <^(E). It remains to prove (not
ii)<£>(not ii)". "=>" is trivial, and to demonstrate "<=" it suffices to show that given
C,ε > 0 there exist εv(ε,C\ R(ε,C) > 0 such that all q G X with | | ςr | | < C,

H0llL~(R) ^ ε satisfy
/

7
sup V(ψ)>ε,. (17)
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Pick y such that V(φ(y)) > ε. By (5), ||0||Loo(R) < C, and /"letting C0 := sup \V
we compute for z > y ^ [-c,C]

z

\V(φ(z)) - V(φ(y))\ < C0\φ(z) - φ(y)\ < C0j(\q'( + 1)| + |</( )|)

and hence

(18)

R

so that (17) holds with r = ( - 1 , ε{ = J(ε - 2CCQ^/z)dz. This completes the
proof of the lemma. \2CCo o

As a reward for all the technicalities above, we are now able to prove the following:

Proposition 1. Let V be as in Lemma 1 , and let K > 0 be fixed. Assume furthermore
that the subadditivity inequalities (S) and the energy inequality (E) hold. Then T attains
its infimum on ̂ κ.

Proof. This is an immediate consequence of Lemmas 2, 3a, and 3b, and of standard
arguments in the calculus of variations. Take a minimising sequence {qk} C ?̂̂
By Lemmas 2, 3a, and 3b, after passing to a subsequence we may assume that {q }
satisfies the compactness property (i) of Lemma 2. By the invariance of T and U
under translations and under adding constants, we can assume that the yk are all
zero, otherwise replace qk by qk(yk -f- •) — qk(y^) Clearly, {qk} is bounded in X,
so we can choose a weakly convergent subsequence qk — ̂  q 6 X. By weak lower
semicontinuity of the norm in X, T(q) < inf T. It remains to show that U(q) = K

-UK
(survival of the constraint). By (i) and the fact that the yk are all zero, all we have to
prove is

V(φk)-+ ί V(φ) as k -^oo V Ή > 0 ,

SΛ(O)

but this is immediate from the compact Sobolev embedding Wl'2(BR(0)) <—*
L°°(BR(Ό)) which implies qk —> g strongly in L°°(BR(Q)).

Note that so far none of our analysis has involved imposing any "constitutive
assumptions" on the interaction potential V (other than the assumption made at the
very beginning that 0 is a local minimum so that the state qn = 0 is a stable equilibrium
state of the Hamiltonian system (1)). We now investigate for which potentials V the
conditions (E) and (S) hold, and it turns out that the answer depends in an interesting
way on the growth behaviour of V.

( V(r)
Proposition 2. Let V be as in Lemma 1, in addition V super quadratic i.e. —«-

strictly increasing with \r J . Then there exists KQ > 0 such that for K > KQ, (E)

and (S) hold; in particular (by Proposition I) T attains its infimum on ̂ κ for all
ί V(r) \

K > KQ. In contrast, ifV is subquadratic ( i.e. —γ~ nonincreasing with \r then

for every K > 0 neither (E) nor (S) hold, and the infimum ofT on ,/&κ is not attained.



408 G. Friesecke, J. A. D. Wattis

Proof. First, for the sake of motivation let us look at exactly quadratic potentials V.

In this case, since V" '= const, (15) and (14) give Tκ explicitly as Tκ = for

all K > 0, and in particular Tκ = Ta + Tκ_a for all a G [0, K]. Hence instead of
the strict inequalities (E) and (S) we have equality.

Now let us deal with the superquadratic case. To begin with, we have

V(r) > \V"(G)r2 (19)

V(r) i
for all r 7^ 0, since — z— increases strictly with rl and tends to ^V"(Q) as r — >• 0.

r2 λ

Now fix Λ > 0 and recall the functions qΛ L defined in (8). To prove (E), it is enough
to find qΛ L G ̂ κ such that

U > V l f 0 T )

.

Dividing by L, letting L — > oo and using (19), we see that (20) holds for L > some
L0, hence (E) holds for K > K0 := U(qA^L).

Remark 1. If V"(ΰ) = 0, then the above argument shows that (E) in fact holds for
all K > 0. If V"(Q) is non-zero, the question as to whether (E) continues to hold for
small K is more delicate and will be addressed after the proof of the proposition has
been completed.

We claim that with this definition of KQ, (S) holds for K > 2KG, and formulate
this as a separate lemma:

Lemma 4. Let V be as in Lemma 1 and superquadratic, and assume (E) holds for
K > K0. Then (S) holds for K > 2K0.

Proof. As pointed out in [3] (Lemma II. 1), it suffices to verify the somewhat simpler

( K~\
1, — in fact strict inequality

a\
is only needed for a > — :

Lemma 5. Let h : [0, K] — > R, and assume

h(θa) < θh(a) Vα G 0, —V V0 G ( l , —
(S) { \ 2j \ a
( } < \K \ / K

h(θa) < θh(a) Vα G — , K , V0 G I 1, —
L 2 / V «

ft(ίf) < h(a) + ft(AΓ - α)/or all a G (0, K).

Proof of Lemma 5 . This is elementary: Assume without loss of generality α > — ,
K K 2

then h(K) < — h(a) and h(K) < — - h(K - α), hence /ι(α) + h(K - α) >
α A - α

a K — a

K
Hence in order to prove Lemma 4, we only need to show that for h(ά) = Ta,

(S) holds for all K > 2K0. This is the consequence of a (simple) scaling argument,
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together with the (nontrivial) fact that for q near the minimum of T, the higher-
than-quadratic terms of V really contribute to U(q), since by (E) and Lemma 3b the
maximum l l φ l l ^ is bounded away from zero. So assume K > 2KQ and fix a G (0, K),

θ G ( 1, — . We only deal with the case a > — -, the other case being easier. By
2

(E), Lemma 3b, and the boundedness of minimising sequences, 3ε, C > 0 such that
T = inf T, where

Ct ,,

</όa,ε,C

Λa^c := {q € X:U(q) = a, Hφ^ > ε, \\q\\ < C} .

By (18), there exists α0 > 0 such that

Also, let

a . V(λr)
Or. := mm

He[f,c]λ21

and note ^0 > 1 (by the superquadraticity of V). Now take q G ̂ αεc. Since

U(Xq) = a at λ - 1 and U(Xq) = U(Vθq) > ΘU(q) = θa at λ = Vθ, there exists
X(θ, q) G [1, Vθ] such that U(X(Θ, q), q) = θa. We show that λ(0, q) is in fact strictly
smaller than Vθ:

ί
j

V(Xψ)+ V(Xφ)

>λ2 V(φ) + Θ0\
2 V(φ)

i.e. λ < λ0 where

λ0 =

1/2

Consequently

Tθa< inf T(X(θ,q)q)<λ2

0 inf T(q)=,_ .. f Λ .. Γα,

proving (S). The proof of Lemma 4, and thus of the first part of the proposition, is
complete.

Finally, we deal with the case of subquadratic potentials V. Fix K > 0. To show
nonattainment, in view of (14) it suffices to show that

U(q)< V"(V)T(q) \/q£,^κ. (21)
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This follows from a slight refinement of the estimate (15) used in the proof of

Lemma 3b. First of all, analogously to (19) we have V(r) < \ V"(Q)r2 Vr G R. Also,
b

we use the fact that in the Schwarz inequality / fg < \\f\\L2(a^\\g\\L2(a^}, equality
α

occurs if and only if one function is a multiple of the other. Now since q G ,s£κ and
K > 0, /(gO2 < co and q' φ 0, thus there exists z G R such that q' φ const on the

R

interval (z,z+ 1), hence

/ z+l ^ 2 z+l

U(q) < \ V"(0) f ( f q'\ <\ V"(0) f ί (q')2 = V"(0)T(q) .
J \ J I J J
R ^ z / R z

proving (21). Hence the infimum of T is not attained. Also, (21) clearly contradicts

(E), and finally (S) cannot hold since (14) and (21) show Tκ = — — — for all K. The
proof of the proposition is complete. ' '

In the last part of this section, we investigate the question of attainment in the case
left open by Proposition 2, namely superquadratic potentials V (with nonvanishing
second derivative at zero) but low energies K. In this case it is more difficult to
establish existence than in the high energy range, since - as remarked in Sect. 2.
- the smaller the prescribed potential energy, the "closer" we are to a situation
where the minimum is not attained. Precisely, combining (13) and Lemma l(a),
K < Tκ - sup \V"\, hence by Lemma l(d),

K ~
0 (K -> 0) (22)

f where Tκo := limTK ε = K/V"(G)\. This implies that if we want to find
V ' e_>o ' )
q G J&K with T(q) < TKQ, then the allowable error by which the energy of

its normalised shape function g/||0||^2 (normalised so that the difference function
φ/\\φ\\L2 has L2 -norm one) may differ from the energy of the normalized shape
function of an exact minimiser g0 becomes arbitrarily small as K — * 0, because for
such q,T(q/\\φ\\L2) - T(g0/||00||L2) - 0 [by (22)].

The result below grew out of the effort to deal with the (symmetrised) model

potential V(φ) = \φ2 4- ^α|</>| 3, whose continuum limit (the Boussinesq equation)

possesses exact travelling waves of the form q(z) = Λtanh(/3z), so that for low
energies the waves on the lattice whose existence we want to establish can be expected
to be well-approximated by these functions. It turns out that these "guesses" are good
enough to establish (E) for a larger class of potentials:

Proposition 3. Let V be as in Lemma 1, V superquadratic (recall that then automat-

ically V(r) > - V"(Q)r2 Vr ^ 0), in addition V( ) superquadratic with a sufficiently

large algebraic rate in some neighbourhood of zero, i.e.

V(r) = \ V"(0)r2 + ε\τ\p + o(rp) as r — > 0, for some ε > 0 and some 2 < p < 6 .

Then (E) and (S) hold for all K > 0; in particular (by Proposition 1), T attains its
infimum on ̂ κ for all K > 0.
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Proof. In view of Lemma 4, it suffices to prove (E). As motivated above, we will
use the functions qAβ(z) = ΛtSinh(βz). First we shall show that given K > 0,
there is a Λ(β) such that U(qAβ) = K\ and subsequently that the inequality

V"(Q)T(qΛ^) < U(qAβ) holds. We perform this by expanding U(qA β) and
for small β as a power series in β. Clearly qΛ β(z) G X, and

, _ / , ι \ /
ΨΛβ ''— QΛ,β(z ~ι~ 2) ~ QΛ,β(

We expand φA^ as a power series using: 2tanh(/3/2) ~ β — -^β3 + O(β5), and

~ I + x 4- 0(x2). Hence
1 - x

^ = A [β - ^ /33 + O(β5)] [\ + \β2 tanh2(/3z) + O(β4)} sech2(/3z)

L 4 12 -1

where here and below the o, 0 notation refers to behaviour as β —> 0. It is
straightforward to calculate q'A β(z) = Λβsech2(βz), hence

ί

E

Calculation of Z7(#) requires a little more effort. Before we can expand V(φ), we need
to estimate the term βΛ(β) « sup \φ(z)\ to show that the o(\r\p) = o(\\φ\\^) term can

be ignored (i.e. βΛ(β) - 0(1 )X
By (19), Λ(/3) will be smaller than the solution -Λ0(/3) of the equation

The left-hand side of this simplifies to: i V"(0)Λ§[/32 + 0(/34)] /

i y"(0)yl^[l + 0(/32)] / sech4 xdx. Hence R

R

y!0/?[l H- 0(/32)] 2 V/7(0) / sech4 xdx = K,

r(β} ^

and

We are now in a position to expand U(qA β), knowing the order of magnitude of

Λ is at most /3"1/2. Firstly we expand V(φ),

= i Λ2V"(0) [β2 + i /34 tanh2(/?2) - i /34 + O(/36)] sech2(/3z)

o(/3p)] sech2(/30) + o(Λpβp sech2p(βz)) .
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Hence the expression for U(qΛ ^),

VA^ = \<U(qΛ)=Λ2βV"(<S)
Γ

sech4(x)dx - β2 I (\ tanh2 x - |) sech4(x)dx +O(β4)
j

f

C2

Thus we have an asymptotic expression Λ(β) = ^/K/Clβ -f o(β~1/2).
Finally, we need to check that the inequality V/f(Q)T(qΛ^) < U(qA^) holds. The

kinetic term is exactly equal to the highest order (O(Λ2β)) potential term, so the
highest order terms cancel and we are left with

= \ Λ2β3V"(0) [C2 + 0(β2)] + εΛpβp-{ sech2p(x)d2 x

R

= 9lβ
2 + o(β2) + g2β

p/2~l + o(βp/2~l) ,

where ^,#2 are constants (depending on K,C\,C2 but independent of /?, Λ), and
g2 > 0. (Without calculation we know g± < 0 because otherwise, for the exactly
quadratic potential the inequality would hold for small /?, contradicting Proposition 2.

In fact, #} < 0 since one calculates C2 = "45-) Hence provided p/2 — 1 < 2, the

inequality is valid for sufficiently small β. The condition forces p < 6, as bound which
could be raised if a sufficiently accurate estimate for the waveform can be found, e.g.

by using the continuum limit of the lattice for the potential V(r) = 2 V
f/(0)r2 + εrp '.

However, for physically relevant potentials the results derived above are sufficient. It
is feasible that the cubic coefficient of its Taylor expansion at zero would vanish due
to symmetry arguments, but the quartic would then generically be non-zero.

4. Are the Minimisers Travelling or Standing Waves?

In this section we show that the minimisers constructed in Propositions 2 and 3 are
indeed solutions to the travelling wave equation (3). While it is - up to fine points of
rigour - clear that minimisers are solutions to the Euler-Lagrange equation

q"(z) - \(V'(q(z + 1) - q(z)) - V'(q(z) - q(z - 1))) = 0 (23)

(for some Lagrange multiplier λ G R), the issue here is to determine the sign of λ.
Note that only solutions of (23) with λ > 0 give rise to a travelling wave on the
lattice, otherwise (i.e. if λ < 0) one would instead obtain a "standing wave."

Lemma 6. Let V be as in Lemma 1, in addition V increasing (decreasing) for r > 0
(r < 0). Let K > 0, and let q G ̂ &κ be a mίnimiser ofT on Λκ. Then q G C2(R),
and q satisfies (23) for some λ > 0. In particular , q solves the travelling wave equation
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Proof. Let q G ̂ κ be a minimiser of Γ. Clearly, q also minimises T on the larger

set Jffκ := {g G Y:U(q) = K}9 where Y := {q G W^c (R): Hg'H/,2^ < 00}
(without the constraint q(Q) = 0). It is standard to check that U - despite being
an integral over an infinite domain - is Gateaux-differentiable as a functional from
Y to R, and that its derivative is the functional obtained by differentiating the
integrand. Indeed, letting q,ζ G y, denoting the associated difference functions by
φ,ψ, letting CΊ := sup \V"\ and estimating as in the

[-\\Φ\\L°°-\\Ψ\\L^
proof of Lemma l(a), for all |ε < 1

V(φ + εψ)-V(φ)

hence by dominated convergence lim - exists and equals J V'(φ)ψ.
ε^O ε R

Now consider the maps /(ε, t) := T(q + εζ + ίg), #(ε, t) := U(q + εζ + ίg) Then #

satisfies the transversality condition V#(0,0) ^ 0 ί since — (0,0) = fV'(φ)φ and
\ V vt R

F/(r)r > 0 for all r 7^ 0 by hypothesis J , hence by the Lagrange multiplier rule there
exists λ G R such that /

J(q'ζ'-XVf(φ)ψ)

The second component shows λ independent of ζ and λ > 0, and (since ζ G Y
was arbitrary) the first component states that q is a weak solution of (23). By

the Sobolev embedding W^(R) --> C°(R), ρ G C°, thus the nonlocal term

V'(φ) = V'(q( + 1) - g( )) G (7°, hence by (24) g G C2, and q is a classical
solution of (23). (Clearly, provided V G C°°, we can iterate the argument, giving
q G C°°.) The proof of the lemma is complete.

5. Monotonicity of the Minimisers

Here we show that for symmetric interaction potentials V, the minimisers constructed
in Propositions 2 and 3 must be monotone functions. Due to the nonlocal nature of
the constraint subject to which one minimises, this is not immediately obvious. In
fact numerical simulations and asymptotic analysis suggest that if the Hamiltonian (1)
is changed to incorporate next-nearest neighbour interactions as well, monotonicity
breaks down.

Lemma 7. Let V be as in Lemma 1 , in addition V symmetric ("i.e. V(r) = V(—r)) and
super quadratic. Let K > 0, and assume q G ̂ κ is a minimiser ofT on ,/&κ. Then
q is a monotone function; in particular its difference function φ is either > 0 or < 0.

Proof. Take a minimiser q G *^κ, and consider the function

z

q(z):= j\q'\
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lOO / ίO)

/

Fig. 2. Hypothetical shape of q, and the functions <?, q used in the Proof of Lemma 10

Denoting the corresponding difference function by φ, we claim first of all that

φ(z) = \φ(z)\ for all z G M. (25)

">" is clear. Now suppose for contradiction that φ(zQ) > \φ(zQ)\ at some ZQ. Then

by the continuity of φ and φ (see Lemma l(a)), φ > \φ\ on some neighbourhood

of z0, hence by the symmetry and strict monotonicity of V, V(φ) > V(φ) on this
neighbourhood, and thus U(q) > U(q). Consequently, there exists λ e (0,1) such that
U(\q) = U(q), so that Xq € Λκ. But since (by the definition of q) T(q) = T(q), we
compute

contradicting the fact that q is a minimiser. This establishes (25). Now suppose q was
not monotone, i.e. suppose there exist o, b G R such that <?'(α) < 0, </(&) > 0. (Note
that by Lemma 6, q' is not just an L2 function but a continuous function, so it makes
sense to speak of its pointwise values.) By (25),

z+l z+l

/, for all z

thus on each interval [z, z+ 1] of length one, either q' > 0 or qr < 0. Therefore, there
exist zl9 z2 G (o,6) (e (6,α) in case b < a) with z2 - zλ\ > 1, q ' \ [ Z l t Z 2 ] = 0. Choose
2 , z so that in addition

= 0 for i = 1,2. (26)

Now consider the function
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Since \z2 ~ z\\ > 1, we compute

U(q)-U(®= I V(q(z+l + (z2-zl))-q(z))
J

zλ-\

J J
- I V(q(zl) - q(z)) - I V(q(z + 1) - q(z^)

j j

= ί (V(r{(z) + r2(z)) - V(rι(z)) - V(r2(z))),

! (z) = q(Zi) - q(z) (> 0), r2(z) = q(z + 1 + (̂  - ̂ )) - q(zj (> 0). Now by the
superquadraticity of V, V(rl + r2) > VX^) + V(r2) for all r1? r2 > 0, with equality
if and only if one of the ri is zero. By (26), there exists z G [zl — 1, z{] such that
both r jOz) > 0 and r2(z) > 0 hence f/(|) > U(q). We now arrive at a contradiction,
by arguing as in the proof of (25): U(Xq) = U(q) for some λ G (0,1), and

T(Xq) = \2T(q) < T(q) = T(q) = T(q),

contradicting the fact that q is a minimiser. The proof of the lemma is complete. As
a corollary, we can finally prove our existence theorem:

Proof of Theorem 1. Applying Propositions 2 and 3 and Remark 1 to the Hamiltonian
with symmetrised interaction potential V (as defined in (P4)) gives existence of
minimisers qκ for the claimed ranges of K. If qκ is a minimiser, then trivially

so is —qχ9 and by Lemma?, either V = V on range (φκ) or V = V on range
(—φκ). Hence by Lemma 6, either qκ or —qκ is a solution of (3), and satisfies (PI),
(P4). (P2) follows from Lemma l(a). Finally, (P3) is an easy consequence of (24) and

V(r)
the energy inequality (E), as follows. Since — -̂ increases with |r|, by differentiating
we obtain r

\V'(r)r > V(r) Vr 6 A .

The second component of formula (24) with A = c2

K, the above inequality, and (E)
(which must hold by (19) and (6)) give

τ(qκ) -τ(fer
 w >

completing the proof of the theorem.

6. The Lennard-Jones Potential

In this section we deal with singular potentials like the Lennard-Jones (6, 12) potential

)~12 — 2d~6(d + φ)~6 + d~12), ώ > —d

+ oo, φ < -d
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describing the interaction between particles in the microscopic theory of classical
fluids. Due to their singularity, these potentials do not fit directly into the framework
of Theorem 1, but require a little extra work. The result of this section is

Corollary 1. Let V(φ) = < ° ' 7 for some d > 0, and assume that
[ -h oc , φ < —α

V0 G C2(-d,oc), VQ > 0, yo(0) - 0, VQ superqwdratίc on (-d,0), ^"(0) φ 0,
and that hypothesis (H2b) of Theorem 1 holds. Then for all K G (0, KQ) (and some

KQ > - V f f ( Q ) d 2 ) , the Hamiltonian system (1) admits a solitary wave qκ with finite

kinetic energy and average potential energy K (i.e., there exists a solution qκ G C2(R)
ofEq. (2) with T(qκ) < oo, U(qκ) = K), with the properties:

(PI) -d < φκ(z) < 0 for all z G R

(i.e. qκ is a compression wave, and respects the physical constraint that ίnterpene-
tration of matter is forbidden and the lattice sites stay ordered), and properties (P2),
(P3), (^4) of Theorem 1.

In particular, the corollary applies to the Lennard-Jones potential (27), which was
shown in Sect. 2 to be superquadratic on (—d, 0) and which satisfies (H2b) since
V"'(Ό) < 0.

Proof. The proof relies on a simple cutoff-argument which makes Theorem 1 appli-

cable. Fix ε G I 0, - 1, and choose a cutoff-function rf G C°°(R) with η = 0 on

(—00, — d + ε), η = I on (—d + 2ε, oo), η' > 0. Let p be the exponent from (H2b),
and choose Cε so large that

Wε(r) := ^p- r2 + C\r\p > V(r) for r G ( - d + ε,0),

and define a smooth potential on the whole of R by

Wε(r), r<-d

η(r) V(r) + (1 — r/(r)) Wε(r), r > — d.

Using the superquadraticity of V and W and the fact that η' (V — W) < 0 on (—00,0),

'Vε(r)\'
one immediately checks —^— < 0(r < 0), thus Vε is superquadratic on

V r2 J
(—00,0). Clearly also Vε satisfies hypothesis (H2b) of Theorem 1, hence Theorem 1
applies and for all K > 0 we obtain existence of solutions qε

κ to the equation

<?q"(z) = (Vε)'(q(z + 1) - q(z)) - (Vε)' (q(z) - q(z - 1)),

which have average potential energy Uε(qε

κ) — K. Since Vε = V on (—d -f 2ε, oc),

it only remains to prove that for K < |v"(0)d2 and appropriately chosen ε,

φε

κ(z) > -d + 2ε for all z G E. Now by Lemma l(a) and the energy inequality
(E), we can bound the supremum of \φε

κ(z)\:

sup \φ*κ(z)\ < \\q£

κ\\ =
IK \ 1 / 2

—

( ( 2K \ ̂ 2\
d- ί — — — j j, then φε

κ(z) > -d + 2ε

for all z9 as required. The corollary is proved.
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7. Nonexistence for Quadratic Potentials

For the convenience of the reader, we include a brief rigorous proof of the well-known
fact (which complements our existence theory above) that in the case of a quadratic
potential V, no solitary waves exist.

Lemma 8. Let V(r) = - r2(α £ R). Then Eq. (3) does not admit any nonconstant

solutions q G C (R) with finite kinetic energy T(q) < oo.

Proof. Via the substitution φ(>) — q( + 1) - #(•), Eq. (3) transforms into

cV' - v'(0+) - 2V(0) + v'(φ_) , (28)
where 0± = 0( ± 1). Now by (6), solutions q of (3) with finite kinetic energy
correspond to square-integrable solutions φ of (28), and can thus be found using the
Fourier transform (which is well-defined as a mapping (L2(R) —» L2(R)): if φ solves
(28) and φ denotes its Fourier transform,

φ(k) = (27Γ)-1/

then —k2c2φ(k) — 2(cos/c - l)α$(fc), hence $(&) = 0 almost everywhere, and thus
0 Ξ 0, implying q = const. This proves the lemma. Note that if instead of finite energy
waves φ £ L2(R), we allow waves whose Fourier transforms are distributions, the
above equation admits solutions φ9 consisting of finite sums of Dirac delta-functions;
then φ(z) is a superposition of linear waves, i.e. it will be a quasi-periodic delocalised
wave, and consequently have infinite energy.

8. Finite Lattice

On a finite lattice with TV particles, having the Hamiltonian

N

n=l

our variational formulation of the question of existence of travelling waves can of
N

course also be used. In this case we minimise T(q) = f q'(z)2 dz on the Hubert space

X = {q e W^c

2(R):qf(z + N) = q'(z) a.e., ςr(0) - 0} with norm ||g||2 - / \qf(z)\2dz)
N 0

subject to the condition U(q) = / V(q(z+ 1) — q(z))dz — K. Due to the boundedness
o

of the domain, here the constraint is weakly continuous on X (for arbitrary potentials
V e C°(R)), hence unlike in the case of an infinite domain, existence of minimisers
(for any K such that Λκ := {q £ X:U(q) = K} is nonempty) is straightforward.
So we only have to assume V £ C^CR), V(Q) = 0, V(r) increasing (decreasing)
with r > 0(r < 0) and V(r) — > oo as |r| — >• oo (to guarantee ,/&κ nonempty for
all K > 0), and obtain existence of a travelling wave with potential energy K for
all K > 0, regardless of whether the interaction potential is super- or subquadratic.
(A similar argument has in fact already been used in [21] to establish existence of
periodic travelling waves for a class of Lennard- Jones type potentials.) Note, however,
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that these simple arguments give no indication of how localised these travelling waves
are for large N, and do not detect the "phase transition" seen on the infinite lattice
when passing from superquadratic to subquadratic nonlinearities.
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