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Abstract. We consider an effective Hamiltonian H representing the motion of a
single-band-two-dimensional electron in a uniform magnetic field. Then H belongs
to the rotation algebra, namely the algebra of continuous functions over a non-
commutative 2-torus. We define a non-commutative analog of smooth functions by
mean of elements of class Cι'n, where I and n characterize respectively the degree of
differentiability with respect to the magnetic field and the torus variables. We show
that if H is of class C 1 ) 3 + ε , the gap boundaries of the spectrum of H are Lipshitz
continuous functions of the magnetic field at each point for which the gap is open.

1. Introduction

The motion of a single-band-two-dimensional electron in a uniform magnetic field can
be represented by an effective Hamiltonian H in the tight binding representation [5].
Namely it acts on the lattice Z 2 as a function of the so-called "magnetic translations"
[25] U and V. These are two unitaries submitted to the following commutation rule:

(1)

where a — φ/φ0 is the ratio between the flux φ in the unit cell of the lattice and the
flux quantum φ0 = e/h.

The abstract C* -algebra Λ>a generated by two such unitaries was introduced by
Rieffel [22] and subsequently Connes [9] showed that it has a differential structure
which makes it a non-commutative smooth manifold. Moreover, given an interval /
in the real line, the field a G / ι-» ,/&a is a continuous field of C*-algebras [10, 23]
and we will denote by ^ 7 the C* -algebra it generates.

One of the most famous examples of Hamiltonian built in this way is the so-called
"Harper model" [12] given by:

h ^ * , (2)
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the spectrum of which having been studied by a large number of authors [4] but it
was not until 1976 that the work of Hofstadter [15] revealed its fractal nature as the
magnetic field changes.

Actually many properties of Harper's model are shared by a large class of self
adjoint elements of ^? 7 . In particular, their gap boundaries are continuous functions
of a [11]. Moreover, a semiclassical analysis [5, 13, 20] shows that for a generic set
of smooth self adjoint elements H G Λj the gap boundaries have a discontinuous
derivative at each rational value of a.

The regularity properties of the gap boundaries for the Harper model have been
investigated recently by several authors. First, Choi, Elliot and Yui [8] proved that they
are Holder continuous with exponent 1/3. This result was actually improved by Avron,
van Mouche and Simon [2] who got an exponent 1/2. In view of the semiclassical
analysis, this last result is optimal without further restrictions. For indeed, whenever
a gap closes at say a = p/q, its width vanishes like O(^/\a — p/q\) if a is near p/q
[13, 20], However we may expect a better result for α's for which the gap under
study does not close.

Our main results in the present work concern not only Harper's model, but a
large class of smooth Hamiltonians in ^ τ as well. This is of interest in view of the
construction of effective Hamiltonians by means of the so-called "Peierls substitution"
[18, 5, 14], for which Harper's model is only a rough approximation. Our first result
is that the spectrum edges of a self adjoint ^ > 1 ' 3 + ε element in Jij are Lipshitz
continuous functions of α. The class Wι^+ε is defined in Sect. 2. As a corollary,
the gap boundaries of an open gap of such an operator are also Lipshitz continuous,
but the Lipshitz constant diverges near the values of a for which the gap closes.

Most results previously known in this field of research concern Harper's model.
Various techniques have been used: Schrodinger operator techniques, transfer matrix
methods, pseudodifferential calculus. We believe however that non-commutative
geometry constitutes a natural framework to study extensions to other realistic models,
such as the ones one gets with effective single-band Hamiltonians representing the
motion of a crystal-two-dimensional electron in a uniform magnetic field [5, 14]. Such
models have been however studied by physicists [3, 4, 20, 24].

Because many results we need are scattered in the literature, we have preferred a
self-contained exposition of the material. The paper is organized as follows. In Sect.
2 we describe the technical background and we give the precise statements of our
results. Section 3 concerns a general proof of Elliot's theorem [11] on the continuity
of gap edges. This part is not new but it is included for completeness. In Sect. 4 we
prove the first part of our result, namely the Lipshitz continuity of the gap edges once
we admit the Lipshitz continuity of the spectral edges. Section 5 is devoted to giving
some more technical tools in WeyΓs calculus, whereas the proof of the main theorem
is given in Sect. 6.

Finally we would like to point out that a semiclassical analysis makes it possible
to show that the gap edges are right and left differentiable at each rational value of a.
The "Wilkinson-Rammal" formula, proved in [24, 19, 13] for Harper's equation and
extended to the case of arbitrary elements in some of the Wl'n [5, 20], gives the value
of these derivatives. In particular, it shows that the gap edges have a discontinuity of
their first derivative at each rational point, at least generically in Wl"n. So we cannot
get a better estimate. We suspect however that these gap edges are actually W°° at
each irrational a whenever the Hamiltonian belongs to ^ 7 0 0 ' 0 0 .
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2. The Main Results

Let / be some closed interval contained in the real line. For k G N, the algebra of
smooth polynomials ^f is the complex vector space of finite sums

where the α m ' s are elements of Wk{ΐ), with all but a finite number of them vanishing,
and the W7(m)'s are abstract unitaries submitted to the following relations:

(i) every a E Wk(l) commutes with Wj(m),

(ii) WI(m)WI(m/) = Wj(m + m/)X-rnAm\ where mf\m' = mxm'2 - m2m
/

v and
λ is the map α G / \-> ema G C,
(iii) Wj(m)* = Wjirn)-1 = W^-m).
Then Φf becomes a *-algebra. Let Rep(^f) denote the set of unitary equivalence
classes of representations of &f on separable Hubert spaces. A norm can be defined
on &f by:

| μ | | = sup ||π(A)||. (4)

The algebra ,/&j is the completion of &f under this norm. It is a C*-algebra with
unit.

Given J c / a subinterval, we denote by ρ7 j the restriction map defined on

A G &f (cf. (3)) by:

Then QJJ extends as a *-homomorphism from ^ 7 into ^ j . For J = {α} we will

use the notation ,Aa and ρa instead of ^{α} and ρτ ^ay One can then show that

[4]:
= sup | |ρα(Λ)||. (5)

The map r 7 a : A £ dψ H-> αo(α) G C defines a normalized positive trace on ^ 7 .
Moreover, for any A G ./^7, the map Tj(A) : a G / ι—> r 7 α(A) is continuous
and τ 7 then defines a positive linear map from ^ ι into ^ ( / ) . We remark that
T{OL\ a ~ ri a ° @a ^° shorten notation, we will write τa for τ 7 a unless some
confusion arises.

We define an action of T 2 on ^ 7 by *-automoφhisms by setting:

ηίiWjim)) = e i f c mW7(m), (6)

where fc = (fc1? fc2) ^ ^2> m — ( m i5 m 2) ^ ^ 2 a n (^ ^ m = ^ i m i + ^2m2 ^his group
is pointwise-norm-continuous. Its infinitesimal generators are the two *-derivations
defined by:

9μA = -^-ηlU) | f c = 0 . (7)

We also define on ζP} a linear map δ called the "Itό derivative" [5] by:
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It satisfies the following properties:

(ii) δ(AB) = δAB + AδB - m{dγAd2B - d2AdγB).
In the following if r = (rι,r2) G N2 we adopt the notations |r | = |r*21 + |r 2 | ,
r! = rx\r2\ and dr = β[{d2

2. Moreover, whenever v is a real positive number
smaller than one, we set

oo

(9)

whenever the integral exists in norm, and where e1 ? e2 are the canonical basis in R2.
If I is an integer, and n is a non-negative real number, the space ^ ' n ( ^ 7 ) is the set
of elements of ^ 7 such that ||<Ss<9r(A)|| is finite for 0 < s < /, 0 < 2s + |r | < n.
It can be endowed with a norm which makes it a Banach *-algebra (see Lemma 3
below). It is obviously dense in *AV

We also introduce a Sobolev norm on SPf° in the following way whenever I is an
integer, n is any non-negative real number and A — —d\ — d\ denotes the Laplace
operator acting on ^ 7 :

^ n = sup ,1 sup τa(\δsΔr(A)\2 Γ ~ . (10)
s<l,s+2r<n J

The completion of ^°° under this norm will be the space j 7

In the special case I = n = 0, / = {α}, this space will be denoted J£2(^£a). It is
then a Hubert space endowed with the inner product (A \ B)a = τa(A*B). It is easy
to check that the Wα(m)'s give an orthonormal basis in this space, and thus a natural
unitary mapping i^, called the "Fourier transform," between J ^ 2 ( . ^ α ) and 12(I?). In
particular we get for A, B as in (3):

τa(A*B)= Σ
mez2

Actually this space is the space of the GNS representation [17] for the trace, the GNS
representation πa being given by πa(A)B = ρa{A)^ρa{B), A, B e ^4j, where ρα is
the canonical imbedding of J&j into 2ϊ2(<Aa). By Fourier transform we check that:

KaiWjimoMim) = eiπam°Amφ(m - m0), φ e 12(Ί2). (11)

The previous formula shows that the Hubert space of the GNS representation can be
taken independently of a and that, moreover, the map a G 11-> τrα(A) G ̂ (/ 2 (Z 2 ))
is strongly continuous for any A G J&J . Using the Fourier transform, we can check
that πa is faithful on ^4a namely, that | |πα(A)| | = | |ρα(A)|| for any A G Λ>1.

The first result we will prove here is actually due to Elliot [11].

Theorem 1. Let H = H* be a self adjoint element of Λ>1. Then the gap edges of the
spectrum of ρa(H) are continuous functions of a.

This result tells us in particular, that the spectrum is a continuous function of the
magnetic field. It has actually been proved for Schrδdinger operators in a magnetic
field by Nenciu [16] and Avron and Simon [1]. But the C*-algebra proof that we
will provide below, for the sake of completeness of this paper, works as well for a
much larger class of pseudodifferential operators. It has been used also to prove some
continuity property of the spectrum of Hamiltonians on quasicrystals [6].
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Our main new results in this paper are summarized in the following two theorems:

Theorem 2. Given ε > 0 let H = H* be a selfadjoint element ofJ&ι>3+ε(s&j). Let
E+(a), E__(a) denote respectively the supremum and the infimum of the spectrum of
ρa(H). Then E+ and E_ are Lipshitz continuous functions, namely, there is a positive
constant C(ε) such that:

\E±(a) - E±(a')\ < C(ε)| |fr| |^i,3+ε|α - a'\.

Let H be as in Theorem 2. Then a gap g of H is, for each a G /, a bounded connected
component g(oί) of the complement of the spectrum of ρa(H), such that U g(a) x {a}

is a connected component of the complement of U Sp(£α(iΓ)) x {a} in M x /. It

is thus a family of (possibly empty) open intervals of the form (E^(a),E^(a)). Its
width will be denoted by W${ά) = E%{a) - E9_(a).
Our second result is then:

Theorem 3. Let H = H* be a selfadjoint element of C^3+ε(^j). Let g be a gap.
Then the gap boundaries E± are Lipshitz continuous functions at each a for which
the gap width is positive; namely:

\E9

±(a) - E9

±(a')\ < C{H){ sup Wg{β)Y\a - oί\,
^ a<β<af J

where C(H) is a constant which only depends upon the norm of H in Cι>3+ε(ts3I).

Theorem 2 may probably be improved by more refined estimates to get the norm
| |ϋΓ | | 1 2 + ε instead of the Sobolev norm. It should also be possible to improve the
estimate in Theorem 3 which is certainly not optimal for it does not give the Holder
exponent 1/2 when the gap closes. However an optimal bound should rather be of the
same form with the exponent - 5 replaced by - 1 .

3. The Elliott-Continuity Theorem

The aim of this section is to prove the Elliott continuity Theorem 1. In order to
proceed, let us introduce the following definition. Let K = (K(a))aeI be a family
of compact subsets of the complex plane. We will say that K is "outer continuous
at a0 G /" whenever given any closed subset F such that K(a0) Π F = 0, there is
δ > 0 such that if \a — ao\ < δ then K(a) Π F — 0. In much the same way we will
say that K is "inner continuous at a0 G /" whenever given any open set O such that
K(a0) Π O ψ 0, there is δ > 0 such that if |α - α o | < δ then K(a) Π O φ 0. If K is
both inner and outer continuous at every a G /, we will say that K is continuous on
/. It is elementary to check that whenever K is a family of compact subsets of the
real line, its continuity is equivalent to the continuity of its gap edges.

Then Theorem 1 is a simple corollary of the following more general result:

Proposition 1. Let A be a normal element of Λ>It namely AA* = A*A. Then the
spectrum of A, namely the family Spj(A) = (S\)(ρa(A)))aeI is continuous on I.

The proof of Proposition 1 requires several steps. The first one is provided by the
following due to G. Elliott [11], for which we give a slightly different proof based
upon the use of the automorphism group η1 defined in (Eq. 6), [6].
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Lemma 1. Let A G ̂ j be such that ρa (A) = 0 for some a0 £ I. Then for every

ε > 0, there is δ > 0 such that if \a — ao\ < δ then \\ρa(A)\\ < ε.

Proof. Let us consider first an element i e ^ ° given as in (Eq. 3). Then ρaQ(A) = 0

implies am(a0) = 0 for every m G Z 2 . Since the α m ' s are continuous on /, and since
only a finite number TV of them do not vanish, there is certainly some δ > 0 such that
if |α - α o | < δ, then |α m (α) - α m ( α 0 ) | < ε/N. Thus \\ρa{A)\\ < Σ I am(a)\ < ε.

m

Now, let A e ^Sj and let us consider η{(A) for k G T 2. By construction,

If now / G ^ ( T 2 ) we set:
/
k(ΞΊ2

Then ρaQ o ηj(A) = 0. Let us now choose a sequence fn in Wω(f2) having the

following properties:

i) for all n G N, fn is a trigonometric polynomial;
(ii) fn is a non-negative function on T2;

(iii) Jfn(k)d2k/4π2 = l;
(iv) for every δ > 0,

An example of such a sequence is provided by the Fejer polynomials FN:

, M sin2((2iV + l)fc,/2)sin2((2iV + l)fc2/2)
' Λ r ( fC ) ^ ^

N (IN + I) 2 sin2(A:1/2) sin2(fc2/2)

We set An — ηjn(A). Suppose for a moment that A is in &f and given by (Eq.

3). Then the coefficients of An are given by a7^ .= arnfn(m) with / n(m) being the
m t h Fourier coefficient of the polynomial fn. In particular the coefficients of An

vanish outside the support of / . Moreover, lim \\A — A\\j = 0. By a 3ε-argument
nι—>oo

the same will be true for An whenever A e Λ>1 and therefore An G 0f, and also
lim ||A — A\\7 = 0 will still be satisfied. Thus in this way, we get a controlled

approximation of A by trigonometric polynomials.
Thus, given ε > 0, there exists TV G N such that if n > TV, \\A - An\\j < ε/2.

Choosing now such n, we get:

\\Qa(A)\\ < \\ρa(A - An)\\ + \\ρa(An)\\ < ε/2 + \\ρa(An)\\ .

At last, we choose δ > 0 such that \a — aQ\ < δ =̂> | |^ α (A n ) | | < ε/2. Then we have
for such α's | |^α(A)| | < ε. Π

As a corollary of the previous Lemma 1 we get:

Lemma 2. If A is normal in ,AIf then Spτ(A) is outer continuous.
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Proof. Let F be a closed subset of the complex plane such that Sp(ρao(A)) Π F = 0.
Then, by Urysohn's lemma [7], there is a continuous function g on the complex
plane, vanishing on the spectrum of ρaQ and equal to 1 on F. Since A is normal, the
element g(A) is well defined in ,Aι, and satisfies ρa (g(A)) — 0. By the Lemma 1,
there is δ > 0 such that sup \g(z)\ = \\ρa(g(A))\\ < 1/2 which implies that

z£Sp(ρa(A))

F = 0. D

Proof of Theorem l(end). Let A be a normal element of ^ z . Let also O be an open
set in the complex plane such that Sp(ρaQ(A)) ΠO φ%. This is equivalent to saying

that Sp(πaQ(A)) ί l O / ί , where πa is the GNS representation acting on /2(Z2)
defined by (11). Suppose there is some sequence an converging to α 0 in /, such that
Sp(π (A)) Π O = 0 for all n's. By the strong continuity of the family τrα(A), this
would imply [21] Sp(πα (A)) Π O = 0, a contradiction. D

4. Proof of Theorem 3

This section is devoted to the proof of Theorem 3 assuming that Theorem 2 holds.
First of all we will need some technical results.

L e m m a 3. The * -algebra Wl'n{y&j) can be endowed with a family || \\in^ of

(equivalent) norms indexed by ξ E M + having the following properties:

(i) These norms are algebraic, namely | | A B | | / n ξ < | |A | | Z n ^\\B\\t m ^, and

II^Ίlί.n.ί = Wi.n.ί-
(ϋ) i i m | μ n ί i n i ξ = \\A\\J.

Proof These norms are defined by

11^11/„*= ^ o \\δsdrA\\, (12)
L 5 n i s / J S\τ\

0<s<Z,0<2s+|r|<2

where the constants 0 < c ( s , ί ) , s , ί G N are constrained by the following inequalities:

Σ -
provided s, s' < I, 2s + 1 < n, 2s' + tf <n. That such inequalities can be satisfied
is due to the finiteness of I and n. (Just multiply an arbitrary family of numbers by
a sufficiently large number). In these expressions, the sum runs over the integers but
for the last terms for which r may have a fractional part. Then, one replaces rμ in
r! and in \r\ by Ϋ , where n is the smallest integer greater than or equal to n. The
lemma is then proved by inspection. D

Lemma 4. Let A be an element of ί^ ' n(.^-) invertible in y/^. Then A is invertible
in gP^C^j).

Proof. The formula A~ι — A*(AA*)~ι shows that it suffices to consider the case for
which A is positive. Then let a± be the infimum and the supremum of the spectrum
of A in ,/Sj respectively. Then 0 < a_ < α + . We can also express A in the form:

a, — a
.1 _L
l -1
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where B is selfadjoint of norm at most 1. If a — (α+ + α_)/2 and θ — (a+ —

a_)/(a+ + α_), we get A" 1 = a~ι(l + 0JB)"1. Since 0 < θ\\B\\j < 1, the Neumann

series for A" 1 converges in ,Aι. But if we choose ξ > 0 small enough to insure that

0||^llj,n,£ < * ( s e e Lemma 3), this series also converges in g ^ > n ( ^ 7 ) , producing an

inverse of A in g ^ C ^ j ) . D

Lemma 5. Let A be an element in g ^ ' n ( ^ 7 ) invertible in ^>ι. Then there exists a
constant C{{1, n) depending only upon I and n such that

where n is the smallest integer greater than or equal to n.

Proof. We use the following two relations valid for A G

(14)

and

6(A-l) = -A~\6A)A-l +
\σr( A f) A A f) A A A f) A A f) A A "̂  ^1 S^
1 Ik ̂ / l L/i / l / l (vo JΓ\.JΓ\. xλ. Lsj J1.U1- WΛ i l / 1 J . ^ 1 .J J

They both come from differentiating the product AA~ι = 1. If we iterate these
formulae, we can check that δsdr(A~[) can be decomposed into a sum of products
containing A~ι at most 2s+ |r | + 1 times, and terms of the form δSidri{A), where the
exponents satisfy Σ sx < s and ^ 2s% + \ri \ = 2s + \r\. Thus if r is a pair of integers,
the lemma is proved. If now 0 < v < 1, the formula (9) applied to A~ι shows that
one gets an extra power of A~ι, giving the n instead. The constant Cx(l,ri) comes
from counting all such terms. D

Proof of Theorem 3. Let H = if* be in &ι>n(.Aj) for some I > 1 and n > 3. Let
some α be in /, and let g be some gap of H opened at a. By the Elliott Theorem
1, this gap does not close in a suitable neighbourhood of a. So that, without loss of
generality, we choose / small enough to forbid this gap to close on /.

We then define Σ±(a) to be the convex hull of Sp(ρa(H)) Π [ i^(α),+oo) and
Sp(ρa(H)) Π (-oo,Ei(α)] respectively. Our assumption implies that these are two
disjoint intervals such that the gap between them is precisely the interval g(a) under
consideration.

Then let Γ(a) be a continuous family of Jordan curves homotopic to the unit
circle, oriented anticlockwise, surrounding Σ__(a) and not Σ+{a). Then we set:

W£-Λϊ, Ha=i£L^L.. (16)

Pg is the eigenprojection of H onto the part of the spectrum contained in Σ_ and is
therefore an element of ,Λι. Actually, since z—H is invertible for all z E JΓ, Lemma 4
implies that it is also invertible in £f z'n(,y^7), and therefore both Pg and Hg belong to

Wl^n{J&j\ In particular Hg e Mι>n(Aj). Note that Eί(ά) = supSp(ρa(Hg)). Hence,

if / > 1 and n > 3, we can apply Theorem 2 to H , and conclude that Eg_ is a Lipshitz

continuous function in /, with a Lipshitz constant given by C\\Hg\\J/;^n < Cf\\Hg\\ι>n
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(where we have omitted the value of ξ which we take here equal to 1) with a new
numerical constant C. Using now Lemma 5 above, we get:

< In S UP
'' zer

-, π+1

z-H
(17)

Choosing Γ optimally, we can bound the norm of the resolvent of H along the curve Γ
by the inverse of the width of g, leading to Theorem 3, if one chooses 3 < n < 4. D

5. WeyΓs Calculus

The proof of Theorem 2 requires some technical preparation. This section is devoted
to the part which requires WeyΓs calculus. This part is certainly well-known, but we
include it here to fix notation and conventions on normalization.

We will consider the Hubert space J^2(1R), and the two selfadjoint operators Kx,
K2 defined by — id/ds and multiplication by s respectively on the common core
given by the Schwarz space S^(R) of rapidly decreasing W°° functions on R. We
use this notation because of the relation of this problem with Solid State Physics.
Moreover we want to restore the symmetry of the phase space between position
and momentum. Then we have [KX,K2] = —i. WeyΓs operators are given by e[Kx

for x = (x^x2) 6 M2, where Kx = Kιxι + K2x2. We will also use the notation
K Λ x — Kxx2 — K2xx. The Weyl operators are unitary and satisfy the canonical
commutation relation (CCR), namely:

y/2 ^ χ y ^ R2

Actually, e

ιKΛx represents nothing but the translation by x in phase space, namely,
the map

eiKAxKe-ΪKAx = R + χ^

We now consider the groundstate |0) of the "harmonic oscillator" K\ -f K\ , namely

the function /0(s) = π~ 1 / / 4 e~ s I1. It is well-known fact that this state saturates the
Heisenberg inequality. So that in a certain sense, it represents the point x = 0 in the
quantal phase space. To move it around, we then use the Weyl operators, and we set:

T(x) = eΪKAx\0)(0\e-[KAx, x EM2 . (19)

Clearly T(x) is a one-dimensional projection. We let now F be a locally integrable
function on R2 and let T(F) be the following operator, defined as a weak integral:

Γ d2x
T(F) = J —F(x)T(x), (20)

R2

whenever it converges. The following properties hold:

Proposition 2. (i) Positivity: if F is non-negative almost everywhere (with respect to
Lebesgue s measure), T(F) is a positive operator.
(ii) Normalization: Γ(l) = 1.

(iii) Boundedness: if F e Jz^°°(IR2), then T(F) is bounded operator. In addition one
has\\T{F)\\<\\F\\LOO.
(iv) Trace property: if F G S?ι(R2), then T(F) is trace class. One gets actually,
Tr(|T(F)|) < \\F\\Lι/2π, and also Tr(Γ(F)) - J F(x)d2x/2π.
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(v) Hilbert-Schmidt property: if F G ̂ 2(R2), then T(F) is Hilbert-Schmidt. More-
over, one gets Ίr{\T{F)\2)^2 < \\F\\L2/2π.
(vi) WeyΓs operators: we get the following formula, where the integral converges in
the weak sense:

:Kτ f (fy r2/2-h,Ί T(y). (21)

Proof, (i) is obvious from the definition (20), provided the integral converges, (ii) is
a consequence of (vi). (iii) follows immediately from (i) and (ii). Let us prove (iv).
Given any pair ( e n ) n > 0 and ( / n ) n > 0 of orthonormal basis in J^2(R), we get, for any
N eN:

N

n=0

The sum inside the integral of the right-hand-side can be estimated by using a Schwartz
inequality, namely:

N

<Tr(Γ(x)) = l.
n=0

If U is the partial isometry entering into the polar decomposition of T(F), and if we
choose fn = U*en, the left-hand-side gives Tr( |Γ(F) | ) in the limit N ^ oo, leading
to (iv). (v) is then a consequence of (iii) and (iv) via the Riesz-Thorin interpolation
theorem [21].
Let us turn now to the formula (21). Let f,g€ ^ ( R ) . It is easy to check that:

( / I eL = ί dsf{s)g{s (22)

In particular we get:

+ OO +CO

(/ I T(y)g) = ί ds ί dtf(s - y2)g(t - y2)

— oo —oo

Multiplying by e ιxy and integrating first with respect to yι gives (using the Parseval
identity for Fourier transforms):

T(y)g) = [ ^=

The integration over y2 is now easy for it is a gaussian integral and gives the result,
once compared with (Eq. 22). D

Before ending this section let us give another technical result. Let ^ 2 (M 2 ) be the
space of bounded continuous functions of class W1 with all derivatives bounded.
Then:
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Lemma 6. Let F belong to ^ 2 (M 2 ) . For h > 0 set

Then

where D2F(x) is the 2 x 2 matrix of second derivatives of F at x, and \\D2F\\OO =
sup || D2F(x) ||, the norm of a matrix being the operator norm for the euclidean norm

inC2.

Proof The integral over y is actually a probability measure so that:

Fh(x) - F{x) = j ^Le-y2/2h{F{x + y) - F(x)).

We use a second order Taylor expansion to get

ί l v

yVF(x) + / ds(l - s)(y \ D2F(x + sy)y > .
J j

JK- 0 }

The first term in the right-hand-side vanishes obviously by the parity of the measure,
while the second term is easily bounded by .9r\\D2F\\OQ, where

e

2

R2

This finishes the proof. D

Corollary 1. With the notations of Lemma 6 we get:

6. Proof of Theorem 2

The proof of Theorem 2 requires again several steps. The first one consists in finding
a controlled approximation of H e ^ ' n ( ^ 7 ) by trigonometric polynomials. This is
the content of the first lemma below.

Given H = i ί * G ̂ 7 , we define its Fourier coefficients as:

By the very construction of the trace, it is easy to check that this is a continuous
function of a on /. Since h G ̂ j , it belongs in particular to J2f2Cy^7), so that the
Parseval formula gives:

τa(HH*)= T \hm(a)\2.
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This sum converges uniformly on /. In particular we get:

Hot)

2

\\H\\mι,n = sup sup > m
αe/ β <Z,2 β + 2r<n m € z 2

This allows us to conclude that whenever n - 21 > 2, the series

^-^ dθίs a

converges absolutely and uniformly in / in J&J for s < I. Let us then define HN to
be the polynomial of degree at most N such that:

ρa(HN) = Σ hm(a)Wa(m).
\m\2<N

Then we obtain:

Lemma 7. For any pair (/, n) such that I > 0, n > 1, and any 0 < v < n — 1,
w a positive constant C3(v) such that:

> ( 2 3 )

. We easily get

where |m| 2 is euclidean norm of the vector m. Using the Schwarz inequality, for any
r > 1/2 we get:

II TT TT II ^ I ^w ^ 1 I ^^ ^ 4?° I ~L ( \

" N ill < / ^ 7 7 2 ^ r [ ^ | v 7 7 1

I |m|2>iV J α G i I |m|2>iV

This gives the result by taking v = 2r - 1 > 0 which in turn, implies n > 1. D

The next step in the proof consists in using a representation of the algebra which
allows us to compare the elements ρa(H) and ρa/(H). Actually, since they are in
different C* -algebras they cannot be compared directly in the abstract set-up. We will
assume that a' = α + δ with δ > 0.

In order to deal with it, we use the fact that ^ a + δ is isomorphic to the subalgebra
of the tensor product ^£a ® ^βδ generated by the elements Wa(m) 0 Wδ(m), for
m G 1?. Moreover, the Weyl representation πw of ̂ δ acting on Jz^2(R) is faithful
[4]. This representation is defined by:

τrw(Wδ(m)) = e

Faithfulness implies in particular that the spectrum does not change by taking the
representation instead of the algebra. Hence, omitting the symbol πw, we easily
represent ρa+δ(HN) = Ha+δ N as the element of the tensor product ,s£a

 2

given by:

Σ m a (24)
\m\2<N
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Using [Eq. (21)] we get the following integral representation:

(fix
T { X ) ' ( 2 5 )

where Ha N(δ, x) is the polynomial in ySa given by:

Σ δ 2 / 2 x r n . (26)

We note in passing that HaN(δ,x) = η%(HaN(δ,0)), so that the spectrum of this
polynomial does not depend upon x.

We remind the patient reader, who got to this point of our paper, that 2£+(α) is
the supremum of the spectrum of Ha. In much the same way, we define E+(a) to
be the supremum of the spectrum of Ha N and E+(a, δ) to be the supremum of the
spectrum of HaN(δ,x) (a quantity which therefore does not depend on x). It is up
to the reader to prefer dealing with the infimum of the spectrum instead; the proof
will obviously be similar. Our next result is then summarized in the following:

Lemma 8. Let (/, n) be a pair such that I > 0 and n > 3. Then there is a positive
constant C4(n) depending only upon n such that the following estimate holds:

E*(a,δ) ~ C 4 (n)5e π δ 7 v 2 / 2 | | f r | |^ z > n < £+ (α + δ) < E^(a,δ). (27)

Proof. The positivity property of the operator T(x) gives the right-hand-side of our
inequality. To get the left-hand-side, we choose any ε > 0, and then a state ωε on
^4a such that ωε(HaN(δ, 0)) > E%{a, δ) - ε. We also use on J?(^ 2(M)) the states

Ωx defined by ΩX(A) = Ύΐ(T(x/V2πδ)A). Then we get:

provided Fε(x) — ωε(Ha N(δ, x)). Using Lemma 6, its corollary, the definition of ωε

and taking the supremum of the left-hand-side over x and over ε gives:

® Ωx(Ha+StN) > sup {E?(a,δ) - ε -
x,ε ε

It is then not difficult to check that, if 3 < 2r < n, and for any ε:

Halloo < Σ m2\hm(a + δ)\e*δm2/2

\m\2<N

Z . (l+m2)2r-2

This inequality, together with the previous one, gives the result. D

It then remains to compare E+(a, δ) with E+(a). It can be done by comparing
HaN(δ,x) with Ha N. Since these are both polynomials in the same algebra, there
is no difficulty in doing that. Namely, we get:
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Lemma 9. For any pair (/, ή) such that I > 1 and n > 3, there is a positive constant
C5(n) depending only on n such that

||ffα)JV(<5,0) - HatN\\ < \δ\e*δN2/2C5(n)\\H\\Md,n . (28)

Proof. If one uses the definition of the two polynomials and a Taylor expansion in 6,
we easily get:

\\HatN(δ,0)-Hat N\

< Σ
 δ ds

ι-(a + sδ) + (π/2)m2hm(a • r?H

We then dominate the exponential term by eπδN I2 and use again the Schwarz
inequality like in the previous lemmas. One can easily check that the constant C5(ή)
is given by the square root of the sum ^ ( 1 + ra2)~2r, for some r > 0 such that

m

2r + 2 < n. The convergence is then ensured only if n > 3. We also need I > 1
because we use a derivative with respect to a in that estimate. D

Proof of Theorem 2 (end). To prove Theorem 2, we just have to glue together the
inequalities that we have proved previously in this section. Namely:

\E+(a) - E+(a + δ)\ < \E+(ά) - E*(a)\ + \E+(a + δ) - E^(a + δ)\

+ \E+(a -\- δ) — E+(a, 6)\ + |.B^(α, <5) —

The first two terms of the right-hand side are estimated through (Eq. 23), the third
term through (Eq. 27) and the last term through (Eq. 28). This gives:

E+(a) - E+(a + δ)\ < | ^ ^ + (C4(n) + (

provided / > l,n>3,0<u<n— 1. This last inequality holds for any N, so that
we can optimize it by taking say iV = O(δ~1/2) and v = 2. This gives the desired
result and ends this proof at last. D
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