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Abstract: Low energy behavior of Schrόdinger operators with potentials which
decay slowly at infinity is studied. It is shown that if the potential is positive then
the zero energy is very regular and the resolvent is smooth near 0. This implies
rapid local decay for the solutions of the Schrόdinger equation. On the other hand,
if the potential is negative then the resolvent has discontinuity at zero energy. Thus
one cannot expect local decay faster than order t'1 as £-> oo.

1. Introduction

In this paper we consider the Schrόdinger operator

H = Ho+ V(x) = -h2A+ V(x) on L2(Rd), d ^ 1 .

We will assume V(x) ~ c\x\~p as |x | -• oo, and study the behavior of (H — z ) " 1

near z = 0. If p > 2 then Fis called very short range and the behavior of (H — z)~1

near z = 0 was studied by Jensen, Kato and others (see, e.g., [JK, J, Mu]). If d = 3
and p is sufficiently large, then it is known that (H — z ) " 1 has an asymptotic

1 / 2expansion in z 1 / 2 :

0

The top term B-2 comes from the 0-energy eigenvalue, and B-x comes from the
0-energy resonance. Since they are unstable under small perturbations, (H — z)~ ι is
generically regular near z = 0.

On the other hand, if 0 < p < 2, then V is called slowly decreasing, and it is
known that (H — z ) " 1 behaves quite differently near z = 0. For the one-dimen-
sional case, this problem was studied by Yafaev [Yl] in detail using integral
equation techniques. For the higher dimensional case, Yafaev also studied
Schrόdinger operators with positive slowly decreasing potentials ([Y2]). In par-
ticular, he proved that (1 + | x | Γ α i i Γ m ( l + |x | ) "^ is bounded in L2(Rd) if
α + β > mp. Using this estimate, the low energy asymptotics of (H — z ) " 1 was
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studied. The aim of this paper is to prove some a priori estimates that were
assumptions in Yafaev's paper, and to generalize his results.

At first we consider the positive case. Here we fix the Planck constant h = 1,
and suppose 0 < p < 2.

Assumption (A: p). (i) V is a smooth real-valued function on Rd such that

— ) V(x)
OX

) V(x) ^ C α < x > , x e R d

^ OX

for any multi-index α.
(ii) There is δ > 0 such that V(x) ^ δ(x)~p for xeRd.
(iii) There are ε > 0 and JR > 0 such that

x — (x)S -s\x\~p for | X | > J R .

ox

Here we have used the notation <x> = (1 + | x | 2 ) 1 / 2 for x eRd. F( *) denotes the

characteristic function (or the characteristic function of an operator) designated by

Theorem 1.1. Suppose (A: p) with 0 < p < 2. Then there exist β, y > 0 and C > 0

such that

\\F(\x\ ̂  βλ~llp)F(H S A)|| S Cexp(-yλ-{ίlp-ίl2)l for λe{0, 1] . (1.1)

Remark. Part (i) and (ii) of Assumption (A: p) is not necessary for Theorem 1.1. It
holds if V is bounded and satisfies (A: p)-(iii).

This result can be considered as an asymptotic estimate on the local density of
states, analogous to the Lifshitz tail for random Schrόdinger operators. As a direct
consequence of Theorem 1.1, we obtain rapid local decay for the semigroup
e~tH,t^0:

Corollary 1.2. There exist β, y > 0 and C > 0 such that

\\F(\x\Sβt2Kp + 2))e-tH\\ SCexp{-yti2-p)K2+p)l t > 0 . (1.2)

Proof. It suffices to show (1.2) for t > 1. Setting λ = t~2p/ip + 2\ we decompose the
left-hand side of (1.2) as follows:

S \\F(\x\ ^ βt2/ip + 2))F{H ^ λ)\\ + \\F(H >λ)e~tH\

λ)\\ + \\F(H>λ)e-tH\\

exp(- ti2-p)/i2+p)), ί > 1 .

Replacing y by min^, 1) if necessary, we obtain (1.2). D

Next we consider the boundary values of the resolvent. It is well-known that
under our assumption,

(x)~γ(H - λ± iθy\xyγ = lim < x > ~ y ( # -λ± iεy\x}

exist for y > 1/2 and λ > 0.
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Theorem 1.3. Suppose V satisfies (A: p) with 0 < p < 2 and let y > 1/2 + p/4. Then

sup \\(x}-y(H - λ±iθy1(xyy\\ S C< oo . (1.3)

Moreover, (x}~y(H — λ ± iOy1(x}~y is Holder continuous in λ near λ = 0.

We can prove similar estimates for powers of the resolvent:

Theorem 1.4. Suppose V satisfies (A: p) with 0 < p < 2. Let k ^ 1 and let
y > max(/c - 1/2, /c(l/2 + p/4)). Then

sup \\(xyy(H-λ±iθyk(x}-y\\ ^Ck < oo . (1.4)

Moreover, (x}~y(H — λ ± iO)~k<(xy~y is Holder continuous in λ near λ = 0.

Since (at least formally),

d\k

-77 (H - λ± iOy1 = kl(H - λ± iO)-*-1 ,
dλj

Theorem 1.4 implies differentiability of (H — λ ± fO)"1 in λ:

Corollary 1.5. Let φ be a rapidly decreasing function on Rd. Then
φ(H - λ ± iθyίφ is C™-smooth with respect to λ (in B(L2(Rd))-topology).

We denote the spectral projection of H by E(λ) = F(H ^ λ). Since

E'(λ) = (2πiy\(H - λ - iOy1 -(H-λ + iO)'1),

we can obtain corresponding estimates for E'(λ) from Theorems 1.4 and 1.5. In fact,
we can prove slightly stronger estimates for E'(λ) and Theorem 1.4 follow from
them:

T h e o r e m 1.6. S u p p o s e V satisfies ( A : p) w i t h 0 < p < 2 . L e t k ^ \ and l e t y > k — 1/
2 . Then

/ c - l

4ϊ ) E'(λ)(x) -y λ e ( 0 , l ] , (1.5)

where δ = 2y/p - k(l/p + 1/2).

Combining these results with the method of Jensen, Mourre and Perry [JMP],
we obtain the following uniform decay estimates for the Schrόdinger time-
evolution:

Theorem 1.7. Suppose (A: p) with 0 < p < 2. Then for any y > β > 0,

β, teR . (1.6)

Remark. For the free case, i.e., if V(x) = 0, then (1.6) holds only if β ^ d/2. Thus
a particle in a potential satisfying (A: p) escapes from a finite region faster than
a free particle.

We can also estimate (x}~y(H — z)~ι(χs)~y in a neighborhood of z = 0:

Theorem 1.8. Suppose (A: p) with 0 < p < 2 and let y > 1/2 + p/4. Then
(x}~y(H — z)~1<x>~y is uniformly bounded in zeC\[0, oo).
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The idea of the proof of Theorems 1.1-1.8 is as follows: If we change the
coordinate: x = λ~ί/py, then H has the form

H = λ(-g2Δy+Vλ(y)) = λHλ, (1.7)

w h e r e g = λa/p~1/2) a n d Vλ(y) = λ'1 V(λ-1/py). Since p < 2,g | 0 as λ | 0, a n d

(A: p) implies

p, yeRd.

Thus Hλ has the form of a semiclassical Hamiltonian, and we can apply the
methods of semiclassical analysis. Then, for example, Theorem 1.1 follows from the
Agmon estimate for a classically forbidden region, and Theorem 1.3 follows from
the semiclassical resolvent estimates (see, e.g., [S, HS, RT, GM, HN], etc.). The
proof is discussed in Sect. 2.

Next we consider the negative case, i.e., V(x) < 0. Then the situation is quite
different from the positive case. Zero is always the accumulation point of negative
eigenvalues, and hence zero seems to be very singular. In order to make the
problem manageable, we suppose the Planck constant h is sufficiently small. Note
that this is equivalent to replace V by μV with a large coupling constant μ.

Assumption (B: p). (i) V is smooth real-valued function on Rd such that

V(x) xeRd

for any multi-index α.
(ii) There is δ > 0 such that V(x) ^ - δ(x}~p for xeRd.

δV
(iii) s u p l F W Γ 1 x —-(.

xeRd Vχ

Theorem 1.9. Suppose V satisfies (B: p) with 0 < p < 2. TTzen ί/zere βxisίs /z0 > 0
5wc/i that if 0 < h< h0 and y > 1/2 + p/4 ί/iβπ

sup \\(xy-y(H-λ±iθy\x}-y\\ ^ C< oo . (1.8)

Moreover,

(xyy(H - 0 ± iOy^xy-* = lim <x>~γ(H - λ± iθy\x}-yeB(L2(Rd)) (1.9)
λ I 0

exist.

Remark, (i) The above result implies the existence of

yy = lim (x}-y

for γ > 1/2 + p/4. In general E'( + 0) =t= 0 (see Yafaev [Yl] for one-dimensional
case). Thus we may expect at most the decay of order O(ί - 1 ) for
\\(x}~ye~itH(x}~y\\ even if y is very large.

(ii) Since zero is the accumulation point of σp(H\ (1.8) might look like a contradic-
tion. But it is not, since we have additional weight <x)~y. Instead, if
Hφn = λnψn, \\φn\\ = ί9λn

J[ 0, then Theorem 1.9 implies ||<:x>y<AJ| ^ C\λn\~1/2

-» oo.
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The idea of the proof of Theorem 1.9 is completely different from the positive
case though we also use the semiclassical method. We consider a second-order
elliptic operator Lo = (— V)~1/2Ho(— V)~1/2. As we shall see later, we can con-
struct scattering theory for L o, and formally we have

(H - 0 + ΪΌΓ 1 =(H0-(-V)±iθy1 = (-Vyll2(L0- I ± ίθ)"1(—K)"1/2 .

Thus (H — 0 + Ϊ O ) " 1 can be represented by the boundary values of resolvent of
Lo at energy 1. This argument is justified in Sect. 3 and Theorem 1.9 follows.

2. Positive Potentials

Throughout this section we suppose V satisfies Assumption (A: p) with 0 < p < 2,
and we let h = 1.

Let λ > 0 be an energy and we change the coordinates:

xeRd-*yeRd

9 x = λ~ίlpy .

Then the Hamiltonian is transformed to

H=-Δx+ V(x)

= X{-X2(1/»-V2)Ay + λ-'Viλ'Voy)}

= λ{-g2Ay+Vλ(y)} = λHλ, (2.1)

where g = λllp~112 and Vλ(y) = λ'1 V(λ~ 1/py). Since 0 < p < 2, g j 0 as λ [ 0, and
we can consider g as a semiclassical parameter. By (A: p\ Vλ satisfies

-p-|α|

P-M) ? yeRd9 (2.2)

Vλ(y)

Vλ(y) ^ δλ~\λ~1/py}~p ^ ^ μ 1 / p + \y\)~p

9 yeRd . (2.3)

Theorem 1.1 follows from the above scaling and an Agmon-type semiclassical
estimate for the classically forbidden region.

Proof of Theorem 1.1. By the scaling, it suffices to show

yg-1), λ>0, (2.4)

for some β, y > 0. We take λ0, β > 0 so small that δ{λllp + 2β)~p > 2. Thus if
0 < λ ^ λ0 and \y\ ̂  2β, then Vλ > 2. In other words, {y\ \y\ ̂  2β} is in the
forbidden region for a classical particle with energy less than 2. Hence by Theorem
ΠI-1 of [BCD] we obtain

S CĴ sup I r.OOI^expf - flf"1 I W + μ)-> - 3/2]1/2dμ)

^ Cλ-ί/2Qxp(-2yg-1) ^ Coxpi-yg'1)

with some γ, C > 0 if g is sufficiently small. D



68 S Nakamura

In order to obtain estimates for the boundary values of resolvent, we first note
that we can prove an analogue of the semiclassical resolvent estimates for Hλ (cf.
[RT, GM, HN, W, N2], etc.).

Lemma 2.1. Let k^ 1 and let y > k — 1/2. Then

|| (y}-v(Hλ - 1 ± iθyk<yyy\\ S Ckg-\ λe{09 1] , (2.5)

where g = λ1/f)-112.

Proof. Let λ0 and β be as in the proof of Theorem 1.1, and let 0 < λ^ λ0,
R > λ~1/pβ, i.e., λ < (β/R)p, where R is the constant in (A: p)-(iii). By the assump-
tion, there exists ε > 0 such that

(Vλ(y)-ί) + \y~(y)ύ-e if Vλ(y) g 1 + ε , (2.6)

uniformly for small λ. Equation (2.6) implies that the classical particle in the
potential Vλ is nontrapping at energy 1. Then we follow the argument in [HN]. By
virtue of (2.2) and (2.3), all the estimates are uniform for small λ, and we obtain (2.5)
with k = 1. Combining the Mourre estimate in the above proof with the method of
Jensen, Mourre and Perry [PSS] (see [W] and [N2] for the semiclassical form), we
obtain (2.5) for k ̂  2. D

Lemma 2.2. Let β be sufficiently small and let fe Co {1/2, 3/2). Then for any N and
M, there is C > 0 such that

II <y>Mf{Hλ)F(\y\ Sβ)\\S CλN, A6(0,1] . (2.7)

Proof Instead of <y> we use the following weight function ΛeCco{Rd) such that
Λ{y) = Λ{\y\) is nondecreasing in \y\ and

We start by considering Λf{Hλ)F{\y\ ^ β), where β is chosen as in the Proof of
Theorem LI,

Λf{Hλ)F{\y\ ύ β) =f{Hλ)AF{\y\ ύ β) + LAf{H^F{\y\ ^ β) .

The first term in the right-hand side is of order gN for any N as in the proof of (2.4).
Thus it suffices to estimate the other term. We set

adgμ) = A, 2idk

B{A) = [B, a d Γ 1 ^ ) ] for k^

Then it is known that for any m ^ 1,
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where / i s an almost analytic continuation of/ (see, e.g., [G], Appendix). Under
our assumption,

a dj/ A (Λ) = ^ "kj\'<"> yj \ υ Λ / >

j=o \ °yj

where akj are smooth in y, supported away from {y\ \y\ < 1} and satisfy

'Ky) ύCkjag
k{yy{k-l)~^\ yeRd, λe(0,1] .

From these, we learn

On the other hand, / is compactly supported and satisfying |<3z-/(z)| ^ C m | Imz |
for any m. Hence

f S f/(z)(iϊ - z)"1 ad
c

Then we use the commutator formula to obtain

\\lΛJ{Hλ)-]F{\y\^β)\\

^ Σ h W*$iκ \yk\\ - \\{Hλ + l)ψ»(Hλ)F(\y\ ί

for any m ̂  1. Here we have used an analogue of (2.4) to estimate the term:
||(H + l)kfik)(Hλ)F(\y\ ^ j8)||. Since m is arbitrary, this proves (2.7) with M = 1.
Repeating this procedure for multiple commutators: [Λ,
obtain (2.7) for any M. We omit the detail. D

L e m m a 2 . 3 . If feC$ (1/2, 3/2), k^landy>k- 1/2,

||<x>-y(lί - A ± iθykf(H/λKxyy\\ ^ Cλa^\ Ae(0,1] ,

α(fc, 7) = 2y/ρ - k(l/p + 1/2).

/ It suffices to show (2.8) for small λ. We show

I I μ 1 " + \y\Y"{Hλ - l ± ίoykf(Hλ)(λ^ + \y\yy\\ ^ cg~
k

By Lemma 2.1 we have

+ \y\yyF(\y\ ^ β)(Hλ - 1 ± iθykf(Hλ)

etc., we

(2.8)

(2.9)
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where β is chosen so small as in Lemma 2.2. On the other hand we also have

Uλ1'" + \y\)-*F(\y\ < β)(Hλ - 1 ± iOΓkf(Hλ)

^ Cλ-i»\\F(\y\ < β)f(HλKyy\\ ||<y>-?(HΛ - 1 ± iθ)

ύCmgm

for any m Ξ; 0. Similarly we can show

Uλ11" + \y\ΓyF(\y\ < β)(Hλ - 1 ± iθykf(Hλ)

for any m 2: 0. Combining them we obtain (2.9).
Now we change the coordinates to obtain estimates for operators in x-space.

Then we have

ll(i + \χ\yy(H - λ ± ioykf(H/λ)(i + \x\yy\\

+ \y\)}-n~k{Hλ - l ± ioykf(Hλ)

S g = Cλa(k^\ D

As a direct consequence of Lemma 2.3 we obtain Theorem 1.6 since f(H/
λ)E'(λ) = E'(λ) if /(I) = 1. Thus if γ > k - 1/2 and y ^ /c(l/2 + p/4) then we
observe that (x}~γ(d/dλ)k~1E'(λ)<(xy~γ is bounded for Λ,e(0, 1]. Moreover, using
complex interpolation with respect to y, we learn that if γ > fe(l/2 + p/4) then

fe1 is Holder continuous. Now we note that

sup α > 0 ,
x±iε

where Cα(R) denotes the Holder space of order α. Then, since

(H - zy'F{H ^ 1) = } E'(λ)(λ - zy'dλ ,
o

Theorem 1.3 and Theorem 1.8 follow from the Holder continuity of
(x}~yE'(λ)(x}~y. Theorem 1.4 also follows from the Holder continuity of
(x)~y(d/dλ)k~ίE'(λ)(x}~y and by using integration by parts.

At last we prove Theorem 1.7. By mimicking the proof of Theorem 5.1 of
[JMP], we conclude from Theorem 1.6 that for any γ > β > 0,

\\(x}~ye~itHχ(H)(xy~y\\ ^ C(t)~β, teR ,

where χ e C o ^ - l , 1) is 1 in a neighborhood of 0. On the other hand, it is
well-known that for any γ > 0,

II <f\\~y p~itHv(H)<fx\~y II < CSt\~y / f=R

if χ is smooth, bounded and supported away from 0 (see, e.g., [I]). Theorem 1.7
follows from these.
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3. Negative Potentials

71

In this section we consider Schrόdinger operators with Planck constant h > 0 and
we always suppose V satisfies Assumption (B: p) with 0 < p < 2. Let λ e [0, 1] be
an energy. We set Wλ(x) = ( - V(x) + X)'1'2, xeRd. Then Wλ(x) satisfies

for any α. We consider a second order elliptic operator

Lλ = WλH0Wλ = ( - V(x) + 2 ) - 1 / 2 ( - β2z1)(- F(x) + 4 Γ 1 / 2 .

It is easy to see that Lλ is essentially self-adjoint on C§{Rd). The dilation generator
A is defined by

We use the β-pseudodifferential operator calculus (see, e.g., [R, Nl]) . We denote
aeS(m, g), g = dx2Kx)2 + dξ2Kξ}\ if

d
a(h;x9ξ)

for any α and j8. The Weyl operator α(ft; x, hD) is defined by

α(Λ; x? hD)φ(x) = (2πhyd j e*χ-y™ha(h\ (x + y)/2,

for
We first prove the limiting absorption principle for Lλ.

Lemma 3.1. There exists h0 > 0 such that if 0 < h ^ h0 then for any γ > 1/2,

sup | | < ^ l > - ' ' ( L λ - l ± i ε ) - 1 < ^ > - ' Ί I ^ C < oo, λ e [ 0 , l ] , (3.1)

(3.2)

where C depends only on h, γ and V. Moreover,

lim <Ayv(Lλ - 1 ± ie)\

exist.

Proof We use the Mourre theory of limiting absorption principle (see, e.g., [Mo,
PSS, CFKS]). By direct computations we can show

) ' 1 eB(L2(Rd)) .

(3.3)

λ , iA\{Lλ + I ) " 1 , [[Lλ, iA\ iA](Lλ +

Hence it suffices to show the Mourre estimate:

E,\Lλ, iA\ Et ^ δE,, δ>0, 1 = [1/2,2] .
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Since the principal symbols of Lλ are A and given by (— V + λ)~*ξ2 and h~1x ξ,
respectively, the principal symbol of [LA, L4] is given by

where { , } denotes the Poisson bracket. Moreover, the lower order symbol is in
S(ft2<x>p~2, g). Hence by the Fefferman-Phong inequality we obtain

[LA, M] > (2 - p')Lλ - Ch\ Λe(0, l ] , (3.4)

uniformly in λe[0, 1]. If we take h0 sufficiently small, (3.4) implies (3.3) with
0 < δ < 2 - p'. D

In what follows we fix h > 0 such that 0 < h ̂  h0.

Lemma 3.2. For each 0 < λ g 1, γ > 1/2,

sup \\(Ay-v(Lλ-l±ίεW2

λΓ\A}-v\\SC< oo . (3.5)
0<ε<l

Moreover,

lim <A>^(L, - 1 ± i e ^ r 1 ^ ) - " = <Ay?(Lλ - 1 + iθy\Ay? . (3.6)
ε i O

Remark. The constant C in (3.5) depends on λ. The right-hand side of (3.6) is
defined by (3.2).

Proof. Given the Mourre estimate (3.3), the proof of (3.5) is almost identical with
the proof of Lemma 3.1. We only note that we use sup| Wλ\ = λ~ι < oo and
sup|[P^f, L4]| ^ Cλ~2 < oo, and hence the estimates depends on λ. It remains
only to show (3.6). We mimic the proof of the Holder continuity of
F(z)= (A}-y(Lλ-z)-\Ay-y in z (cf. [PSS]). Instead of \\F(z) - F(zf)\\ we
estimate ||F(1 + iO) - F(l + ίO W2)\\. We omit the detail because the modifica-
tion is obvious and the notations are rather involved. D

Lemma 3.3. For any β, y e R, λ e [0, 1],

R d ) ) , (3.7)

where P = — ihd/dx. Moreover the operator norm is uniformly bounded for λe
[0,1],

Proof. It suffices to show

2Rd)) (3.8)

and

/ ' 2 R " ) ) . (3.9)
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Let βo = 1 - p/2 and let Mλ = PWλ. Then Lλ = MfMλ and hence Mλ is
Lj[/2-bounded. By easy computations, Mf is also Lj[/2-bounded. We compute

[<*>*>, (Lλ + I ) " 1 ] = (Lλ + l Γ 1 ^

It is easy to see [MA, ( x / ° ] e B ( L 2 ) , etc, and hence [<x/°, (Lλ + I ) " 1 ] eB(L2).
This implies (3.8) with y = β0. Iterating this procedure we can obtain (3.8) for
y = mβ0, m ̂  1. Then the claim follows by complex interpolation.

On the other hand, using L^/2-boundedness of Mλ again, we have

= WλP
2Wλ(Lλ+ I ) " 1 + (WλP[Wλ,P^ + WλlWλ9p-]P)(Lλ+ I)'1

= Lλ(Lλ + I ) " 1 + 2lWλ9p-]Mi(Lλ + I ) " 1 + Wλ\P9 \_Wλ9PJ]{Lλ + I ) " 1

since Mf is LA-bounded and | Wλ\_P, \_Wλ, P ] ] | ^ C(x}p~2. This implies (3.9) with
β = 0. Noting that [P, M A ] eB(L2\ (3.9) for general β is proved by commutator
calculations as in the proof of (3.8). D

Lemma 3.4. For any 0 ̂  y ̂  1,

C < oo, λ 6 [ 0 , l ] . (3.10)

Proof. We show M(L A + l ) " 1 ^ ) " 1 Wλ\\ ^ C < oo . Then (3.10) holds for y = 1
and (3.10) with y = 0 is obvious. Hence (3.10) for 0 < γ < 1 follows by complex
interpolation. The above estimate follows from commutator calculations as in the
proof of Lemma 3.3, and the fact Mλ = PWλ is LA-bounded. D

Lemma 3.5. For 1/2 < y ̂  1,

sup \\(x}-γWy

λ(Lλ-l±ίθy1Wγ

λ(xyy\\SC< oo . (3.11)

Proof. We use Lemmas 3.1 and 3.4. Then

= \\<xyyWl{(Lχ+ I ) " 1 + 2(LΛ+ I ) " 2

+ 4(Lλ + l ) - 1 ^ - 1 ± i O Γ 1 ^ + I)" 1}

sc + \\(xy-vwy

λ(Lλ + iy\Ay\\2KAyy(L

^ 2C < oo . D

Now we can prove the first part of Theorem 1.9.

Lemma 3.6. If y > 1/2 + p/4, then

sup Kx}-γ(H - λ±iO)-\x}-γ\\^C< oo . (3.12)
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Proof. We first note that by Lemmas 3.2 and 3.4,

lim(x)-γ Wγ

λ(Lλ- 1 ±iεW2

λ)-1JVY

λ(x}~γ

ε | 0

= <χyγwy

λ(Lλ - l ± ίoy'wKxyy.

On the other hand, it is easy to see

(H - λ ± iεy1 = Wλ(Lλ - 1 ± iεW2

λ)-ιWλ .

Hence we obtain

( y i ( λ - λ ± ίoy\wi(xy-y.

Thus by Lemma 3.5,

sup \\(x}-γWϊ(1-γ)(H - λ±iθy1Wϊ(1-γ\x}-γ\\ ^C< oo.
0<A^l

Since | Wλ(x)\ ^ C(x}p/2 for xeRd, /ίe[0,1], it implies

sup \\(x}-y'(H- λ±ίθy1(x}-y'\\ ^ C< oo ,

with Y = y + (1 - γ)p/2. Since y > 1/2 if and only if y' > 1/2 + p/4, this implies the
assertion. D

In order to prove the existence of (H — 0 ± z'O)"1, we show

lim (xyy(H - λ ± iOy1 (x}~y = (x)-yW0(L0- 1 ± iO)"1 W0<x}~y . (3.13)

Lemma 3.7. As λ J, 0, LA -• L o m ί/ze strong resolvent sense, i.e., /or any z e
C\[0, oo),

s-lim (Lλ - z)~' = (Lo - z ) - ! . (3.14)
Λ | 0

It suffices to show

lim(LΛ + 1 ) - > = (LO + 1)~>
•uo

for (pe^(R' i) (see [RS, Sect. VIΠ.7]). We have

(Lλ + I)" V - (Lo + I)" V = (LA + lΓ^Lo - i J ( i o + 1)"

x«x> 2 <F> 2 (L 0 + l)-

and hence by Lemma 3.3,

||(LA + 1)"V - (Lo

as λ i 0. D
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Lemma 3.8. For y > 1/2,

s-lim (x}~y(Lλ - 1 ± ίOy^xy-v = (xyy(L0 - 1 ± ίθy\xyy . (3.15)

Proof. We note that the convergence:

(x)~y(Lλ- 1 ±iε)~ 1<x>" y-^<x>"" y(L λ- 1 ±iθy\x)-y as ε | 0

is uniform in λ e [0,1] since all the estimates in the Mourre theory is uniform in λ.
Hence Lemma 3.7 implies (3.15). D

Proof of Theorem 1.9. Let φ,ψeSf(Rd). Then it follows from Lemma 3.8 that if
γ > 1/2 + p/4 and β > 1/2,

= (φ, (xy-?wλ(Lλ - l ± ίoy'

y β

λ - 1 ± iOΓ1

^ o - 1 ± ίO

= (φ, (x}-yW0(L0 - 1 + iO)-1 W0(x}-vψ) .

This proves (3.13) in the weak sense. Let γ > y' > 1/2 + p/4. Then

<x>- y (JΪ-λ±i0Γ 1 <x>- y

Noting (x}y'(H + l ) " 1 ^ ) " 7 is compact, we learn that the weak convergence
of (x}~y'(H — λ ± iθ)~1<x>~v' implies the norm convergence of
(x}~y(H - λ ± iO)"^^)" 7 . This completes the proof of Theorem 1.9. •
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