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Abstract: We classify the automorphisms of the (chiral) level-/c affine 5(7(3) fusion
rules, for any value of k, by looking for all permutations that commute with the
modular matrices S and T. This can be done by using the arithmetic of the
cyclotomic extensions where the problem is naturally posed. When k is divisible by
3, the automorphism group (~ Z 2 ) is generated by the charge conjugation C. If k is
not divisible by 3, the automorphism group ( — Z 2 x Z 2 ) is generated by C and the
Altschuler-Lacki-Zaugg automorphism. Although the combinatorial analysis can
become more involved, the techniques used here for 5(7(3) can be applied to other
algebras.

1. Introduction

Modular invariance has received much attention over the past six years, as it
proved to play a key role in the classification of 2d conformal field theories [1J. For
a left-right symmetric theory, the basic problem is to classify the modular invariant
partition functions of the form

where the χj(τ\ possibly in infinite number, are the irreducible characters of the
chiral symmetry algebra occurring in that theory. The matrix JV in (1.1) must have
non-negative integer entries and must be normalized by requiring Noo = 1, where
χ0 denotes the character of the representation which contains the (chiral) vacuum.
The characters carry a representation of the modular group:

χi(τ + l) = Σ TιjZj(τ), ^άXi(-^) = Σ SijXjiτ) . (1.2)

That Z(τ* 9 τ) is modular invariant forces N to satisfy

TfNT=N and S^NS = N . (1.3)
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When the modular matrices S and Γare unitary, the conditions (1.3) are equivalent
to N being in their commutant: [T, /V] = [S, /V] — 0.

The above conditions on the matrix JV prove to be extremely restrictive.
A general analysis was carried out by Moore and Seiberg [2]. Their result is that,
for a given theory, the matrices N which satisfy all the conditions must be
permutation matrices, or else they are such once the symmetry has been adequately
extended. Moreover, as follows from the Verlinde's formula [3], these permuta-
tions are automorphisms of the fusion coefficients of the original or the extended
theory respectively.

For only a small class of theories has the classification been completed. Exam-
ples (almost all related to each other) include theories with an affine SU(2)
symmetry [4], the (unitary and non-unitary) Virasoro minimal models [4], super-
symmetric minimal models [5] and parafermionic theories [6], As to non-rational
theories, only for those with c = 1 has a classification been (almost) established [7],

Among the rational theories, those with an affine Lie symmetry play a central
role as they are thought to be the building blocks to construct all the others. At

present, the complete classification is known only for theories with an SU(2)

symmetry [4], although partial results exist for SI/(3) [8, 9].
The purpose here is to study the modular invariant partition functions of

theories possessing a symmetry not larger than an (untwisted) affine Lie symmetry.
In other words, we will be looking for permutations N commuting with the
matrices S and T describing the modular transformations of the characters of
Kaσ-Moody algebras. Here we restrict ourselves to the Si/(3) algebra, which is the
simplest case still open and yet, which offers generic features of other simple
algebras. ^ ^ ^

The integrable representations of the SU(3)k Kac-Moody algebra are in corres-
pondence with the SI/(3) strictly dominant weights p in the alcove
Bn = {p = (α, b): a,b ^ 1 and a + b :§ n — 1}, where we set the height n = k + 3
[10]. Their total number is -̂"—1-̂ (-̂ —). The representation labelled by p = (1, 1)
contains the vacuum of the Fock space where the algebra is being represented. We
denote by χp(τ) the corresponding (restricted) characters. As functions of τ, we have
χp{τ) = Xp'(τ) if and only if p' = Cp, where C is the charge conjugation acting by

The modular matrices, unitary in this case, have the following expressions. For
p — (a, b) and p' = (c, d\ the T matrix reads

7 ^ = exp 2 i π ( ^ - \ ) Up,P' = ttn + ab + b2~nδa.cδb.d, (l 4a)

while the S matrix is more complicated

Σ (detw)exp
p-wjp')

LXTίLXTί

- - ( a + 2 b ) c + ( a - b ) d j _ r - { a - b ) c - ( 2 a + b ) d

v

7 3 π

? (2a + b) c + { a — b ) d f — (a — b)c + (a + 2b )d ? — (a + 2b)c
{o3n b 3n <D 3 M

Here £3 n = exp i^~) and W = S3 is the Weyl group of SU(3).
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In the following, we classify, for all heights n, the permutation matrices
Np>p, = δp>,σ{p) which commute with the matrices S and Tof (1.4), thereby classify-
ing the partition functions of the form

Z(τ,τ ) = Σ [Zp(τ)]*[χ f f(p,(t)] . (1.5)
peBn

Since the permutations σ are also automorphisms of the fusion rules, we
could try to determine them directly from the fusion coefficients. This is indeed
possible for SU(3\ by using their explicit expressions, obtained recently in [11].
It would however definitely confine us to SU{3) since the fusion coefficients
for higher rank algebras are not known. Instead, the approach we follow here,
although applied to SU(3\ does not confine us to this particular case. We empha-
size that we will not use any peculiar feature of SI/(3) that is not immediately
available in other algebras. Our analysis can therefore be carried out in other
cases as well. Another advantage of looking at the S matrix elements is that
our proof can be useful to classify the automorphisms of the extensions defined
by the complementary invariants of [12]. Indeed for those extensions, most
of the extended 5 matrix is the same as the non-extended one, up to numerical
factors.

Finally we should mention that modular invariants of the kind we are inter-
ested in here are already known. Whenever the KM algebra has outer automor-
phisms, Altschίiler, Lacki and Zaugg have shown that one can construct a whole
class of invariants (also called complementary) [13]. Whether these permutation
invariants are exhaustive is generally an open problem, though the invariants
found in [14] for G2 and F 4 show that they are not exhaustive in those cases at
least. For 5ί7(3), we will show that they are complete.

2. The Classification

The best part of this article will be devoted to the proof of the following necessary
condition for σ to commute with S.

Theorem* Let p = (a,b) and p' = σ(p) = (c, d) two weights in the alcove Bn related
by an automorphism σ. Then, modulo n, (c, J, — c — d) is a permutation of

(a,b, - a - b).

The theorem can be proved by only requiring that σ commutes with S,
although for simplicity, we will make use of a stronger condition. Its proof is
contained in Sects. 4 and 5. For the moment we show that the classification follows
from it.

Since the weight p' — σ(a, b) must belong to the alcove, the six values quoted in
the theorem are

= J (α, b\ {n-a- b, a\ {b9n- a - b) ,

~~ \ (b, a\ (a,n - a - b\ (n - a - b,b) .

The last three values are the charge conjugated of the first three. We first ignore the
action of the charge conjugation C, therefore focusing on the coset of the auto-
morphism group by C.
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The first three weights in (2.1) are the images of (α, b) under the outer automor-

phisms of 5(7(3), generated by μ(α, b) = (n — a — b, α), μ 3 = 1. One readily checks

that for any pair of weights p, /?' in the alcove,

2inkt{p')

where ί(p') = c — Jmod 3 is the triality of the weight p' = (c, d).
So the theorem says that the pointwise action of an automorphism of the fusion

rules must be an outer automorphism of the KM algebra, up to the charge
conjugation. The problem is to define a on the whole of Bn in such a way that it still
commutes with S. On the other hand, σ must also commute with Γ, which implies,
from (1.4a), that the norms of p and σ(p) must be equal modulo 2n. From

In
(μk(p))2 = p 2 + — [ n - /cί(p)]mod2π for k φO , (2.3)

we obtain the following possibilities, depending on the residue of n modulo 3 and
the triality of p:

σ(p) = μk(p) if t{p) = 0 ,

σ(p) = p, if r(p) Φ 0 ,

n φ Omod 3: σ{p) = p or μmip){p) . (2.4)

We now impose the commutation of σ with 5, which reads

SσiPhp = SP,σ-i(p') for all p,p'eBn . (2.5)

If n = Omod 3, for any fixed root p of zero triality, we choose a weight p' of
non-zero triality such that Sp,p> φ 0. (This is always possible unless p = (f, f), but
then μ(p) = p anyway.) We obtain from (2.2) and (2.4),

2iπkt(p')

^σ(p),p' ~ ^μk(p),p' ~ C ^P-P' ~ ^P,σ" Up') ~ ^p.p' " \*"®)

Equation (2.6) implies /c = 0, so that none of the weights in Bn, whatever its triality,
can undergo a non-trivial transformation σ (up to C).

For n =f= Omod 3, we take p — (n — 2, 1) and an arbitrary weight ρ\ both of
non-zero triality, and prove that if p undergoes a non-trivial transformation, then
p' has to do the same. Suppose the contrary, namely σ(p) -= μnt(p)(p) and
σ(p') = p'. We have from (2.2)

2ιπnt(p)t(p')

^σ(p),p' = ^μnt{P"(p), p' = e ^P P' ~ ^ p . σ " ι ( p ' ) = ^p,p' ' \^ ')

The matrix element Sp%p = Sin-2,i),p' ^s never zero for any p', so that (2.7) is
a contradiction since nt(p)t(p') is not zero modulo 3. Thus the transformation
μ"ί(<)( ) acts on all the weights of Bn or on none of them.

We have proved that, up to the charge conjugation C, there is no non-trivial
automorphism if n = Omod 3, and there is a single one if n Φ Omod 3, acting by

σ(p) = μm(p)(p). This automorphism is a permutation of order 2.
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Finally we show that the charge conjugation must act in the same way on all the
weights in Bn if it is to commute with S. From

we obtain that, if p is transformed by C while p' is kept fixed, SPΛP> must be real.
However Eq. (2.2) implies

2ιπt(p')

Since the matrix element S{1Λ)tP> is real and strictly positive for any p\ it
follows that S(n-2, i),P' has a non-zero imaginary part for every p' with a non-zero
triality. Thus if a weight p' is conjugated, then (n — 2, 1) must also be conjugated,
and in turn that means that every weight has to be conjugated. Therefore, C
acts on all the weights of non-zero triality or on none of them. To settle the
question for the roots, we go back to the definition of σ as an automorphism of the
fusion rules.

It is straightforward to compute the fusion rule of the fundamental representa-
tion of SU(3) with any other representation. The result is (in terms of the shifted
weights)

(2, l)*(a,b) = (a + l,fc) + (a - l,fc + 1) + (a, b - 1) , (2.10)

where however, on the right-hand side, a representation must be omitted if one of
its Dynkin label is zero or if the sum of its Dynkin labels is equal to n. If we take
a root for (α, b), all the other representations entering (2.10) have a non-zero
triality. This shows that if none of the weights undergoes the C transformation,
none of the roots can either and conversely, if the fusion rules (2.10) are to be kept
invariant. Therefore the charge conjugation C is an automorphism of the fusion
rules if and only if it transforms uniformly all the weights and roots of the alcove.

The proof is complete. We note that for n = 4 and 5, the actions of μ" ί ( l )( ) and
C are identical We have the

Proposition. The automorphism group of the fusion rules of SU (3)k is generated by
C if n = k + 3 is divisible by 3 or if n = 4 or 5, and is generated by C and μnt(']{ )
when n ^ 7 is not divisible by 3. The group structure is Z2 and Z2 x Z2 respectively.

As a direct consequence, there exist respectively two or four modular invariant

partition functions originating from automorphisms of the fusion rules. They are

the only ones if the SU(3) symmetry is not extended.

3. Preliminaries

The proof of the theorem of Sect. 2 extensively uses the arithmetic of cyclotomic
fields. A useful reference on this matter is the book by Washington [15].

Let ςM be a primitive nth root of unity, for an arbitrary integer n, and let Q{ζn)
denote the corresponding cyclotomic extension, of degree φ(n) over the rationals.
Its Galois group, noted Gsά(Q(ζn)/Q), is isomorphic to Z* (the group of integers
invertible modulo n) and transforms ζn into ζ* for α coprime with n.
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If pι divides n, Q (ζn) is an algebraic extension of Q (ζn/pι), of relative degree pι or
pι~ι(p — 1) according to whether p does or does not divide fι. in each case, the
extension can be defined by the irreducible polynomial Xpl — ζn/pι = 0 and
Φpι(X) = 0 respectively, where Φm{X) denotes the mth cyclotomic polynomial. If
k = ordpn (i.e. pk is the largest power of p dividing n\ the Galois group of the
relative extension is:

Gal{Q(ζn)/Q(ζnlpι)) - < σx{ζn) = ζ*x\ a = 1 m o d ^ and (α, n) = 1

~Zpι(l<k) or Z*ι(l = k). (3.1)

For any z in Q(ζn), one defines its norm (over Q) by taking the product of all its
Galois conjugates: NQ{ζn)/Q(z) = Y\σeGiiHQ{:n)lQ)

 σ ^ F o r ^ a divisor of n and x an
integer coprime with j , one obtains

1 if two different primes divide - ,

φ (n ) K J'•'•')

pϊϊϊid) i f p i s t h e o n l y p r i m e dividing ~ .

We also note the useful polynomial identity

Π (1 -XίJ

m)=\ -Xm . (3.3)

In the maximal real sub-field Q(ζn + ζ^""1), the following subset of cyclotomic
units will have some importance. Let n — pk be a prime power. These units are
defined by

ξa = ζ { n ~ a ) : 2 -Λ TΓ^ 1 < a < - , (α, π) = 1 . (3.4)

All the ζa are real and their number is equal to r = \φ(n) — 1, although the ζa can
be defined for any aeZ* and satisfy ξa + ς_α = 0. In particular, c t = 1 and
ξ-i = — 1. The most useful property of the units ξa is that they are multiplicatively
independent in Q(ζn + ζ~1). It means that the existence of the relation

requires rt — f2 — - — Γr — 0 and r0 be even.
We will also need (additive) independence properties among the roots of unity.

Let again n = pk. A complete set of relations is given by

C (̂l + C f " + C « p k " + + C ! !

p " 1 ) p k ~ 1 ) = 0, O ^ r ^ p * " 1 - ! . (3.6r)

Note that each of the n powers of ζn appears in one and only one relation. This
implies that if a set of powers ζ^ is not linearly independent, Eq. (3.6r) for some
r must hold among p of them. In particular, any set of N < p different powers is
linearly independent.



Automorphisms of Affine SU(3) Fusion Rules 481

The related independence problem for n not a prime power can be reduced to
the above case by using the fact that Q{ζmn) is the product of Q(ζm) and Q(ζn) if
m and n are copπme: one can choose a basis of Q{ζmn) which is the product of bases
°f Q(Cm) and Q(ζn). This property implies that if a set of powers Ca

n

ιeQ(ζn) are
linearly independent over ζ>, they are also linearly independent over Q(ζm) pro-
vided (n,m)= I.

Our starting point to prove the theorem of Sect. 2 is the expression (1.4b) for the
matrix elements of S. When one of the indices is a "diagonal" root (/, /), the
expression simplifies to become (from now on, we omit the prefactor -==-)

This is an additive form of SiU)Aath). In view of the independence property of the
units (3.4), the following multiplicative form is equally useful. It is obtained by using
the expression for the denominator of the Weyl character formula

Let us recall the generalization of (3.8) to any simple algebra Gk. We set n = k + h
with h the dual Coxeter number of G. When p = Ip is a weight proportional to p,
half the sum of the positive roots, the Weyl formula recasts the matrix element
SPtP> into (up to an irrelevant prefactor)

positive roots α

On account of the definition (3.4), Sιp%p> can be expressed as a product of
units ξa, up to an overall power of (1 — ζn) and ζn. This formula is the main
tool of Sect. 4. (Note that if G is not simply-laced, the numbers α // may not be
integers.)

We also recall the arithmetical symmetry that the commutant of S and T
was recently shown to possess [9]. Let N be a matrix commuting with S and T. (N
can have complex entries). One defines on the pairs of Bn x Bn the following action
of the group Z*M. For any veZ* π , it is defined by M v: (p, p')-+(pγ, p[\ where
pvsBn is the image by an affine Weyl transformation u\ of the weight vp. The
symmetry was the statement that under this action, the coefficients Np,p> of
N satisfy

Np,p, - (detwv)(detw'v) NPxyv . (3.10)

In particular it was noted that M. x(p) = Cp is the charge conjugation, implying
Np,p' = NCpXp> for any p,p'. As a consequence, if N is to be a permutation
matrix, a diagonal root can only be permuted with another diagonal root: p = Cp
and N^p' φ 0 imply p' = Cp'. In the following, we use this mild property
in the only purpose to simplify the proofs. The theorem of Sect. 2 can be proved
without using it. (In general, one finds M-X(p) = Cp for G = SU{N), S0{4N + 2)
and £ 6 , while M-1(p) = p is the identity in all other cases, —1 being a Weyl
transformation.)

The following two sections contain the proof itself of the theorem. We will
exclusively use the matrix elements S{Uhp in the form (3.7) and (3.8). Section 4 is
essentially multiplicative while Sect. 5 is definitely additive.



482 P. Ruelle

4. A Local Version of the Theorem

Throughout this section and the next one, we let n = Y\[ p\ι be the prime decompo-
sition of ft, so that ki = orάPι n.

In this section, we prove that the theorem of Sect. 2 is (almost) true if we replace
the congruence modulo n by a congruence modulo p\\ for any / (Corollary 1). We
set (c, d) = σ(a, ft). They must satisfy α, ft, a + ft, c, d, c 4- d φ Omodn to be in the
alcove J3n. The core of the analysis is contained in the following lemma, concerned
with the solutions of the following two equations:

(l - a m - ζ£)(i - c;a~b) = (i - ζcj(i - ζd

n)(i - ζnc'd), (4.1)

(l - ζ » ( i - ζ^)( i - ζ;k

a~b) = (i - ζc

pk)(\ - ζd

pk)(\ - ζ;k

c~d). (4.2)

Equation (4.1) expresses the fact that [S, σ ] ( l i i),(£ί,b) = 0, as follows from (2.5) and
(3.8), and the invariance of (1, 1) under any automorphism. Likewise, (4.2) is
[S, σ] = 0 if (\, Λ) is known to be invariant under σ.

Let us define lx = orάpx for x = α, ft, α -f fe, c, rf, c + rf. We note that within each
triplet (/α, /fc, /α + 5) or (/c, /d, /c + d), two numbers must be equal and furthermore,
these two are smaller or equal to the third one, on account of

/ d ) , (4.3)

where the equalities hold if la φ lb or lc φ ld.

Lemma 1. Let a, ft, c, d be integers such that a,b, a + ft, c, d, c + ci φ Omod n satisfy
Eqs. (4.1) ami (4.2), where k = ovάpn. Then either (c, d, — c — d) is a permutation of
(a,b, — a — ft) moάpk, or else we must have (up to permutations of a,b,a + ft or o/V,
d, c + d):

p = 2, 3: la = lb = la + b = ld=:k a n d Zc = lc + d = k - 1 , (4.4a)

p = 2: la = lb = la + b = ld = k a n d lc = lc + d = k - 2 , ( 4 . 4 b )

p = 2,3: /c = /d = /c + d = /ft = k and /β = / α + fc = fc - 1 , (4.4c)

p = 2: /c = / d = / c + d = / , = fc and ίa = / β + b = fc - 2 , (4.4d)

p = 2: lβ = ίfl + 6 = l c - U b = )c, and Zc = ίc + d = fc - 2,/d = fc , (4.4e)

p = 2: /c = /c + d = fe-l,/d = fe, and /fl = la + b = k - 2, /„ = k . (4.4f)

Proof. Due to the symmetry of the problem, we need to consider only four cases:
L = lb = L + b < k (case 1), la = la + b < lb < k (case 2), la = lb = la + b = k (case 3) and
finally la = la + b < lb = k (case 4).

Case 1. la — lh = la + h < k. Let 1 = la. Without loss of generality, we can assume
lc = lc + d ^ ld < k. (None of lcjd,lc + d can be equal to k since the left-hand side of
(4.2) is not zero.) Taking the norm NQ^ k)/Q of (4.2), we obtain from (3.2),

3pι = 2plc φ pld . (4.5)
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If lc and ld are not both equal to /, one is smaller and the other is bigger than /, that is

lc < I < ld. Then (4.5) yields 2p/c = Omodp*, a contradiction unless p = 2. However

p = 2 is already excluded from the very start, because it is not compatible with

Hence lc = ld = lc + d = /. For a = ocp1, ft = βpι, c = yp\ d = δpι with α, /?, y, δ,

% + β, γ + δ coprime with p, (4.2) reads

(i - n o - cβ)(\ - ζ-*-fi) = α - c y)(i - c m -ζ-<-*),

(4.6)

Dividing (4.6) by (1 - ζ)\ we get ξxξβξ-Λ-βξ; 'ξs'ξ ~l-δ = 1 from (3.4). The

independence property of the ς's implies that (α, /?, — α — β) is a permutation of

(y, δ, — 7 — δ)modpk~ι and therefore (α, b, — a — b) is a permutation of

(c, d, ~ c — d)modpk, as required.

2. la = la + b < lb < k. Again we assume lc = /c + d g Zd < /c. Now the norm

from g(Cp^) to Q of (4.2) yields

2pι" + plb = 2ph + pld . (4.7)

We cannot have /c = ld = lc + d < fe because, from the Case 1, it would imply

L = h = la + b S o ^ = ĉ + d < ld < k.

Assume first ld>h We obtain from (4.7) pίc — Omodp Z α and

2/ c + 1 = 0 m o d 2 / α + 1 for p φ 2 and p = 2 respectively, implying lc^la. Since (4.7)

has no solution for ld > lb and lc > la, we must have ίc = la, a contradiction since it

implies ld = lb. We obtain the same contradiction if we assume ld < lb, by exchang-

ing the two triplets (a,b,a + ft) and (c, d, c 4- d). Therefore /d = /6 and lc = la.

Setting a — (xpla,b = βplb,c = ypι\ and d = δplb with α, ^, y, δ coprime with p,

(4.2) becomes for ( = ζpλ-/α,

x ( l - ζ - v - V 6 " " ) . (4.8)

Using (3.3) twice with X = ζβ ov ζδ and m = plb~la, (4.8) can be recast into

= ( 1 — ζ y ) ( l - C ~' ~&Plh""'") Y\ (I — ζ δ + j p k ~ l b ) . (4 .9)

D i v i d i n g (4 .9) b y (1 - ς ) 2 + p ' " ~ ι \ w e o b t a i n

ξ ξ ιb-ι plb~'" r plb"1"

7 = 1 ' ' 7 = 1

The sub-indices of the cfs are now all coprime with pk~la, so we can use their

independence to obtain y = α or — α — βplb~lamoάpk~la and δ = βmodpk~lb, or

equivalently (c, d) = (α, ft) or ( — a — ft, ft)modpfc. Restoring the symmetry, we

have that (c, d, — c — d) is a permutation of (α, ft, — a ~ b) modulo pfc.
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Case 3. la — lb = la + b = k. Equation (4.2) shows that one of c, d, c + d must be zero
moάpk (since the left-hand side is zero). Suppose d is the one and lc = lc + d ^ ld — k.
We want to prove lc = lc + d = k as well.

If lc < k, i.e. c φ 0mod p \ every σα φ 1 in Gal(Cw/Cπ/p*)/Gal(Cn/ζn/ye) ~ Z**-/,is
such that σα(ς£) φ C« In other words, σα leaves ςJ, CJ and ζd

n invariant, but not ζc

n.
Acting with σα on (4.1) and comparing back with (4.1) yields

re rac y -d(Y -c y -CLC\ γ~d-{x+i)c(γc rac\ (Aλ\\

Equation (4.11) implies d + (α + l)c = Omodπ. If we write c = c1p
k + yplc-^,

then oίc = c1p
k + jyplc ^ΰ for 7 φ 1 in Z*fc_ίc (see (3.1)). The condition

J -f (α + l)c = Omodπ implies (1 + α)c = Omodp^, or

1' . (4.12)

However, we are free to take) φ ± 1, in Z*k l(, therefore obtaining a contradiction,
except if Z*k h = {1} or ( + 1, -1}, that^is if p = 3 and /c = k - 1, if p = 2 and
lc = k — 2 or k — 1. These are the cases recorded in Eqs. (4.4a — b).

Except in the above special cases for p = 2 or 3, we obtain /c = lc + d = fe and so
(c, d, — c — d) is a permutation of (α, b, — a — b)moάpk since these six numbers
are all zero.

Case 4. la = Ia + b < lb = k. As in Case 3, Eq. (4.2) shows that one of c, d, c + d must
be zero m o d p \ Again we assume lc = lc + d ^ld = k. The equalities lc = /c + d

= ld = k, according to Case 3, are consistent with la = la + b < lb = k only in the
exceptional cases, i.e. Ia — k — 2 (p = 2) or la = /c — 1 (p = 2, 3), as shown in
(4.4c-d).

We are left with lc = lc + d < ld = k, so that the situation is now symmetric with
respect to the exchange of the triplets (a, b, — a — b) and (c, d, — c — d). As a first
step, we show that lc}zla.

If /c < /α, we take σα φ 1 in Gal(ζn/ζnipιa)/Gal(ζn/ζn/pιc) ^ Zpι«-h and obtain
Eq. (4.11) as before. So we have d-f (α + l)c = Omodrc, but here αc = cΊpk

+ (1 +jpk~la)yplc fΰ with; φ 0 in Zp/--/t. It implies (1 + α)c = Omodpk or

2+7P f c " i α = 0 m o d p λ - i t , for all; Φ 0 in Zpu-u . (4.13)

One obtains from (4.13) that 2 = Omodpk~/ f l, or pk~la = 2. From this, Eq. (4.13)
implies j = —1 m o d p ^ ^ ^ f o r all) φ 0 in Z^-u = Zp*-ι£-i. This is a contradiction
unless pk~lc~ι = 2. Thus p = 2, /α = fc — 1, /c = /c — 2 is the only case that escapes
the conclusion lc^la

We can repeat the above argument in which we exchange the two triplets
(α, b,a + b) and (c, d, c + d). Doing so, we get la ^ /c unless p = 2, /fl = k — 2 and
/c = fe - 1.

Combining the two parts, we conclude that la — la^b = /c = /c + d, except if p = 2,

la — k — 1, /c = /c — 2 or the other way round, which are the cases listed in (4.4e-f).

For the rest, we ignore them and set / = la = la + b = lc = lc + d < k. To complete the
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proof, we still have to show that (a, — a — b) is a permutation of
(c, — c — d)modpk, or equivalently, that a = ± cmoάpk.

Set a = cc1p
ι ^ + oc2p

k, b = β2p
f c, c = yxp

ι p\ + i^P* and d = ^ p * with α2 and
7i coprime with p. Equation (4.1) in the "additive" form (3.7) yields

_ α 2 α 2 _ ^ 2 , 7 l 7 2 ry2

n/pk ~ ζ n / p k j — <= p k - i ( ζ Λ / p f c — ζ n /

Note that, because <xt and y1 are coprime with p, we have αj φ — aί moάpk ι and
yx Φ — y! modpk~ι unless p*"* = 2, but in this case a1 = yx = 1 from which the
claim follows since a = cmodp^. We must show that αi = ± yx moάpk~ι. Sup-
pose the contrary, oc1 Φ yx αftd OL1 φ — 7^ It implies that the five powers ζpk

a-ι9

ζpk-\ and 1 are all distinct. We prove that this leads to a contradiction.
If the five powers of ζpk-ι entering (4.14) are linearly independent over g, and

therefore also over Q{ζn/Pk), the corresponding five coefficients must vanish. Setting
the coefficient of ζpi-i equal to zero leads to /?2 = 0 m o d ^ , which implies
b — 0 mod n, contrary to the assumption stated in the lemma.

On the other hand, if the five powers of ζpκ-i are not independent, one
of the relations (3.6r) must hold among them. Since each such relation involves
p terms, this is impossible for p ^ 7. We consider the other values of p
separately.

If p — 5, the relation must be the one corresponding to r = 0 because it is the
only one that contains 1. But then the numbers {± α l 5 ± yλ} must be identified
with {5k~ι~ί,2.5k~ι~1, 3.5*~z~\ 4.5*"*"1}, which is impossible since α t and y1 are
coprime with 5, unless k — / = 1. If /c — / = 1, the five powers satisfy the relation
1 +C5 + C5ΦC5 Φ (5 — 0 Eliminating one of them in terms of the other (indepen-
dent) ones, Eq. (4.14) implies that the five coefficients must be equal. Making the
coefficients of ζρk-ι and ζpk-\ equal, we obtain α2 = + (α2 + /? 2 )mod^. The
solution with the + sign must be rejected as it implies β2 = Omoά-^ and
b — 0 mod ft. Hence 2α2 -f β2 = 0. Repeating the argument for the coefficients of
ζy

pi-ι and Cpk'ι, we have 2y2 -f δ2 = 0 as well. Equating now the coefficients of
Cp

ιk-i and Cpic-i, we obtain 2α2 = — 2 7 2 m o d ^ . Finally the last condition comes
from making the coefficients of ζpl-ι and 1 equal, which, using the relations
between β2, y2, δ2 and α2, reads

2παo . 2πα2 2πα2sm f = —4 sin rcos r . (4.15)
n/p n/p n/p

The factor sin 2~β cannot be zero, because if it was, 2α2 would be zero, implying

β2 = 0 and b = Omod ft. Therefore Eq. (4.15) reduces to cos ^β = — 4. The solu-

tions of this quadratic equation read ζa

njpk — — ̂ (1 ± v

; — 15), which is impossible

because v / ~ 1 5 does not belong to Q(ζn/Pk) when ^ is coprime with 5.

More simpiy, cos ~β = — 4 can be recast into ζa

n

2

pk + ζ~ίpί = — 2, expressing

a cyclotomic integer as a rational non-integer number, a plain contradiction.
Take p = 3. There can be a 3-term cyclotomic relation among the five powers

ζpk-ι, ζpk-ι and 1, but two powers will be left over. Their coefficient must vanish,
implying either β2 — 0 or δ2 = 0, i.e. b — 0 or d — 0 modulo n, a contradiction to
the assumptions.

The last case is p = 2. We assume pk~ι ^ 16 (to have five different powers).
In order to escape the conclusion β2 — 0 or δ2 = 0 as for p = 3, there must
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be two cyclotomic relations among the four powers ζpu-ι, ζpk'-i. The coefficient
of the left-over power 1 must vanish, yielding β2 = δ2. The 2-term relation
involving ζpϊ-x can be ζΛ

pl-ι + ζ~f-ι = 0, ζΛ

p

ι

k-ι + ζy

pί-ι = 0, or ζpϊ-ι + ζpk'-ι = 0.
ϊt is easy to see that none of them is tenable. This finishes the proof of the
lemma. •

The first lemma is very restrictive and allows us to prove the announced local
version of the theorem.

Corollary 1. Let (c, d) = σ(a,b) the image of (cι,b)e Bn by an automorphism. Then
(c, d9 — c — d) is a permutation πt of {a,by — a — b)modpf ι , for any p\ι dividing
ft, or else p = 2, and we have, up to permutations, a = b = c = Omod 2k and
d = 0 mod2 f c - 1 .

Proof Define mt = -̂  for i = 1, . . . , s. We first show that all the (mh nii)eBn must
be left invariant by the automorphism σ. Let (c, c) = σ( mt, mt) (necessarily a diag-
onal root from the discussion below Eq. (3.10)). Equation (4.1) reads

(1 - ς » 2 ( l - ζ S) = (1 - ζ r

B)2(l - ζ - 2 c ) , (4.16)

where, for simplicity, we dropped the index / from ph kt and mt. From (3.2),
the norm N^ (^n ) / Q of the left-hand side of (4.16) is a (strictly positive) power
of p. (The norm could be zero iϊ pk = 2, but in that case (m, m) = (f, f)is not in Bn.)
If the same is to be true of the right-hand side, c must be a multiple of f, or of
m if m is odd, since otherwise the norm of the right-hand side of (4.16) is either
equal to 1 or equal to the power of a prime different from p. In case c = f mod m
or equivalently c = ym + f (hence m is even and p is odd), the norm from Q(ζn)
to Q of 1 — ζc

n = 1 + ζ}

pk is equal to 1. Thus the norm of (4.16) requires (remember
p is odd)

Nβί^/eO ~ tn2c) - N Q ( ζ n ) / Q [ ( l - ς » 2 ( l - ζ;*2)] = p3φim) . (4.17)

Equation (4.17) has no solution for c unless p — 3, pk ^ 9 and ord3 y = 1, in which
case Eq. (4.16) can be recast into

(1 - ς 3 ,) 2 ( l - C^2)0 - ζh)2 = (1 - C^)2(l - C^y) . (4.18)

Then using an argument similar to that of Case 2 in Lemma 1 shows that (4.18) has
no solution for y. We conclude that the assumption that c is not a multiple of
m leads to a contradiction.

Setting c = ym, Eq. (4.16) becomes

(1 - ς » 2 ( l - C;*2) = (1 - C » 2 ( l - ζ;*2γ) • (4.19)

The first lemma with n = pk implies that (y, y, — 2y) is a permutation of (1, 1, — 2),
i.e. y = 1 and c = m. We thus obtain σ(mh mt ) = (mi9 mt ) for any m, = ^,
except mf = f The first step of the proof, namely c must be a multiple of
m, can alternatively be obtained by combining the arithmetical symmetry (3.10)
(in which we take v = lmodp^) with norm arguments. As to the second step,
namely c — ym implies y = 1, it also follows from the classification of simple
currents [16].
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Since the weights (m, , m{) are left invariant by the automorphisms, we obtain
that, for any (α, b\ the pairs (α, b) and (c, d) = σ(α, 6) must satisfy Eq. (4.1) and (4.2)
with pk replaced by any pkι Φ 2. Using again the first lemma with p being any ph we
obtain that (c, d, — c — d) is a permutation of (α, b, — a — b)moap\\ except
possibly if one of the equations (4.4) holds. (Note that although the value pkι = 2 is
not allowed, the Lemma 1 in fact covers all the situations which could arise in this
case.) Apart from Eq. (4.4a) and (4.4c) for p = 2, we now show that the others are
not compatible with (4.1).

Let us first consider the case (4.4a) with p = 3. We suppose a = b = c +
d = 0mod3* and orά3c = ovά3d = k - 1. Setting a = α 3 \ b = β3k, c = ylk + f
and d = (53̂  + T , one obtains from (4.1) with ω = ς 3,

(1 - ζα)(l - ζ ')( l - ζ-«~β) = (1 - ωζ y)(l - ω 2 ζ ' ) ( l - ζ~y-') ,

C - C,3* (4.20)

Expanding (4.20) in powers of ω and setting to zero the coefficients of ω and
1 (using 1 + ω + ω 2 = 0 t o eliminate ω2) yield respectively y = δ mod ̂  and the
condition

(1 - ζ « ) ( l - ς ' ) ( l - C"'-"^) = Cv -h ς 2 v - C" v - ζ " 2 v - (4.21)

If fΰ is a prime power, then (oc, β, — oc — β) is a permutation of (y, y, — 2y)
from Lemma 1. Since the situation is still symmetric in (α, β, — α — jS), we
may take α = j? = y, in which case (4.21) reduces to ζ v = ς~ ) ', contradicting
(C,d)65π.

If on the other hand, ^ is not a prime power, then there exists a prime power
qι\ ^ such that (α, β, — a — β) is a permutation of (y, y, — 2y) modulo gz, that
is ^ φ 2. Furthermore we can assume y Φ 0mod^ z . (If y = Omod^^ for every
q φ 2, then α = jβ = Omod^ as well, and we are back to (4.21) with an effective
ς = ζ2k2^ a case already discussed.) Again we choose α = β = ymodq1. Equation
(4.21) reads

^qΛζ + ζ + ζ ) -\- (,qi (ζ ' — ζ H) — C.C. — U, ζ — ί^nβkqι . (4.22)

Since g ^ 5 and y Φ O m o d g ^ the four powers of ζqι in (4.22) are linearly
independent. The corresponding coefficients must vanish, implying in particu-
lar ζα -f ξβ -f ξy — 0. This last equation has no solution since 3 does not
divide -φ^.

Thus the exceptions (4.4a) and (4.4c) for p = 3 are ruled out. Cases (4.4b, d — f)
must be similarly excluded. •

Note that if n is a prime power, Corollary 1 is the same as the theorem. For
composite n, apart from the exception for p = 2, all that is yet to be proved is that
the permutations πf in Corollary 1 cannot depend on L

5. Proof of the Theorem

In order to prove that the permutation πt of Corollary 1 cannot depend on /, we
first note the following



488 P. Ruelle

Corollary 2. The diagonal roots of Bn are left invariant by the automorphisms, i.e.
σ(a,a) = (a, a).

Proof Since the image by σ of (α, a) must be a diagonal root, we have c = d in
Corollary 1. If (c, c, — 2c) = πf(α, α, — 2a)moάpkι for all i, the permutations πt

can only be the identity. So the only case to worry about is when
( c, c, — 2c) = 7ii(α, α, — 2a)moάpkι for pt Φ 2, yielding c = αmodjr2, and
α = 0mod2 k 2 , c = 2kl ~x mod2 fcz (or a and c interchanged). In this case, Eq. (4.1)
requires 1 — ζa

 k2 = ± (1 + ζa

i2k2)9 which has no solution. •

Define m0- = ^ for 1 <̂  i φ j g 5. Since σ(m ί ; , mi; ) = (m^ , mii7 ), the pairs
(c, d) = σ(α, fe) must satisfy the new set of equations [5, σ] ( m i_ ; > w o. ) > ( f l t ί, ) = 0 for any
mijGBn. If, to save the notation, one sets m = ^ y , with ph Φ qι any prime powers
/?£', pj J dividing n, these equations read

Lemma 2. Lβί p and q be two different primes and (c, d) = σ(a, b) two weights of Bn.
If a9b, a -f b + Omodp^^^ ί/zβn (c, d, — c — d) is a permutation of (a, b, — a — b)
moάpkqι.

Proof. We may assume p > q, so that p ^ 3. We also note that
a,b, a + b ή= Omoάpkqι implies c, d, c 4- d φ Omodp/c^/ (neither side of (5.1) van-
ishes). Let us define

a = αp<^ + oίgp^modp^1, fc = βpq
ι + βqp

kmoάpkqι ,

c = M 1 + y , / m o d / ^ , d - δpq
ι + ^ p ^ o d p ^ 1 . (5.2)

From Corollary 1, we have

{yp,δp, - yp~ δp) = πp{otp,βp,-ap-βp)modpk, πpeS3 . (5.3)

The problem being completely symmetric under a permutation of c, d and — c — d,
we fix that freedom by requiring πp = 1, so that yp = αp and δ p = βp. We aim at
proving πq = 1 as well, i.e. yg = αρ and δq = βq.

With π p = 1, Eq. (5.1) reads

^pk\^ql ±ql) ^ pk \^ ql ~~ b ql ) * <* p^X^ ql ~ ^ ql ) ~ ^ pk VS qi ~ ^ qι '

y(tp+ βp / yC(.q+ βq yyq + δq\ , y -Zp - βp ( y -Zq- βq y - Ίq - δq \ _ (\ (C Λ\
~^pk \^>qι ~ ^qι )^~^pk {(sql ~ ^ qι >~ U ' \?'^)

As often with additive equations, different cases must be distinguished. First, there
is the question as to how many among the numbers αp, βp9 otp + βp are zero modulo
pk. There can be zero, one or three. The easy case is when all three are zero, because
there is nothing much to prove. From Corollary 1, we have (γq, δq, — yq — δq) =
κq(aq, βq, — ocq — βq) (the exception for q — 2 plays no role because of the assump-
tion a, b, a + b φ Omodp'V). Setting πp = 1 does not fix anything (any πphas the
same effect) and we can harmlessly choose πp = πq whatever πq is.

Suppose now that one of αp, βp, ap + βp is zero, βp = 0 say. Then the powers
1 and ζpk

ap are all different (remember p ^ 3). If p ^ 5 they are linearly independent,
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so that the corresponding three coefficients must vanish. The coefficient of 1
being zero implies δq = βq or δq = \ — βq, while the coefficient of ζσ

pl set to
zero yields

If δq = βq, (5.5) obviously gives yq = aq. If δq = \ - βq9 Eq. (5.5) becomes
Q ( l - Φ) = ζy

qr
βq(l + φ ) , so that (1 - ζβ

qϊ)/(ί + ζβ

qϊ)j= ± /is a purely imagin-
ary root of unity. In turn this means ζβj = + i, and again ŷ  = αg,

δq = i-βq = βq. +. . .
If p = 3 (g = 2), the powers 1 and £pk

αp are either independent, in which case
we reach the conclusion yq = ocq, δq = βq, or else <χp = ± pk~x. In the latter case,
Eq. (5.4) (with βp = 0) implies the equality of the three coefficients,

From Corollary 1, (yq, δq, — yq — δq) must be a permutation πq of
(oίq, βqi — otq — βq). Trying each of the five πq φ 1, we end up with impossible
equations or contradictions to a, b, a + b + 0modpkql, or else iq and j8ρ are related
in such a way that yq = ocq and βg = δq still hold. Thus πq = 1.

We turn to the last case: none of αp, jδp, αp + βp is zero. We distinguish the cases
p ^ 5 from p = 3.

For p ^ 5, there can be no cyclotomic relation among the six powers of
ζpk entering (5.4). (For p ^ 7, it is obvious, while for p = 5, the would-be relation
has to be (3.6r) with r = 0 because it must contain one of the powers along with its
complex conjugate. But then one of the powers must be 1.) Therefore those which
are different are linearly independent and their coefficient must vanish. This still
leaves two possibilities: the six powers are different or only four of them are
different. The first case clearly yields yq = aq and δq = βq. The second possibility
arises if αp = βp or αp = — αp — βp. (Any other identification contradicts
αp, βp, OLP + βp Φ 0modp fc.) If αp = βp, one obtains from (5.4) either

(7<p δq> - "iq - δq) = («ς» βq> ~ <*q ~ βq) fa' πq = l) 0 Γ (ϊg> ^ ' ~ 7ί ~ δq) =

(jSg, αg, — αg — j8β), that is πg exchanges the first two objects, πq(l, 2, 3) = (2, 1, 3).
But since αp = βp9 we could as well have fixed πp by requiring πp(l, 2, 3) = (2, 1, 3),
in which case we have πp — πq. (The permutation πq is only defined relative to πp.)
The other case with four different powers of (pk, namely ap= — ip — βp, is treated
similarly.

Finally we set p = 3 and make the same kind of discussion. First there cannot
be a cyclotomic relation ζpk + ζy

pu + ζpk = 0, with x, y, z chosen from ± ap, ± βp,
± {Up + βp). Because if there is, the triplet (x, y, z) must be equal to (r, r -f p k ~ 1 ,

rH-2 p k " 1 ) for some r. However, every choice of x, y, z contradicts αp, βp,
ttq + j8p φ 0. Thus those powers of ζpk in (5.4) which are different must have
a vanishing coefficient. If the six powers are all different, (5.4) gives yq = aq and
δq = βq. If they are not all different, there are only two possibilities as in the
previous case p ^ 5: ap = βp or αp = — ap — βp. (Here however both equalities may
hold at the same time.) We only consider the first case, αp = βp, the other being
similar.

If αp - βp but θίp Φ - ocp - βp9 the four powers ζpk"
p and C^(fltp + ^p ) are different

and we obtain πp = πq as in the p ^ 5 case. lϊoιp = βp= — αp — j8p, the two left-over



490 P. Ruelle

powers ζ~kp are different. Their coefficient must vanish, yielding the following
condition:

raq j _ rβq _L ?-<*<!-β* rΊq _i_ y δ q J_ r ~y*~δq a i\

If (yq, (5q, — yq — δq) = τίq(aq, βq, — otq — βq) is a permutation, we can choose
πp = πq whatever πq is (since ap = βp = — ap — /?p). If, on the other hand, <xq, βq, yq,
δq appear as the exception of Corollary 1, we readily check that (5.7) is not
satisfied. •

We can now complete the proof. If n is composed of only two primes, Lemma
2 proves the final result: (c, d, — c — d) is a permutation of (a, b, — a — b) modn.
Therefore we may assume that at least three different primes divide n. Let
(c,d) = σ{a,b).

Let us split the set of primes dividing n into two subsets, B and G. B will contain
those primes p{ such a, b, a -f- b are all Omodpf1, while G receives the primes which
are not in B. Note that if pt is in G, then at most one among a,b, a + b can be zero
modulo p\\ and we accordingly split G into four subsets:

Go = {pv e G: d, fo, « -h fc φ 0mod pf!} ,

G t = {piEG: {a, b, - a - b) = (0, b,-b)moάp^} ,

G2 = {Pi^G: {a,b, — a — b) = {a,0, — a)modpkι} ,

G3 = {pieG: {a,b, - α - b) = (α, -«,0)modpf 1 } . (5.8)

We first prove that (c, rf, — c — d) is a permutation of (#, b, — a — b) modulo G,
and by this we mean modulo Π P i 6 G pf ! .

If Go Φ 0, it contains a prime p1 such that a, b, a + b ή= 0modpkipkι for every
Pi + Pi Then Lemma 2 implies that (c, d9 — c — d) is a permutation of
(α, fc, — a — b) mod p\ιpkl for all / ̂  2, from which the stronger claim clearly
follows: (c, rf, — c — d) is a permutation of (α, b, — a — b) modulo π, since πι = π{

for all i ^ 2.
If Go = 0, at least two of the subsets G 1 ; G2, G3 are non-empty,

since otherwise it would contradict a, b, a + b + Omodn. From the definitions
(5.8), it follows that if p, and p} belong to two different subsets Gfe,
then α, b, a + b Φ 0modpklpkjj and (c, d, — c — d) is a permutation of
(α, b, — α — /7)modpf'/7jJ. By making i and j vary over the three subsets (but
keeping p, and p^ in different Gk), we obtain the same result for any pair ph p} of
primes in G, whether in different subsets or not. Again the statement follows:
(c, d, — c — d) is a permutation of (α, b, — a — b) mod G.

We now consider the primes in B. For the primes p{ in £ different from 2, we
know that (c, d, — c — d) is permutation of (α, b, — a — b) — (0, 0, 0)modpk\
Which permutation it is becomes irrelevant since the three objects are identical
anyway. We can therefore choose the same permutation as the one relating
(c, d, — c — d) to (α, b, — a — b) mod G, and doing so we obtain

(c, d,-c-d) = π(α, b,-a- b)mod^- . (5.9)
2

The only remaining case is when 2 is in B, that is when α and b are both multiples of
2kl. In this case, Corollary 1 does not guarantee that c and d are also multiples of
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2kl. If they are, then of course the statement (5.9) is also true mod n. Thus it remains

to rule out the single exception of Corollary 1, namely a = b = 0mod2 k 2 , and say

c = 0mod2 λ 2 , d = 2k2~1 mod2 k 2 . We can do so by repeating the above argument

in which we exchange (a, b, — a — b) with (c, d, — c — d). We define two new sets B'

and G' as above but relative to (c, d, — c — d). From d = 2 k 2 ~ 1 mod2 f c 2 , we find

that p, = 2 belongs to G', and since Corollary 1 and Lemma 2 are symmetric under

the interchange of (a, b9 — a — b) and (c, d, — c — ά\ we conclude that (5.9) holds

modulo π. The proof of the theorem is complete.

6. Perspectives

The proof we gave for 5(7(3) in Sects. 4 and 5 has clearly a multiplicative and an

additive part. They both can be applied to any other algebra, since in most

instances, the problem is to assess independence properties of cyclotomic numbers.

As this usually involves discussing different cases separately, it can become rather

painful when the number of terms increases. This is especially true when additive

relations must be examined. So for practical feasability, solving the problem for

large algebras requires a more systematic way of dealing with the additive part.

Another possibility is to keep the whole discussion at the multiplicative level, which

is more satisfactory and easier to handle, even when the number of terms gets large.

Essentially, this means changing the arguments of Lemma 2 so as to keep the

multiplicative character of Eq. (5.1). It would not yield a simpler proof for SU(3\

but it looks more promising for larger algebras.
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