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Abstract: We consider the stochastic Ising models (Glauber dynamics) corres-
ponding to the infinite volume basic Ising model in arbitrary dimension d ^ 2 with
nearest neighbor interaction and under a positive external magnetic field h. Under
minimal assumptions on the rates of flip (so that all the common choices are
included), we obtain results which state that when the system is at low temperature
T, the relaxation time when the evolution is started with all the spins down blows
up, when h \ 0, as exp(λ(T)/hd~1) (the precise results are lower and upper bounds
of this form). Moreover, after a time which does not scale with h and before a time
which also grows as an exponential of a multiple of l/Zz**"1 as h \ 0, the law of the
state of the process stays, when h is small, close to the minus-phase of the same
Ising model without an external field. These results may be considered as a partial
vindication of a conjecture raised by Aizenman and Lebowitz in connection to the
metastable behavior of these stochastic Ising models.
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1. Introduction

In this paper we address the old question of understanding the relaxation patterns
of stochastic Ising models in the vicinity of the phase transition region, i.e., at low
temperature and under small but non-null external field h, when initially they are
far from equilibrium (for instance close to the equilibrium state with opposite value
of the external field). We will consider the basic models on Zd, with formal
Hamiltonian

Hh(σ)=-~ Σ σ{x)σ{y)-^γjσ{x), (1)
x,y n n x

where σ(x) = ± 1 is the spin at the site xeZd, and the first sum runs over pairs of
sites which are nearest neighbors in Έd, each pair counted only once. The time
evolution is introduced as a spin flip Markov process which is reversible with
respect to the corresponding Gibbs measures at temperature T. The flip rates will
be supposed to satisfy certain regularity conditions, but those will be very mild, so
that essentially all common choices for these rates will be covered by our results.

These systems that we are considering are probably the favorite model systems
for investigators addressing the issue of relaxation to equilibrium of systems close
to a first order phase transition. The literature on the subject is vast, because the
problem is of interest to researchers in such diverse areas as metallurgy, chemistry,
physics and probability. One of the conspicuous features of relaxation phenomena
close to discontinuous transitions is the presence of metastable behavior, in which
the system seems, for a long time, to have reached equilibrium, but in a state which
is actually far from the true equilibrium state, and is close to what the equilibrium
would be for values of the parameters at the other side of the transition region.
A considerable number of review papers and monographs has been written on the
subjects of metastability and relaxation close to transition regions. The reader may
consult for instance, [GD, GSS and Koc] for accounts which emphasize non-
rigorous results. A good review of rigorous investigations on the problem of
metastability is [PL].

Many papers have been written on simulations of the stochastic Ising models in
the regime which concerns us. The reader will find a large number of references in
the reviews quoted above and a constant stream of papers on the subject in more
recent issues of journals in statistical mechanics. We want to point out only two
aspects of the relaxation pattern which were put in evidence by such simulations
and that are of great relevance in this paper. The first one is the notion of
"plateaus" in relaxation curves, as emphasized by Binder and Mϋller-Krubhaar, in
their classic paper [BM]. Suppose that one runs the dynamics under a small
positive external field, starting from all spins down (and uses periodic or free
boundary conditions). One is interested in the time evolution of a local observable,
say, the value of the spin at the origin. An average is taken over a large number of
independent repetitions of the same evolution from time 0 up to a certain time.
Under these conditions there is manifestation of metastable behavior in the form of
a "plateau" in the relaxation curve that is obtained: in a relatively short time the
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average value of the spin at the origin seems to converge to a value close to the
opposite of the spontaneous magnetization, after this, one sees an apparent flatness
in the relaxation curve over a stretch of time which may be quite long compared
with the time needed to first approach this value. But eventually the relaxation
curve starts to deviate from this constant value and move upwards, towards the
true asymptotic limit, close to the spontaneous magnetization. The experimentally-
almost-flat portion of the relaxation curve is referred to as a plateau. Of course, for
given values of the parameters T and h the relaxation curve is strictly monotone
increasing, and there is no clear cut definition of what the plateau is. On the other
hand, repeating the numerical experiment with smaller and smaller values of h (at
the same temperature T) one sees that the flatness becomes more and more evident,
in the sense that the first portion of the relaxation curve, which is observed while
the system is moving towards its "metastable state" becomes essentially indepen-
dent of h, while the length of the apparent plateau increases (see Figs. 6, 7 and 8 in
[BM]).

Here are some of the reasons the problem captured the attention of mathema-
ticians: can one still make and prove precise mathematical statements which
rephrase the idea that a plateau seems to be approached for a very long time but
that eventually the system will move away from that plateau? Can one estimate
how long the plateau is when h is very small? More generally, what can be said
about the asymptotic behavior of the system in the limit h \ 0, in which we
approach the phase transition region?

The second aspect of the relaxation pattern which can be seen in the simula-
tions and which is another reason for much of the interest in the problem is the
particularly relevant role played by the behavior of individual droplets of spins + 1
(possibly with holes where the spins are -) in the sea of spins — 1, during the
evolution. In the "metastable state" one sees such droplets appearing spontan-
eously throughout the system, but shrinking and disappearing before they become
large, in a sort of equilibrium which resembles the minus-phase. Eventually one of
these droplets grows to a larger size, apparently by chance, and then it keeps
growing and eventually "covers" the whole system, which is then in the true
equilibrium phase. While this droplet is growing, it sometimes happens that other
large droplets appear somewhere else and also grow, so that the system is, in this
case, driven to equilibrium when such droplets coalesce and "cover" the system.
This phenomenon, which is also observed in real experiments (see the reviews
quoted above), is known as "nucleation and growth." Many theoretical and
numerical studies have focused on these aspects of the evolution and on simplified,
single-droplet, or independent-droplets, models. It is a common saying that one
can "understand" the behavior of the individual droplets on purely "energetic," or
rather "free-energetic" terms, as a problem of escaping from a potential well. A very
heuristic form of this reasoning will be reviewed later in this paper, and indeed
served to orientate our approach towards proving rigorous results.

Recently, in collaboration with E.J. Neves, the author introduced, in [NS1, NS2
and Sch2], an approach which gave a precise mathematical meaning to the notion
of critical droplets and metastability for the same stochastic Ising models con-
sidered in the present paper, but in the different regime in which the external field
h is held small but fixed, and the temperature T is scaled to 0. For a review of this
project, in the stage it was in mid 1990, see [Schl], where also references are given
to papers which motivated the approach and other related papers, including those
by Martinelli, Olivieri and Scoppola on rapid convergence to equilibrium and
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Swensen-Wang dynamics. More recently further results on these lines appeared in
the work of Kotecky and Olivieri, [KOI, KO2, KO3], who considered the same
type of time evolution, but for different Hamiltonians, obtaining interesting differ-
ences between the correct patterns of relaxation and some "common wisdom," at
least in this regime. At the time that this paper was being written up, Scoppola was
finishing [Sco], in which she presents a general approach to problems of this type,
based on the separation of the relevant time scales.

The approach addressed in the previous paragraph, to which we refer as "the
limit of very low temperatures," is helping to clarify the way in which droplets
behave, and how this affects the evolution of the systems. It also points out the
presence of metastability effects which, in an asymptotic sense, are sharply defined,
in a regime which is not quite the same as the one usually considered in the
numerical and real experiments and in most of the theoretical non-rigorous study
of the problem, but which is, nevertheless, still close to that regime. The relaxation
patterns of stochastic Ising models are now relatively well understood, at a mathe-
matically rigorous level, in this limit of very low temperatures.

In the present paper we address the more challenging and, from the point of
view of physics, also more interesting regime in which the temperature is kept fixed
and the external field is scaled to 0 (from the positive side, say). The problem is
considerably harder in this regime, and we were able to say far less than in the other
case, so far. Also in this regime the consideration of individual droplets turned out
to be a key notion in the analysis. The results essentially vindicate a conjecture
raised by Aizenman and Lebowitz in [AL], that gives a precise meaning to the
following two statements:

i) The relaxation time grows in this regime as an exponential of I/ft**"1,
ii) Moreover, before a time which grows also as an exponential of \jhd~x the
system stays in a metastable situation, in which locally it is close to the minus-
phase, i.e., the equilibrium measure under no external field obtained as a limit of
equilibrium measures under a vanishing negative external field.

Another way to phrase it is by saying that in the relaxation curve of any local
observable there is indeed, when h is small, a part which is almost a flat plateau,
where the expected value of the observable is close to the equilibrium value in the
minus-phase. This plateau has a length at least of the order of an exponential of
l/hd~1, and this estimate is, to some extent, optimal, since the system also relaxes to
equilibrium in a time of the order of another exponential of l/hd~1. These quantit-
ative features of the relaxation curves were observed in simulations by Stauffer,
published in [Sta].

Before we can state the theorems, we need to introduce precise definitions. This
is done in the next subsection, where we also review basic techniques and results,
mostly without proofs.

The main result in this paper was announced in [Sch3].

1-i. The Models and Basic Techniques. In this subsection we introduce a long
sequence of definitions, notation and techniques. We tried to make everything as
standard as possible, so that most readers will browse quickly through this
subsection, finding few things with which they are not familiar. Most statements are
made without proof, and we refer readers to the books [Ligl] and [Rue], and other
references therein, if they need explanation.
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The lattice. We will consider models on the lattices Zd, where d is the space
dimensionality. Because the dimension d will in general be arbitrary but fixed, we
will omit it in most of the notation. The cardinality of a set Γ c TLd will be denoted
by IΓ |. The family of finite subset of 7Ld will be denoted by 3F. For each x e Zd, we
define the usual norms || x \\p = (\x± \p + + \xd\

p)1/p, p > 0 finite, and
|| x || oo = max{|xi | , . . . , |xd |}. The interior and exterior boundaries of a set Γ a ΊLά

will be denoted, respectively by

δintΓ:= {xeΓ: \\x- yh = 1 for some yφΓ} ,

and
dextΓ:= {xφΓ: \\x- y | | x = 1 for some yeΓ} .

For integer i, we introduce the notation

for the box centered at the origin which has side-length 2i + 1. But because usually
the side-length of such a box is of particular importance for us? we will mostly be
using the alternative notation

Λ(l) = largest V{ which has side-length not larger than /.

The set of bonds, i.e., (unordered) pairs of nearest neighbors is defined as

Given a set Γ e 3F we define also

BΓ = {{x, y}: x,yeΓ a n d | | χ - y h = l},

emΓ = {{x, y}: xeΓ, yφΓ a n d | | x - y\\x = 1} .

A chain is a sequence of distinct sites xu. . . , xn, with the property that for
i = 1,. . . ,n— 1, {xf5 Xi + i} e B . The sites x1 and xn are called the end-points of the
chain xί9. . . , xn. A set of sites with the property that each two of them can be
connected by a chain contained in the set is said to be a connected set.

The configurations and observables. At each site in Έd there is a spin which can take
values —1 and + 1 . The configurations will therefore be elements of the set
{ —1, +1} Z * =:Ω. Given σeΩ, we write σ(x) for the spin at the site xeZd. Two
configurations are specially relevant: — 1 and + 1 , which are, respectively, the ones
with all spins —1 and + 1 . When these configurations appear as a subscript or
superscript, we will usually abbreviate them by, respectively, — and + . The single
spin space, {— 1, +1} is endowed with the discrete topology and Ω is endowed with
the corresponding product topology. The following definition will be important
when we introduce finite systems with boundary conditions later on; given Γ e #"
and a configuration ηeΩ,we introduce

ΩΓtη:= {σeΩ: σ{x) = η(x) for all xφΓ} .

Real-valued functions with domain in Ω are called observables. For each
observable/, we use the notation II/IU'= sup^ e Ω | /(^) | . Local observables are
those which depend only on the values of finitely many spins, more precisely,

/ : Ω-> ]R is a local observable if there exists a set Se^ such that/(σ) =f(η)
whenever σ(x) = η(x) for all xeS. The smallest S with this property is called the
support of/ Clearly, if / i s a local observable, then ||/||oo < °° The topology



6 R.H. Schonmann

introduced above on Ω, has the nice feature that it makes the set of local
observables be dense in the set of all continuous observables.

In Ω the following partial order is introduced:

η ^ ζ if η(x) ^ ζ(x) for all xeTLd .

A particularly important role will be played in this paper by the non-decreasing
local observables. Clearly every local observable is of bounded variation, and, as
such, can be written as the difference between two non-decreasing ones.

A — chain in a configuration σ, or simply a σ-chain, is a chain of sites,
xu. . . , xn, as defined above, with the property that for each i = 1,. . . , n,
σ(Xi) = — 1. The — clusters in a configuration σ are the connected components of
the set of sites where the spin is — 1 in the configuration σ. A — cluster is called
infinite if it contains infinitely many sites.

Contours. Contours are important tools in describing and counting configurations
with certain properties. We adopt the following definition. A contour, y, is a set of
bonds which separates Zd into a finite connected set, Θ(y\ and an infinite set, in the
sense that:

i) If x 1 ? . . . , xn is a chain which has one end-point in Θ(γ) and the other one
outside this set, then there is ίe{l,. . . , n — 1} such that {xhxi+1}ey, i.e., this
chain must "cross y."
ii) If y' is strictly contained in y, then the property above fails if we replace y by y'.
In other words, if we remove any bond from γ, we do not separate anymore the
lattice Έd into two sets.

The set of sites Θ(y) is called the interior of the contour y, and its complement is
called the exterior of y. We also say that the spins in Θ(y) are surrounded by y. The
number of elements (bonds) in γ is called the size, or surface, of γ and denoted by \γ |.
The number of sites surrounded by 7, |Θ(y)|, is called the volume of y. The interior
and exterior boundaries of y are defined, respectively, by

diniJ = {xeΘ(y): {x,y}ey for some yφΘ(y)} ,

<3eχty:= {xφΘ(y): {x,y}ey for some yeΘ(y)} .

A contour y is said to border on a set Γ a 7Ld if Γ intersects the interior or exterior
boundary of 7. In this case we also say that Γ is adjacent to y. A contour y1 is said to
surround another contour y2 in case Θ(y2) c= Θ(y1). We say that a contour y is
inside a set Γe 3F in case Θ(y) c Γ.

Given a configuration σeΩ,we say that the contour y is present in σ if, in the
configuration σ, the spins in <9exty all have the same sign and the spins in δinty all
have the opposite of this sign. An outer contour present in a configuration is
a contour which is present in this configuration and is not surrounded by any other
contour present in this configuration. A contour y which is present in a configura-
tion σ is said to be a positive (resp. negative) contour in this configuration if the
spins in diniy are all positive (resp. negative) in the configuration σ. A family of
distinct contours is said to be compatible if there is at least one configuration in
which all these contours are present.

Given a set ΓeJ^, every configuration in ΩΓ _ can be identified by the
collection of contours present in this configuration. The same is true for
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configurations in ΩΓ + . We will use the notation Ω(yί9. . . , yn) to denote the event
that the contours γί9. . . , γn are all present as outer contours.

One can visualize better the contours by means of the following construction.
Consider TLd embedded in IRΛ and for each xeZd, set Q(x):= {yeWLd: \xt - yt\ ^
1/2 for i = 1,. . . , d}. To each bond {x, y}9 we associate what is called the face
between x and y, and is defined as F^y} := Q(x) nQ(y). Given a contour y, one
introduces Θ(y):= [jxeΘ{y) Q{x) and γ:= {J{x,y}Eγ F^y}. Θ(y) is a solid of volume
\Θ(γ)\ and y is its boundary, whose surface is \γ |. An immediate consequence of this
construction is the following isoperimetric inequality, valid for every contour y.

U) • ( 2 )

More generally, if γί9. . . , yn is a family of contours, then

tjr,Λi(^Mγ-\ (3)

The first of these inequalities can be derived from Theorem 1.1 in [Tay], in the
following way. Define a surface tension which is 1 for planes perpendicular to each
one of the coordinate directions and is + oo otherwise. One can easily see that the
corresponding Wulff shape is a cube, and hence (2) follows from the theorem to
which we referred above. In the case d = 2 we can also provide a simpler argument:
let a and b be the sides of the smallest rectangle which circumscribes the contour y.
Then the following two inequalities are easily checked:

\Θ(y)\<Lab a n d \γ\^2(a + b ) .

These inequalities imply (2). The inequality (3) follows easily from the same
arguments used to prove (2) and the observation that by translating the sets Θ(γ)
we can make them coalesce into a single solid of volume Σi=i „ l®(?ί)l a n d
surface not larger than J \ = { n IVil

Finally we recall the exponential upper bounds on the number of choices for
families of compatible contours which have to satisfy simultaneously two types of
constraints: all the contours must intersect a certain set of bonds 5, which is fixed
and has cardinality k, and the sum of the sizes of the contours in the family has to
be a certain number I. Let M(S91) be the number of different choices of families of
contours with these properties, then there exists b < oo, which depends only on the
dimension, such that

M(SJ)<,bι+k . (4)

One way to prove (4) is to observe that the set of bonds can be thought of as the set
of vertices of a graph, in which two bonds v± and v2 are connected by an edge if and
only if the corresponding faces, FVl and FV2, have a non-empty intersection. Observe
that the graph that we introduce in this fashion is infinite but of bounded degree.
Say that a set of vertices is connected in case for every pair of vertices in this set
there is a sequence of vertices also in the set, starting from one of these two vertices
and finishing at the other, with the property that successive vertices in this sequence
are connected by an edge of the graph. Contours have to be connected sets in this
sense, and so the proof of (4) is reduced to the proof that for an arbitrary graph with
bounded degree, the number of ways in which we can choose a set V, with / vertices,
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which is the union of connected sets, each one of which has a non-empty intersec-
tion with a given fixed set of vertices, S, of cardinality /c, is bounded above by bι+k,
for some finite b, which may depend on the graph. A proof of this inequality, in the
case in which the set S is a singleton, so that the set of vertices which is obtained has
actually to be connected, can be found for instance in [RL], Proposition 2 in
Sect. 4. For the general case, let sί9. . . , sn be the elements of S, ordered in some
arbitrary fashion. Divide each set of vertices V, with the desired properties, into the
family of its maximal connected components, and associate to each of these
components the smallest vertex in S contained in it. Now associate to V the
sequence of numbers lu . . . , lk, where lt is 0 if the vertex st is not associated to any
of the connected components, and otherwise is the size of the connected component
to which Si is associated. Recall that the number of ways in which we can pick
k non-negative integer numbers lu . . . , lk, constrained by £ . = { k lt = / is

The result now follows easily from the case k = 1, at the cost of doubling the value
offe.

The probability measures. We endow Ω also with the Borel σ-algebra correspond-
ing to the topology introduced above. In this fashion, each probability measure μ in
this space can be identified by the corresponding expected values \fάμ of all the
local observables/ A sequence of probability measures, (μn)n= 1,2, , is said t o

converge weakly to the probability measure v in case

lim \fdμn = [fdv for every continuous observable/. (5)
n-»oo

The family of probability measures on Ω will be partially order by the following
relation: μ ^ v if

\fάμ ^ \fάv for every continuous non-decreasing observable/. (6)

Because the local observables are dense in the set of continuous observables, we
can restrict ourselves to the local ones in (5) and (6). Moreover, because every local
observable is the difference between two non-decreasing ones, we can also restrict
ourselves to those in (5); we will make heavy use of this observation.

The Gibbs measures. We will consider always the formal Hamiltonian (1). In order
to give precise definitions, we define, for each set Γ e J ^ and each boundary
condition η e Ω,

HΓ, η, h(σ) = - \ Σ ΦMy) - \ Σ σ(χ)i(y) - ? Σ σ(*) > (7)
Z{x,y}eBΓ

 Z{x,y}edBΓ

 Z xeΓ
yφΓ

where heR is the external field and σ e β i s a generic configuration. The Gibbs
(probability) measure in Γ with boundary condition η under external field h and at
temperature T = 1/β is now defined on Ω as

(-βHΓiηth(σ))
if σeΩΓirΣ

ζeΩr,ηeW(-βHΓ,η,h(ζ))

γ. ,

0 otherwise .
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Observe that we omit in the notation reference to the temperature T, because it will
be usually fixed. The following property is a consequence of the fact that the
Hamiltonian only involves interactions between nearest neighbors: given Γ e J^, if
η(x) = ζ(x) for every xeδextΓ, then

$fdμr,η,h = ίfdμΓ,ζ,h, (8)

for every local observable/whose support is contained in Γ. The next property is
known as the DLR equations: given Γ a Γ' e 3F and a pair of configurations η and
η' which are identical off Γ', we have

μrw,h( \Ωr,η) = μr,η,h( )> (9)

The Gibbs measures satisfy the following monotonicity relations to which we
will refer as the FKG-Holley inequalities.

If η 5g ζ and hγ ^h2, then, for each Γ e # " , μr,η,hί ύ μr,ζfh2

A Gibbs measure for the infinite system on TLd is defined now as any probability
measure, μ, which satisfies the DLR equations in the sense that for every Γ e # " and
μ-almost all ηeΩ,

μ(.\ΩΓ,η) = μ Γ , η , h ( . ) . (10)

Alternatively and equivalently, Gibbs measures can be defined as elements of the
closed convex hull of the set of weak limit points of sequences of the form
(lLίrhηi,h)i= 1,2, •> where each Γt is finite and /]-> 7Ld, as i-> oo, in the sense that
U £ i Π 7 = I Γj = %d- Together, (8) and the DLR equations, (9) and (10), imply the
Markov property for the Gibbs measures; for instance, if μ is a Gibbs measure for
the infinite system under external field h, then for arbitrary Γ e # " and μ-almost all
η,ζeΩ such that η(x) = ζ(x) for every xedextΓ,

for every local observable/whose support is contained in Γ.
The Holley-FKG inequalities can be used to prove that for each value of Γand

h^A(ii-,h (resp. μ Λ{i\ +,Λ) converges weakly, as /-»oo, to a probability measure
that we will denote by μ_jΛ (resp. μ + th). If h φ 0, or d = 1, it is also known that

μ-,h = μ+,h--μh, (H)

while if d ^ 2 and h = 0 the same is true if the temperature is larger than a critical
value Tc > 0, which depends on the dimension, and is false for T < Tc. Moreover,
for the values of T and h for which (11) holds, any weak limit of any sequence of the
form (μΓh ηh h)t = l s 2, , where 3F 3 Γι -• Zd, is identical to μh. Therefore we conclude
that whenever (11) holds there is a unique Gibbs measure for the infinite system.
When (11) fails, there is more than one Gibbs measure for the infinite system, and
we say that there is phase coexistence. We use the following abbreviations and
names:

μ_ > 0 := μ_ = the minus phase ,

μ + 0 : = μ+ = the plus phase .

Another known fact is that for fixed T

μh -> μ+ weakly, as h \ 0 ,
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and
μh -• μ_ weakly, as h s 0 .

For the expected value corresponding to a Gibbs measure μ . . ., in finite or infinite
volume, we will use the notation

</> :=!fdμ...,

where . . . stands for arbitrary subscripts. The spontaneous magnetization at
temperature T is defined as

m*(T)=(σ(0)}+.

(Here we are using a common and convenient form of abuse of notation: σ(x) is
being used to denote the observable which associates to each configuration the
value of the spin at the site x in that configuration. This notation will also be used
in other places.) It is known that m*(Γ) > 0 if and only if μ_ Φ μ+, and also that

The dynamics. We introduce now for the Ising model above, the time evolution
known as stochastic Ising model or Glauber dynamics. First we recall that a spin
flip system is defined as a Markov process on the state space Ω, whose generator, L,
acts on a generic local observable / as

(Lf)(σ)= Σ Φ,σ)(/(σ*)-/(σ)), (12)
xeΈd

where σx is the configuration obtained from σ by flipping the spin at the site x, and
φ , σ) is called the rate of flip of the spin at the site x when the system is in the state
σ. In order for this generator to be well defined and indeed generate a unique
Markov process, one has to assume that the rates φ , σ) satisfy certain regularity
conditions. For our purposes here, we will actually restrict ourselves to the
following conditions, which are more than enough to assure the existence and
uniqueness of the process.

(HI) (Translation invariance) For every x, yeΊίd,

φ , σ) = c(x + y, θyσ) ,

where θyσ is the configuration obtained by shifting σ by y, i.e., (θyσ)(z) = σ(z — y).

(H2) (Finite range) There exists R such that

c(0, η) = c(0, 0 if η(x) = ζ(x) whenever || x \\ „ ^ R .

The minimal such JR is called the range of the interaction.
The connection between the rates of flip and the Hamiltonian (1) and the

temperature T = 1/β is established by imposing conditions which assure that the
Gibbs measures are not only invariant, but also reversible with respect to the
dynamics. These conditions, called detailed balance, state that for each xeΈd and
σeΩ,

φ , σ) = φ , σ*)exp(- βAxHh(σ)) , (13)

where

AxHh(σ):= σ(x)( £ σ(y) + h
\y:{x,y}eBΓ
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which formally equals Hh(σx) — Hh(σ). We will usually make the dependence on
h explicit, by writing ch(x9 σ) for the rates. There are many examples of rates which
satisfy the conditions of detailed balance (13) and also the other hypotheses, H(l)
and H(2). The most common examples found in the literature are:

Example 1) Metropolis Dynamics

where (a) + = max{α, 0} is the positive part of a.

Example 2) Heat Bath Dynamics

Ch{X'σ)=l+exp(βAxHh(σ))

Example 3)

ck(x,σ) = exp(-(β/2)ΔxHh(σ)).

Each one of these rates satisfies also the further conditions below which will be
needed for the analysis in this paper to be possible.
(H3) (Attractiveness and monotonicity in h) If η(x) ^ ζ(x) and h1^h2, then

chl(x, η) ^ ch2(x, ζ) if η(x) = ζ(x) = - 1 ,

cΛl(x, η) ^ ch2(x, ζ) if η(x) = ζ(x) = + 1 .

(H4) (Uniform boundedness of rates) For each temperature T there is h(T) > 0 and
0 < cmin(T) S cmax(T) < oo such that for all he(- h(T\ h(T)) and σeΩ,

cmin(T) S ch(Q, σ) S cm a x(Γ) .

Throughout this paper we will suppose that we have chosen and kept fixed a set
of rates ch(x, σ) which satisfy the detailed balance conditions, (13) and all the
hypotheses H(l)-H(4). This spin flip system will be denoted by (σjj; t)t ^ Q, where η is
the initial configuration. If this initial configuration is selected at random according
to a probability measure v, then the resulting process is denoted by (σl t)t^o The
probability measure on the space of trajectories of the process will be denoted by P,
and the corresponding expectation by E. (Later, when we couple various related
processes, we will also use the symbols IP and E to denote probabilities and
expectations in some larger probability spaces, but no confusion should arise from
this.) The assumption of detailed balance, (13), assures that the Gibbs measures are
invariant with respect to the stochastic Ising models. Moreover, from the assump-
tion of attractiveness, H(3), one obtains the following convergence results

and

weakly, as t^co.
We will want to consider, sometimes as a tool, and sometimes for its own sake,

the counterpart of the stochastic Ising model that we are considering, on an
arbitrary finite set Γe^, with some boundary condition ξeΩ. This process, which
will be denoted by (ση

Γ, ξ, h t)t ̂  o, where ηeΩΓξ is the initial configuration, is defined
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as the spin flip system with rates of flip given by

Uh(x,σ) if σ, σxeΩΓ,κ

cr.a*>*) = [0 otherwise.

When σ, σxeΩΓiK, (13) yields, for all x e ί ,

h(x, <ή = μrt ξ, h(σx)cΓ, ξ, Λ(X, <*X) , (14)

which is the usual reversibility condition for finite state-space Markov processes.
(Conversely, if one requires (14) to be satisfied for arbitrary Γe 3F and ξeΩ, then
one can deduce that (13) must hold.) It is clear from H(4) that (a}, ξ, h; t) is irreducible
and hence from (14) it follows that, for any η9

σΓ, ξ, Λ; ί μΓ, ξ, h 5

weakly, as t —• oo.

Graphical construction. In order to prove a few lemmas in the form needed in this
paper, we introduce next a graphical construction which provides versions of the
whole family of processes at a given temperature T, with arbitrary value of
he(— h(T), h(T)\ either on the infinite lattice TLd or on any of its finite subsets,
with arbitrary boundary conditions and starting from any initial configuration, all
on the same probability space. The type of construction and the proofs that we
present next are not new, but we could not find in the literature the precise type of
results that we needed, including the necessary uniformity of the estimates in
he(— h(T\ h(T)\ and for this reason we provide a self-contained exposition. The
construction below is a specific version of what is called basic coupling between
spin flip processes: a coupling in which the spins flip together as much as possible,
considering the constraint that they have to flip with certain rates. The construc-
tion is carried out by first associating to each site xeZd two independent Poisson
processes, each one with rate cm a x(Γ). We will denote the successive arrival times
(after time 0) of these Poisson processes (τ *„)„ = l s 2, and (τ~tΛ)n = ^ 2, . Assume
that the Poisson processes associated to different sites are also mutually indepen-
dent. We say that at each point in space-time of the form (x, τ* π ) there is an upward
mark and that at each point of the form (x, τ~M) there is a downward mark. Next we
associate to each arrival time τ*>n, where * stands for + or —, a random variable
U*tn with uniform distribution between 0 and 1. All these random variables are
supposed to be independent among themselves and independent from the pre-
viously introduced Poisson processes. This finishes the construction of the prob-
ability space. The corresponding probability and expectation will be denoted,
respectively, by IP and IE. We have to say now how the various processes are
constructed on this probability space. For finite Γ and arbitrary ξ, the process
far, ξ, h; t) is constructed as follows. We know that almost surely the random times
τ* Π J x eΓ9 n = 1, 2,. . . , * = +, —, are all distinct, and we update the state of the
process at each time when there is a mark at some xeΓ according to the following
rules. If the mark that we are considering is at the point (x, τ*>π), and the configura-
tion immediately before time τ*?/J was σ, then

i) The spins not at x do not change.
ii) If σ(x) = — 1 (resp. σ(x) = +1), then the spin at x can only flip if the mark is of

upward type (resp. downward type).
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iii) If the mark is upward and σ(x) = — 1, or if the mark is downward and
<j(x) = + 1 , then we flip the spin at x if and only if cΓ,£ft(x, σ) > U*>ncmax.

One can readily see that the process constructed in this fashion has the correct rates
of flip.

In principle, one would like to construct the processes on the infinite lattice TLd

in a similar fashion, with ch(x, σ) replacing cΓ, ξ, h(x> σ)m (m) Some extra care has to
be taken, because during any non-degenerate interval of time infinitely many
marks occur. This is not a real problem, because of the assumption that the range
of the interaction, R, is finite. Starting from a configuration η at time 0, we have to
say how the spin at a generic site x at a time t is obtained. We will argue that on
a set of probability 1 in the space where the marks were defined, for any fixed x and
ί, if we take any boundary condition ξ, then the sequence (σvi(/), ξ, h; t(x))ι = l, 2, will
converge as /-• oo (i.e., will become constant for large /), to a limit which does not
depend on ξ. This limit can then be taken to be the value of σ\ t(x), and it is clear
that the version of the process (σ#;ί) constructed in this fashion has the correct flip
rates. To prove the claim above about insensitivity to receding boundary condi-
tions, we introduce the events E(x, ί, /) that there exists a sequence of points in
space-time (x0,0), (x l 5 tx),..., (xn, tn) with the properties that 0 < ίx < < tn < ί,
xoφΛ(l), xn = x, || Xi — Xi-11| ^ R for i = 1,. . . , n, and that at each point (x,, tt\
i = 1,. . . , rc, there is a mark. It is easy to see that out of the event £(x, ί, I),
σΛ(i),ξ,h-j(x) does not depend on ξ. Because E(x, t, I) a E(x, w, /), when t g w, our
claim is reduced to the statement that for each x and integer ί, E(x, ί, /) happens for
only finitely many values of /, P-almost surely. We have to show now that the
probability of E(x, ί, /) vanishes fast enough as /-• oo, so that we can apply the
Borel-Cantelli Lemma. In order to do it we observe that for a given n, the sites
x o , . . . , x π _ 1 in the definition of E(x,tJ) cannot be chosen in more than
((2R + l)d)" ways. Also, for large /, n cannot be less than l/(3R). Therefore,

Ψ(E(x, t, /)) ^ X (2R + l)dnΨ(Z ^ n),
n ^ 1/{3R)

where Z is a Poisson random variable, with mean ίcm a x =: r. We will use now the
following elementary inequality, valid for n ^ r,

-r n y rk~n

 < _r n nk~n

> kl = > kl

= (r/n)ne"-r ^ exp(-w(log(n/r) - 1)) .

Combining the last two estimates we obtain for large / (depending only on x)

ί, /)) ^ Σ (2R + l)dnexp(-n(log(//(3Kίcmax)) - 1)),
n ^ l/(3R)

which goes to 0 faster than any exponential of /.
Actually, the estimate above shows also that even if we let t grow with /, but

keeping l/t large enough, then the spin at a fixed site x is almost insensitive up to
time t to what happens outside of the box Λ(l). We state this result in the form of
a lemma for future reference. This lemma is a rigorous counterpart of the informal
statement that because of the finite range of the interaction, and the uniform upper
bound on the rates of flip, "the effects travel with a bounded speed."
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Lemma 1. For each dimension d and temperature T, there exists a finite positive
constant C(d, T) such that if we let I —• oo and ί -• oo together, keeping I ̂  C(d, T)t,
then for every site xeZ,

sup sup sup P(σ£ t(x) φ ση

Λ{ιX ξt h. t(x)) -> 0 ,
he(-h{T),h{T)) ξeΩ ηeΩ

exponentially fast in I.

Because of the hypotheses (H3), of attractiveness and monotonicity in h, the
coupling provided by the construction above preserves the order between the
coupled marginal processes, in various cases. In this paper we will need (particular
cases of) the following facts. If η ^ ζ, ξ ^ ξ', -h(T) <hx^h2< h(T) and Γ e # " is
arbitrary, then for all t ^ 0,

σlξthι tύσζ

Γtξ'th2;t9 (15)

σl;tύσί2;t9 (16)

and

σηr,-,hi t^σζ

h2.t. (17)

We will refer to these inequalities as basic-coupling inequalities. (Observe that the
Holley-FKG inequalities for the models we are considering can be derived from
(15).)

A few more remarks on notation. We will use C, C(T), C(T, d\ Cu C2, etc. . ., to
denote positive finite constants, whose precise values are not relevant and may even
change from appearance to appearance.

We will use the notation β' = β — logb, where b is the constant (dependent on
d) which appeared in the counting inequality (4). Several times we will encounter
the fraction βf/β, and we observe that it satisfies

β'jβ = i _ Tlogb ?\ as T \ 0 . (18)

Given Γe&, ξeΩ, hsΊBL and E c Q, we write

Zr,ξ,h(E)'= Σ exp(-j8HΓ f^Λ(σ)). (19)
σ E ΩΓί ξ n E

1-ίi. Main Result. The following theorem is our main result.

Theorem 1. For each dimension d ^ 2 there is To > 0 such that for every temperature
Γe(0, To) the following happens. There are constants 0 < λ^T) <̂  λ2(T) < oo such
that if we let h \ 0 and t -• oo together, then for every local observable f

ii) Έ{f{σkt))^\fdμ+ if\immίhd-ι\ogt>λ2(T).

We can take λ^T) = (2d(d - l)d~7(d + l))(β'/β)dβ, and λ2(T) = (2ddd~1)(l +
δ(T))β, where δ(T) is a positive-valued function which vanishes as T \ 0.

In other words, we are stating that the law of the random configuration
σh;t converges weakly to μ_ in case (i) and to μ+ in case (ii).

Theorem 1, apart from the explicit estimates on λx(T) and λ2(T), was conjec-
tured by Aizenman and Lebowitz in [AL], where they proved a similar result for
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certain deterministic cellular automata evolving from initial random configura-
tions selected according to translation invariant product measures. Actually they
conjectured the stronger result, which states that also λ^T) = λ2(T) =: λc(T), This
is a natural further conjecture, but we believe that it will be extremely difficult to
prove it, because it is not even clear what the common value of λγ(T) and λ2(T)
should be, as we will explain in the next subsection.

The statements (i) and (ii) in Theorem 1 should be compared with the following
slightly weaker, but more explicit, pair of statements.

i') Έ(f(σϊ.t))-+$fdμ- if t = expOl/ft*"1), 0 < λ < λ^T) and h \ 0.

ii') Έ{f{σt-t))-^)fdμ+ if t = expOl/ft'"1), λ2(T) < λ < oo and h \ 0.

Statements (i') and (ii') are clearly implied by (i) and (ii), respectively. On the
other hand, using monotonicity in t of IE(/(σ/^r)), when/is monotone (and writing
a generic observable/as a sum of two monotone parts), one can easily see that if we
assume that 0 < liminf hd~ι log t ^ lim suph d~ 1 log t < oo, then, actually, (ϊ) and
(ii') imply (i) and (ii), respectively. In other words, the cases covered, for instance, by
(i) and not by (i') are those in which t -> oo slower than any exponential of l/hd~1.
In this regard, (i) actually says that the system relaxes to the "metastable situation"
in a time which has to be large compared to the unit of time, but which does not
scale with h. Similarly, (ii), contrary to (ii'), covers cases in which t -• oo faster than
any exponential of l/hd~ι. In reality the content of (i) and (ii) which is missing in (ϊ)
and (ii') is contained in the part of Theorem 1 which is easy to prove. We state this
part and prove it next.

Proposition 1. For each dimension d and for every temperature T, if we let h \ 0 and
ί-*oo together, then for every non-decreasing local observable f

i")

ii")

Proof Using the basic-coupling inequality (16), write

Now, as ί-* oo, the right-hand side converges to J/dμ_, and hence (i") holds.
To prove (ii") observe that also from the same basic-coupling inequality, if

W > 0 is kept fixed, then, when h ^ h\ we have

Letting h \ 0 and t -> oo, in any fashion, gives

lim sup Έ(f(σζ;t)) ^ lim E(/(σA" ; /)) = \fdμw .
ί^OO

The proof is completed by observing that h! > 0 is arbitrary and recalling that μ+ is
the weak limit of μh> as h! \ 0. q.e.d.

A simple-but-nice immediate consequence of Proposition 1 is the following
result, which, in contrast to Theorem 1, says that for temperatures for which there
is no phase transition, the relaxation to equilibrium occurs in a time of order 1 (no
scaling with h).
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Proposition 2. For each dimension d and for every temperature T for which
μ_ = μ+ =: μ0, if we let h \ 0 and ί-» oo together, then for every local observable f

We make now some remarks on the explicit form of λx(T) and the semiexplicit
form of λ2{T) provided in the statement of Theorem 1. First observe that, thanks to
(18), as T \ 0, λx(T) is asymptotic to (2d(d - \)d~ι/(d + ϊ))β. We will argue in the
next subsection that this asymptotics should actually be optimal, in that for the
conjectured constant λc(T) the same asymptotics should hold. On the other hand,
we have as T \ 0, λ2(T) asymptotic to (2ddd~1)β, which we believe to be off the
correct behavior by a factor \_{d/(d — \))d~1~\[d + 1]. We will see later that the
origin of each one of the factors singled out inside each one of the pairs of square
brackets is different.

1-iii. Heuristics. We present now the heuristics behind Theorem 1. This heuristic
reasoning comes in two parts, the first one of which is very well known, while the
second one seems to have escaped most of the attention.

First part. We want to consider the behavior of an individual droplet of spins + 1
in a background of spins — 1. When the temperature is low, it is reasonable, on
energetic grounds, to consider simply a cube full of spins + 1, the other spins being
all — 1, as such a droplet. If the side-length of the cube is /, then the energy of such
a configuration, with respect to the energy of the configuration with all spins — 1 is
given by

e h ( l ) : = 2 d l d ~ 1 -ldh.

As a function of /, considered now as a continuous quantity, eh(l) grows from 0 to
its maximum

when / varies from 0 to lc = 2(d — \)/h. For / > lC9 eh(l) decreases; it crosses the
value 0 when / = 2d/h, and goes to — oo when / -• oo.

If we assume that the droplet evolves in such a way as to lower the energy of the
system, then we are led to the conclusion that droplets with side-length smaller
than lc tend to shrink and that droplets with side-length larger than lc tend to grow
and cover the whole system. Also by analogy with other phenomena related to
passage over potential barriers, one would expect that the time needed for a droplet
to pop up spontaneously, due to a thermal fluctuation, in a given place is of the
order of

exp(β£ m a x ) ,

which grows exponentially with \jhd~x.

Second part. From the discussion above one could naively predict for the system
a relaxation time of the order of exp(β£m a x). Actually, this is only reasonable if the
whole system is not much larger than the size of a critical droplet, so that the time
for such a droplet to first appear should indeed be of that order and, moreover,
when such a droplet appears, it will cover the whole system in a comparably
negligible time. For instance, this seems to be a good prediction if the linear size of
the system scales as B/h with a large fixed B. (In this regard, see Corollary 1.) But we
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are concerned with a larger (infinite) system, and we are observing it through
a local function /, which depends, say, on the spins in a finite set S. For us the
system will have relaxed to equilibrium when S is covered by a big droplet of the
plus-phase, which appeared spontaneously somewhere and then grew, as discussed
above. We want to estimate how long we have to wait for the probability of such an
event to be large. If we suppose that the radius of supercritical droplets grows with
a fixed speed v, then we can see that the region in space-time where a droplet which
covers S at time t could have appeared is, roughly speaking, a cone with vertex in
S and which has as base the set of points which have time-coordinate 0 and are at
most at distance tv from S. The volume of such a cone is of the order of (υt)dt. Now,
from the discussion in the first part of the heuristics, one can infer that "the rate
with which supercritical droplets appear by thermal fluctuations" at a given
location should be of the order of exp(— βEmax). The order of magnitude of the
relaxation time, ίrel, before which the region S is unlikely to have been covered by
a large droplet and after which the region S is likely to have been covered by such
an object can now be obtained by solving the equation

K e l )
d ί r e l e x p ( - ) 8 £ m a x ) = l .

This gives us

In order to use this relation to predict the way in which the relaxation time scales
with h, one needs to figure out the way in which v scales with h. If we suppose, for
instance, that v does not scale with h, or that at least it goes to 0, as h \ 0, so slowly
that

lim hd~1logv = 0 , (20)
h\0

then we can predict that

ίrel ~ exp(βEmax/(d + 1)) = exp I {d+ί)h*-i ) ( 2 1 )

We will explain now why it seems reasonable to suppose that (20) is true.
v should be the asymptotic speed of the droplet, when it becomes very large (much
larger than the critical size), and in this regime we can neglect the curvature of the
surface of the droplet and regard the growth of its radius as resulting from the
movement of its boundary as that of a (mesoscopically) flat interface, caused by the
fact that h is positive. Thinking of the surface as a flat interface and keeping in mind
that h is small, we can, in first approximation, assume that on one side of the
interface we have the minus-phase and on the other side the plus-phase, which are
symmetric, and that protuberances of each phase into the other at the interface are
essentially similar. The movement of the interface is then caused simply by the
larger rate of flip of spins in the upward direction, caused by the fact that h > 0,
when we compare two situations which are related by spin reversal at all sites. By
checking in examples of rates, or from the type of argument that we will use later to
derive (22), one can see that this difference in the rates of flip caused by the external
field h is of the order of h. From this one obtains v ~ h as h \ 0, which implies (20).

From (21) one sees that the relaxation time, even for the infinite system, should
grow exponentially with h1~d, and what the rate of this exponential growth should
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approximately be when T is close to 0. The fact that in part (i) of Theorem 1 we
have λγ(T) which is asymptotic as T \ 0 to the value of λc(T) predicted in (21) is
a pleasant feature of the method used to prove this side of the theorem. On the
other hand, in part (ii) of Theorem 1 we are missing the factor l/(d + 1), in λ2(T)
because we are not able to control rigorously the growth of the supercritical
droplets and make complete sense out of (20). The other factor by which λ2(T)
differs from λc(T) even as Γ-» 0 is there for other technical reasons.

A major question, which seems to be controversial even from a heuristic
standpoint, is the prediction of the correct value of λc(T\ for each T (small enough,
if necessary), and not just its asymptotic behavior as T-> 0. A certain type of
"common wisdom" says that one should repeat the computation above but with
the cubes replaced by solids which have the Wulff shape corresponding to the
surface tension at temperature T. This idea has, nevertheless, been challenged by
the results obtained in the limit of very low temperature by Kotecky and Olivieri in
[KO2 and KO3] (results announced in [KOI]). (After discussions with these two
colleagues, it seems to me that there is no compelling evidence that in the limit
considered in the present paper Wulff shapes should be more likely to come into
play in this problem than in the limit of very low temperatures.) In connection to
this discussion, one may want to refer to the fact that investigations have been
carried out on simulations and analytic (non-rigorous) studies of supercritical
droplet growth (see for instance [DS] and references therein). Nevertheless such
investigations refer to the growth of droplets which are very supercritical and
should develop an asymptotic shape related to the different asymptotic speed of
growth in different directions. The asymptotic shape is not given by the equilibrium
Wulff construction, but by a similar construction based on the speed of growth as
a function of the direction. In any case this asymptotic shape obtained when
a droplet is moving downhill, "with the drift," does not clarify the controversy
about the first droplets which appear and are likely to grow (a completely different,
large-deviations type problem, related to moving uphill, "against the drift").

1-iv. Byproducts. In our way to prove Theorem 1, we will prove two results which
are interesting for their own sake. The first one can be considered as a static (or
equilibrium) version of the metastable behavior shown by the Ising model, in this
case when the boundary condition competes with the external field.

Theorem 2. For each dimension d ^ 2 there is To > 0 such that for every temperature
Γe(0, To) the following happens. There are constants 0 < Bγ(T) <, B2(T) < oo such
that if we let h \ 0, then for every local observable f

- ifB<Bx(T\

+ ifB>B2(T).

We can take BX(T) = 2d(β'/β), and B2{T) = 2d(l + δ{T)), where δ(T) is a positive-
valued function which vanishes as T \ 0.

While we do not know, at a rigorous level, that Bi(T) = B2(T\ the theorem above
states that at least in the limit T \ 0 these quantities converge both to Id. The value
Id for the common limit can be easily understood, since when B < 2d the ground
state inside Λ(B/h) with — boundary conditions is the configuration identically
— 1, while when B > 2d, it is the configuration identically + 1 .
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Part (i) of Theorem 2 will follow from the arguments that will be developed in
Sect. 2 in order to prove part (i) of Theorem 1; its proof will be presented at the end
of that section. In contrast, part (ii) of Theorem 2 will actually be used to prove part
(ii) of Theorem 1. Our proof of part (ii) of Theorem 2 will be based on Theorem
3 below, which will be proved in Subsect. 3-i. In order to state this theorem, we
need to introduce the following definition. We will denote by 38 the set of
configurations in Ω in which the box Λ(d/h) intersects an infinite cluster of
spins —1.

Theorem 3. For each B > 2d, there exists T(B) > 0 so that for all Γe(0, T(B))

lim μA{B/h),-,h(@) = 0
h \ 0

Part (ii) of Theorem 2 follows from Theorem 3 in a standard fashion. Observe
that for each configuration in ΩA{BIK),-\$ there is an outer contour present which
surrounds Λ(d/h). Conditioning on what this contour is and using the Markov
property of the Gibbs measures and the FKG-Holley inequality, one obtains for
each non-decreasing observable/,

liminf (f}Λ{B/h),-,h ^ \fdμ + ,
h \ 0

because the spins in the interior boundary of the outer contour are all + 1 . The
complementary inequality,

lim sup ifyA{Bih\-th ^ \fdμ+ ,
h\0

follows from the same simple argument used to prove part (ii") of Proposition 1,
based on the FKG-Holley inequalities.

Theorem 3 is technically the most difficult part of the present paper. It is
a strengthening of the main result obtained by Martirosyan in [Mar]. That result
was stated there as follows: for each dimension d, for low enough temperature T,
there is a finite constant B(T) such that the event that in the annulus between the
boxes Λ(B/h) and A(B/(6h)) there is an outer contour has μA(B/h),-t /i-probability
which converges to 1 as ft \ 0. The best possible choice of B(T) is discussed in
Sect. 3.12 of [Mar] (but beware that in the fourth displayed relation in that section,
c2(v, β) should actually be the inverse of this quantity, and also that what is called
h in [Mar] is βh in the present paper) and it is clear that the techniques in that
paper do not allow one to take B(T) arbitrarily close to 2d (provided we are willing
to take a low enough temperature) as in Theorem 3 above. The fact that the box
which is surrounded by a contour has side-length, respectively, d/h and B/(6h) in
the theorems that we are comparing is actually not serious; with some minor extra
work, we can strengthen the statement of Theorem 3, by replacing in the definition
of J* the box Λ(d/h) by the box Λ(B(l — ε))/ft, where ε > 0 is arbitrary. It seems
that also in [Mar] the factor 1/6 which multiplies B/h could be replaced by any
fixed factor less than 1. In spite of the fact that we provide a stronger statement, our
proof is actually simpler than the one in [Mar], interestingly enough, because we
exploit a result (Lemma 6) which was primarily considered in connection to the
proof of part (i) of Theorem 1.

1-v. Finite Systems. From the perspective of physics, the motivation behind state-
ments such as those in Theorem 1, which refer to infinite systems, is actually the
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idea that such systems are idealizations of very large, but finite, systems. By very
large, here, it should be understood that the system is much larger than any
relevant space scale in the problem. From the heuristics above, it should be clear
that, in the present case then, a very large system should be one with linear size of
the order of expφ//^" 1 ), where D is a large enough constant (how large depends
on Γalso). In such a case the relevant space-time cones introduced in the heuristics
will be fully contained inside the system.

Suppose now that we have a smaller system, the process with — boundary
conditions evolving in the box A(l) of side /, say, where / scales in some fashion with
h. If / stays constant as h \ 0, or even if it grows too slowly as h \ 0, then even in
equilibrium the effect of the boundary conditions do not vanish as h \ 0; this is the
type of problem discussed in the previous subsection, where we pointed out that for
the equilibrium measure to be close to the plus-phase, / has to grow at least as fast
as B/h, where B is a large enough constant. From the heuristics above this is also
clear, since otherwise critical droplets may be larger than the whole system. On the
other hand, if we suppose that / grows fast enough to avoid this problem, then we
obtain the theorem below, which generalizes Theorem 1.

Theorem 4. For each dimension d^2 there is To > 0 such that for every temperature
Te(0, To) and every constant D <t 0 the following happens. There are constants
0 < λ^T, D) <; λ2(T, D)<oo and B(T) < oo such that if we let h \ 0, t -> oo and
1 -> oo together in such a fashion that lim inf hi > B(T) and lim hd~ι log / = D, then
for every local observable f

i) Έ(f(σm-,h;t))-+$fdμ- i/limsup h*'1 logί < λx(T, D\

ii) Έ(f(σm-,h-t))-+]fdμ+ i/lim inf ft'"1 logί > λ2(T, D).

We can take

λt(T9 D) = max{2d(d - l)d-Hβ'/β)dβ ~ dD, (2d(d - \)d~l/{d + l))(β'/β)dβ} ,

λ2(T9 D) = (2ddd-χ)(l + δ2(T))β9 and B(T) = 2d(l + <S3(Γ)), where for i = 2, 3,
^(7") are positive-valued functions which vanish as T\0.

Part (ii) of this theorem can be proven in exactly the same way in which part (ii)
of Theorem 1 is proven. Also the adaptation of the proof of part (i) of Theorem 1 to
prove part (i) of Theorem 4 is not difficult, and we will restrict ourselves to
sketching it at the end of Sect. 2.

Because the statements in Theorem 4 are somewhat involved, we single out
next, as a corollary, the particular case in which D = 0 (for instance, / may grow as
(l/h)a, where a > 1, or as (2.00ϊ)d/h if the temperature is low enough). This case is
conceptually simpler than the case of infinite systems, covered by Theorem 1, in
that the notion of "growth of droplets" is irrelevant here. In particular there is no
factor l/(d + 1) in the exponential rate of growth of the relaxation time with
I/ft*"1. The asymptotic behavior of λ2(T,0) as T\0, unfortunately, is still not
what one predicts from the heuristics, nevertheless it is interesting to see that, when
the dimension becomes large, the ratio between λx(T,0) and λ2(T,0) stays
bounded.

Corollary 1. For each dimension d^2 there is To > 0 such that for every temper-
ature Te(0,To) the following happens. There are constants 0 < λ1(T, 0) ^
λ2(T, 0) < oo and B(T) < oo such that if we let h \ 0, t -> oo and I -> oo together in
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such a fashion that liminfW > B(T) and \imhd~1\ogl = 0, then for every local
observable f

- iyiimsupΛd-1logί< ^ ( ^ 0 ) ,
ii) Έ(f(σm-,h.t))^]fdμ+ i/liminf hd~x logί > A2(Γ, 0).

We can take λ^O) = 2\ά - \)d-\β'lβ)d β, λ2(T, 0) = (2ddd"1)(l + δ2(T))β,and
B(T) = 2d(l + <53(Γ)), where for i = 2, 3, (5,(7) are positive-valued functions which
vanish as T \ 0.

7-t i. ,4 Simple Argument for the Presence of a Plateau. The presence of a plateau in
the relaxation curves of local observables, when we are close to the phase transition
region, can actually be understood in a very simple way. Because of the bounded
speed of propagation of effects, up to an arbitrary time t, which may be very large,
the spins in the support S of a local observable / depend only weakly on what
happens up to time t outside of the box A(l\ if / is taken large enough, depending
on t. But if we are now free to take h as small as we want, we may make it very
unlikely that the system could "feel the presence of h inside the space-time cylinder
A(l)x [0, ί]." The conclusion is that the system behaves locally, up to time t almost
as if it were submitted to no external field. In other words, up to time t the
relaxation curve for / must be close to the relaxation curve that we would have
under no external field. If we are starting from — 1 at time 0, then the relaxation
curve for/under no external field approaches asymptotically, as ί-> oo, a straight
line, corresponding to the equilibrium value of/in the minus-phase. Because t can
be made large, by making h small, we can see as much of a plateau as we want in the
relaxation curve of/ under external field h.

The basic coupling, in the form that we constructed it, provides a method for
giving a precise meaning to the argument described above, and for estimating the
lower bound on the "length of the plateau" that can be obtained in this fashion.
Before we state and prove the exact result, it is worth observing that implicit in the
discussion above is the assumption that as h \ 0, the rates ch(x, σ) converge to
co(x, σ). This can be checked easily for each one of the explicit examples that we
introduced before. We would have added this sort of continuity to the list of
hypotheses that we are assuming, were it not for the fact that it can actually be
deduced from some of the other hypotheses already introduced. Moreover, as we
will see below, under the hypotheses that we are already assuming, the speed of this
convergence of the rates is also constrained in a fashion that does not depend on
the specific choice of the rates.

Proposition 3. For each dimension d ^ 2 and every temperature 7*6(0, Tc) the follow-
ing happens. If we leth \ 0 and ί -• oo together in such a way that lim sup htd+1 = 0,
then for every local observable f

Proof. First we analyze how the rates ch(x, σ) behave when h is close to 0. Due to
translation invariance we set x = 0 and define

0(/ι):=sup|c(O,σ)-Co(O,σ)|.
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Given a configuration σ such that σ(0) = + 1 , we use the notation a(h):= ch(0, σ),
and b(h):= ch(0, σ°). The detailed balance condition (13) states that

Hence

= βh .

From the hypotheses of monotonicity in h, (H3), a(h) decreases with h, while b(h)
increases with h, therefore the two logarithms above are positive, and hence must
vanish as h \ 0, implying that b(h)^> b(0) and a(h)-+ α(0). Moreover

βh/2 ^ max{log(6(Λ)/fc(0)), log(a(0)/a(h))} ^ βh .

Hence for small h (depending on σ and β),

βh/4 ^ max{(b(/i) - b(O))/b(O)), (α(0) - a(h))/a(h))} ^ 2βh .

Using now the hypotheses of boundedness of the rates, (H4), we can conclude that
there are positive finite constants C1(β, σ) and C2(β, σ) such that

d(/?, σ)h ^ max{|b(Λ) - &(0)|, |α(0) - a{h)\} ^ C2(β, σ)h .

But because of the finite range hypotheses, (H2), we may consider only a finite
number of possible choices for σ, and still would be covering completely arbitrary
choices. This allows us to conclude that there are positive finite constants C3(β)
and C4(β) for which

C3(β)h^g(h)^C4(β)h9 (22)

when h is small enough.
To complete the proof of the proposition we will use Lemma 1. Using the

notation there, take / = C(d, T)t. Choose an arbitrary boundary condition ζ,
denote the support of/ by S, and write

ί)) - lfdμ-\ ^ |E(/K f)) - Sfdμ.\

+ 11 /(Oiloo Σ ΐ?(σ*t(x)*σ2ilUth;t(x))

+ JP(σΛ(l), ξ, h; t(x) * <TA(l\ ξ, 0; t (*))] (23)

To control the last term above, we observe that, for each x e S, the event whose
probability appears there can only occur if there is a mark inside the cylinder
Λ(l)x[0,t] for which the corresponding C/*>w lies between ch(x, σ)/cmax and
co(x, σ)/cmax, for some configuration σ. But for each mark this occurs with prob-
ability bounded above by g(h)/cmax. Since the number of marks in the cylinder that
we are considering is a Poisson random variable with mean |Λ.(/)|ίcmax, it follows
from (22) and the hypotheses limsup htd+1 = 0 that, for each xeS,

V(σΛ(i\ ξ, h- t(x) * °A(H ξ, 0; t(x)) -> 0 (24)

The proposition follows now from (23), (24), Lemma 1 and the fact that as t -+ oo,
GQ. t -+ μ _, weakly. q.e.d.
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The argument above is very soft and works at all temperatures below Γc, but
unfortunately it only gives a lower bound for the "length of the plateau" of the
order l/h1/(d+1). This proposition allows us to focus on what the main content of
Theorem 1 really is: an estimate of how long the plateau is, or, in other words, for
how long a time the system stays far from equilibrium, displaying a metastable type
of behavior close to the wrong phase.

2. Lower Bound on the Relaxation Time

Our main goal in this section is to prove part (i) of Theorem 1. Throughout this
section we will set λx{T) = ((2d(d - l)*"" 1 )/^ + V))(βΊβ)*β. Recall that because
we already proved Proposition 1, part (i), all that remains is to prove that for every
λ < /li(Γ), if we define th:= exp^/ft*1"1), then for every non-increasing local ob-
servable /

J . (25)

The first step towards proving (25) is the observation that, because "effects propa-
gate with a maximum speed which does not scale with h" up to time th the
configuration in the support of/is not much affected by anything that happened
outside the box Ah:= yl(exp(A1(Γ)/hd~1)). In particular we can keep the spins
outside this region frozen, assuming any value that we may choose. The precise
statement, in the form we will use it, with — boundary conditions, is contained in
the lemma below, which follows from Lemma 1.

Lemma 2. If λ < λ1(T) then for any local observable f

lim \Έ(f{σi;.th)) - Έ(f(σΛh,-,h;th))\ = 0 .

Motivated by the heuristic discussion related to the behavior of droplets, we
introduce now a set of configurations which are free of large droplets in a certain
sense. Because we want to consider systems at temperatures which are low, but
fixed and different from 0, we should not stick to the naive notion of droplets as
cubes full of spins + 1 , but rather consider the contours which separate spins — 1
from + 1 . Motivated by the classic paper [CCO], on which we will comment later,
we denote by Mc the set of configurations in which no single contour surrounds
a number of sites larger than cd, i.e.,

&c:= {σeΩ: if γ is a contour which is present in σ, then \Θ(y)\ ^ cd) .

The choices of c will be made later, in convenient ways, different for different uses,
but usually of the form c = A/h, for some constant A.

We want to argue that up to a time as large as th the system evolving in the box
Ah with — boundary conditions and starting with all spins — 1, will be unlikely to
have escaped from Mc, where now c = 2{ά — l)(β'/β)/h. In order to do this we
introduce for each Γ e 3F a modified dynamics evolving in ΩΓ _, in which large
droplets cannot, by definition, be formed and then we couple the unrestricted
dynamics to this modified one, in a natural way. The modified dynamics is simply
defined as the Markov process on ΩΓ _ which evolves as the original stochastic
Ising model in Γ, with — boundary conditions, but for which all jumps out of
Mc are suppressed. In other words, the rates, cf^/^x, σ), of the new process are
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identical to c Γ _ h(x, σ) in case σxe&c and are 0 otherwise. We will denote this
modified process, restricted to the state space ΩΓ _ n ^ c , by (σr\η-,h;t)t^o> where
ηeΩΓ_ n&c is the initial configuration. It is well known, and very easy to prove,
that such a modified process is also reversible and that since it is, in our case,
irreducible, its unique invariant probability measure is fir,-,h given by

Now we observe that for each Γ e J ^ w e can couple the process (σf? -,h;t)to t n e

stationary process (σr ; -TM) m s u c n a w a Y t n a t t n e former will not escape from
0lc before the latter visits the boundary relative to Γ of this set, defined by

c for some xeΓ} .

This coupling can be constructed as follows. First we couple (σf5_5h. t) to (σrΓ

t'-%t)
using the basic coupling, so that for all t ̂  0 we have

σΓ,-,h;t ^ σΓ,-,h;t

Now we enlarge the space on which this construction was made to accommodate

(σr\μ-~h;t) which evolves together with {σμ*Ί'\;t) up to the moment when this one

escapes from 3kc\ at this moment {σrt

μ-ji;t) does not move, and afterwards it evolves

independently of the other two processes, (σir,-,h;t) a n d (σϊ\'-,hh;t) The important

fact about this coupling is that if we introduce

τc

Γy.= mi{t:σϊβ!'XtedΓ@c},

then, because only one spin flips at a time in the type of dynamics that we are
considering,

σϊ,-,h;tύ σ & \ for all t < τc

Γ,h . (26)

Lemma 4 below implies that in a sense and for certain choices of c, dγMc plays
the role of a bottleneck. In combination with (26) above, it can be used to show that
(σf }_ ) Λ ; ί) stays a long time in 01c. That lemma follows from Peierls type of
estimates, somewhat modified by the presence of the external field, which is
compensated by the fact that we are suppressing large contours; this is the content
of the preparatory Lemma 3.

Recall that we use the notation Ω(γl9. . . ,γk) to denote the event that
y 1 ? . . . ,γk are present as outer contours.

Lemma 3. Ifh^t 0, then for arbitrary Γe^ and c > 0,

. . . , yk)) ύ exp(V β + βch/(2d)) £ \7t

Proof. If there is any incompatibility among the yu i = 1,. . . , fc, or if any of the
regions they surround has more than cd sites the bound stated in the lemma is
trivially satisfied, therefore we suppose that they are compatible and that for each
i = 1,. . . , K

cd. (27)

Combining these inequalities with the isoperimetric inequality (2), by taking an
appropriate geometric mean of the corresponding bounds, we obain the further
bound

\θ(y,)\Z\γt\c/(2d). (28)
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Let Ωf(yί9. . . , yk) be the set of configurations which can be obtained from
configurations in Ω(yί9. . . , γk) by flipping all the spins surrounded by one of the
contours γi9 i = 1,. . . , k. Exploiting the fact that such a transformation is a one-
to-one mapping and using an obvious estimate for the variation in energy resulting
from this transformation we obtain, using the notation (19),

i,. ,7k)) =

= ZΓ,-9h(ΛcnΩf(γl9. . . 9γk))

£ expf- β f |y,| + βh £ \θ(yι)\) (29)
V ί = i i=i /

The proof of the lemma is finished by inserting (28) into (29). q.e.d.

Recall that βf = β — logb, where b was introduced with the inequality (4).

Lemma 4. Suppose that β > logb and c = Λ/h, where A < Idβ'jβ and 0 < h < 1,
then for arbitrary

c) S C(T, A) |Γ |exp((- 2dβ'Aa~x + βAd)lhd~ι) .

Proof. Each configuration in dΓ0tc has the property that there is at least one site
xeΓ which is exterior but adjacent to a collection of outer contours yί9. . . , γk,
where k is 1, or 2, or . . ., or 2d, such that the flipping of the spin at x (from — 1 to
+ 1) would make these contours coalesce into a new outer contour y9 with

\Θ(y)\ > cd. Because Θ(y) = (\Ji Θ(yi))κj {x} we must have

Σ \θ(γi)\^cd-l. (30)
i = l

We sum now over all x and {yj, making a partition according to the value of
Σ I yt-| =•' /, and using Lemma 3 and the counting bound (4); in this fashion we obtain

μf.-.ΛίδrΛcί^CilΓI Σ πp((-β'+ βch/(2d))l),

where l0 is the minimum value that Σ IVfl c a n assume. An estimate for l0 can be
obtained from (28) (valid here from the same reason it was valid in the proof of
Lemma 3) and (30):

Σ |y,| ̂  (2d/c)(cd - 1) = Uc*-1 - 2d/c .

Using now the facts that c = A/h9 A < 2dβ'/β and h < 1 we obtain the bound
stated in the lemma. q.e.d.

Observe that in order to exploit Lemma 4 the optimal choice is

A = 2(d-l)βf/β, (31)

which leads to the bound

£ C(T9 A) |Γ |exp(- 2\d - 1 )*"H/W/V^" 1 ) (32)

Observe that, thanks to (18), the choice (31) and the bound (32), are very close, at
low temperatures, to the values suggested by the heuristic reasoning presented
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before. Also the maximum allowed value of A in Lemma 4 makes the maximum
value for c there close to 2d/h, which is the threshold for the side-length of a cubic
droplet of spins + 1 to the droplet to have a negative energy, with respect to the
configuration —1.

We will use the notation </>f?_/j to denote the expectation of the observable
/with respect to the measure μf,-,/ι

Lemma 5. Suppose that β > logb, A = 2(d — l)β'/β, and c = A/h, then

i)

< th)^0 as h\0 .

ii) For every non-decreasing local observable f

lim sup E(/(σ^, _, k J ) ύ Hm sup <f>Z"-, h .
h\0 h\0

Proof. Part (ii) follows from part (i), (26) and the stationarity of the process

ψΛh,-,h\th

We turn now to the proof of part (i). For this we also exploit the stationarity of
the process ( α ^ f - ^ ) . If time were discrete (= 0,1, 2,. . .), then we could bound
yP(τΛh, h < h) fr°m above by (th + l)jΰuΛ, -,h(3λh^cX which vanishes as h \ 0, thanks
to (32) and to the facts that \Λh\ ^ exp^A^Γ)/^" 1 ) and th = e x p W ^ " 1 ) , with
I < X^T) = (2d(d - lY'^id + ΐ))(β'/β)dβ To adapt such an estimate to con-
tinuous time, we consider first times which are multiples of Δ\= hd+ί. The pro-
bability of the event E(h), that for some time 5 e [0, th) which is of the form s = jΔ
for some 7 = 0 , 1 , 2 , . . . , we have σc^Al\^sedAiβc, is bounded above by
(h~d~1th + l)μc

Λhi_th(dΛh$c\ which still vanishes as h \ 0. We have to show now
that it is unlikely that τ^Λ>^ < th and E(h) fails. Because of the strong Markov
property, it is sufficient that we show that for an arbitrary configuration η e dΛh&c it
is unlikely that the process (σ^'J-fh;s)s>o leaves the set d^hMc before time s = Δ. To
show this, we use again the fact that, since η e dΛh&c, there is somewhere in Λh a site
x which is exterior but adjacent to a collection of outer contours, yί9. . . 9γk9

present in η, where k is 1, or 2, or. . ., or 2d, such that the flipping of the spin at
x (from — 1 to +1) would make these contours coalesce into a new outer contour
y, with |<9(y)| > cd. (If there is more than one such arrangement in the configura-
tion η, choose one of them, according to some arbitrary rule.) The system, started
from η will not leave dAβtc before at least one spin in ( J 0 ( y f ) flips. Fom the fact
that I (J Θ(yι)\ ^ 2dcd = Ch~d, and the upper bound on the rates of flip provided
by H(4), it is clear that the desired result holds. This completes the proof of the
lemma. q.e.d.

The proof of (25) will be completed by combining part (ii) of Lemma 5
with Lemma 2 and the following bound, which is a particular case of Lemma
6 below: for β >\ogb and A < 2d(β'/β) fixed and every non-decreasing local
observable/,

h\0

The extra uniformity with which we state Lemma 6 comes for free in the proof and
will only be needed for other purposes in the next section.



Slow Droplet-Driven Relaxation of Stochastic Ising Models 27

Lemma 6. Suppose that β > logb and A < 2d(β'/β) are fixed, then for every non-
decreasing local observable f

limsup sup sup (f}c

Γ,-,h ^ < / > -

Proof. L e t S b e t h e s u p p o r t o f / a n d Sn = {xeΈd\ \\x — y\\ι S n for s o m e yeS}.

Let F be the set of configurations in which there is an outer contour which
surrounds a site in S1 and a site which is not in Sn. From Lemma 3 and the
assumption A < 2d(β'/β), it follows via a standard summation over possible
contours and the counting inequality (4) that for arbitrary c > 0, Γ e #" and
he[0,A/c],

ficr,-,h(F) ^ C(T,A)ndexp(- α(Γ, A)n), (33)

where α(Γ, A) = β' - βA/(2d) > 0 and C(T, A) does not depend on c, Γ and h.
Given now ε > 0, take n so large that C(Γ, y4)^exp(- α(Γ, A)n) <ε/\\f\\O0.

Observe that given ε, n depends on T, A and/ but that those are being held fixed as
we let c-> oo.

Defining E = ΩΓ _ \ F , we obtain from (33),

< / > f , _ , Λ ^ 2 ε + </|£>f,_, f c = 2 ε + < / | £ n Λ c > Γ , _ , Λ . (34)

We introduce now a partition {G :̂ iel} of E n&c. This partition is generated
by the equivalence relation on E n 01 c in which two configurations in this set are
considered to be equivalent if

i) they are identical outside of Sn,
ii) all the outer contours which surround at least one site outside of Sn are identical

in these two configurations,
iii) and these configurations are also identical inside these outer contours specified
in (ii) above.

To each index i e I there corresponds a (maximal) subset Wt of TLά (which contains
Έd\Sn and does not intersect S) on which all the configurations which belong to
Gt are completely specified and are identical to a configuration ηt, say. It is clear
that ηi(x) = — 1 for every site xedint Wt. Moreover the following crucial remark is
true: for fixed n, if c is so large that cd > \ Sn|, then for each i e I the occurrence or not
of the event Gt can be verified by looking exclusively at the spins at the sites in
Wι (but observe that for small c such a statement is in general false, because to
know that Gt happens we have to be sure that there is no contour γ present which
surrounds more than cd sites in Έd\Wj). From (34) and these observations it
follows, via the Markov and FKG-Holley properties of the Gibbs measures that,
for large c (depending only on Γ, A, f and ε),

iel

iel
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Making again use of the FKG-Holley inequalities,

limsup ( sup sup </>f,-,Λ I ̂  2ε + limsup </><?„,-,Λ/C

Since ε is arbitrary, the lemma is proven. q.e.d.

As was said in the paragraph preceding this lemma, this finishes the proof of
(25) and hence also of part (i) of Theorem 1. We turn now to other results which
follow from the same techniques.

Proof of Part (i) of Theorem 2. Suppose that B < # i (Γ) := 2dβf/β and choose an
arbitrary Ae(B, B1(T)). Under these conditions, ΩΛ(B/hι_c:&c and hence
fiA{B/h),-,h = μ<A(B/hi-,h' From Lemma 6 we obtain now, for any non-increasing
local observable/,

limsi

The complementary inequality,

limsup (f)Λ(B/h),-,h = limsup < / > ^ / Λ ) , _ , Λ ^ < / > -
h\0 h\0

h\0

is an immediate consequence of the FKG-Holley inequalities. q.e.d.

Sketch of the Proof of Part (i) of Theorem 4. That the claimed result holds with
^(T, D) = 2d(d - l)d-1(β'/β)dβ - dD can be proven by the same arguments used
above to prove part (i) of Theorem 1, but with Λh replaced by Λ(B/h) and without
using Lemma 2.

If 2d(d - \)d~ι{β'lβ)dβ -dD< (2d(d - l)d~V(d + l))(β'/β)dβ, then we want
to prove that the result also holds with ^ ( Γ , D) = (2d(d - l)d~7(d + l))(β'/β)dβ.
But in this case D > (2d(d - l)d~V(^ + l))(β lβ)dβ, and one can complete the
proof by combining the statement in part (i) of Theorem 1 with Lemma 1. q.e.d.

We comment next on two papers which are closely related to the material in the
present section. The first one is [CCO]. In that paper the authors, motivated by an
approach to metastability proposed by Lebowitz and Penrose, constructed states
which to some extent have the properties expected from "metastable states." For
the finite system in the box A(l) with — boundary conditions, such states were
constructed as "restricted ensembles," defined there precisely as what we denote
here by μ (̂/), -, Λ, with c not uniquely specified, but chosen properly from a certain
range of values. In [CCO] the authors show that if the system starts from this state,
and evolves with the (unrestricted) Glauber dynamics, then its rate of escape from
01 c, divided by the volume \A(l)\, can be made very small, uniformly in /, provided
h is small enough and c is chosen properly, as a function of h (close to 2/h in
2 dimensions). To prove this result, the authors of [CCO], bounded this rate of
escape per volume at time 0 by a multiple of μ^- thi^Λ(i)^c\ and showed that the
rate of escape is monotone non-increasing. This motivated them to derive the
estimates that we reproduced here in Lemmas 3 and 4. An important difference
between the use that [CCO] made of those estimates and our use of them is that in
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our case the "restricted ensemble" and the corresponding restricted Glauber
dynamics, which we introduced, are tools rather than objects of interest in
themselves. [CCO] also considered the thermodynamic limit, / /* oo, of μc

Λ^_^h,
and proved that such an object exists and has good mixing properties. This
part of their work relies on machinery developed by Minlos and Sinai, and
is technically the most difficult part of their paper. But because they considered
h and c as fixed in this limiting procedure, their results here are not of the
type that we needed in the present paper, and which are the content of our
Lemma 6.

It is worth pointing out that an important drawback in the results of [CCO] is
the fact that the rate of escape from the "metastable state," as studied there, grows
proportionally to the volume of the system, for fixed values of h and c, and so
diverges as the volume diverges. This is clearly so, because one considers the system
to have escaped as soon as a large droplet is formed anywhere. In this connection, it
is common to hear that metastability in the stochastic Ising models is a purely
finite-volume phenomenon. Actually, as we see in the present paper, this is not the
case if a proper characterization of metastability is adhered to. On the other hand
one has to be careful with the use of the term "metastability" and differences are
indeed found in the sort of "metastable behavior" found in different regimes
parametrized by volume, temperature and external field. We will say more about
this in Sect. 4.

The other paper closely related to part (i) of Theorem 1 is [Van]. In that
paper the author is motivated by a characterization of metastability proposed
by G. Sewell, who termed it "normal" (as opposed to "ideal") metastability.
In [Van] the stochastic Ising models on the infinite lattice are considered
(in 2 dimensions and with the specific choice of rates given in Example 2,
i.e., the Heat Bath dynamics). The author then considers the evolution starting
from the probability measure obtained as a thermodynamic limit of the
restricted ensembles of [CCO], with a fixed h and c. Essentially, he shows
that for c chosen properly as a function of h (close to 2/h), there is a plateau
in the relaxation curves of the local observables sx, xeΈd, given by sx(σ) = σ(x),
when the evolution is started from those states. The length of the plateau
is estimated from below by C(T)/h, for some C(T) > 0. Unfortunately, possibly
due to a misprint, a much stronger conclusion seems to be claimed in [Van];
the statement in the next-to-last display in p. 2670 of that paper indicates that
the plateau has length bounded below by exp((4 — ε)β/h), for all small enough T.
Such a result would even be in contradiction with the conjectured upper bound on
the relaxation time, obtained from the heuristics! Actually, looking for the origin of
this displayed inequality, one finds that it does not follow from the previous
inequality (because the function i(ή, which was defined immediately after display
(3.13) in terms of the function g(t\ which was defined in (3.6), grows exponentially
with t).

Apart from the different initial states considered, the lower bound for the length
of the plateau obtained in this section may be considered as an important strength-
ening of the result in [Van]. It is worth pointing out also that while the analysis in
[Van] uses estimates from [CCO] and can only be implemented at low enough
temperatures, the simple argument that was presented in subsection 1-vi already
gives a bound which in two dimensions is of the order C(T)/h1/3

f and applies to all
the stochastic Ising models considered in this paper, all local observables, and all
temperatures below Tc.
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3. Upper Bound on the Relaxation Time

The first step to proof part (ii) of Theorem 1 was already taken, when we proved
part (ii) of Proposition 1. In this section we will prove the complementary inequal-
ity: under the conditions stated in part (ii) of Theorem 1, and supposing that the
local observable / is non-decreasing,

ί . (35)

Similarly to what was done to prove (25) in Sect. 2, we will prove (35) by reducing
the problem to a problem referring to a finite system with — boundary conditions,
whose size grows as h \ 0. But this time the linear size of this system will scale as
l//ί, rather than as an exponential of a power of such a quantity. Since we want to
consider the evolution of the system up to a time which actually scales as an
exponential of l/Zi^"1, we will not be using the "bounded speed of propagation of
effects" in order to relate the finite to the infinite system, but instead the basic
coupling. This comparison is the content of the following lemma, which follows
from (17).

Lemma 7. For every Γ e # " every he(— h(T\ h(T)) and every non-decreasing local
observable f,

for all t ^ 0.

We will take Γ = Λ{B/h) with B >2d fixed. When Γis small enough we should
have, using the notation in Theorem 2, £ > B2(T\ so that in equilibrium this finite
system should be locally close to the plus-phase. In order to use part (ii) of
Theorem 2, we will in the first subsection below prove Theorem 3, which, as we
know, from Subsect. 1-iv, implies part (ii) of Theorem 2. Morally these results state
that, at low temperatures, for the finite system in the box Λ(B/h\ in equilibrium the
— boundary conditions have little influence on the spins in the center of the box.
Still another way to put it is to say that in equilibrium the center of the system is
likely to be covered by a droplet of the plus-phase.

In the second subsection below, we will prove that the corresponding stochastic
Ising model in the box Λ(B/h) with — boundary conditions and started with all
spins down, relaxes to its equilibrium in a time of the order of an exponential of the
surface of the system. The inequality (35) will follow from this result combined with
Lemma 7 and part (ii) of Theorem 2.

These two steps, in each one of the subsections below, are well separated and
each one interesting for its own sake; the former one is a purely static result while
the latter one is basically dynamic. Before starting with the proofs, we should
observe that, nevertheless, there is one important drawback to our approach for
proving (35). By considering the basic-coupling type comparison given by Lemma
7, with Γ = Λ(B/h), we are freezing the spins outside of the box Λ(B/h) from the
beginning, and giving up any hope of exploiting the possibility that droplets that
are created far from the origin could grow and cover the neighborhood of the
origin in a time much shorter than the time needed for the finite system in Λ(B/h) to
relax (this should essentially be the time for a big droplet to pop up spontaneously
inside this finite system with — boundary conditions). In other words, we are giving
up any hope of obtaining the factor d + 1 which should divide βEmax in the
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exponential rate with which λ2(T) grows with l/hd~1. We are adopting the present
approach because we do not know yet how to control, in a mathematically precise
way, the growth of supercritical droplets (in the regime treated in the present
paper, with T fixed and h \ 0); this is one of the main directions for further
research. (But it is important to observe that for different regimes, in which T \ 0
with h fixed or with h \ 0 simultaneously, in a proper way, we can adapt and
extend the techniques reviewed in [Schl] to obtain better upper bounds for the
relaxation time, which include the factor d + 1. We will say more about this point
in Sect. 4).

3-i. Proof of Theorem 3. The first lemma below implies that if B > 2d, then, at low
temperatures, big droplets are likely to be present in typical configurations selected
according to the probability measure μΛ{B/h),-,h> when h is positive but small.
Recall that m*(Γ) is the spontaneous magnetization at temperature T and that
m*(Γ)-> 1 as Γ \ 0 .

Lemma 8. Suppose that β > logb and A < 2d(β'/β) are fixed, then

limsup hd-Mog(μΛ(B/H-,Λ//z)) ύ - β(m*(T)Bd - idB*'1) .

Proof Using the notation (19), we have

ZΛ(B/h\ - , h(&A/h) ZΛ(B/h), -,θ(^A/h) ZΛ(B/h\ - , 0
—

A(B/h), -M^A/h) ^Λ(B/h), -, 0 ^A{Bjh\ -, h

The third fraction above can be estimated by first writing it as the product of three
further fractions:

ZA(B/h), -, 0 __ ZA(B/h), -, 0 ZA(B/h), +, 0 ZΛ(B/h), +, h ,~^
ZΛ(B/h), - , h ZA{B/h), + , 0 ZΛ(B/h), +, h ZA(B/h), - , h

Now, we estimate each one of these three fractions, in the right-hand side of (37), as
follows:

ίΎ ... _\

0, (38)
ZΛ(B/h),+,0

dh'
0 \χeΛ(B/h)

£-{β/2)\m*(T)\Λ{B/h)\dh'
0

= - ( P m ^ Γ ) ^ - 1 , (39)

and

l o g μ β i d i ί Sβ\dextΛ(B/h)\ ^ βldBi-yh*-1 . (40)
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The equalities and inequalities (37)-(40) imply that the third fraction in the
right-hand side of (36) can be estimated by

\og(ZΛ{B/hl~'°) S - β((m*(T)Bd/2) - 2dBd~1)/hd~ί . (41)
\ZΛ(B/h),-,hJ

The second fraction in (36) is trivially estimated above by 1, while the first one
requires some extra argumentation. We start as in (39) above, by writing

)( Σ σ { x ) ) dh'. (42)
o \χeΛ(B/h) /Λ(B/h\-,h'

Now, thanks to the assumptions on β and A, we can use Lemma 6 from the last
section to obtain the following bound:

limsup ( sup sup <(T(X)>^(B/Λ),-,Λ' ) ̂  - m*(T) . (43)
h\0 \xeΛ(B/h)0^h' ^h /

(The uniformity in h! and in Γ in Lemma 6, which was not needed in the last
section, was introduced in the statement of that lemma precisely for the purpose of
being used here. Actually, we are using translation invariance to transform the
uniformity in Γ into uniformity over the translates of the observable σ(0).)

From (42) and (43) we obtain

lim sup hd~ * log (Z

Ύ

ΛiB/h)> - ' hfjlh)\ S - {β/2)m*(T)B< . (44)
h\0 \^Λ(B/h), -,0K^A/h)J

Finally, the lemma follows from (37), (41), the statement made immediately after
(41), and (44). q.e.d.

Lemma 8 can be exploited by taking strictly monotone sequences as follows.
First take arbitrarily Bn \ Id. Now take βn s oo, so that Bnm*(Tn) > 2d, where
Tn = l/βn. Finally take An s 2ά such that An < 2d(β'Jβn\ where β'n = βn - log ft.
Observe that as n-^ oo, we have (An/h)d/\A(Bn/h)\ -> 1, so that from Lemma 8 we
conclude that for large n, in typical configurations chosen according to the law
μA(Bjh), -,h at inverse temperature βn, when h is small there is typically a (necessar-
ily unique) outer contour which surrounds a very large fraction of A(Bn/h). (This
fraction can be made as close to 1 as we want by taking n large enough; observe
that when we refer to small /z, we are considering a limit in which h \ 0, after having
chosen and fixed n.) In order to complete now the proof of Theorem 3, we have to
argue that such a contour is also likely to surround A(d/h). This seens a very
natural idea, but its implementation turned out to be very delicate in arbitrary
dimension. We present below a dimension independent solution to this problem,
based in part on some ideas in [Mar]. In the appendix we will present another
solution, which is simpler, but can be used only in the case d = 2.

Given a configuration σeΩ,we define ^(σ) as the set of sites in Έd which belong
to infinite clusters of spins — 1 in σ. It is clear that the sites in ̂ (σ) cannot be
surrounded by any contour. From this observation, Lemma 8 and the remarks
made above, we obtain the following result, which is stated as a new lemma for
future reference, in the form in which we will use it.
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Lemma 9. Assume given two strictly monotone sequences Bn \ 2d and βn 7* oo, such
that, for each n the inequality Bnm*(Tn) > 2d is satisfied. Given ε > 0,/or all large n,

lim μΛ{BJhl-,h({σ: \V(σ) nΛ(2d/h)\ > ε/hd}) = 0 ,

provided β ^ βn.

Recall that & is the event that the box Λ(d/h) intersects an infinite cluster of
spins — 1. We will now cover this event with (possibly overlapping) events, whose
probabilities will be estimated using Lemma 9 above and Lemma 11 below. Recall
the following notation for boxes centered at the origin Vt:= {xeZd: \\x\\n ̂  ί}.
Below we will be concerned with values of i in the set / : =
{i: Λ((3/2)d/h) c V{ c= A(2d/h)}. Recall also that a σ-chain is a chain of sites which
in the configuration σ have all spins negative. Given a configuration σeΩ, we
define for each iel, Mj(σ) as the set of sites x e P n ^(σ) which are connected to
Λ(d/h) by a σ-chain entirely contained in V{- ί except, possibly, for its end-point at
x. Next we define L f(σ):= Mi{σ)\Vi-1.

Now we introduce some of the events whose union covers the event M. Assume
α > 0 fixed, and define

Lemma 10. For every a > 0, the following holds for all small enough positive h.

a Vίd^'
U
iel

: \V(σ)nΛ(2d/h)\ ^
- 1

Proof We will assume that σe0β and for all i e I and I ̂  l,σφ£8u, and we have to
show that \<e{p) n Λ(2d/h)\ ^ (α/(2d - l))d((lβ)d/h)d, for small enough h.

Set m f:= |M f(σ)|, Zf := |Lf(σ)|, r := min/, s:= (max/) - r and α':= oc/(2d - 1).
We will prove by induction on we{l,. . . , s} that

mr+u ^ (a')dud . (45)

For u = 1 we observe that, since σ e J and Λ((3/2)d/h) a Vr+ί, there must be
a σ-chain contained in Mr+ί(σ) with length at least (l/8)d//z, when ft is small. So
we have

for small ft. Assuming now that (45) is true for a certain u ^ 1, we prove it for
M + 1 in the following way. Clearly, for each i, M f ( σ ) u L ί + 1(σ) cz M ι + 1(σ) and
M t (σ) n Li+ί(σ) = 0, hence

m r + u + 1 ^ m r + u + / r + u + 1 ^ mr+u + α(m r + M ) ( d " 1 ) / d

^ ( α 7 ) ^ " + {{2d - \)a'){a')d-γud-γ

= (oc')d(ud + (2d - l)^'1) ^ (α'(u + l ) ) d ,

where in the last step we used the fact that u ^ 1. This completes the proof of (45).
The lemma now follows from the observation that \^(σ) nΛ(2d/h)\ ^

mr+s ^ (α')V, and that for small ft, 5 ^ (l/8)d/ft. q.e.d.

Lemma 11. Suppose B^2d, β > 2(log b + log 2) and a < (/}/2 - log b -
\og2)/(2βd) are fixed, then
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i) for each iel and each I ^ 1,

(/\,h(#*ι) ^ C i ( & α, d)g(β, Λ)exp(- C2(j8, α,

where C2(j8, α, d) > 0, and for each β, g(β, h)-+l as h\0.

ϋ)
lim X

Proo/ Part (ii) clearly follows from part (i). To prove part (i), we will show that
configurations in J ^ can be transformed "at little cost" into configurations in
which Λ(d/h) is surrounded by a positive contour and moreover inside of this
contour there is at least one negative contour which is quite large because it has to
surround sites inside Λ(d/h) and outside A(3d/(2h)). Part (i) of the lemma will then
follow from an estimate of the probability of such configurations.

The transformation mentioned above is Ft: $£ t -> Ω, defined by

ίvί \\ι \ ) + 1 i f x e L i + ί(σ),(Fi(σmx)=iσ{χ) o t h e m i s e

Define for each

The "little cost" alluded to above is contained in the straightforward estimate

μ>Λ(B/h), -t

= exp(β2dl) Σ Nu(ψ)μΛm)t-9h(ψ) . (46)

To estimate the right-hand side of (46) we will use the following facts, where we
always suppose that iel, and / ̂  1.

i) lϊψe Fi(^lι), then there is no chain of spins — 1 in φ connecting any site inside
Λ(d/h) to a site outside Λ(B/h). (Because if φ = Fi(σ), then such a chain would also
be a σ-chain, and hence would have to cross a site in Li+ί(σ), which is in
contradiction with the definition of the transformation Ft). Therefore, there is
a contour in φ which surrounds Λ(d/h).

We will use the notation J^ijiγo) to denote the set of configurations φeF^li)
such that the outer contour which is present in φ and surrounds Λ(d/h) is yo

ii) Suppose that φ e Λ^ , z(y0)
 a n ( 3 let σ be one of the configurations in St*tl such that

φ = Fi(σ). In the configuration φ, the spins in the interior boundary of γ0 are
positive, while all sites in M^σ) have negative spins, and therefore must be
surrounded by negative contours, which are surrounded by γ0. Moreover, because
i e I and / ̂  1, the set of sites M t (σ) contains at least one chain which is contained in
Vi and which has one end-point inside Λ(d/h) and the other outside Λ(3/2)d/h). This
chain is not affected by the transformation Ft, and so it is also present in φ. Hence,
in φ, there must be at least one negative contour which surrounds a site in Λ(d/h)
and a site outside Λ((3/2)d/h).

We will use the notation «Λ f̂/(y0; 7i> > Ik)to denote the set of configurations
φ ejV*ij(γ0) such that their negative contours which surround sites inside Λ(d/h)
and outside Λ(3d/2h)) are precisely yu . . . , γk.
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iii) Suppose that φeJVuι(y0\ yu. . . , yk\ λ; Ξ> 1. We will show below that if
φ = Fi(σ\ then all the sites in Li + 1(σ) must be adjacent to some γj9 j = 1,. . . , k.
The relevance of this observation is that it clearly implies the following bound:

Nifl(φ)S2^j=ι ,*W. (47)

To prove the claim above observe first that iϊ xeLi + ί (σ) then x is neighbor to one
of the end-points of a σ-chain, si, contained in Vh and which has its other end-point
inside Λ(d/h). The chain si is also a i/'-chain, and we denote by si the cluster of
spins —\mφ which contains si. Because φ(x) = + 1 , x is separated from sϊ by
a contour, and to finish the proof of the claim we only have to argue that x must be
in the exterior (not the interior) boundary of this contour, since then this contour
has to be a negative contour which surrounds si, and so must be one of the yj9

j = 1,. . . , k. That x cannot be in the interior boundary of the contour which
separates it from sϊ is an immediate consequence of the fact that (while x φ V^)
sϊ a Vi9 which can be proved as follows. Define si':= s/nVh and observe that
from the definition of the transformation Fh in the configuration φ, the spins at all
sites outside of Vu which are neighbors of sites in si' are + 1 . This means that
sϊ = si' a Vh and completes the argument.

iv) Suppose again that ^eΛ^> z(y0; 7i> > Jk\ fe ^ 1. If Ψ = Fi(σ\ then
Mi(σ)cz[jj=1 kΘ(yj). Therefore, from the definition of J £ z and the
isoperimetric inequality (3), we also obtain

Z ^ α l M r f σ ^ - ^ α £ \7j\ . (48)

Using Sfk(B9 h) to denote the family of non-empty sets of k compatible contours
inside Λ(B/h) which have the property of surrounding sites inside Λ(d/h) and
outside Λ(3d/(2h)l we obtain now from (46), (47) and (48),

Σ Σ Σ Ni,l(Ψ)μΛ(B/h),-,h(Ψ)

^ Σ Σ Σ Σ 2Σ,.,. ,*w

xe2βdaΣJ = h ,^7jl μΛ(B/h),-,h(Φ) (49)

Now we estimate μΛ{B/h),-,h(Φ) by conditioning on what y0 is and combining
the Markov property of the Gibbs measures with Lemma 12 below (with
Γ = Θ(yo)\dintyo). In this fashion we obtain from (49),

To

xΣ Σ (
* δ l { ϊ ! . , y k } e S ? k ( B , h ) \ j=l, , k

S Σ Σ exp((-β + log2 + 2βda) Σ \yj\). (50)
ϋ g l ( h , , y k ) e S r k ( B , h ) \ j=h Λ /
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We will now partition the sum over {y l 5. . . , yk} according to the value of
v:=Σ-=\ jfelVjl> a n <^ f° r t n ^ s purpose introduce the notation £fktV(B,h):=
{{ } A) £\ } h f l l i li{{ 7i, > 7fc} e«?fc(B, A): £\ = j fc |y, | = t;}. The two following inequalities will
be useful in the sequel. The first one is an immediate consequence of the definition
oϊ6fktΌ(B, h), while the second one can be obtained by considering first the choice of
one face from each contour yj9j = 1,. . . , k - which can be made in no more than
(2d\Λ(B/h)\)k/k\ ways - and then using the counting inequality (4).
For all {yί9. . . ,yk}e£fk9V(B, h) we have

v= Σ \γj\^k(dβ)/h. (51)

( 5 2 )i y , , , { ί , t | l s , ί

From (50), (51) and (52),

x Σ
v ^ k(dβ)/h

^ Qxp(2d(B/h)dbe

xexp((- β/2 + Iog2 + logb + 2βdoc)(dβ)/h) ,
provided α < (β/2 - logb - \og2)/(2βd). This finishes the proof of part (i) of the
lemma. q.e.d.

We will use below the notation Ω~(y1,. . . , yk) for the event that the contours
y 1 ? . . . ,γk are all present as negative contours.

Lemma 12. Suppose that h^O, then for every ΓeJ^, every boundary condition ξ,
and every collection of distinct contours γί9. . . ,yk inside Γ,

μΓ,ξ,h(Ω-(yu . . . , yk)) ύ e x p ( - β £

Proof First we consider the case in which there is a single contour, i.e., the case
k = 1. Define the following sets:

Γ':=Θ(γi),

Γ":=Γ'\δint(yi).

From the fact that every configuration in Ω~(γ1) has the property that its
restriction to dextyj is identically + 1 and the Markov property of the Gibbs
measures we obtain, after conditioning on what the configuration restricted to the
complement of Γ' is

=

l }
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where we used the notation (19), and similarly to what was done in the proof of
Lemma 3, Ώ " ' ^ ) is the set of configurations that can be obtained from configura-
tions in Ω~ (yί) by flipping all the spins which are surrounded by y1. The observa-
tion that every configuration in Ω~ (yx) has the property that its restriction to diniyx

is identically — 1 and the fact that h ^ 0 lead now to

^ exp(- £ | 7 l | ) | ^ ^ .

The proof, in the case k = 1, will be finished once we show that

*p^SU (54)

whenever h Ξ> 0. This follows from the facts that g(0) = 1 and, using the FKG-
Holley inequalities,

d_

dh
log(g(h)) = (β/2)(( Σ Φ)) -( Σ Φ)

\\χeΓ /Γ",-,h \ x e Γ "

The proof is now complete when fc = 1. The general case follows from that one
by induction on k. The inductive step from k — 1 to k is obtained by conditioning
on the presence of k — 1 of the negative contours, and realizing that, thanks to the
DLR equations, (9), this conditioning transforms the Gibbs measure in Γ into
a new Gibbs measure on a smaller set, with some boundary condition. After this,
one just uses the result in the case of a single contour to finish the argument. (This
argument can only be carried out if the contours are compatible, but if this is not
the case, the lemma is trivially true.) q.e.d.

Theorem 3 follows easily from Lemmas 9, 10 and 11 and the FKG-Holley
inequalities. We choose strictly monotone sequences as follows. First take arbitrar-
ily Bn \ 2d. Now take βn ? oo, so that Bnm*(Tn) > 2d, where Tn = l/βn. Observe
that (βn/2 - log/? - log2)/(2jSMd) /• l/(4d), so that we can pick α > 0 such that
α < (βn/2 — logb — \og2)/(2βnd) for all n. The event 3% has a non-increasing
indicator function, and therefore, when B^ £„, we have

μΛ(B/h), -,h(β) ^ VA(BJh), -, ύβ) (55)

Now we can conclude from the three lemmas quoted above that for all large n,

lim μΛ(B/h),-,h(@) = Q ,
h\0

provided β ^ βn and B^.Bn. This implies Theorem 3.

3-ii. Relaxation Times for Finite Systems. In this subsection we will derive an
upper bound on the time needed for the process (σΛ(B/h\ -, h; t)to reach equilibrium.
A very cheap, but non-optimal estimate can be obtained by using the basic
coupling between (σ~i(B/h),-,h;t) a n d (σT(B/h)~-,h ,t)' One can readily see that these
processes will hit each other in a time not larger than an exponential of the volume
of the box Λ(B/h), so that the relaxation time cannot be larger than an exponential
of \/hd.

The correct order of magnitude of the relaxation time of (&A(B/h),-,h;t)> when
B >2d and Γis small, is actually an exponential of l/hd~ι; a lower bound of this
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form is contained in part (i) of Corollary 1, which was proven in Sect. 2, and an
upper bound of the correct order will be obtained below. Our approach will be via
an estimate of the gap in the spectrum of the generator of this process. To estimate
this quantity, we will make use of an approach which received considerable
attention recently, after Jerrum and Sinclair used it in [JS] and [SJ]. This
approach is based on the introduction (in an arbitrary fashion) of oriented paths
connecting each pair of states, and on an estimate of "how much any individual
transition is essential for the system to relax to equilibrium." In [DiS], Diaconis
and Stroock exploited this approach and compared it to others for obtaining
estimates on relaxation times of a variety of reversible Markov processes. They also
provided a greatly simplified derivation of an inequality which bounds the gap
from below in terms of quantities computed from the assignment of paths on the
state space. The authors in that paper provided some historic background on the
use of similar techniques, which go back to Poincare! In [Sin] the method and its
applications are also discussed in detail, and the same simplified derivation pres-
ented in [DiS] (but with a different choice for a certain estimate) is provided. For
our purposes the best bound turned out to be the one in [Sin], which will be
rederived below, in our setting.

The results in this subsection will be stated and proved (at no extra cost) with
a little bit more generality than we need in this paper. We consider a set Γ e #",
which later will be considered to be a cube, and an arbitrary boundary condition
ξeΩ. To avoid a notation which would be too cumbersome, we will use the
following abbreviations in this subsection: X = ΩΓ ξ will be the state space of the
process (σt)t^o = (σr,ξ,h;t)t^o> whose generator L = LΓ^^h acts on each observ-
able/as (Lf)(σ) = ΣxeΓ Φ , σ)(/(σ*) ~/(σ)). Here c(x, σ) = cΓiξth(x9 σ) are the
flip rates of the process, which are supposed to satisfy the detailed balance
conditions below with respect to the Gibbs measure μ = μr,ξ,h ( s e e 14),

μ(σ)c(x, σ) = μ(σx)c(x, σx) ,

for arbitrary x and σ. Moreover we suppose also (see H(4)) that for all Γ, ξ, small
|/z|, x and σ,

φ , σ) ^ cmin(Γ) = cm i n > 0 . (56)

We introduce now the standard Hubert space L2(X,μ) with inner product
( , )μ given by

(f,9)μ:= Σf(v)9(v)μ(η),
ηeX

and corresponding norm \\f\\μ:=(f>f)μ. The Dirichlet form associated to the
generator L is

where the last equality - the self-adjointness of L - follows from the detailed
balance condition. Using this self-adjointness one can also write

= - (1/2) X £ C(x, η)(f(η') -f(η)){g(ηx) - g(η))μ{η) (57)
xeί ηeX
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From (57), we see that &>{ff) S 0, for each observable/, therefore the spectrum of
— L is contained in [0, oo). Due to (56), the process (σt) is irreducible and hence 0 is

a simple eigenvalue, corresponding to the constant eigenfunctions. The gap in the
spectrum of L is now defined as the smallest positive eigenvalue of — L, and will be
denoted by gap(L). A standard spectral decomposition of the semigroup
S(ή:= exp(ίL) leads to the well known L2-exponential convergence estimate be-
low, valid for every observable / and time ί,

Γ Ί 1 / 2

Σ i(S{t)f)(η) ~ \fdμ)2μ{η) = \\S(t)f- lfdμ\\μ

LηeX J
< II f Γ friii II p~^ΆP(L)t ί^R}

From this estimate, one can obtain, for an arbitrary initial configuration η, the
following estimate:

'))-Sfdμ\ = \(S(t)f)(η)-lfdμ\

μ(η)_\

]l/2

ζeX

f-Sfdμ\\μe-*ί«L» . (59)

The factor (μ(η))~1/2 in the upper bound provided by (59) may be quite large, but
will not be much of a problem in our case, in spite of the fact that we want to take
Γ = Λ(B/h), which blows up as h \ 0. Actually the very rough bound

(60)

uniformly in small \h\,ξ and η, will be good enough for us. This is so because we are
concerned with times of the order of exponentials of \/hd~ι and the bound (59)
provides an exponential decay with time, which will beat the exponential growth of
(μ(η))~1/2 with l/hd, thanks to Theorem 5 below.

The main estimate in this subsection is contained in the next theorem, where we
make use of the following standard notation: O(ld~2) is a quantity that satisfyes
limsup^oo O(ld~2)/ld~2 < oo. (35) follows immediately from Lemma 7, part (ii) of
Theorem 2 and the combination of Theorem 5 below (with Γ = Λ(B/h) and
ξ = — l) with (59) and (60) above (both with these same choices of Γ and ξ and with

n = - 1 ) .

Theorem 5. Suppose that d^2 and that Γ is a cube of side-length I, then for every
boundary condition ξ and every value ofh

gap(L) ^ W e x p ί - βQl'-1 + O{ld~2))) .
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Proof. First we recall the well known variational characterization of gap(L) (for
proofs see [DiS] and reference quoted there, or Theorem 2.3 in [Lig 2]),

gap(L) = inf< ' : /is non-constant, £ f(η)μ(η) = 0 } .

Next we introduce the flux in equilibrium from η to ζ

(μ(η)c(x, η) if ζ = ηx, for some

'~ j o otherwise .

Using (57), we can now write

gap(L) = inf : /is non-constant (61)

In order to estimate the right-hand side of (61), we think of X as the set of
vertices of an oriented graph in which the oriented edges are the pairs (η, ζ) such
that ζ = ηx for some xeΓ. We will denote by δ the set of all these oriented edges.
Now, for each pair of distinct configurations η,ζeX, we introduce an oriented
path of configurations η = φu φ2, > Φn = ϊ> s o that (φi9 φi+ι)eS for
i = 1,. . . , n — 1. This is done in the following fashion: first we order the sites in the
cube Γ in the lexicographic order, i.e., x < y in case for some j, xt = yt for
i = 1,. . . J — 1 and Xj < yjt The configuration φi is now obtained, recursively, by
flipping the spin at the smallest site where ψί-1 differs from ζ. This procedure is
iterated until ζ is reached. The resulting path φ1,. . . , φn from η to ζ may be
identified with the set of oriented edges {(I/Ί, ΦI)ΛΦ2, ΦΛ , (Φn-ι> Φn)}, which
we will denote by π^ ζ. We introduce now the following "measures of bottleneck-
ness"

Σπη,ζ3eμ(η)μ(ζ)\η,ζ\
P := max — , (62)

Q(e)

Σnη^eμ(η)μ(0
P '-= max - — , (63)

where Q(e) has the obvious meaning: Q(e) = Q(η, ζ), where (η, ζ) = e, and \πVfζ\ is
the number of oriented edges in the path π^ ζ . From (61) one can obtain the
following inequality:

gap(L) ^ lip . (64)

This inequality is Proposition Γ in [DiS] and Theorem 5 in [Sin]. Since its
derivation is short and sweet, we reproduce it here, for the reader's benefit. Given
an edge e, define e~ and e+ as the configurations such that e = (e~, e + ). Using the
Cauchy-Schwarz inequality, we can rewrite the denominator in (61) as

Σ (/Of) -f(ζ))2μ(η)μ(ζ) = Σ Γ Σ (/(* + ) -f(e~))f μ(η)μ(ζ)
Ί.ζεX ri.ζeX Leeπv_ζ J

^ Σ |lπ,,cl Σ UV)-/(O
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= Σ (/V)-/(O) 2 Σ \nηΛ\μ{η)μ{ζ)

ύ Σ (f(e+)-f(e~))2Q(e)p

= P Σ (/fo)-/(0) 2 βfo>0. (65)

Comparing the right-hand side of (65) with the numerator in (61), we obtain (64).
Observe now that the maximum length that a path π^ ζ can have is \Γ\ = ld. This
observation allows us to derive from (64),

gap(L) ^ Γd/p . (66)

In order to estimate p now we will make use of another basic technique
introduced in [JS] and [SJ], the so-called "injective mapping" technique. Suppose
given an edge e e $, and suppose also that z is the site such that e+ is obtained from
e~ by flipping the spin at z. Keeping e fixed, we will introduce now a mapping
Fe' {πη,ζ' eeπη,ζ} -* X defined by

o t h e r w i s e . (67)

The configuration Fe(πη^) may be thought of as a "negative image" of the config-
uration e~, since

U(x) if x < z ,
(x) = < . , Λ . (68)

[>y(x) otherwise .
The mapping Fe has the crucial property of being injective; this follows from the
fact that e~ and z are fixed, and hence, using (67) and (68), we can reconstruct η and
ζ from the knowledge of Fe(πηtζ). The other relevant property of the mapping Fe is
expressed by the following inequality:

μ(η)μ(ζ) ^ M O M ^ K ^ e x p ^ / ^ 1 + 0(ld~2)) . (69)

This inequality can be derived by using the definition

, Λ , , e x p ( - βHΓtξth(σ))
μ(σ) = μΓ, ζ, /,(σ) = ̂  ,

Σσ'eΩΓ.ξexp{- βHΓ,ξ,h(σ'))

for each one of the four configurations which appear there, and then cancelling
common terms in the right- and left-hand sides, using (67) and (68). In this fashion
one is left with

μ(η)μ(ζ)Sμ(e~)μ(Fe(πη,ζ))

xexp((β/2) Σ MΦ/ϋO + f
V x < z 5Ξ y

S μ(e-)μ(Fe(πη,ζ))exp((β/2)4 £ *{U-y

The inequality (69) follows now from the simple estimate

\{{x,y}eΓxΓ:x<zSyand \\x-yh = 1}| ̂ l*'1 + O(ld~2) . (70)



42 R H Schonmann

The inequality (70) results from the fact that we are using the lexicographic order
on Γ and it can be proved by induction on the dimension, as follows. If d = 1,
(70) is clearly satisfied. Next we will use the notation w' for the vector
(w2,. . . , w π )eZ d "Λ when w = (wl9. . . , wn)eΈd

9 and Γ':= {xf: xeΓ}. There are
two cases to consider. If x < z ^ y, \\x — y\\λ = 1 and xx Φ yl9 then xt = y1 — 1
and x' = y'. It is clear that for each value of x' = y' there cannot be more than one
such pair [x, y} and hence in this case we obtain at most / — 1 pairs. Now, if
x < z ^ y, \\x — ylli = 1 and xt = yu then also zx= xx= y1 and the number of
pairs {x, y} with the desired properties is equal to the number of pairs
{x\ y'} EΓ' x Γ' such that x' < z' ^ y\ and the inductive proof of (70) is complete.

From the definition (63), the inequality (69), the definition of Q(e) and the
inequality (56), we obtain

eeS Q(e)

< max π^3e

μ(e )cmin

max X μ(Fe(πηtζ))

+ O(l)))

cmin

where in the last step we used the fact that for each fixed e, the mapping Fe is
injective. The proof of Theorem 5 is completed by combining the estimates (66)
with (71). q.e.d.

(35) can now be proved in the fashion pointed out before we stated Theorem 5.
This finishes the proof of part (ii) of Theorem 1.

Other lower bounds for gap(L) are availablejn terms of p and other similar
objects. For instance, [ JS] and [SJ] derive from a Cheeger-type inequality a bound
of the form gap(L) > C/p2. In our case this inequality would give a weaker result,
in that the value of λ2(T) would be doubled. We were not able to improve the
bound that we obtained in Theorem 5, but we observe that from the heuristics, one
predicts for the logarithm of the relaxation time of the system in the box Λ(B/h),
with B > Id at low temperatures and small external field a value which is smaller
than the one obtained here by a factor ((d — \)ld)d~ι.

4. Further Comments, Related Results and Directions for Future Research

There are obviously two challenging and important problems left open here:
Extend the results in this paper up to the critical temperature, at least in 2 dimen-
sions and sharpen the results by showing that actually λί(T) = λ2(T% pre-
ferentially expressing their common value in terms of other quantities, such as
equilibrium Wulff shapes (if it is the case that they are indeed related). Below we
present a few other problems which seem to us to be particularly interesting (and
on which we are working). We also discuss further the relation of the present paper
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with some other works on metastability and describe briefly some related results, to
be published elsewhere.

Different asymptotic regimes. The results that we proved in this paper are always in
the form of asymptotics for positive h, when this external field vanishes. This idea
that metastability phenomena should be mathematically described by considering
families of processes, indexed by a parameter, and scaling the parameter to zero is
not at all new. For fixed values of the parameters h and T, the stochastic Ising
models do not display any clear cut, sharp, metastable behavior, but in certain
limits, as the one considered here, the behavior of the system becomes closer and
closer to what one identifies experimentally as metastable behavior. To some extent
this is akin to many other situations in mathematical physics, in which one proves
results in the form of limits, with the motivation of understanding the behavior of
the system when the scaled parameter is actually fixed (but small or large enough,
depending on the case). The thermodynamic limit is certainly an example which
comes to mind.

We will refer below to the type of limit considered in this paper (T small fixed,
h \ 0) as limit type (i). As we mentioned in the introduction, sharp results on
droplet behavior and metastable behavior were obtained recently in the different
regime, that we are calling "the limit of very low temperature" (h > 0 small fixed,
T \ 0), to which we will refer as limit of type (ii). In 2 dimensions, these results
include an understanding of the mechanism by which these droplets grow, and for
this reason provide results on the metastable behavior of finite systems which are
quite sharp. Because the size of critical droplets scales with h, but not with T, it
makes sense in the case of limit (ii) to consider the system in a box A (AT) with fixed
N (large compared with 2/h), and in this case the metastable behavior and its decay
were analyzed in great detail. Results for the infinite system, of the type of those
obtained for limit (i) in this paper can also be obtained in the case of limit (ii). In
this case one wants to look at the system at time t = exp(Cβ), for different values of
C. One can indeed show that for small values of C (depending on h) one sees locally
all spins down and for large values of C, all spins up. Efforts to identify a single
critical value C(h), separating the two regimes have failed so far, because it is hard
to control the way the speed of growth of the supercritical droplets behaves
asymptotically, when the droplet becomes very large. (The analogue of (20) seems
to fail here and one has to find the value of l i m ^ ^ l / β ) log v.)

Something very interesting happens when one considers a third type of limit.
Once one accepts as natural to scale h \ 0 or T \ 0, it becomes also reasonable to
ask what happens if we let both vanish together. It turned out that in this regime,
we obtained some results which are sharper than in the two other cases, in part
because we could use techniques from both cases. The way in which T and h vanish
is relevant here, and the analysis is easier if we let T \ 0 much faster than h \ 0, on
the other hand the case in which we keep a constant ratio between h and T is
particularly relevant, because, via a simple transformation, this is equivalent to
keeping the temperature and external fields constant, while scaling only the
coupling between spins to oo. We call this type of limit, in which h \ 0 and T \ 0,
while h/T stays constant, limit of type (iii). In this limit one wants to look at the
system at a time of the form t = eπp(κβ/hd~ι\ In 2 dimensions, for certain
dynamics, including Heat Bath and Metropolis, we can prove that if K < 4/3 then,
in the limit, one sees locally all spins down, while if K > 4/3 one sees locally all
spins up. The value 4/3 is exactly the value predicted from the heuristics:
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2d(d — l)d~ί/(d + 1). The result in case K < 4/3 follows from the techniques in
Sect. 2 in this paper: just observe that all the estimates there become better and
better as T becomes smaller and smaller. The other result relies on a careful study
of the behavior of individual droplets.

From the results obtained previously on limit (ii), the ones presented in this paper
on limit (i) and the one mentioned above on limit (iii), it is becoming clear that one
should try to explore the relaxation patterns of stochastic Ising models parametrized
by 3 quantities: h, T and the sidelength N of the box in which the system is contained
(including the case N = oo). From the heuristics it is usually possible to predict the
correct behavior in different regimes, but there is still a substantial distance between
most of these heuristic results and their rigorous counterparts.

Pathwise approach. One of the main motivations for the investigation of the limit
of type (ii) in [NS1] and [NS2] was the possibility of proving that in this limit finite
systems display metastable behavior in a pathwise sense (as introduced in
(CGOV)). Roughly speaking, if one looks not at an average over many realizations
of the evolution, as we are doing here when we take 1E( ), but at a single evolution,
then one should see a very sharp transition between the metastable and the stable
situations. The time taken to make the transition is very short compared with the
time spent in the metastable situation, so that essentially the jump Is "instan-
taneous." The moment of the jump is nevertheless random and for this reason,
when one considers an average over many realizations, one sees a much smoother
evolution. For finite systems in two dimensions, this was indeed proved to be the
case in the limit of type (ii), including the feature that the time of the jump is, in the
proper scale, close to an exponential random variable, because it corresponds to an
essentially local fluctuation. It is very interesting to see that the distinction between
pathwise behavior and average behavior was also realized, apparently indepen-
dently, by investigators performing simulations. In the paper [TM] the authors
emphasize this distinction and observe experimentally the type of behavior pre-
dicted from limit (ii) (I am thankful to R. Kotecky for telling me about this paper;
see also other references quoted in [TM]).

A detailed pathwise study of the behavior of stochastic Ising models in the limit
(i) remains a challenging open problem. From the heuristics one can actually
predict two different behaviors for typical paths, depending on how the size of the
system grows as h \ 0. If AT grows slowly, as in Corollary 1, then, when a supercriti-
cal droplet is first formed, it should cover the system in a relatively short time. In
this case we should see the same type of pathwise metastable behavior described
above, even if we are observing the whole system. But if N is growing as
exp(D//ιd~1), with a large D (depending on 7"), then while a supercritical droplet is
growing, others are being formed somewhere else, and start growing and eventually
coalesce. Global quantities (as, e.g., the space average of the spins) should behave
quite smoothly, even for a single realization of the process. In contrast local
observables should still display a jump in their pathwise behavior, reflecting the
moment when they are first covered by a supercritical droplet. The only difference
in this case, with regard to the smaller systems should be that the rescaled time of
the jump should have a distribution that while not degenerate into a constant,
should neither be an exponential. This follows from the consideration of the
regions in space-time (the cones considered before) where droplets have to be
formed, to cover a certain site at a certain time. (But the analysis is actually
complicated by the interaction between droplets, when they touch each other.)
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Gap in the spectrum, boundary conditions and droplet growth. From the discussion
above it should be clear that one of the first questions to address is that of the
growth of the supercritical droplets in the limit of type (i). If we admit that this
growth is of the type discussed in the heuristics, similar to the movement of
essentially flat interfaces, then we should try to understand this mechanism in
situations which are not so complex. A simpler situation in which such a movement
of a flat interface should occur is that which is produced if we have a box Λ(B/h\
with B large enough (so that in equilibrium the plus-phase dominates in the bulk),
but with the boundary condition in which the spins are — 1 on all the faces of
Λ(B/h), but one of them, where they are + 1 . In this situation, starting from all
spins down, we should see the interface move away from this + face, in a fashion
similar to what we expect to happen at the border of a large droplet. From the
heuristic prediction of a speed v ~ h for the interface, we should expect a time of
order h~2 for the system to relax to equilibrium. The gap in the spectrum of the
generator in this case should therefore behave as /ι2, as h \ 0. Proving this result
(even a lower bound for the gap in the form of some large power of h) would
probably be a great step towards controlling the growth of the droplets.

Curiously enough, the technique used in Subsect. 3-ii, for bounding from below
the gap in the spectrum for the system in the same box, but with purely — bound-
ary condition, gives in the present case the same type of lower bound, of order
exp(— Cjhd~ι). This is the correct type of result when the boundary condition is
purely — (as can be seen by taking in (61)/as the indicator function of ffiA/h, with
A given by (31), so that (32) holds, and implies that the gap indeed goes to
0 exponentially with I/ft*"1), but is probably a very poor one in our present case.
Even in the case in which the boundary condition is purely + for the same box, it
would be interesting to obtain good lower bounds for the gap.

5. Appendix: Alternative Proof of Theorem 3 in Two Dimensions

In this appendix we will present an alternative proof of Theorem 3 in two
dimensions. Lemma 8 will be needed in the proof, and we suppose that the reader
remembers the discussion which followed the proof of that lemma. Suppose that, as
in that discussion, we have chosen three strictly monotone sequences, Bn \ 2d = 4,
βn S oo and An ? Id = 4, with the properties

Bnm*(Tn)>2d = 4, (72)

and

An < 2d(β>/βn) = Hβ'Jβn) , (73)

where Tn = l/βn and β'n — βn — log b. We know that for large n, it is very likely that
when h is small, in typical configurations chosen according to the law μΛ{Bjh),-,h>
at inverse temperature β ^ βn, there is a (unique) contour γ which surrounds a large
fraction of A(Bn/h). The next lemma below implies that at the same time, such
a contour is unlikely to have a surface which is substantially larger than the surface
of A(Bn/h\ in the sense of differing from this surface by a fraction of it. This lemma
is dimension independent, but we will only be able to exploit it for our purposes if
d = 2. The reason is that the presence of a contour as the γ above and the event
3t can occur together with the surface of γ being larger than the surface of A(Bn/h)
by a term of the order of I/ft only (think of a finger of spins — penetrating a cube
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full of spins +), which only in d = 2 is a fraction of the surface of Λ(Bn/h). On the
other hand, in d = 2 we can show that such a difference in surfaces is indeed
a necessary consequence of the simultaneous occurrence of those two events (this is
the content of Lemma 14 below), and then complete the argument.

We will denote by Sfi the set of configurations in which there is at least one
contour with surface not smaller than /.

Lemma 13. In every dimension, if β > log b, then for arbitrary B and D,

limsup ft'"1 logμAiB/hl_th(SrD/h*-ή ύ j8((l/2)(l - m*(T))Bd + 2dBd~1 - (β'/β)D) .

Proof The proof is somewhat similar to that of Lemma 8. First write, using the
notation (19),

to, \ Λ{Blh\,h{D/h) Λ{Blh\ADIhd-") ZA(B/h),-,0

^Λ(B/h), -^WD/h0-1) ΔΛ{B/h\ - , 0 ΔΛ{B/h\ -,h

The first fraction in the right-hand side of (74) can be estimated by the following
inequality, which does not depend on what ^D/hd - 1 is>

<ς {βh/2)\Λ(B/h)\ = 0(1/2) B'/ft'"1 . (75)

The second fraction in the right-hand side of (74) can be estimated, with the usual
Peierls type of argument (i.e., Lemma 3 with h = 0 and c = oo, combined with the
counting inequality (4)), by

lim sup ft'- * log ( Z Λ ^ - » O ( ^ " Λ Z-β'D. (76)
ft\0 \ ZΛ(B/h),-,0 )

The lemma follows now from (74), (75), (76) and (41). q.e.d.

In the next lemma the fact that we are taking the D above as 11/h is motivated
by the observation that this quantity is between the surface of Λ(4/h) (which is
16/h) and the surface, 18/ft, of the contour in the configuration in ΩA(4ih\ - which is
identically + 1 inside of Λ(4/h), except for a straight line of spins —1 which
connects Λ(2/h) to the exterior of Λ(4/h). The reader should keep this picture in
mind when we come to point (iii) in the proof below.

Lemma 14. Suppose that d = 2, and that we are given two monotone sequences
Bn \ 2d = 4 and An /* 2d = 4. Then for large enough n, the following holds for all

Λ(Bn/h)i _ c mAJh u Se17/h .

Proof For each n and small positive δ (to be actually chosen later as 1/10), we
introduce the four distinct squares, Wn, W«, W» and W% which are defined by
saying that each one of them has side-length δ/h, is contained in Λ(Bn/h) and shares
a vertex with this square. For future reference we will suppose that the indices 1 to
4 are assigned to these squares in such a way that Wl and W% contain opposite
vertices of Λ(Bn/h) (i.e., vertices which do not belong to a common side of the
square).

The lemma is a consequence of the following three facts:
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i) For small fixed δ, if n is so large that

then in each configuration in ΩΛ(BH/h)t-\$An/h there is a contour present which
surrounds at least one site inside of each one of the squares Wl,. . . , W$.

ii) In any configuration in $ there is no contour present which surrounds Λ(2/h).

iii) A contour 7 which surrounds at least one site inside of each one of the squares
Wn,. . . , Wn and which does not surround Λ(2/h) must have surface at least

2 h / h h '

where in the last step we made the choice δ = 1/10. The reader can probably
convince herself that this inequality is correct by drawing a few pictures, but may
prefer the following formal argument. Think of the contour 7 as a circuit in the
graph whose vertices are the faces separating unit squares centered at the sites of
Z 2 , and in which two such faces are adjacent if they have a non-empty intersection.
With some abuse of language, we can say that the contour 7 has to contain at least
one face inside each one of the squares Wn,. . . , W*'. Call these faces (choosing
arbitrarily one if there are many), respectively, F 1 , . . . , F 4 . There are two cases to
be considered. First suppose that walking along the circuit 7, we can cross
F 1 , . . . , F 4 in this order. In this case break 7 into four disjoint parts each one of
which connects Fι to F ί + 1, for some i = 1, 2, 3 or F 4 to F1. Clearly, each one of
these parts of 7 contains at least Bn/h — 2δ/h faces. Moreover, because Λ(2/h) is not
surrounded by 7, at least one of these parts of y must contain at least
Bn/h - 2δ/h + 2(Bn - 2 - 2δ)/(2h) faces. This completes the proof in this case. If
we cannot cross F 1 , . . . , F 4 in this order, then it must be the case that we can walk
along y from F 1 to F 3 without crossing F 2 and F 4 and also from F 2 to F 4 without
crossing F* and F 3 (the little argument, by contradiction, needed to prove this fact
is left to the reader). Moreover, we must also be able to walk along y from F 1 to F 2 ,
or from F 1 to F 3 , without using the part of y just mentioned. Estimating the
minimum number of faces that we have to cross in each one of these three,
necessarily disjoint, parts of 7, we obtain a lower bound for the size of 7 which is
larger than the one that we are claiming. q.e.d.

From Lemmas 8, 13 and 14 we obtain

0 , (78)
h\0

if β ^ βn9 provided that n is so large that all these lemmas can be applied and also

(1/2)(1 - m*{Tn))B* + 4Bn - \lβ'Jβn < 0 .

Theorem 3 follows now, in the case d = 2, from (78) and (55), which is a conse-
quence of the FKG-Holley inequalities, when Bn ^ B.
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