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Abstract. In this paper we study some problems arising from the theory of Quantum
Chaos, in the context of arithmetic hyperbolic manifolds. We show that there is
no strong localization ("scarring") onto totally geodesic submanifolds. Arithmetic
examples are given, which show that the random wave model for eigenstates does
not apply universally in 3 degrees of freedom.

1. Introduction

Let X — Γ\H2 be a compact hyperbolic surface, with Γ c PSL(2, R) a discrete co-
compact subgroup, and H 2 the hyperbolic plane. As is well known, the geodesic flow
on the unit cotangent bundle S*X is ergodic, Anosov and displays chaotic features
[1]. Denote by Δ the Laplace-Beltrami operator for X, and by λ̂  (respectively φ )
its eigenvalues (resp. an orthonormal basis of eigenstates). Δ is the quantization of
the Hamiltonian generating the geodesic flow. For this reason the behaviour of λ̂
and φ- has been studied extensively in the context of Quantum Chaos. One of the
central questions is whether the φj 's behave like random waves, or if they display
some localization or other structure related to the classical trajectories. In the case
of the billiards in the Bunimovich stadium (which is a somewhat more complicated
chaotic system), Heller [11] unexpectedly found that certain states are enhanced on
a finite union of periodic (unstable) orbits. He called this phenomenon "scarring."
In our case, the numerical evidence [9, 2, 3] points to the eigenstates behaving like
random waves. We refer to Heller [11] for a discussion of random waves.

In this paper we examine these issues for Γ arithmetic, in fact for certain
congruence subgroups derived from quaternion algebras. These are of course special,
but in connection with the questions at hand we expect that our results are typical of
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the truth in the general case. Note however that in connection with the statistics of
the spectrum, arithmetic and non-arithmetic groups display quite different behaviours
[2, 3, 4, 16].

Define the probability measures μ- on X by

dμ^lψjiztfdvoliz). (1.1)

The quantum mechanical interpretation of these probability measures, as the prob-
ability density for finding a particle in the state φ at the point z, is well known.
A (weak-*) limit v of the sequence μ will be called a quantum limit. A general
result due to Schnirelman [19], Zelditch [23], Colin de Verdiere [6] asserts that if the
geodesic flow on S*(X) is ergodic then for almost all j , μ3- —> dvol. In fact one can
define an appropriate extension μ3- of μ3- to phase space T*(X) and they show that
any limit v of μ- is invariant under the geodesic flow. While this restricts the set
of possible z>'s, it is a basic feature of chaotic systems that the set of such invariant
measures is very large and complicated, as are its typical members. The simplest
and most localized such measure is the arc-length measure supported on a union of
periodic geodesies. Whether these could occur as quantum limits has been raised by
Colin de Verdiere on a number of occasions [6]. It is related to Heller's scarring in
its strongest possible form. Since the latter concerns enhancement of probabilities, we
define

Definition 1.1. A subsequence μ3- is said to scar strongly to a closed subset S C X

if μ3- —• v and 0 ̂  singsupp v C S.
For Γ C 5L(2, R) derived from an Eichler order in a quaternion algebra over Q

(see Sect. 2 for definitions), there is a commutative self-adjoint Hecke algebra 3@ of
arithmetically defined operators on L2(X). Moreover 3% commutes with Δ. Hence we
may and will assume that φ3 are also eigenfunctions of 3$. This is probably automatic,
since all evidence points to the spectrum of Δ being simple (except for multiplicities
imposed by finite symmetry conditions). In any event, such eigenfunctions are the
arithmetically interesting ones. The following asserts that strong scarring on closed
geodesies for such X is impossible and in particular answers the above question of
Colin de Verdiere for these surfaces.

Theorem 1.1. Let X — .T\H2 be an arithmetic surface derived from a quaternion
algebra as above. Let v be a quantum limit and σ the support of its singular part vs.
Then if σ is contained in the union of a finite number of points and closed geodesies
then σ — 0.

The theorem asserts that if vs has support in a finite union of closed geodesies then
v is absolutely continuous with respect to dvol. Theorem 1.1 is a first step towards
proving that the μ3 are individually becoming equidistributed.

Conjecture (Quantum unique ergodicity). Let X be a compact manifold of negative
curvature. Then the measures μ3 converge to dvol.

If this is true it is remarkable, since it asserts that at the quantum level and its
semi-classical limit, there is little manifestation of chaos from this point of view. In
particular, one would have quantum unique ergodicity (i.e. only one possible quantum
limit) while classical unique ergodicity (i.e. uniqueness of the invariant measure for
the Hamiltonian flow) is never satisfied for chaotic systems.
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Our methods can be extended to hyperbolic 3-manifolds Γ\H 3 , where Γ c
SX(2, C) is derived from a quaternion algebra over an imaginary quadratic number
field of class number 1. In this case the result asserts that there is no strong scarring
on proper closed totally geodesic subspaces, i.e. finite sets of points, closed geodesies
or closed immersed hyperbolic surfaces.

All of the above is consistent with the random wave theory and indeed for n = 2
this seems to be the true picture. However for n = 3 and Γ arithmetic we now show
that the random wave picture does not apply universally. The model of random waves
requires that the extrema of the eigenstates do not grow too rapidly with the energy
λ. In particular [9] that

' (1.2)

This is to be compared with what is known for a general compact manifold [22],

f l ) / 4 (1.3)

For n — 2, (1.2) is consistent with what can be proven about the L°° norms of the
eigenstates [14]. The following concerns n = 3. Let F(x), x = (X1,X2<!XT),XΔ) be an
integral quadratic form of signature (3,1). V = {x:F(x) = —1} is a two sheeted
hyperboloid giving a model for H 3 . Let Γ = O(F, Z) be the group of integral 4 x 4
matrices preserving F. We assume that F is anisotropic over the rationals, that is
F(x) φ 0 for 0 φ x G Q 4 , then it is known [5] that XF = Γ \ H 3 is a compact
hyperbolic 3-manifold (arithmetic).

Theorem 1.2. Let XF be as above Then there is a sequence φj of eigenstates
satisfying

This is proven using SiegeΓs theory of theta functions. Indeed the eigenstates
above with this singular behaviour are "theta lifts." That theta lifts are singular in
other aspects and contexts is not new - for example the failure of the "Ramanujan
conjectures" [13] or the Sato-Tate conjectures. The reason for this behaviour in
Theorem 1.2 is beautifully illustrated in the following special example: Let

F(x) = x\ + x\ + x\- Ίx\ , (1.5)

and as before V = {x:F(x) = -1}, Γ = O(F,Z)9 Y = Γ\V.

Theorem 1.3. Let P = (2,1,1,1) G Y, then for all the cR3 eigenstates ofY with
~ < R (R —> oo) at most O(R2) do not vanish at P.

The fact that there so many eigenstates that vanish at P is what forces those that
don't to be very large at P. It is an interesting problem to explain the geometric source
(rather than arithmetic) of these singular eigenstates and the above vanishing at P. In
view of (1.2) and Theorem 1.2, these O(R2) singular eigenstates do not behave like
random waves.

The results of this paper were announced in the Schur lectures [18]. In those
lectures further background on quantum chaos and related results may be found.
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2. Non-Scarring

2.1 Correspondences

We begin with a general observation related to localization of eigenfunctions of
Hecke operators. Let X be a Riemannian manifold. A correspondence C on X is
a multivalued map given locally by

C:x .-> {^(x), S 2(a0,..., S r(z)} , (2.1)

where each branch Sj(x) is locally an isometry and C is globally well defined.
Associated to such a correspondence we have a Hecke operator TC:L

2(X) —» £ 2 (X)
defined by

Γc/W^/(^). (2.2)

Definition 2.1. Let Λ. C X be a closed set. We say that a correspondence C separates
A if there is a point 2 G X - Λ. such that CzΠΛ consists of exactly one point. That
is to say, Sxz = w G A and Sj-z φ A for j = 2 , . . . , r.

Lemma 2.1. L^ί i c X k closed and of zero volume, and let C be a correspondence
which separates A. If φj is a sequence of eigenfunctions of Tc with \\φj\\ = 1 and
v — lim \φAz)\2dvo\(z) exists, then the singular support of v cannot equal A.

Proof By assumption,

r

\ά(P)φά(x) = φά{Sλx) + Σ φj(Skx). (2.3)
k=2

Moreover, for all j

\λj(P)\<r. (2.4)

Let z, w be the points whose existence is ensured by Definition 2.1. Let U be a fixed
small neighborhood of w in A. Now if singsupp(zz) = A, we have

v{U)φQ. (2.5)

For a decreasing sequence εn \ 0, set

(jn = {xeχ: d i s t ( X 5 u) < εj . (2.6)

Then Un 2 Un+ι and Π Un = 17. Hence i/(ϊ7n) \ i/({7) as n -> 00.
n=l

For n large enough (and ί7 small enough but fixed), let Vn be the corresponding
neighborhood of z so that

and
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From (2.3), (2.4) and the Cauchy-Schwartz inequality we have for n sufficiently large,

ί\φj(Sιx)\2dx= ί\φ.(x)\2dx

J~^ r
>j(x)\ldx ] .

Vn k=2

Letting j —> oo, we conclude that

HUn) < r \ rv(Vn)

Finally, letting n ^ o o w e have

HU) < r ί risiV^) + ̂  HS^V^)) j , (2.7)

where V^ = S~ι(U).
Now V^ and Sj^V^ all have zero volume and since we are assuming v is absolutely

continuous with respect to d\o\ outside A, it follows that the R.H.S. of (2.7) is 0.
Hence v(U) — 0 which contradicts (2.5). This proves the lemma. D

2 2. Quaternion Algebras

We next show how Lemma 2.1 may be used when X is a hyperbolic manifold derived
from a quaternion algebra, and A is contained in a finite union of closed totally
geodesic subspaces. We begin with a quick review of quaternion algebras over Q.
For details (and proofs) of what follows see Eichler [8]. Let α, b e Z be square-free

integers with (say) a > 0. Let A = ί —— J be the corresponding indefinite quaternion

algebra, which is defined as follows: Elements of A are

a = x0 + Xχθθ + x2Ω + X3UOΩ , (2.8)

where
cj2 = α, i?2 = 6, ωi? + i?^ = 0 (2.9)

and a^ G Q.
The trace and norm maps are defined for a as in (2.8) by

tr(α) = a + ά , JV(α) = aά , (2 10)

where ά = x 0 — a^α; — x 2 ^ ~ 3
We assume that A is a division algebra, which is equivalent to N(a) ^ 0 if a -φ 0,

i.e. that the rational quadratic form N(a) = x$ — ax2 + 6a?2 — abx2 is anisotropic over
Q. Fix once and for all an embedding of A into the 2 x 2 real matrices by setting

b(x2 — x v a ) x x / a J
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φ is an algebra homomorphism, and in fact extends to an isomorphism φ: A ®R R —>
M2(R).

Note that for a G A, we have </>(α) G M 2(F), where F = CK^/α). Indeed, if we
set ξ = x0 + x{ y/a, and η = x2 + x3 y/a, then α = ξ -f r i? and

<K<*)=(f>- V

E) (2.12)

We also observe that det^(α) = N(a), tr φ(a) = tra. In what follows, we omit
explicit mention of the embedding φ:A ̂  M2(F). It is understood that writing az
for z G H 2 means the linear fractional transformation corresponding to the matrix
φ(a). Likewise for the action on binary quadratic forms below.

An order R in A is a subring containing 1 and for which tr(α), N(a) G Z are
integers for all a e R, and such that R contains 4 linearly independent vectors over Q.
For example, Ro = {α = ξ + 774?:ξ, 77 G £5^} is an order, where ^ are the integers
of F. We consider maximal orders (or more generally the orders (p, q) defined in
Eichler [8]). The reason we do so is technical - such orders have class number 1,
which makes calculations much simpler. It is quite likely that our methods extend to
general orders and quaternion algebras defined over general number fields. Let R be
a maximal order containing iϋ0; since A is an indefinite quaternion algebra over Q,
it is unique up to conjugation in A. For a suitable integer D, we have DR C Ro.

For m e Z let R(m) be defined by

R(m) = {ae R:N(a) = m} . (2.13)

R(l) is the group of units (of norm 1) in R and it acts on R(m) by multiplication
on the left. Under this action, R(m) decomposes into a finite number of orbits. As
long as (m,g) = 1, where q = q(R) is a fixed integer, the behaviour of the orbits
R(l)\R(m) is simple. For example [8], for p a prime

\R(l)\R(p)\ = p + l . (2.14)

In what follows, we restrict ourselves to the case (m, q) = 1.
Let ΓR be the image of R{\) under the embedding φ in (2.11). It is a lattice in

5L2(R), and the quotient

A^> = 1 ̂ \ x l \LΛJ)

is a compact hyperbolic surface (since A is a division algebra). For m as above, we
have modular correspondences T m : XR —> X β (which of course fit into our general
definition given earlier), defined by

fm:z»φ{R(\)\R{m))z. (2.16)

The corresponding Hecke operators on L2(XR) are denoted by T m , and are given by

• Σ
aeR(l)\R(m)

Σ, f(Φ(^z)' ( 2 1 7 )

An element a e R is primitive if there is no rational integer t > 1 such that a/t G i?
The set Rpr(rri) — {a G R(m): a primitive} is invariant under multiplication by -R(l)
and so we can define a modular correspondence C m by

C m : £ ^ U 0(α)s. (2.18)
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The corresponding Hecke operators are also denoted by C m , and they satisfy the
following properties:

(1)

(2)
(3)

(4)

τn

T*
T

n

i = L Cm/t^
t2\m

[ = Tm (self-adjointness);
Tm = Σ dTmn/d^

d\(n,m)
, commutes with Δ.

m

In view of (2), (3), (4) above we may simultaneously diagonalize Δ and Tm, for
(m,q) = 1. Let φj be an orthonormal basis (o.n.b.) of simultaneous eigenfunctions.
Our results about non-scarring are (proven) only for such an o.n.b. In view of
Lemma 2.1, the main theorem will be established once we show that if A c XR

is contained in a finite union of closed geodesies (or points), then there is a
correspondence C m , (m,q) = 1, which separates A. The next two subsections are
devoted to proving this.

2.3. Binary Forms

First we recall the relation between binary quadratic forms, points in H 2 and closed
goedesics. Let M — [a,b,c], a,b,c £ R be the binary quadratic form

M(x, y) = ax2 + bxy + cy2 .

1
c

a form M whose discriminant d < 0, we associate the root z(M) of M(z, 1) = 0
with lm(z) > 0. In this way the action of g £ 5L2(R) by a linear fractional map
corresponds to the map on symmetric matrices M ι-» M[g] = gtτMg. Specifically,
we have z(M[g]) = g~1z(M). Of course, all forms proportional to M give rise to the
same point in H 2 so that we think of H 2 as proportionality classes of binary quadratic
forms with negative discriminant. If d > 0 the roots of M(z, 1) = 0 are both real
and we associate to the class of M the geodesic in H 2 which connects these two
roots. Again the linear fractional action of g £ SL(R) on the geodesic corresponds
to M ι-> M' = M[g] as above. The following is the key lemma:
Lemma 2.2. Let M, M{,..., Mr be a finite set of binary quadratic forms. Then there
are infinitely many primes p such that

We will also represent M by the symmetric matrix M — \ Ί . 1. To such

W 2 c )

for any primitive a £ R of norm p or p2.

This lemma says that one can separate one (class of) forms from any finite set of
forms by a modular correspondence.

We start by making a reduction to the case that all the forms M, Mx,..., Mr in
Lemma 2.2 are proportional to F-rational forms, that is to say, if M — [A,B,C]
then after multiplying M by a constant, we have A,B,C € F. Recall that there is
an integer D such that DR c Ro.

Lemma 2.3. Let M = [A,B,C], M' — [A',B\C] be binary quadratic forms for
which there are 3 distinct primes P\,P2iV3->Pi \ abD,for which either'
(1) There are elements α i E Rip^ such that M[α ] = λ M ; , i = 1,2, 3, or
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(2) There are primitive elements ai G Rpr($) such that M[aτ] = λ^M', i = 1,2,3
77ιe/z M, M' are proportional to F-rational forms.

Proof We begin by noting that if M' is split over F, then so is M and so both are
proportional to a form Mo[7], M0(x,y) = 2xy, 7 G GL2(F), which is F-rational.
So we may assume that both M, M' are anisotropic over F, and in particular that
AC φ 0.

Taking determinants in the equation M[aτ] = λ^M7, α^ G Rpr(p^), we find that
7V(α ) 2 det(M) = λ? det(M'), or that

λ. = ne^ , K = λ/det(M)/det(M /), et = ±1,

where n = 1 or 2. The equation M [ α J = λ^M' implies in particular that

Aη] + Bηiξt + Cξ? - CVe z P ? , i = 1,2, 3 . (2.19)

We may think of this as a system of 3 equations for A, B, C:

A %

where

'vί

If ^ is invertible, we will find that

B I = κC'Ψ~ι I e7pV- I ,

and since Ψ G M2(F), we see that M is proportional to an F-form. Thus we need to
consider the possibility that det Ψ — 0. We have

Kj

and so if det Ψ = 0, one of the factors must vanish - say 77^ ~ ^2^1 = ^ This means
there is a linear dependence relation, say

with μ = μ(n) G F. Substituting into (2.19), we find that

= μ\Aη2

2 + Bη2ξ2 + Cφ

= μ2κC'e2p^ , (2.20)

and since C φ 0, we find

2>? = μ2P2 (2.21)
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If n = 1, (2.21) implies that μ2 — px/p2, where μ G F. This implies that px/p2

is a square in F = Q(y/a), which we now show cannot happen. Indeed, if we write
μ = u + Vy/a, u,v G Q, then on squaring we find

pγ/p2 — u2 + αt>2 + 2uv\fa ,

and so either u = 0 or Ϊ; = 0. If v = 0 we find ί^/^ = ^ 2 is a rational square, which
is clearly impossible if px φ p2. If u = 0 then P j / ^ = °w2> a n d since w e assume
that pλ,p2\ a, this is again impossible. This finishes the proof for the case n — 1.

In the case n = 2, we find from (2.21) that μ = ±.pλ/p2\ we will for simplicity
assume the sign is +. Then we find

ξι = P£ξ2> ηι = Pv2

%- α22)

Multiplying (2.22) by D so as to make all quantities integers in &F, and setting
ξ'. = Dξi9 η[ = Dηi9 we have from (2.22)

P2V1 =

Taking x) y e Z such that xpj + yp2 = 1, we find that

ξ{ - (xpj + yp2)ξ[ = Pι(xξ[ + yξ'2).

This means that f{ = pj0, 0 e <^. Likewise we see that η[ = pγζ, ζ e (9F. This
implies that Dax = pλβ, with

Now taking u, v G Z such that wi} + fpx = 1 we find

= (uDax (uD + υp^α! Pι(uβ + ̂ α2) pxη

with 7 = ΪX/3 + VOLX G -R, and so aλ cannot be a primitive element. D

We can now proceed with the proof of Lemma 2.2, assuming that the forms
M, Mλ,..., Mr are F-rational. By clearing denominators, we can assume that
M = [A, B, C], M = [At, Bτi CJ with all elements integers: A, B,..., C G ^ F .
On taking determinants in the relation M[a] = \M^ we find that λ̂  = κτp

n,
hίi = ±y/det(M)/ det(M^). From the original equation M[a] = λ^M^, we find that
Xτ G F since the forms are F-rational. From now on, we omit from consideration
those finitely many primes p for which κ{ are not units, or dividing abD. Thus
M[a] = p n /^M ί ? κi G F a unit for p.

Writing α^ = Dα = ( Λ. ^ ) ^ ^o» ί»^ £ ^ F > w e finci m a t

A772 + Bryξ + C f = pnκ C D 2 , (2.23)
2 C62τ)2 = pnκiAiD

2 . (2.24)

We now separate the argument into two cases. Clearly, if M[a{] — λ2M2, then
both M, Mi are split over F or both are anisotropic over F. We then treat separately
the case when all M, Mx,..., Mr are anisotropic over F or are all split over F.

The Anisotropic Case. Let d = B2 — AAC be the discriminant of M. d G &F is
not a square in F iff M is anisotropic over F. Thus there are infinitely many prime
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ideals P C (9F such that M is still anisotropic on reducing modulo P. This can be
seen without invoking Dirichlet's theorem on primes in a progression, as follows:
Consider the quadratic extension K = F(Vd). For unramified primes P of F, we
have P splits in K iff d is a square modulo P. Thus d is not a square mod P for only
finitely many primes P is equivalent to saying that only finitely many primes of F split
in K — F(Vd). Now consider the Dedkind zeta-function of K: It has a factorization
CtfOO = ζF(s)L(s,χκ/F), where L(s,Xκ/F) = Π(l " XK/F(P)N(P)-8)-\ with

Xκ/F(P) = 0,1,-1 depending on whether P is ramified, split or inert in K.
If we assume that only finitely primes of F split in K, then we will get that
Cκ(s) — P(SKF(2S), where β(s) is a finite Euler product. However ζκ(s) has a
(simple) pole at s — 1, while CF(2S) is holomorphic at s = 1, which is the required
contradiction. For such a prime P, we assume either P = (p) is inert (p a rational
prime), or PP = (p) (P split).

In case P = (p) is inert, in (2.23) and (2.24) we reduce modulo p to find that
(77, ξ) and (ξ,bή) are isotropic vectors for M m o d P , and since we arranged that M
is anisotropic modulo P, this implies that η = ξ = ξ = bη = Omodp (recall that

( £ Ό'\
ξ, η G ΘF). Thus ξ = pξ', 77 = pη', and ax = pa', with a! = ί ., L, J e Ro C R.

Now pick x,y eZ such that xD+yp = 1. Then α = (xD+yp)a = xpa'+pya = pβ,
where /? = x α 7 + ya G R since α ' e i? 0 C P . This means that α is not primitive.

In the case P is split, so that PP = (p), we reduce (2.23), (2.24) modulo P to find
as before thatζ,ξ,77,677 G P . However, if both ξ,ξ e P then since ( P , P ) = (1), we
find ξ e P (Ί P = P P — (p), and so ξ G (p) as well. Likewise 77,77 e (p) (we assume
p { 6). Thus as in the inert case, N(a) = p is impossible and iV(α) = p2 contradicts
α being primitive.

The Split Case. This means that we can write

M ( x , y) = (to; + υy) {u'x + v ;y)

or M = Z11/7, where / = (u,υ), Γ = ( ^ , ^ 0 G ̂ f. Likewise M = /*% Now if we
assume M[a] = \M^ then α takes the linear forms /, V to multiples of Z , l[\

la = μ%l%, I1 a = vj., μ ϊ/ = λ, = κ%pn . (2.25)

We now assume that p is inert in F , i.e. that ( - 1 = — 1. Then p I μ.u implies p 11 •
or p vi- say p vi% Thus \ p '

la = μili = Omodp (2.26)

and in particular we have
uη + vξ = Omodp. (2.21)

Since M = V*l' is nondegenerate, either u φ 0 or v Φ 0, say the latter. By omitting
finitely many primes, we may assume that υ ψ Omodp. Then we have

ξ = — 77modp,
υ

and substituting into N(a) = ξξ — bηή = pn we find:

11ΪΊ \

- 3 - 6 7777 = 0 m o d p . (2.28)
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We now make a further restriction on p, namely p \ (uΰ — bvϋ). Since A = ( -γ—

is a division algebra, uΰ — bvϋ φ 0 and so this omits finitely many primes from
consideration (recall u, v, b are fixed). / \

Then for p outside this finite set and satisfying ( — ) = — 1, (2.28) implies
\pj

ηη = Omodp and so p \ η or p \ η. Since p is a rational prime, either condition
implies both, so η = ή = Omoάp. From (2.27) we then see that ξ = Omodp, and so
ξ = Omodp. Thus again we find that N(a) = p is impossible, and if N(a) = p2 then
a is not primitive. This finishes the proof of Lemma 2.2.

2.4. Separation

We now use Lemma 2.2 to prove that if A C i ?

1 U F 2 U . . . U F r , is contained in a finite
union of closed geodesies F% in XR, then there is a prime p with (p, q(R)) = 1 such
that Cp separates A in the sense of Definition 2.1, and together with case (i) below
we thus prove Theorem 1.1. There are two cases:
(i) A is finite: We may write A = {zλ,..., zt}, z3 e XR. Let zι,...,zι £ H 2 be

representatives for these points, and let M j , . . . ,Mι be the corresponding quadratic
forms. According to Lemma 2.2, we can separate Mx from Mι,..., Mι for suitable
p. That is for all primitive a in R(p) or R(p2),

ΓRazxφz3, j = l , 2 , . . . , / . (2.29)

Now choose representatives σ 1 ? . . . , σ p + 1 e R(l)\R(p) [see (2.14)]. Properties (1),

(2), (3) imply that to each σ̂  there is a unqiue index / such that c^ciy G p2R(l). In

fact, conjugation acts on -R(p) and crJσJ = p 2 so that we may take σ / G ΓRσ^. We

denote this unique representative by σ̂  . Moreover σ-σt is primitive unless σt = σy

Let
w = Γ β σ ^ ! G XR. (2.30)

From (2.29) we see that

WΦΓRZ3 = ZJ> j = 1,... ,Z,

that is it; ̂  A. Consider

Cpw = {σ{w, σ2w,..., σp+ιw}

= {^^l^i^n ΓR°2σA> » ΓRσp+ισA)

Now &\CF\Zi — ΓRzλ while all other products σ Jσ1 are primitive, and so

CPW = W U S , (2.31)

where .B c {σ^!: ΛΓ(σ) = p 2 , σ primitive}. According to (2.29), BnA = 0. We have
shown that with the above choice of w and correspondence C = Cp, C separates A
as needed.

(ii) A infinite: Let Fx,..., Fι be geodesies on H 2 representing Fx,..., Fι and let

M j , . . . , Mι be the corresponding quadratic forms. Let p be chosen as in Lemma 2.2,

separating M{ from Mγ,..., Mx. So for σ primitive of norm pn, n — 1,2,

l&yWφλjlCfj. (2.32)
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If we have forms M, N corresponding to closed geodesies F, G on XR, then either
F Π G is finite on XR or for some σ e ΓR,

Af[cr] - λTV (2.33)

(this is the only place where we use the fact that the geodesies are closed). Hence
from (2.32) we see that for p as above, the intersections

μx: =Cp(Fι)Π(FιUF2U...UFr), μ2: = C p 2 ( F 1 ) n ( F 1 U F 2 U . . . U F r ) (2.34)

are finite subsets of XR. Let

vx = {z G XR:Cp(z) Π μx φ 0} , u2 = {z e XR:Cp2(z) Π μx φ $} . (2.35)

z/j and v2 are also finite sets. We have tacitly assumed that An Fx is infinite; since
A is infinite this is no loss of generality. Hence we may find some z G A Π Fx such
t h a t z φvλΌ v2.

As before, let z G H 2 with Γ^i = 2:, and let w — ΓRσxz. Firstly w φ A, since
otherwise

we An Cp(Fx) c Cp(Fx) n (ί\ u... u Fz) = μ i ,

that is JΓ^Z G ẑ  which contradicts z ^ i/j U i/2. Secondly, as before

CPW = iΓRσlσlZi ΓRσ2σlZ> » ^ ^ p + l ^ l ^ } = ΓRZ U B ,

where 5 C Cp 2(^). Thus if B Π τl φ 0 then Cp2(^) Π yl ^ 0 and since 2 G ̂  we
must have from (2.34) that Cpi{z) Π v2 φ 0. This contradicts our choice 2; ^ ^ U ̂ 2

So in this case too we have shown that Cp separates A, which completes the proof
of Theorem 1.1.

3. Hyperbolic 3-Manifolds

3.1 Theta Functions

We begin with a general construction using theta series of Siegel. We borrow from
Shintani's treatment of these functions [21]. Let Q(xu . . . , xn) be an integral quadratic
form of signature (n — 1,1). We assume that Q is anisotropic over Q, which means
that Q(x) φ 0 if 0 ^ x G Q n . It is a well known theorem of Meyer [5] that this can
only happen if n = 2,3,4. Let G(R) be the connected component of the identity in
the orthogonal group of Q. It is a subgroup of index 4 in the real orthogonal group of
Q, and denote by Γ = G(Z) the elements of G with integer entries. It is well known
[5] that under the assumption Q anisotropic, the quotient Γ\G(R) is compact. Let
Qx = 2Q and let β b e a majorant of Qx, that is R is a positive definite symmetric
n x n matrix satisfying

lR = Qx. (3.1)

Denote by f(x) the Gaussian on R n given by

f(χ) = e-™*Λ* . (3.2)

Define the /9-function on H 2 x G(R) by

^ ) x ) 9 (3.3)

where z = u + iv, and e(z) = exp(2τriz).
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The series (3.3) clearly converges absolutely and uniformly for (z, g) on compacta.
Since Q{(x)/2 = Q(x) e Z for x e Zn and <yZn = Zn for 7 e Γ, from (3.3) it is
clear that

θ(z,ηg) = θ{z,g), 7 e G(Z), (3.4)

0 ( z + l , 0 ) = 0(*,0). (3.5)

# also has extra transformation properties in z which come from Poisson summation.
Indeed using Proposition 1.6 and 1.7 of Shintani [21], we get

\\cz + dJ

7 G Γ0(4D) = { (a M

l \ c d

where D = discQ, and in the case that n is even, which is the interest here, the
character χ of Γ0(4D) is given by

with εd — 1 or z according as d Ξ 1 or 3 mod 4 and I — I is the Kronecker symbol
\ a J

[15].
A final transformation property of θ that is clear from the series (3.3) is the

transformation under the maximal compact subgroup K — KR = {g G G(R):
gtRg = R}:

θ(z,gk) = θ(z,g), keK. (3.8)

Besides all these transformation properties θ(z,g) satisfies a differential equation,
which is the reason it is important for our eigenfunction analysis. Let L be the Casimir
operator on G(H), normalized as in Shintani, and let

Then we have

An-2)/20(*»0) = Lgθ{z,g) + vnθ(z,g), (3.10)

where

(3.11)

Now V = G(R)/K gives a model for hyperbolic (n - l)-space, and the Casimir
operator L acting on functions on G(R) which are right if-invariant is simply a
multiple of the Laplacian. Thus L is self-adjoint on L2(X) = L2(Γ\G(R)/K) while
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An-2)/2 i s self-adjoint on L2(ro(4D)\H2,χ, ^ — J, the functions / : H 2 -> C

satisfying

(n-2)/2

(3.12)

(3.13)

Γ0(4D)\H2

In view of the above, it follows from (3.10) and an integration by parts that if
Φ e L2(X) is an eigenfunction of L satisfying LΦ = XΦ, then

F(z)= ί θ(z,g)Φ(g)dg (3.14)

Γ\G(R)

satisfies

that is F is an eigenfunction of the Laplacian and we will see now that if λ φ 0 then
F is in L2(Γ0(4D)\H2), in fact is a cusp form.

In the case n = 2, G(Z)\G(R)/K is a circle and its eigenfunctions Φm, m e Z,
are just exponentials. In this way we obtain an explicit arithmetic progression of
eigenvalues of cusp forms of (i~1

0(4D)\H2,χ). These "lifted" eigenforms Fm were
first constructed by Maass [17]. Our main concern is the case n = 4.

If F(z) is as in (3.14), then since F(z + 1) = F(z), it has a Fourier expansion

oo

F(z)= Σ am(υ)e(mu). (3.16)
m=—oo

From (3.15), the coefficients am(υ) satisfy an ODE. We now compute am(υ):

1

am(v>) = / / Θ(u +iv,g)Φ{g)dge{—mu)du

0 Γ\G(R)

^ " * (3.17)= W4 J
Γ\G(R) ^x)=Ύn

Since Q is anistropic, when m = 0 the only solution x e Zn to Q(x) = 0 is x = 0.
Hence the constant term aQ(υ) is given by

ao(v) = vnμ f φ(g)dg. (3.18)

Γ\G(R)

In particular if Φ is the not constant eigenfunction then ao(v) = 0.
Next assume m Φ 0; as is well known [5], the integer points on the quadric V^ =

{x: Q(x) = m} decompose into a finite number of Γ orbits. Let xu... ,xh G V^m(Z)
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be inequivalent representatives for these orbits, and let Γj C Γ be the stabilizer of
Xj in Γ. Then

/ Σ
Γ\G(R)

h

where

Γ\G(R)

= vn/4 J f^g~ιxj)Φ(g)dg. (3.20)

We now assume that the sign of m is such that Stab(^) C G(R) is compact, i.e.
Vm is a two sheeted hyperboloid. If the signature of the form Q is (n — 1,1), then
m < 0. The group G(R) has two orbits on Vm, which are the connected components
V^ of this two-sheeted hyperboloid. In this setting, the stabilizer Γj is finite; let Wj
be its order. We then have

V j f(V^-ι)Φ()d (3.21)
3

Choose x0 e V£ such that StabG(x0) = K, where K is the fixed maximal compact
subgroup in (3.8). Let g^ G G(R) be such that g x = ± x 0 , the sign depending on
which sheet of the hyperboloid x- is found. Then we have, using the fact that f(x)
is even and so we need not worry about the sign,

I f(±V^-l)$()d ί f(^-λ)Φ{)d (3.22)= — I f(±V^g-lXo)$(gjg)dg = — ί
j J j J

G(R) G(R)

So that if Ψ(g) = Φ{gόg) then LΨ = \Ψ. By the theory of spherical functions [10]
(uniqueness of bi-UT-invariant eigenfunctions of L), we have

If = — Φ(9j) ί f{^g-λx0)ωx{g)dg, (3.23)
j J

G(R)

where u)χ(g) is the unique spherical function with eigenvalue λ and ωλ(e) = 1.
From (3.19) and (3.23), we obtain

h

am(v) = /(λ; V) V — Φ((/7 ), (3.24)

where /(λ; v) is the special function

/(λ; v) = W 4 I f(y/ϊg-lx0)ωx(g)dg . (3.25)

G(R)
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One can easily check by letting υ —> oc that f(λ υ) φ 0. Calculations along the
above lines of Fourier coefficients of lifted forms Fφ(z) were done by Maass in [17].

From (3.24) we may draw the important conclusion that if Fφ(z) = 0 then

32. Proof of Theorem 1 1

We next show that when n = 4 almost all the lifted forms Fφ(z) = 0. If (Φ, 1) = 0
then according to (3.18), ao(υ) = 0. One can show that the same is true for the
constant terms at the other cusps, so that Fφ is a cusp form on Γ0(4D)\H2. Let

ψ — ψ[ Γ0(4D)\H2, χ, I denote this space of cusp forms. Z\ ( n_2 )/2 has

discrete spectrum on W, and we let {F3} be an orthonormal basis of eigenfunctions

with eigenvalues μ3-. One can show that WeyΓs law holds for W [20], that is:

y . 1 ^ vol(Γ0(4D)\H2) R2 ^ R ^ ^

^ ~ 4π '

Integration against θ gives a linear map θ: W' —> L2(X):

θ(F)(g)= ί θϊ^)F(z)^^. (3.28)
J vz

Γ0(4D)\H2

In view of (3.10), θ takes cusp forms to eigenfunctions of L on X. Let Ψ* be the
orthogonal complement in L2(X) to the space spanned by the image of θ and the
constant function. If Φ e 9^ then (Φ, Θ(F)) = 0 for all F G ̂ ~y, that is

0= J Φ(g) J
Γ\G(R) Γ0(4D)\

= ί Fφ{z)F\z)

Γ\G(R) Γ0(4D)\H2

Γ0(4D)\H2

(3.29)

Thus ΊfΦeT, since Fφ(z) is cuspidal and (F 0 ,F> = 0 for all F e W, we

conclude that Fφ = 0. Hence from (3.26) we conclude that for Φ e f ,

(both /ι and the elements g3 depend on m).
We now show that for some 1 < i < h, we have an infinite sequence of eigenvalues

λk (which correspond to theta-lifts), such that

**(&)» λ£ / 4. (3.31)

This of course implies the lower bound of Theorem 1.1.
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To see this, we first note that

Lemma 3.1. IfΦk is an orthonormal basis of eigenfunctions in L2(X), then

Σ 1 ,{AπΓV2y 1_ rf> as R-^oo. (3.32)

Proof. For a general compact Riemannian manifold of dimension 3, one has [12]:

(335)

where the sum is over an orthonormal basis of eigenf unctions in L2(X). Squaring the
inner sum in (3.32) and switching the order of summation, we get the required result
upon using (3.33). D

Next we note that of the summands in (3.32), all but O(R2) vanish: Indeed, if
Φk e ^ then the inner sum vanishes by (3.30). The remaining part of the spectrum
is the image of Θ: W -> L2{X\ which by Weyl's law for W (3.27) has only O{R2)
elements in the above range. This shows that

h

— $k(9j) = β(λί / 4 ) > a s * - °° ( 3 3 1 )
j=\ 3

From this it follows that at least at one of the points g^ an infinite sequence of the

eigenfunctions must be as large as λfc , hence we get Theorem 1.2.

3.3. An Example

We conclude this section with an example of a quadratic form for which there is a
single point g{ e G(R) for which every eigenfunction Φ G ^ vanishes. To this end,
let

This form is anisotropic, since one checks that Q(x) = 0 m o d 8 only if x = 0 m o d 2 .

Proposition 3.1. O(Q, Z) has a single orbit on V_λ(Z) = {x e Z 4 :Q(x) = -1} .

Proof. Clearly the point P = (2,1,1,1) is in V_X(Z). We now make the crucial
observation that if there is an integer vector x such that Q(x) = ± 1 , then there is an
orthogonal decomposition over Z : Z 4 = ZP 0 Λ, for a 3-dimensional lattice τl c Z 4.
This is because the orthogonal projection onto RP is given by

m? (3 36)

with B(x, y) = 2(x, y) = Q(x + y) — Q{x) — Q(y) being the associated bilinear form.
Equation (3.36) clearly takes integer vectors to integer multiples of P [this is where
Q(P) = ±1 is used!], and so any integer vector x e Z 4 may be written uniquely as

x = Tx + (I -T)x (3.37)
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which is an orthogonal sum of integers vectors. The lattice A is just (/ — Γ)Z 4 .
Pick an integral basis Iι,l2,l3 of A. Then the matrix of the form Q with respect

to the basis P,lx,l2,l3 of Z 4 is of the form

(3.38)

Since the discriminant of Q is —7, the discriminant of A is 7, and the form q = Q\A

is positive definite.
Now suppose P' e Z 4 is another vector such that Q(P') = — 1; we want to

find β e O(Q, Z) such that β(P) = P'. Repeating the above process, we get another
orthogonal decomposition Z 4 = Z P ' φ Λ ' with q1 = Q\A, is a positive definite integral
ternary form of discriminant 7.

Now it is known [7] that there is only one equivalence class of positive definite
ternary integral forms of discriminant 7. Thus there is an integer basis {Zj,/ ,̂/ }̂ of
the lattice A' such that Q(l[,Zp = Q(lt,l3), for all i,j = 1,2,3. Now let β:Z4 -> Z 4

be given by

Then /? is an isometry and lies in GL(4, Z), so that β e O(Q, Z) and /?(P) = P ' as
required. D

From this, we deduce that Γ has exactly one orbit on the integer points of each
sheet V^\(Z) of the hyperboloid. Indeed, the special orthogonal group SO(Q, Z) still
has only one orbit on V_λ(Z), since P = (2,1,1,1) is stabilized by the improper
rotation

\
1

1

1/

(3.40)

The number of Γ orbits on V_λ(Z) is thus at most two, since Γ has index 2 in
SO(Q,Z) [the rotation - / e SO(Q,Z) is not in Γ]. It is then exactly two, since
Γ cannot interchange the two sheets of V_ι. As representative we may then take
γ — P γ — P

According to the recipe in the previous section, we take gx e G(R) so that
gιxι = χo; then we can take g2 = gl9 since gιx2 = —gγP = — XQ. The formula
(3.24) for the Fourier coefficient a_ι(υ) collapses to a single term

a_x(v) = υf(λ; v) — Φ(gx), (3.41)

and so if Φ e 9^, we find that Φ{gx) = 0!

Acknowledgement We wish to thank J. Conway for showing us this simple method of proving
Proposition 3.1.
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