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Abstract: We consider the Zakharov equation in space dimension two

iut = —Δu + nu ,
1

\ ntt = Δn + Δ\u\2 .

We prove the existence of blow-up solutions (stable "self-similar" blow-up solutions)
for this problem and we study various properties of these solutions.

I. Introduction

In this paper, we consider the Zakharov system in space dimension two:

iut = —Δu + nu , (1.1)

\ntt = Δn + Δ\u\2, (1.2)
co

u(0) = φ0 , n(0) = n0 , nt(0) — nx ,

where c0 > 0, Δ is the Laplace operator on R2, u: [0, T ) x l 2 ^ C , n : [0, T)xR 2 -> R
and 0O, n 0, rij are initial data.

This model is often used to describe Langmuir waves in plasmas when the electric
field is one dimensional, u represents the envelope of the electric field and n is the
large scale flucatuation of the ionic density. We remark that the subsonic limit of
these equations (c0 —> +oo) is formally

iut = — Δu — \uγu, (1.3)

°° u(f)) = φC). (1.4)

* This work was partially done while the second author was visiting Rutgers University and Courant
Institute
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This is the Schrodinger Equation in dimension two with critical exponent. This
power is critical in the following sense: It is the smaller power for which blow-up
occurs in finite time for some class of initial data (φ0 G Hι).

From the mathematical point of view, little is known on equation (Ic ) (with a
finite c0). The only existing results are related
- on the one hand to the local existence in time of regular solutions
- on the other hand to the limit as c0 —> +00 of uniformly bounded regular solutions

of(IC 0)
In particular, there are no results on the existence and behavior of solutions of

equation (I ) which become singular in finite time (except some strong numerical
evidences: see Landman, Papanicolaou, C. Sulem, P.L. Sulem, Wang [10]). The aim
of this paper is to prove some existence results of singular solutions.

Existence of strong solutions for regular initial data has been investigated by
several authors (C. and P.L. Sulem [21], Schochet and Weinstein [18], Ozawa and
Tsutsumi [14]). One can show that, for initial data (φ0, n 0 , nx) G H2 x Hι x L2, there
is a unique solution (w, n, nt) in H2 = H2 x Hι x L2 on [0, T2) and
- T2 = +00 or
- Πt)\H2 + \n(t)\Hι + \nt(t)\L2 -> +00 as t -> T2.

This result was first obtained by C. and P.L. Sulem [21] and by Schochet and
Weinstein [18] with an extra assumption on nt:nt G H~ι, where H~ι is the space
of functions u such that 3υ: R2 —> R2 such that

n — —V v and υ G L2

and

This condition was later removed by Ozawa, Tsutsumi [14].
The question to know if this space is optimal for local existence is open. For

example the case of the energy space for the Cauchy problem [see below (1.6)—(1.8)]
Hx = Hι x L2 x H~\ (or even Hx=Hι x L2 x H~ι) is unknown.

For a solution of (I ) in H{ or H2, the conservation of mass gives

Vί, \u(ί)\L2 = \φ0\uι. (1.5)

In addition, if n t(0) G H~x then Vί, nt(t) G H~λ and (1.2) may be written in the
form

nt + V v = 0,

I V t + Vn = -VM2 ( L 6 )

co

In this case (nt(t) G H~ι), we have an another law (Energy conservation), that is

^f(ί) = i?r(0), (1.7)

where

3& = M(u, n, υ)

- / (\Vu(x)\2 + n(x) \u(x)\2 + ^ \v(x)\2 + l- n2{x)\ dx . (1.8)
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For large initial data, heuristic arguments and numerical simulations suggest a
finite time blow-up (Landman, Papanicolaou, C. Sulem, P.L. Sulem, Wang [10]).
Nevertheless, no rigorous results of collapse are presently available. In contrast, a lot
of work is done for the formal limit as c0 —> oo, that is the Nonlinear Schrodinger
equation with critical exponent. Unfortunately, up to now, the limit as c0 —> +00 has
been proved rigorously only for uniformly bounded solutions.

In [1], H. Added and S. Added (see also Schochet and Weinstein [18]), if the initial
data are very regular (belong to the Schwarz space) and compatible (n0 + \uo\

2 = 0),
then (uc , nc ) converges uniformly in time as c0 —> +00 to (u^, — {u^ 2) on compact
sets of [0, TQQ), where u^ is the solution of (1^) with the same initial data, and T ^
its blow-up time.

Since the convergence is on compact sets of [0, Γ^), we do not have by this kind
of techniques any information on the singular behavior of (u , nc ) for c0 fixed and
large.

Equation (1^) has a unique solution in the space H[ and there is T > 0 such that
for all t G [0,Γ), either T = +00 or lim \u(t)\Hι = +00 (see Ginibre and Velo [5],

Kato [8]). In addition we have for all t G [0,T),

/

r
\u(t,x)\2dx = / \φo(x)\2dx, (1.9)

j

iK.

g(u(t))=l- ί \Vu(t,x)\2dx-^ f \u(t,x)\4dx = &(φ0). (1.10)

m2 R2

If φ0 e Σ = {\x\ ue L2}ΠH\ then Vt G [0, T), u(t) G Σ and

j / ί | x | 2 |n(t ,x) | 2 ώ = 4Im fru(t,x)ϋr(t,x)dx, (1.11)

R2 R2

d2 f
/ \ \ 2 \ ( t ) \ 2 d l 6 ^ ( φ ) (1.12)dt2

u x du
where r = — and u = -7—.

\x\ r dr
From the last two identities, Zakharov, Sobolev, Synakh [19] and Glassey [7]

derived the existence of singular solutions of (1^). That is, solutions for which there
is a T > 0 such that

lim u(t)\ττ\ = +00 .
t-+τ

Indeed, if the energy of the initial data cS\φ^) is negative, then P(t) —
J \x\2 \u(t,x)\2dx is a polynomial in time of degree two on [0, T) such that the

R2

coefficient director is a fixed negative number. If P(t) were defined for all t, there
would be a t0 > 0 such that P(t0) < 0, which is impossible. Therefore the solution
must blow up.

This equation has two important sets of explicit solutions:
- Periodic solutions
- Blow-up self similar solutions (with respect to a conformal invariance).
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Let us consider solutions of the form

u(t, x) = ezωtV(x),

where ω is a positive parameter, u(t) will be a solution of (1^) if and only if V
satisfies the following elliptic equation

ωV = ΔV+\V\2V in R2. (1.13α;)

Existence of solutions of such equations is well known (see Berestycki and Lions
[3] and also Strauss [20]). Moreover, the set of solutions of (1.13α;) with ω > 0 has
a "minimal" element in the L2 sense which is called a ground state. More precisely,
there exists a unique radial solution in Hι of the problem

V = ΔV+\V\2V in I 2 , V>0 (1.14)

denoted Q (see Kwong [9] and the other references in [9]). If V φ 0 is solution of
(1 13ω0) for some ω0 > 0 (it is easy to see by Pohozaev identity that there are no
solutions V ψ 0 in Hι with a "good" decay at infinity for ω < 0), then

- \y\L2 > \Q\L2.

- if \V\L2 = \Q\L2, then tere is x0 e M2 such that V(x) = ωo

f Q(ωo

f (x - x0)) (see
Cazenave and Lions [4] and Weinstein [23]).

These periodic solutions yield to explicit blow-up solutions. Indeed, equation (1^)
has a conformal invariance: if u(x, t) is a solution of (1^) then

T-t

is also a solution of (1^) (see for example Ginibre and Velo [5] and the references
therein). Thus if V(x) is a solution of (1.13α;), then

W(-τ+t) (-1 (1.16)
T-t \T-t

is a blow-up solution of (I^).
In particular, for flG^1, x0, x{ e M2, Γ > 0, ω > 0,

-Xι)U

τ'_f-t)X°) (1.17)

is a blow-up solution.
These solutions Sθ ω x are important in the following sense. They are minimal

blow-up solutions. Indeed,
- If Iφ01L2 < \Q\L,2, then the solution u(t) is globally defined in time (see Weinstein
[231).
- If \φo\L2 = \Q\ι,2 then u(t) blows up in finite time if and only if there are T > 0,
θ e S\ x0, xx e M2, T > 0, ω > 0 such that u(t) = Sθ^^Xι(t).

The proof of this result has been done in two steps
- in the case where φ0 is radial and in Σ (see Merle [12])
- in the general case (see Merle [11]).

How are these properties transformed for the Zakharov equation (Ic ) where

c0 (Ξ (0,+oo)? Clearly, the quantity J \x\2 \(u{t,x)\2dx does not anymore satisfy a
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simple relation, which does not allow us to prove blow-up theorems for the Zakharov
equation.

The existence of periodic solutions of this form is still true. Indeed, if V(x)
is a solution of (1.13a;) for ω > 0, we can remark that (u(t,x),n(t,x)) =
(eιωtV(x), — \V(x)\2) is a periodic solution of equation (Ic ).

There is not conformal invariance of the equation. We can check by hand that

J-t,

dec)' "
The idea is to look for the natural extension of the form

is not an exact solution of (I ), where V is a solution of (1.13α;) for ω > 0.

u(t, x) —

n(t,x)=
τ-t

where P : K 2 -^ K, N:R2 -^ R.
We consider solutions with radial symmetry, that is

(1.18)

where P(x) = P(\x\) and N(x) = N(\x\).
After explicit computations, we find that (w, n) is a solution of (ICQ) if and only if

(P, N) satisfies the following system:

(1.20)

X2(r2Nrr + 6rNr + 6AΓ) - ΔN = Δ\P\2 , (1.21)
where

coω

and r = \x\, Wr = ^ , ΔW = Wrr + - Wr.

Our puφose in this paper is to study this system. That is to find a range of
parameters λ (or equivalently ω) such that (Πλ) has a solution (P λ , Nλ). Consequently

coλ(T-t)
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will be a blow-up solution of the Zakharov equation (I ). In this direction, we are
not able to use variational methods because of the lack of variational structure of
equation (Πλ). We use a different approach: perturbation methods for λ small.

Indeed, for λ = 0 (or equivalently ω = +00 or c0 = +00), (IIλ) is reduced to

AP - P = NP,

Z\(7V+|P|2) = O,

that is
P = Λ P + | P | 2 P ,

which is (1.13α;) with ω = 1.
Thus, the idea is to use a fixed point argument to find for λ small solutions (P, N)

of (Πλ) near (V, — \V\2), where V is a solution of the equation

V = ΔV+\V\2V (1.22)

on R2 and then a contiuation argument (degree theory) to get an unbounded (in
a certain sense) branch of solutions of (1.22), under a condition of nondegeneracy
(which is only known for minimal solutions of (1.22) (that is the positive solution).
Most of the method applies for a radial general solution except for one fundamental
part of the proof: it is only known that minimal solutions of Eq. (1.14) (that is positive
solutions) are in a certain class of nondegenerate functions.

For that reason, we end up finding a branch of solutions of the system

P>0,

dW
where r = \x\, Wr —

We have the following results for solutions of (IIJ). The first result is a regularity
result on solutions of system (Πλ).

Proposition 1. Let (P, N) £ Hι x L2 be a radial solution of (llλ) in the distributions
sense. Then for all k > 0, (P, N) G Hk x Hk In addition there is a δ > 0, ck > 0
such that

\P{k\x)\ <cke-δM, \N(k\x)\ <
ck

1 + b 3+/e

Remark. The space Hι x L2 is not optimal for elliptic theory but it is the one which is
important in terms of (u(t), n(t)) for the time evolution problem. We say that (P, TV)
is a solution of (IIλ) if (P, N) £ Hι x L2 and satisfies (IIλ) in the distributions sense.
From Proposition 1 we have that (P, TV) G H2 x H2 and (P, N) is a classical solution
of (Hλ).

Theorem 1. i) (Existence and uniqueness property for X small). There exists λ + > 0
such that for 0 < λ < λ + there is a solution (P λ , Nλ) of the system (IIJ) such that

(Pλ,7Vλ)-^(Q,-g2) as λ ^ O

in Hι x L2. Moreover, for all c > \Q\L2, there exists λc > 0 such that for 0 < λ < Λc

there is a unique solution (P λ , TVλ) of (Jl\) such that \Pλ\L2 < c.
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ii) (Existence of a branch of solutions of(LYχ)). There is a branch of solutions of (11^)

(λ, (P λ , Nχ))for λ > 0 which is unbounded in R+ x (Hι x L2).

Remark We do not know whether there exists a λ* such that for 0 < λ < λ* there
is a unique solution of (Πj).

Remark From ii), there exists λ* > 0 such that
- for 0 < λ < λ* there is a solution (P λ , Nx) of (IIJ)

- if λ* < +oo, there is a sequence ( P λ n , 7Vλn) of solutions of (IΓ[) such that

λn —* λ** < +oo ,

as n —» +oo.
It is an open problem to know whether λ* = +oo or not. We conjecture that

λ* = +oo.

Remark In Part II [6], we give results on the behavior of solutions of (Πλ) uniformly
bounded in L2 as λ —• 0.

From Theorem 1, we have the following result of existence of blow-up solutions
o f (V
Theorem 2 (Existence of Self Similar Blow-Up Solutions of Equation (ICo)) Let

(P λ , Nλ) be a solution o/(Π λ) in Hι x L2. Then VT > 0, V0 e S1,

,

/s α blow-up solution of equation (Ic ) w/ί/i ί/ι̂  following properties'

- Vί G [0, T), Vfc > 1, (w, n, n t ) G iί^ α«d m particular nt G F " 1

Remarks, i) For the existence of blow-up solutions the value of c0 does not play
a role. Indeed, if (u(t), n(t)) is a blow-up solution of equation (Ic ) then Vα;0 > 0,

(aou(QίQt, aox), aln(alt, aox)) is also a blow-up solution of (IC ( ) Q : o).1

ii) We can see that as t —> T,

in the distributions sense. We will see in Part II [61 that it is in a certain sense a
general behavior for blow-up solutions at the blow-up time.

1 From this result, we derive the existence of blow-up solutions of vector value Zakharov equations
by considering solutions of the form U(t,x) = u(t,x)U0 where Uo is a fixed vector and u(t,x) is
complex
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ii) It is important to remark that the form

,, v 1 ι\θ+4(-τ+t)
U (t X) = = "coλ(T-t) λ\coλ(T-t)J'

X

coλ(T - t)

is the stable form which is numerically observed (stability of the profil at the blow-up
with respect to the initial data, see [10, 15]). This fact points out the importance of
these solutions for Zakharov system and of the solutions of the form

for the Schrodinger equation which are in some sense limit of stable solutions (of
Zakharov system).

The paper is organized as follows:
- In Sect. II, we study the regularity and basic properties of a given solution of (Πλ).
- In Sect. Ill, we precise the asymptotic behavior of a solution of (Πε) as ε —» 0.
- In Sect. IV, we prove existence and uniqueness of a solution of (IIJ) for ε > 0
small enough by a fixed point argument.
- In Sect. V, we prove the existence of an unbounded (in a certain sense) branch of
solutions of (lit).

II. Properties of a Given Radial Solution (P, N) of (IIλ)

In this section, we consider a radial solution (P, TV) φ 0 in Hι x L2 satisfying in the
sense of distributions the system

(Πλ) ί ΔP-P = NP, (2.1)

[ λ\r2Nrr + 6rNr + 6N) - ΔN = Δ\P\2, (2.2)

and the associated blow-up solutions of (Ic ) (solution in a weak sense)

coλ(T-t)

N

where T > 0.
Assuming existence of such solutions (we always in this section assume that these

solutions are radial), we look for their various properties. We do it from two points
of view.
- In II. 1 we show properties of (P, N) from the point of view of the elliptic theory.
More precisely, we will present:
a) Equivalent formulations of (IIΛ) and local regularity of (P, N).
b) Decay at infinity of (P, TV).
c) Various identities for (P, TV).
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- In II.2 we give properties of (ux,nx) and thus of (P, N) from the point of view of
the evolution equations:

Computations of invariants, related properties and uniform lowerbound in L2

on P.

II.I Elliptic Properties of (P, N)

a) Local regularity of (P,N) and equivalent formulations. We first prove that if
(P,N) are solutions of (Πλ), then (P,N) are regular functions. We then derive a
simpler verison of (Πλ) where TV is an explicit function of P.

In fact, we show that (P, N) e Hι x L2 solution of (Πλ) is equivalent to (P, N)
solution of (IΠλ) or (IVλ), where

(IΠΛ)
 Δ P - P =

[ (λ2r2 - 1)N'(r) + 3λ2r7V(r) = 2P(r)P'(r), (2.3)

and

ΛP — P — NP
(IVλ)

 nί^ ^ - ^ >
r

( ^ 2 ^ _ ]_)3/2 J

1/λ

where (λ 2x 2 - l) f c/2 = ^ 2 ~ ! | λ V - l| fc/2 for k = 1,2,3.

Proposition 2.1 (Regularity of (P,N) and Equivalence of the Systems), i) Let
(P, N) e Hι x L2 a radially symmetric solution of (IIx) in the sense of distributions.
Then P, TV are C°° on R2 and are classical solutions of (IIλ).
ii) Let (P, N) e Hι x I? radially symmetric and C°° Then systems (Πλ), (IΠλ),
(IVλ) are equivalent.

Remark Therefore the degeneracy of the differential operator of (2.2) does not imply
for (P, TV) G Hι x L2 solution of (Πλ) a weak singularity.

Proof of i). Consider (P, N) e Hι x L2 solution of (IIλ). Let us prove that (P,N)
are C°°. We consider the cases outside and inside the nondegeneracy point.

Case x\ φ —
Λ

Let us first prove L°° and H2

0C estimates of P.

Lemma 2.2. Let (P, N)e HιxL2a solution of (IIX). Then P e H2

ocnL°° and there
exists a constant c which depends only on \P\JJ\ and \N\L2 such that

\P\L°° < C

Remark. The constant is independent of λ.

Proof. We prove P G L°°. Let us consider the elliptic problem in the unit ball Bx:

ΔP - P = NP. (2.5)
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P is in Hι and thus P is in L4 by Sobolev embedding. Since N is in I? we deduce
from regularity of the elliptic problem that P is in W2'3/ί2(Bι), therefore P is in

For \x\ > 1, we have the classical inequality:

Lemma 2.3. For u G Hι radially symmetric we have

\U\L°°[A,+OO) < -7= Mtfl ( 2 6 )

+ OO

Proof Considering u2(r) = J 2u(s)u'(s)ds, we have for r > A,
r

u\r) < ί 2\u(s)\ \u'(s)\ jds < j ί (\u(s)\2 + \u'(s)\2)sds,
r r

which yields to the result.
Therefore |-P|.c°o(|ίc|>i) < \U\H1 a n ^ there exists a constant c which depends only

on \P\H\ and \N\L2 such that |P|Loo < c.
Let us prove P e H2

0C. For A > 0 we consider again the elliptic problem (2.5)
on the ball BA of radius A in R2. NP is L2 on BA and then from elliptic theory
P G H2

QC. This concludes the proof of the lemma.

Let us show that (P,N) are C°° on R2\ < \x\ — - > using classical regularity

\ I Λ J
theory for elliptic equations. We first need regularity results for the linear operator

appearing in (Πλ): Let

LXP = ΔP - P,

L2N = X2(r2Nrr + 6rNr + 67V) - AN.

Therefore system (Πλ) can be written

L2N = ΔP2.

Lemma 2.4 ( Uniform Ellipticity of Lx, L2 for x φ — ).

1) Lx is uniformly elliptic on compacts ofM2 and L2 is uniformly elliptic on compacts

2) // P is a L2(R2) radial fucntion such that LλP e Hx

k

oc (R2\ I \x\ = - 1 J, then

3) ifN is a L2(R2) radial function such that L2N G Hx

k

oc

r Λ (

Moc

Proof of the lemma. 2) and 3) follows from 1) and classical regularity results. Clearly
Lγ is uniformly elliptic. Let us prove that L2 is uniformly elliptic on the open set of

1
the form CAδ = {\x\ < A} Π I > δ2 >, where 5 > 0 and 4̂ > 0.
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By computations we have on CAj6,

L2N = (λ 2 |x | 2 - l)ΔN + 5x VTV + 6λ2TV

and λ2δ2 < \X2\x\2 - 1| < ^2Λ2 + 1. Therefore L2TV is uniformly elliptic on CAiδ.
This concludes the proof of Lemma 2.4.

Consequently,

Proposition 2.5. Let (P, TV) G Hι x L2 a solution of (Πλ). We then have P, TV G

-
Proof. We prove by induction on k that P, TV G # £ c ί M

2 \ i |x| = - > ) and con-
clude using Sobolev inequalities. ^ \ ̂  J

Let us prove P,TV G H2

OC(R2\ \ \x\ = - 1 ) . We have that P G H2

0C

and thus Z\P2 G Lfoc(R2). Thus L2(TV) G tfoc(R2) and from Lemma 2.4, TV G

#loc β \ N = T t h u S N e Lk?c M \ { X =

\ \{ λ ) J V \ l
Let us suppose P, TV G J3£c ( R 2 \ \ \x\ = - \ ) for. k > 2. We have

,.,««.(-\{w-i}).
Since k>2, N,P e L™C[R2\ \\X\ = \ \ ) and then (A^P) e f / ^ Π

M J . T h e n P G ^ + 2 ί l R 2 \ | | x | = j \ ) a n d ZAP 2 G ̂ O C ( M 2 \ j \x\ = j

T h u s aga in from L e m m a 2.4 A^ G H(£2 ( R 2 \ \ \ X \ = - \ ) .

\ \ I Λ J /
In conclusion, P, TV G i ^ c (M2 \ < |x| = - > J for each k and the result follows

from the Sobolev embedding of Hfcc into C^~2.

_ 1
Casex=j.

We first show that if (P, TV) solutions of (IIλ) then (P, TV) is solution of (IΠλ) and
(IVλ) and then conclude the proof of regularity.

We prove that (2.2) has a first integral, and in fact, that TV can be written as an
explicit function of P.

Proposition 2.6. Let (P, TV) G Hι x L2 satisfying (Πλ). Then (P, TV) satisfies
1) (λ 2 r 2 - 1)TV; + 3λ2rTV = 2 P P ; in the sense of distributions.

2 2 Λ3/2
r - ij / 1 / λ

s for r ^ {.

. 1) Let
A{r) = ((λ 2r 2 - 1)TV7 + 3λ2rTV - ( P 2 / ) .
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We remark that if (P, N) is solution of (2.2) then
1 Λ

- — (rA(r)) = (X2(r2Nrr + 6rNr + 6JV) - ΔN - Δ\P\2 = 0
r or

in the sense of distributions.

Thus rA(r) is a constant function on R. But for r ψ —, P and AT are smooth
Λ

functions and in particular A(0) = 0, which leads to the result.

2) We then write N as an explicit function of P.

Lemma 2.7. We have for 0 < r, < r9 < - ,

(1 - \2rl)3/1 N(r2) = (1 - λ 2 r 2 ) 3 / 2 A ^ ) _ f 2P(s)P'(s)(l - λ2s2)ι/2ds , (2.7)

n

and for — < r1 < r2.

^ 2

(λ2r^ - l)3/27V(r2) = (λ 2 r 2 - l ) 3 / 2 A r ( r i ) + ί 2P(s)P\s)(λ2s2 - l ) 1 / 2 d s . (2.8)

Proof. Let us consider the case — < rγ < r2 for example. Multiplying (2.3) by
(λ 2 r 2 - I) 1 / 2 , we find Λ

((λ 2r 2 - \Ϋ/2N)' = 2 P P ' ( λ 2 r 2 - 1) 1 / 2 , (2.9)

and the result follows from integration on [r1,r2].

Therefore (2.4) ( in the case r > - for example I follows from Lemma 2.7, putting

τ2 — r and r1 —> I — ) .

This terminates the proof of Proposition 2.6.

We now conclude the proof of regularity at
Λ

Lemma 2.8 (Regularity for \x\ = - j . Let (P,N) G H2 x L2 a solution of (Πλ).

_ 1

r i 2i
Let / = — , - . We will prove by recurrence on k the following property

|_2Λ ΛJ
on the functions P(r), N(r) (considered here as functions from / to R)

Let us prove it for k = 0. From Lemma 2.2, P G H2

OC(R2) and then P G
We then deduce the regularity of Â :

m ) ϊ / ( ΰλ (λr + 1)3/2 / Γ , /, i - v- -"(*) (λS + D 1 / 2 ( 5 - T ) ds
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or

with
1/2

372
r - - | ,/Λ

Z(s) = 2P(r)P'(r)(\r-

Whe then use the following classical regularity lemma.

Lemma 2.9. Consider I a compact interval o/R, r0 £ I and for r G /,

1
(r - r o

s '

For each integer k > 0, if Z e Wk>°°(I), then Y G Wk>°°(I) and there exists a
constant ck 7 which depends only on k and on the length of I such that

Proof It follows from classical arguments and from Taylor formula.
ppi e 100^ i m p i j e s z e L°°(I) and from previous lemma Y and TV are in

L°°(I). Thus P,N G V^o'°°(/) is true.
Let us suppose that P,N e Wk'°°(I) for k > 0 and let us prove P, TV G

Wk+ι>°°(I). We first deduce (NP) G Wk>°°(J) and from

P" + - P' - P = NP,
r

we deduce P G Wfc+2'°°(/). Therefore Z = 2PP ; (λr + I) 1 / 2 G W / c + 1 'o o(/). From

Lemma 2.9 it follows Y and TV = -j- (Λr + l ) - 3 / 2 F are in Wk+^°°(I\ and this
Λ

concludes the proof of Lemma 2.8, thus part i) of Proposition 2.1.

Proof of ii) of Proposition 2.1 We had shown in the proof i), that is if (P,N) G
Hx x L2 is a solution of (Πλ) then it is a solution of (ΠIλ) and (IVλ). Reciprocally,
for C°° functions (P, N) satisfying

( Λ 2 Γ 2 [ 1 ) 3 /2
1/λ

we have by direct calculations

(λ 2 r 2 - 1) JV7 + 3λ2r7V =

and

Λ2(r2A^rr + 6rNr + 6TV) - AN = z l | P | 2 .

b) Decay of Solutions of (Πλ) at Infinity. We have for a given solution (P, TV) of
(Πλ) the following decay estimates at 00:
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Proposition 2.10. Let (P, N) e Hι x L2 a solution of (llχ). Therefore exist constants
δ > 0 and ck for k > 0 such that

V/c>0, Vx, \Pik\x)\ <cke~δW,

Proof 1) We first show the property for P, P', P " , N.

lemma 2.11. There exist c > 0 and δ > 0 such that

- \Pπ(r)\ < ce~δr

c

Proof We first show that |iV(r)| <
1 + r 3 '

Let us consider (2.8) with rx = 2/λ and r2 = r > —. We have
Λ

" (Λ2r2 -

with

K(r) = 33/2N(2/λ) + /

2/λ

r

\K(r)\<c+ f 2\P(s)Pf(s)\\sds<c+λ\P\L2\Pf\L2 < c ,

2/λ
(2 10)

l/λ

c 2
that is |AΓ(r)| < j for r > —. From Proposition 2.1,

Vr,
1+r3 '

Let us fix A > 0 such that \N(r)\ < \ for r > A. We have

A P = (7V+1)P

for r > τ4 with

(7V(r)+l)G [i, | ] .

We can deduce from usual techniques (see Berestycki and Lions [3], and Stauss [20])
that there exist some constants c, δ > 0 such that

Vr, |P(r) | < ce~δr .

Now, writing

y = r(N + 1)P, (2.11)
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we first show that rP'(r) —» c as r —* +00 and we remark that c — 0 because
P ' G L2. Thus integrating (2.11) on [r, +00), we obtain

|rP '(r) | =

-t-00

/ cse~δ3ds <cre-δr ,

that is |P '(r) | < ce~δr'.
P'

Finally, writing P " = (A/" + 1)P and using previous estimates on P and P' ,
we conclude

|P"(r) | < ce
-δr

This concludes the proof of Lemma 2.11.
2) We then conclude the proof of the proposition by proving property (^k) by
induction on k > 0:

There exists ck such that

| P ( 0 ( r ) | <cke~δr for 0 < / < / c + 2,

I < — ^ T T T for 0 < / < k . {g/>k)

is true from part 1). Let us assume (3^k) is true for k > 0 and let us show (^, + 1 ) .
By Leibniz formula, for r > 2/λ,

p+q=k+l

1
_ 1)3/2

(P)

\K{q\r)\, (2.12)

where ϋT(r) is defined in (2.10). For 1 < q < k + 1,

\K(q\r)\ < c\P(r)P\r)(\2r2 -

< ce
-δr

by estimates o n ? , ? ' , . . . , Ph+2. Therefore

<
rk+4

-P1

Let us prove the estimate on P: Differentiating the formula P" — \-P-\-NP,

we obtain by Leibniz formula for r > 1 and estimates on AT, JV7, . . . ,

/c+2

g=0

<ce~δr.
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This concludes the proof of Proposition 2.10.
c) Different Relations for (TV, P). We give various relations for solutions (P, TV) of
(IIΛ) and in particular a Pohozaev type identity.

Lemma 2.12. Let (P, TV) solution of the equation (Πλ) We then have

R2 R2 R2

Proof The proof follows from multiplying Eq. (2.1) by P and from integrating

Lemma 2.13 (Pohozaev Identity). Let (P, TV) be solution of the equation (Πλ) We
then have

ί P2(x)dx= i f(X2\x\2 + l)N2(x)dx. (2.14)
j J

R2 R2

Proof Let us multiply Eq. (2.2) by rP' and integrate on [0, +oo). We get

Γ ( 1 \ Γ
0 = - / ί P"{r) + - P\r) J {rP'(r))dr + / (TV(r)P(r)) (rP'(r))rdr

o o

+ [ (P(r))(rP'(r))rdr. (2.15)

o

We have
+ OO

/ (rP\r))f(rPf{r))dr = [i (rP\r))X°° = 0 . (2.16)

o

From (2.3) and integration by parts

o o

r2

o
+ OO

/ N(r)P(r)P'(r)r2dr= / \ ( λ 2 r 2 - l)TV(r)TV;(r)r2dr+ / \ (λ2r)N2(r)r2dr ,

o

) 2 dr+ / ^(λ2r)TV2(r)r2dr,

o

= / | (λ 2 r 2 + l)TV2(r)rίir. (2.17)

o

By an integration by parts,

+oo +oo

A P{r)rP'(r)rdr =- P2(r)rdr. (2.18)

o o

The result follows from (2.15)-(2.18).
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Remark. For λ = 0, Eq. (Πλ) reduces to (1.22). The usual Pohozaev identity [16]
gives for regular solutions in M2 of (1.22),

R2 R2

which is the relation (2.14) with λ = 0.

II.2 Properties of(uλ,nx) Solution of (Πc )

Let (P, N) be radially symmetric solution of (IIλ). We recall that

u(t, x) =
ω

(T-t)

n(£, a;) =

U(-T+ί) (-T+t)>>

2
ω

where

T-t

ω —

N ωx

λc0

is a solution of (I ) which blows up in iJ 1 at t = Γ.

We have the following proposition on the regularity of (w, n). Since equation (I )

is time invariant, we assume that T — 0.

Proposition 2.14. We have \/t, \fk > 0:

i) —— = V υ, where v = Ό(r ) — α«J Ό(r) = -^- riV ( — ).
9ί r t3 \ t )

In particular

dn - i
— e H~ι and
\J~V

dn

Έ
= \V\L* = M \rN\

\t\
L2, (2.19)

ii) ( u(ί), n(ΐ),

iii)

dn(ί)\

/
= H1 x L2 x H~l c ffΓ

= HkxHk-'x Hk~2 ifk>2.

iv) We Λαve |tt(i)|#i + |n(ί)|L2 + + 0 0 as ί ->• 0.
i f -

Fr<96>/ i) Let us show that -7— = V v. We look for a solution of the form υ = t)(r) - .
<9n σί r

v must satisfy — = V v or equivalently, \/φ G CQ°, 0(X) = φ(r) with r = |x

dn(x)

dx

By direct calculation

1φ(x)dx = / — V v(x)φ{x)dx = Vφ(x)dx. (2.20)

\l J — j.A \ J. I J.^ I J. / j . ^ ^ k
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From (2.20)

t3 dr t J

+ 0 0

= fmW>rdr,
or

or equivalently

ϋ(r)
dφ(r)

dr

+00

j ω ί 2 AT ίωr\ 9φ{r)
rdr = -Ύ / rzN — —^— rdr

t3 J \ t j d r

Ϊ
0

ω 2AT ίωr

—r- r N —
t3 \ tt \ dr rdr .

iϋ ( LOT \
Therefore ϋ(r) = — rN I — J satisfies the previous conditions. In particular

t \ t )

dndn ^ . , ω2

 ΛT f ωr\ x
—- = V v with υ = —r rN — - .
dt t3 \ t J r

By definition

dn
= M L 2 =

ω3

 Λ r fuπΛ

t J ί
t \ t

—
t

= ϊπ \rN\L2,
1*1

which concludes the proof of part i). Furthermore

(
ί ) + l 2 t t

xα;

L 2

that is

In addition,

From i),

< 2 = ψ |VP|2L2 + J-j I^

dn

L 2

= 777 | r i V | L 2 .
1*1

(2.21)

(2.22)

Therefore, we have that Vt e [0, T), (ix,n) is a solution of (I ) in ^ and in Hk,

Vfc > 1.
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r™ . . f . dn X Ύ _ Λ
This equation has two invariants I since — G H ι ):

\ Oo

Proposition 2.15. Vί,
i) |ix(ί)|L2 = | P | L 2 ,

ii) , nit), vit))

ω [\VP(x)\2dx + ίN{x)P2(x)dx+^ IYM^

— ^ / |x|2P2Or)dx.

Corollary 2.16. Vί G [0, Γ),

i) ^ ( 0 =-Xj ί \x\2P2(x)dx,

4ω2 7

ii) l(\VP{x)\2 + 7V(z)P2(z))cb + 1 / f -ijL + i )
J 2 J \c2ω2 J

R2 R2

if Proposition 2 15.

I2{x)dx

(2.23)

(2.24)

: 0. (2.25)

ΐλ \nιί+\\ ~ -
1) \U\Z)\j^2 -

ii) By definition we have

t,x)\2

L 2

- ^ τ;2(t, x) + i cte .

We have

2 /•

= — / N(x)P2(x)dx. (2.26)

Combination of (2.19), (2.21), (2.22), and (2.26) leads to (2.23).

Proof of Corollary 2.16. Since J$?(t) is time invariant I -^- G H~ι ), Proposi-
tion2.15 leads to

- Vί,

ί
\ C/Lds to

= -τK f
4ω2 J

x\2P2(x)dx,
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Remark. Relation (2.25) is a combination of the energy identity (2.13),

/ \VP{x)\2dx + / P2(x)dx = / -N(x)P2(x)dx ,

R2

and the Pohozaev identity obtained in (2.14):

[ P2(x)dx = - (X2\x\2 + l)N2(x)dx

( here we use the relation λ = ). Therefore Pohozaev identity can be shown as

V c ( W
a consequence of the conservation in time of the Hamiltonian 3@.

From Proposition 2.16 and from [23], we have
Corollary 2.17. We have if P ^ 0 and λ > 0,

/ P2(x) dx> ί Q2(x) dx . (2.27)

R2 R2

Proof. Indeed, from Corollary 2.16,

ί(\VP(x)\2 + N(x)P2(x))dx + i / Γ ^ L + Λ N2(x)dx = 0.

R2 R2

Therefore,

R2

Thus

^ f(N(x) + P2(x))2dx+^ ί ^

= ί \VP(x)\2dx ~ \ \ P\x)dx < 0.

We recall that [23]

J P2(x)dx

: ^ — 5 I \VP(x)\2dx. (2.28)

R2 R2 R2

Therefore
J P2(x)dxλ

J Q2(x)dx
\

which implies

/ P2{x)dx > /P2{x)dx > / Q2(x)dx.
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III. Asymptotic Behavior of Radial Solution of (Ilλ) as λ —» 0

In this section, we consider radial solutions of system

(Πe) ί ΔP-P = NP, (3.1)

{ ε2(r2Nrr+6rNr + 6N)-ΔN = Δ\P\2, (3.2)

where ε —> 0 which are uniformly bounded in a weak sense. Under some assumptions,
we show that their limit points are solutions of equation (Πo).

Proposition 3.1 (Asymptotics Behavior of (P e , Nε) as ε -> 0). Let (P n , Nn) φ (0,0)
radially symmetric solutions of(ΐlεn) with εn —> 0.
i) Assume that there is a constant c > 0 such that

Vn, \Pn\L2<c. (3.3)

Then there is a subsequence also denoted (P n , Nn) and a solution V ψ 0 of equations

(V) V 2

(Pn,JVn)^(F,-F2) in HιxL2.

ii) Assume that for a c > 0,

Vn , Vr > 0, P n (r) > 0 and Vn, \Pn\Li < c.

The full sequence (Pn, Nn) then converges as n —• +oo to (Q,—Q2) in Hι x L2,
where Q is the unique radially symmetric positive solution of equation

(V+) Q = ΔQ + \Q\2Q, Q>0.

Remark, i) Better convergence can be proved (see Part II.B [6]).
ii) From an heuristic point of view, the assumption on \Pn\L2 is crucial since there
is an unbounded sequence in L2 of solutions of equation (V).

Proof of i). Let us assume that there is a c > 0 such that |Pn |^2 < c. The main
ingredients are Pohozaev identity (2.14) and identity (2.13). The proof is organized
in four steps.

Stepl. Uniform Estimates of (P n , Nn) in Hι x L2. We have from (2.14) and (2.13),

[p2(x)dx=± j{ε2

n\x\2 + \)N2

n{x)dx, (3.4)
R2 R2

J\VPn(x)\2dx+ ί P2(x)dx= f -Nn(x)P2(x)dx. (3.5)

R2 R2 R2

From (3.3) and (3.4) we have that for a c > 0,

Vn>0, ίN2(x)dx<c. (3.6)
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Equations (3.5), (3.6) and Gargliardo Nirenberg identities gives

/

/ ί \1^2 ί f \ I/2

\VPn(x)\2dx < I / N2

n(x)dx I / I*(x)dx + c
\ I \ I

M2 \R2 / \R2 /< C
\

\VPn(x)\2dx

and there is a c > 0 such that

/|vpn

In conclusion there is a c > 0 such that

[\VPn(x)\2dx+ ίP2(x)dx+ ίN2(x)dx < c. (3.7)

M2 M2 R2

Step2. Compactness of (Pn,Nn) in Hι x L2 on bounded sets. From Lemma 2.2,
(3.7) implies that

\Pn\Loo < c and V^, \Pn\H2(B(0ίA)) < cΛ .

Proof of Lemma 2.4 then implies that

Indeed from (2.7) with rx = 0 and r 2 = r,

1 - ε2 r 2 (1 - ε2 r2)V2

1, we have for r < A and n large ( ε n < —-

<cf\pn\\K\<cJ\K
0

(3.8)

J 2Pn(s)P'n(s)(\ - ε2s2γl2dy. (3.9)

s i n c e \H
Therefore

|7Vn(0)| - c < \Nn(x)\ < 2\Nn(0)\ + c (3.10)

on [0, A] for large n. Since |A^n|L2 < c we have |iVn(0)| < c and then from (3.10)

\ \ ) ) — C
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We then conclude easily. From (2.3) and (3.7),

Vr < A , I JV'(r)| < c(\Nn(r)\ + 2 | P n ( r ) P » | ) < c{\ + | P » | )

and
V n > \Nn\HHB(0,A)) < CA'

Using compactness arguments and subtracting a sequence also denoted (Pn,7Vn),

there is a (P, TV) e ϋί1 x L2 which is radially symmetric such that

Pn-P in H\ (3.11)

7V n-7V in L 2 . (3.12)

Step 3. Let us prove that P = V, N = -V2 where V is a i ί 1 solution of (V).
Because the functions are radial, a classical compactness theorem implies that

Pn-^P in L r , V r e ( 2 , + o o ) . (3.13)

Therefore, in the distributions sense we have

and passing to the limit as εn —> 0, we obtain in the distributions sense that

(P, N)e Hι x L2 is solution of

(3.14)

(3.15)

Since TV, P 2 are in L2, (3.15) implies that TV = - P 2 . We thus have that P = V,
N = — V2, where V satisfies equation (V) in R2.

Step 4. Conclusion: Let us show from (3.11)—(3.12), energy (3.5) and Pohozaev
identities (3.4) that

(PmNn) -+ (V, -V2) in HιxL2. (3.16)

a) Pn -* V in H\ We have Vn,

/ IVP I2 + f P2 = - I N P2

R2 R2 R2

and

f|w|2+ ίv2= ίv4.
R2 R2 R2

We first have from (3.13) that

Pl^V1 in L2. (3.17)

Indeed,
{P2

n-V2f <(Pn-V)2(Pn + V)2

and
/ /



196 L Glangetas, F Merle

From (3.17) and the fact Nn — -V2 in L2,

_ ί jsf P2 -^ ίv4

R2 R2

Therefore

R2 R2 R2 R2 R2

and
Pn — V in Hι.

This implies that
Pn-^V in if1. (3.18)

In addition, from Corollary 2.17 Vn, / P 2 > / Q 2 we have
R2 R2

Jv2> / Q V O (3.19)
E 2 R2

b ) Nn ~ * ~ ^ 2 i n ^ 2 W e h a V e

N n — - F 2 in L 2 . (3.20)

From (3.20)

τί\ (3.21)

The Pohozaev identity for system (Πε ) gives (3.4). Therefore

r2 <2 P2

R2 R2

and

lim sup / Nl < 2 lim sup / P2 = 2 ί V2 . (3.22)
n—y+oo J n—>+oo J J

R2 R2 R2

By Pohozaev identity for equation (V) (V is radially symmetric in Hι thus has
exponential decay at infinity - see [3])

(3.23)
J J

R2 R2

From (3.22), (3.23),

ί(V2)2 > lim sup ί N2 > liminf ί N2 > ί(V
J n^+oo J n-++oo J J

2 ) 2
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and

JNI-.JV*. (3.24)

Finally, from (3.21), (3.22), and (3.24),

Nn^-V2 in L2 as n-

This concludes the proof of Proposition 3.1 i).

Proof of ii) of Proposition 3.1.
We now assume

P n > 0 and \Pn\L2<c. (3.25)

Let us show that

(P n , iV n )->(Q,-Q 2 ) in HιxL2 as n -> +oo.

From part i), we know that there is a subsequence [also denoted (Pn,7Vn)] such
that

(P n , Nn) -> (V, -V 2 ) in Hι x L2 ,

where F is a solution of (V) and V is radially symmetric. Letting n —• +oo in (3.25),
we have F > 0 and from (2.27) V ψ 0. From the uniqueness theorem of radial
solutions of (V+) (Kwong [9]), we deduce that V = Q.

Since the result is true for all subsequences, it is true for the full sequence and
Propositon3.1 ii) is proved.

IV. Existence and Uniqueness Property of Solutions of (11+) for ε Small

We want to construct solutions of system (Πε) for ε > 0 and small. From the previous
section, up to a subsequence, for (Pε,Nε) solution of (Πε), (Pε,7Vε) —• (V, -V2) in
Hι x L2 as ε —> 0, where V is a solution of equation (V).

The idea is to construct for a given V solution of equation (V) a branch of solutions
(Pε, Nε) of (Πe) such that (P e , Nε) -• (V, -V2) as ε -> 0 using fixed point theorem.
The fact that these methods are linear implies that V must satisfy in some sense a
nondegeneracy condition. For that reason, we assume that

where Q is the unique radially symmetric solution in Hι of (V+) where nondegeneracy
results are known.

The plan of this section is the following:
- in IV. 1, we obtain a crucial fixed point formulation of the system (Πε) near Q
- in IV.2, by a continuity method we show that the branch of solutions (Pε,Nε)
constructed in IV. 1 is such that Vε > 0, P ε > 0
- in IV.3, we show uniqueness property of solutions of (11+) for ε > 0 small from
Sect. Ill and the fixed point formulation near Q.



198 L Glangetas, F Merle

IV. 1 Introduction to the Fixed Point Method near Q

We consider Λ = ε small and Pε = Q+hε, Nε solution of system (Πε) or equivalently
of (IV+), that is

Δ(Q + hε) = (Nε + 1) (Q + hε), (4.1)

s . (4.2)We(r) = V 2 ^ 3 / 2

Let us define the linear operator

r

= ( g 2 r 2 1 1 ) 3 / 2 / ^ W (^2^2 - 1)1 / 2 ώ (4.3)

or

u(r) - u l - J 2

 r u(s) - u l - J

\ ^ l Ud (4 4)

One can write then Eqs. (4.1)-(4.2),

ΔQ + Δhε = Uε\(Q + ήe)
2) + 1) (Q + Λe),

7V ε(x)-^'((O + \ ) 2 )

From (V+) and expanding the previous relation with respect to hε we obtain

Δhε + hε + 3Q2/ιε = ^;((Q + /ιε)
2) (Q + /ιε) + Q3 + 3Q2hε

and

zi/ιε - fte + 3Q2hε = Cε + lε(hε) + qε(hε) + fce(fte) (4.5)

with

Cε = (Jζ(Q2) + Q2)QJ (4.6)

/ε(/ιε) = 2(jςXQhε) + Qhε)Q + (Aε\Q2) + Q2) fte , (4.7)

qε(hε) = Jζ(Qhε)hε +Jζ(h2

ε)Q, (4 8)

kε(hε)=yyεXh2

ε)hε. (4.9)

Thus the problem is to find hε in a suitable space such that (4.5) is true.
Define

Hx

r = {ue Hι(R2),u(x) = u{r), where r = \x\}

and H2 = H2(R2) Π Hι

r with the norm

Proposition 4.1 (Nondegeneracy Condition). For u E Hx there exists α unique
v e H2 such that

Δυ-υ-\-3Q2v = u. (4.10)
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Define v = SZu, where
2 ι

£ is a bounded operator of H^ and there exists a constant cx such that for u G H*,

. (4.11)

Remark The uniqueness property of υ solution of (4.10) is not true for non-radial
function. Indeed, the null space in Hι of the operator S%~x — A - Id+3Q 2 Id is

x - — , - — ) (see [22] and references therein).
\oxι ox2/

(Q + hε1yf/

ε\(Q + hε)
2)) is a solution of (Πe) if and only if hε is a fixed point of

the operator
Tε(hε) = &(Ce + lε(h£) + qε(hε) + kε(hε)). (4.12)

Indeed, a solution of (Πε) is always in the space H2 (see Proposition 2.1). We
do not consider Hi the natural space in order to simplify the control of term on the

boundary \x\ = —. Let

where <50 > 0 is a fixed constant. We prove that for ε > 0 small enough and 60 > 0
small enough, Tε is contraction mapping of the set B and therefore find solutions
of (Πe).

Theorem 4.2 (Fixed Point Theorem for Tε for ε Small Enough). There exists ε0 > 0
and a constant δ0 > 0 such that for 0 < ε < ε0, Tε is a contraction mapping of the
set B. Therefore there is a unique h£ G B such that

heB = {ueH2

r, \u\Hi < So} and Tε(h£) = hε

Moreover
- there exists a constant c such that for 0 < ε < ε0, \hε\H2 < cε2.

hε

 2
f

- the map ε —>• hε is continuous in H2.

Corollary 4.3 (Existence of Non Trivital Solutions of (Πε) for ε Small). There exists
εx > 0 such that for 0 < ε < ε1 there is a non-trivial solution (Pε,Qε) of (II )
continuous in Hι x L2 with respect to ε such that (Pε,Nε) —> (Q, —Q2) in Hι x I?.

Proof of Corollary 4.3 Let us fix 0 < εx < ε0 such that for 0 < ε < ε1 ? the solution
hε given in Theorem 4.2 satisfies

\hε\H2<\Q\H2'

Thus (Pε, Nε) = (Q + hε,Jζ((Q + hε)
2)) is a solution of (Πε) in Hι x L2 such that

l^εlH2>IQI i f2- | ft e | i f 2>0 and P ε ^ 0 .

Corollary 4.3 follows from the following lemma.

Lemma 4.4. We have equivalence between the following properties:
i) There is a continuous application in H2 : ε —> hε, where hε = Tε(hε) is such that

o

ii) There is a continuous application in Hι x Lz : ε —> ( P ε , 7Ve), w/z^r^ Pε = Q + hε

and Nε = . / ^ ( P e ) w ŵc/z ίAαί ( P o , 7V0) = (Q, - Q 2 )
Pr6>o/. i) =̂> ii). We have to show that ε —• Nε is continuous in L 2 at ε ; > 0.
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Case ε' = 0 It follows from Proposition 3.1 in Sect. III.
We have that P ε —> P o in Hι as ε -> 0. Let us show that

JVε -> - P 2 in L2 .

Indeed, from Sect. Ill, up to a subsequence

Pε -> V in tf1 and 7Vε -* -V2 in L2 as ε -> 0.

Therefore V = Po and N£ -> -P2 in L2 as ε -* 0.

ε7 > 0.

- We first have from the integral formula

Vr, Nε(r) -> Nε,(r) as ε -> ε 7. (4.13)

- We claim there is a c such that

Vε G [ε'/2,2ε7], |7Vε(r)| < j - ^ . (4 14)

From (4.13) and (4.14), the convergence dominated theorem allows us to conclude
that N£ —> _/Vε, in L2 as ε —> ε;.

We will see in Lemma 4.8 that 7Vε = JζiP2) is such that

|AgL O O < c | P ε | ^ 2 < c . (4.15)

We then estimate N£(r) for r > 4/ε7. From the relation (2.7) with r t = 4/ε; and
r2 = r we have

- 1)V2
4/ε'

We first have

r r

ί 2Pε(s)P£(s)(ε2s2-l)ι/2ds < ί 2Pε(s)\\Pε(s)\εsds < cε.

Thus for r > 4/εx and ε G |V/2,2ε'], A^ε(r) < 4 and (4.14) follows.

ii)=>i). We assume that (Pε,Nε) —> (Pε,,Nε,) as ε —»> ε7 in i ί 1 x L2, we have to
show that P ε -> P ε , in i ί 2 .

It follows directly from Lemma 2.2 and the equation

Indeed we have Nει G L°° and |P ε | L O o < c from the regularity theory and
Lemma 2.2. Thus

\ΔPe - APε,\L2 = \NεPε - NεlPεt + P ε - P ε , | L 2

<\Pe-PAL2 + \{Nε-Nεt)Pε\Li

+ | 7 V ε , ( P ε - P ε / ) | L 2 - O as ε^ε'.

Therefore P ε —> Pε, in H2 as ε —» ε7 or equivalenty ftε —> /ιε/ in i/ 2 as ε —> ε7.
This concludes the proof of the lemma and the corollary.
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We prove Theorem 4.2 in different steps.
In subsection a), we reduce in IV.2 the estimates in norm H2 of Tε to some

estimates of JV^ in norm L? using the regularity of the operator 5£.
In the two next subsections b) and c), we estimate terms appearing in the different

components of the operators Tε.
d) We conclude the proof of the fixed point theorem.

a) Nondegeneracy condition. In this section, we prove Proposition 4.4 essentially
using results of Weinstein [22] on the linearized of the nonlinear Schrodinger equation
near Q.

Let
r

(w, v) = I u(x)v(x)dx and L = —Δ — 3Q2 + 1.

Proposition 4.5. [22].
i) Wue H^ Lu = 0=>u = 0.

ii) If(u, Q) = 0, then (Lu, u) > 0.
iii) Let M = {u e Hi such that (u, Q) = (u, Q\x\2) = 0}. Then there is c > 0 such
that

V u E M , (Z/U,U) > c\u\2

Hl .

iv) There are ρχ G H2 and ρ2 G H2 such that Lρ{ = Q and Lρ2 = |x| 2Q.

Proposition 4.5 has been proved in [22] under the assumption that there is a unique
radial positive solution of u = Δu+\u\2u. Since this result had been proved by Kwong
(see [9]), we have Proposition 4.5.

Let us show now Proposition 4.1.

Proof of Proposition 4.1. We first claim that:

Lemma 4.6. Let f G Hi. There is a unique u G Hi such that Lu = /.

Proof It follows directly from classical arguments, the theorem of Lax Milgram and
Proposition 4.5. Let / G ifJL The uniqueness of u is given by Proposition 4.5 i). Let
us show the existence of u. Consider

/ = / 1 + α Q + /? |afQ, with fγeM.

We have by direct calculations

(4.16)

By Lax Milgram Theorem applied to ΠMoL:M —> M, where ΠM is the orthogonal
projection on M, there exists uλ in M such that

Lux = / 1 + α / g + /3 / |x|2Q. (4.17)

In addition we have

and

<c | / , | L 2 (4.18)



202

Furthermore

(LQ,u} ) = a'(Q, Q) + β'(\χ2

\Q) + β'{\χ\

,Q)
2Q,

L. Olangetas, r. Merle

\χ2Q).

(4.19)

(4.20)

Since | | z 2 | Q | i 2 \Q\Li > (Q, \x\2Q)2 (Cauchy-Schwarz) we have from (4.19)-(4.20):

\a'\ + \β'\ < c\f\L2. (4.21)

Let u — ux + (a - af) ρλ + (β — β') ρ2. Equation (4.17) and the definition of ρx, ρ2

give
2

and from (4.16), (4.18), and (4.21)

The lemma is proved.
Let us conclude now the proof of Proposition 4.1. We claim that \u\Hi < c\f\Li.

Indeed, we have

-Δu + u-3Q2u = f.

Thus

\ΔV>\L2 < \f\L2 + HL2 + \3Q2U\L2 < C(\f\L2 + \U\L2) < c|/|L2 .

b) Estimates of \J^(yV£\uυ)w)\H2.

Proposition 4.7. Ŵ  have the uniform estimate for u and w in H2 as ε —> 0:

\^(yf/

ε'(uυ)w)\H2 < c\u\H2 \v\H2 \w\H2.

Proof From (4.11) we have

^ ( ^ ( m ^ V < cμ/*(^)^) | L 2 < c | ^ ( ^ ) | L o o | ^ | L 2 . (4.22)

Therefore we only need to estimate \yy*{uv)\Loo. This is the object of the following
lemma:

Lemma 4.8. We have the following uniform estimates for ε small.
i) There is a c > 0 such that for u,υ,w in H2,

< c\u\H2 \v\H2.

ii) There is a δ > 0 such that

Proof of Lemma 4.8. We consider 3 different cases: x near 0, x far from 0 and 1/ε,
x near 1/ε, that is



Self-Similar Blow-Up Solutions for Zakharov Equation 203

r_ γ (Z. O — I
2,ε |

- X 6 i ? 3 ε = <

Let

|x

1

2ε

1

ε

and
>

J

1

ε
> 1 ,

where

N1(r) =

u(r)v(ε) - u(-) υ l~

(ε 2r 2 - 1) '

ΐz(s)υ(s) — u\ - I ̂  ( -
\ε \ε

(ε2s2 -
sds.

(4.23)

We first estimate N{, then AΓ2 in L°° and conclude the proof.

Step 1 We have the following uniform estimates as ε —» 0:

I Λ M Γ O O . O . Λ < ΊL 0 0 \U\LOG

Let us write

u(r)v(r) — u(r)v ( - ) u(r)υ I - I — u ί - I υ I -

(4.24)

(4.25)

(4.26)

i) Proof of (4.24). For 0 < r < — , we have (ε2r2 - 1) e [̂ , | ] and we deduce

I l l c
ii) Proof of (4.25). For — < r < 1 or - + 1 < r, we have (ε2r2 - I ) " 1 < -

and from (2.6), 2ε ε ε ε

iii) Proof of (4.26). We write

~ U ( ~

ε εr + 1 r — 1/ε ε εr + 1 r — 1/ε
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Thus for r < 1,

r

\N{(r)\ < -

This concludes Step 1.

Step 2 We have the following uniform estimates as ε —» 0:

\N2\L~(Ωhε) < c(ε2\u\L2 \υ\L2 + M H , ( { W > _L})

( 4 2 7 )

(4.29)

i) Proof of (4.29). Let us write

-ε 1

( ε r + 1)3/2 ( r _ 1 / ε ) 3/2

s ) ds .
ε Jl/ε

That is from (4.26) for 1 < r < - + 1,
ε ε

<
(r_l/£)3/2

ii) Proof of (4.28). From (4.25) and (4.26), for r > ^-,

Therefore

l/ε

that is
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iii) Proof of (4.27). We write

205

V2ε u{s)υ{s) - u [ -

N2(τ) =

(3/4)V2

sds

ε2r2)3/2
N2(l/2ε).

We then have for r < — ,

l/2ε

\N2(r)\ <ce2 f \u(s)\\υ(s)\sds

r

(l-ε2rψ2 J

l/2ε
u - v -

that is

\N2(r)\<c[ε2\u\L2\v\L2 u\ - υ -

c\N2(l/2ε)\,

+ \N2(l/2ε)\ ,

and (4.27) follows from (4.28).

Step 3. Conclusion. The estimates of \y^(uυ)\LOO of Lemma 4.8 follows directly from
(4.24)-(4.29) and from definition of the norm in H2.

Finally, we remark that if υ = Q, from the estimate (see [3])

\Q{k\x)\ < (4.30)

we have
ce-δ'ε\u\H2

and this proves Lemma 4.8.

c) Estimates of \Jg((Jζ{uQ) + uQ)v)\Hi.

Proposition 4.9. We have the uniform estimate as ε -> Ofor u,υ G H^,

\3?((Jζ(Qu) + Qu)υ)\H2 < cε2\u\H2 \υ\H2.

Proof. Let u,v e H2

r. We first have from (4.11),

Qu)υ)\H2 < \{jς{Qu) + Qu)v\L2

Qu)v\L2{Ωχε) + \(jς(Qu) + Qu)υ\L2(Ω2ε)

Qu)υ\L2(Ωiε). (4.31)

By Lemma 4.8 and (4.30) we have for a δ > 0,

ς{Qu) + Qu)v\L2(Ω2ε) =
H2 \v\H2,

\(jς(Qu)
) = O{e~6'ε) \u\H2 \υ\H2.

(4.32)

(4.33)
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Therefore we only have to estimate \{Λ£(Qu) -f Qu)υ\L2^Ω y

We write

Q(x)u(x) - Q (^j u (-
yfζiuQ) (x) + Q(x)u(x) = •Q(x)u(x) + N2(x),

where iV2(x) is defined by (4.23). By estimates (4.27) and (4.30),

< c(ε2\u
Loo

< cε2\u\H2.

Direct computations give

Q(x)u(x)-Q( ^ ) ^ [ l

ε2\x\2-l
Q(x)u(x) = ε: x2Q(x)u(x)

c 2U|2 ϊ~~c uX/ — 1 - 1 '

and

c\Q(l/ε)\ \u(l/ε (4.34)

In addition,
)'Q(x)u(x)v(x)

εΔ\x

and
|Q(l/ε)| |w(l/ε)| |

Therefore from (4.34), we find

\(y)ζ(Qu) + Q^)^lL2(i? ) — C£l

and (4.31)-(4.35) conclude the proof of Proposition 4.9.

d) Proof of the fixed point theorem. Let

Hl < cε2\u\Hl \V\H2

u\H2 \v\H2 (4.35)

where δ0 > 0 is a constant to be chosen later.
Let us prove T£ is contraction mapping of the set B for a constant <50 > 0 and for

ε > 0 small enough. From the definition of T ε,

|re(^lH2<|Ce|L2+ 1/^)1^ + 1-

and

\Te(u) - Tε(v)\H2 < \le(u) - lε(υ)\L2 + \qε(u) - ,

where Cε, lε, qε, kε are defined by (4.6)-(4.9).

\kε(u)\L2
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1) The constant term: From Proposition 4.9, we have

\Cε\H2 = \S0{{Jζ{Q2) + Q2)Q)\H2 < cε2 .

2) The linear term: From Proposition 4.9, we have

\h<V)\Li = fiWQu) + Qu)Q + (Aε\Q,Q) + Q2)u\Li < cε2\u\H2

and
\lε(u) - lε(v)\L2 < C£2\U - V\H2 .

3) The quadratic term: From Proposition 4.7, we have

\qε{u)\L2 = \jyεXQu)u+JΫεXu2)Q\h2 < C\U\2

H2 ,

4) The cubic term: From Proposition 4.7, we have

l^ε(^)L2 = \y^ε\u2)u\L2 < c

\kε(u) - kε(υ)\L2 < ((\u\2

H2 + \v\2

ff2) \u ~ υ\H2

Therefore there exist constants ελ > 0, c > 0 such that for 0 < ε < εx and u,υ
in # r

2 ,

\Tε(u)\H2 < c(ε2 + \u\H2 + |^ |^2),

| 7 » - Tε(υ)\H2 < c(ε2 + (|tx|H2 + |v|H2 + \u\2

H2 + |v|^2)) |τx - v\H2.

We then deduce that for w, v in B,

\T£(u)\H2 < c(ε2 + (ε2 + δo + δ2)δ0),

|Tε(tx) - Tε(v)\H2 < c(ε2 + 2δ0 + 2fig) |ix - υ\H2.

Let us fix <50 > 0 and 0 < ε0 < εx small enough such that for all 0 < ε < ε0,

c(ε2 + 2^0 + 2δg) < i ,

c(ε2 + (ε2 + 2^0 + 2 ^ 0

2 ) ^ 0 ) < ^ 0 .

We then have for 0 < ε < ε0 and w, υ in 5 ,

\Tε(u)-T£{v)\H2<\\u-v\H2.

Therefore T£ is a contraction mapping of the set B for 0 < ε < ε0 and there is
existence and uniqueness of a fixed point hε e B of the operator Tε in B.

From the fact that

\Tε(hε) - T e(0)| <\\hε- 0\H2,

we deduce that
\\K\H2<\Tε{0)\H2<cε2.

We finally show that hε in a continuous function of ε in H2 from classical fixed
point arguments and the following lemma:

Lemma 4.10. The function (ε, h) —> Tε(h) is uniformly continuous R+ x H2 —> F ^
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Proof. We recall that from (4.12),

τε(h) = myfζdQ + ft)2) (Q + h) + Q3 + 3Q2h].

The uniform continuity of Tε follows form standard arguments and the two following
properties:
- From Proposition 4.7, for all a > 0 there exists a constant ca > 0 such that

Vε G [0,α], Vu,v,w e H2

r , ^ ( ^ ( w ) ^ ) ! ^ < c^ |^ |^ 2 MH2 M/*2. (4.36)

- For fixed u,v,w G i/ 2, the function ε —> J£?(yfζ(uυ)w)
is continuous R + -> iί^. (4.37)

It is a consequence of the dominated convergence theorem and Lemma 4.8. Indeed,
we have from Lemma 4.8 and Proposition 4.7 that for a > 0 there exists a constant
ca such that for 0 < ε < α, 0 < ε' < a, \/u, i>, w G iίj?,

and

\Jζ(uv)\Loo < ca\u\H2 \u\Hi. (4.38)

Therefore from (4.38) and the fact that

\/x , Jζ(uυ) (x) —» Jζ,(uυ) (x) as ε —> ε',

property (4.37) follows from the dominated convergence theorem. This concludes the
proof of Lemma 4.10.

Therefore, hε is a continuous function of ε in H2. This completes the proof of
Theorem 4.2.

IV.2 Positivity Properties of the Solutions near Q

We prove that the solutions (P ε , Nε) of (Πε) we find in Part IV. 1 are in fact solutions
of (II+). That is,

Vε, Vr, Pε(r)>0.

Proposition 4.1. There is a ε{ > 0 such that for 0 < ε < εx, there exists a solution
(Pe,Ne)of(Π+).

Proof. Let (Pε,Nε) the solution of Corollary 4.3. We then have

(P e , Nε) -> (Q, -Q2) in Hι x L2 (4.39)

and from Theorem 4.2,
Pε-^Q in H2. (4.40)

We first prove some uniform estimates of Nε with respect to ε at infinity and then in
fact that Pε > 0.

We have the following lemma

Lemma 4.12. There exists ε2 > 0 and r0 > 0 such that for 0 < ε < ε2,

Vr<r0, \Nε(r) < \. (4.41)

Proof. We recall that
N(r)=Jζ(P2)(r),
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where JVε is defined by (4.3). From equality (2.8) with rx= r and r3 = —, we have

forr<l

_ ε2r2)3/2

1
_ ε2 r2 ) 3/2

l/2ε

/ 2

That is from (2.6) for r < — ,

l^εWl < ί

< C

Moreover, Lemma 4.8 gives

l/2ε

J 2\Pε(s)\\P'ε(s)\ά

(4.42)

(4.43)

Therefore (4.42), (4.43) yield

V r > 0 , |A^ ε (r) |<c

Since (4.40), we have

V r > 0 , I

(4.44)

and Lemma 4.12 follows.
Let ε2 and r 0 defined in Lemma 4.12. From (4.40), we have that Pε —> Q in

L°°(r < r 0 ). Since Vr < r0, Q(r) > Q(r0) > 0, there is 0 < ε3 < ε2 such that for
0 < ε < ε3,

Vr<r0, Pε(r)>0.

From Lemma 4.12, we have for 0 < ε < ε3,

Since

P ε ( r 0 ) > 0 and

we deduce from the maximum principle that P£(r) > 0 for r > r0.
This concludes the proof of Proposition 4.11.

IV 3 Uniqueness Property of Solutions of (11+) for ε > 0 Small

We show the uniqueness of the solutions (Pε,Nε) of (IIJ) given in Proposition 4.11
under a condition of boundedness.
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Proposition 4.13 (Uniqueness of Solutions of (11+) for ε Small). For all c > 0, there
exists ε0 — εo(c) > 0 such that for all 0 < ε < ε0 there exists a unique solution
(Pε,Nε) of (11+) such that \Pε\Li < c

Proof It follows from fixed point theorem and from Sect. III. Let (P ε , Nε) solution
of (11+) with ε -> 0 such that \Pε\L2 < c. Then (P ε , Nε) -> (Q, -Q2) in Hι x I? as
ε -> 0. We claim that P ε -• Q in H2.

We consider a sequence (Pn,Nn) of (Π+ ) with ε n —> 0. From Sect. Ill and
Lemma 2.2 we have

{Pn,Nn)^{Q,-Q2) i n - ^ x ^ 2 as n - ^ + o o (4.45)

and
Vn, | P J H i + K | L 2 + |Pn |Loo < c. (4.46)

Since ΔPn = (1 + Nn)Pn, we deduce that \Pn\H2 < c and there is a subsequence
[also denoted (P n , JVn)] such that

zAPn — ziQ in L2 as n -> +oo. (4.47)

From Eq. (4.47), we have

|ZiPn|
2 = I PnΔPn + J(NnPn)ΔPn .

R2 R2 R2

From (4.45), (4.46) we have that Pn -> Q in L 2 and (^VnPn) -» - Q 3 in i 2 . Indeed,

\NnPn + Q3\L2 < \(Nn + Q2)Pn\L2 + I - Q\Pn - Q)\Li

Therefore

J \ΔPn\
2 -+ JQΔQ + J(-Q3)ΔQ = J \ΔQ\2 , (4.48)

and then from (4.47), ΔPn -> Z\Q in L2. Thus, Pn -> Q in i7 2 as n -• +00.
Therefore P ε —>> Q in ί/2 as ε —> 0. In particular for ε > 0 small, if (P ε , Nε) is a

solution of (11+) then kε = Pε - Q e H2 is such that Γe(fce) = fce and |/cε|^2 < δ0,
where ^0 is defined in Theorem 4.2. Since from the fixed point theorem there is a
unique solution hε G H2 such that Tε(hε) = /ιε and |/cε|ίf2 < <50, we have that
kε — hε and Pε — Q -\-hε. Thus P ε is unique and 7Vε is unique from Propositon 2.6.

This concludes the proof of Proposition 4.13 and also part i) of Theorem 1.

V. Existence of an Unbounded Branch (λ, P λ , ΛΓλ) of Solutions of (11+)

In this section, we show using index theory that the branch of (λ, P λ , 7Vλ) solutions
of (Πλ) for 0 < λ < ε0 constructed in Sect. IV can be extended to a connected
component Wγ of the set

{(λ, P λ , 7Vλ); (P λ , Nλ) solution of (11+)}

in R+ x {Hi x L2

r) which is unbounded. This fact will be a crucial element in the
proof of the main theorem of Part II [6],
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As in Sect. IV, it is more convenient to consider a different formulation of the
problem (IIχ).

Let Wx be the connected component of (λ, P λ , TVλ) in R + x H\ x L2

r of solutions
of (Πλ) containing (0, Q, - Q 2 ) .

Let W2 be the connected component of (λ, hx) solutions of (VIλ) containing (0,0)
in R + x # 2 , where

(VIλ) h = Tλ(h)

and T λ is defined by (4.12). We have the following relation between ^ and W2.

Proposition 5.1.
i) W2 = {(λ,hx); hλ = Pλ-Q with (λ,Pλ,TVλ) e Wx}.

ii) W2 is unbounded in M+ x H2 if and only if Wx is unbounded in M+ x Hι x L2

iii) //(λ, P λ , TVλ) G ̂ , then (P λ , TVλ) w α solution of (Ity: Vr, P λ (r) > 0.

Proo/ i) follows from the fact that (Pλ,TVλ) is a solution of (Πλ) if and only if
hλ = Γλ(ftλ), where P λ = ftλ + Q, 7Vλ = ./^(P 2 ), Lemma 4.4 and topological
arguments.
ii) ĝ  unbounded implies g^ unbounded. We have to prove that if (Pλ,7Vλ) in

Hι x L2 is unbounded, then /ιλ is unbounded in H2. From Pohozaev identity (2.14),
|N λ | L 2 < | P A I L 2 a n c^ l^λliί1 ^s unbounded. Thus \hx\H2 — \P\ — Q\H2 ι s unbounded.

W2 unbounded implies Wx unbounded. It is sufficient to show that if hx is
unbounded in H2 then (Pλ,7Vλ) is unbounded in Hι x L2. Assume that |Pχ|#i +
\NX\L2 < c, then |Pλ |Loo < c (Lemma 2.2) and form the fact that ΔPX = NXPX + PX,
|-P\lii2 — c w m c n is a contradiction,
iii) Consider

gf = {(λ,P,Λ0e^,P>0}.

We claim that gj+ = Wx. Indeed, we show that W^ is closed, open and non-empty
set in ffx.
- ( 0 , Q , - Q 2 ) G ^ + .
- W+ is closed. Let (λn,Pn,7Vn) G ̂ + such that

(λn, P n , A n̂) -> (λ, P, iV) in R+ x Hι x L2 as n -^ +oo and Pn > 0.

We have from Corollary 2.17,

Thus P > 0 and P ̂  0 from the fact \Pn\Li > \Q\Li. Since

the strong maximum principle yields P > 0 and (λ, P, TV) G ^ + .
- W^ is open. It is sufficient to show that, if (λ, P, TV) G g^+ and (λn, P n , A n̂) e Wx,

(K,PmNn) -* (λ,P,JV) in M + x t f x L2, then (λn,Pn,7Vn) G g f for n large
enough.

Case λ = 0. Then (P, TV) = (Q, - Q 2 ) (from Kwong [9]) and the result follows from
Propositions 4.11 and 4.13.

Case λ > 0. Let us show that there is a r 0 such that

Vr>r0, |TV n (r) |<i
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From relation (2.8) with rx = —- and r2 = r, we have

2Γ2 !_ 1 ) 3 /2

l/λn

Nn(r) =

that is for r > r{ = max <! ~, n >

» | < 3 / 2|Pn(s)| |P;(s)|d s<^. (5.1)

Therefore there exists r 0 > 0 such that Vr > r0, Vn, |iVn(r)| < \. In addition,

since P n —» P in i 7 \ P n > 0 on [0, r0] for n large. We then can conclude the proof
as in Proposition 4.11 using the maximum principle.

We now claim from degree theory that W2 is unbounded in M+ x H\. This will
conclude the proof of Proposition 5.1 and the proof of part ii) of Theorem 1.

Theorem 5.2. W2 is unbounded in E + x fίr

2.

It follows from Rabinowitz [17] and following propositions.

Proposition 5.3. The application

(λ, h) G (0, +oo) xHl-+ Tλ(h) e H2

r ,

where Tλ is defined by (4.12) is continuous and compact.

Proposition 5.4. There exists ε0 > 0 and δ0 > 0 such that

%2 ΓΊ [0,ε0] x B = {(ε, Λe), for 0 < ε < ε0} ,

where hε is the unique solution in B = {h G i7^, |/̂ |//2 < 60} of equation hε = Tε(hε)
and ε0, ^0 αr^ defined in Theorem 4.2.

Indeed, assuming Propositions 5.3 and 5.4 and following the method of Rabinowitz
in [17], let us prove Theorem 5.2.

Proof of Theorem 5 2. Let us argue by contradiction: assume that the connected
component W2 is bounded. We define

? = {(λ, hχ) e i + χ Hi hx = τx(hλ)}.

From Propositions 5.3 and 5.4, W2 is a compact set and there exists a bounded open
@ such that

gξ c Θ and d& Γ) ¥ = 0 .

Moreover, we can choose & such that

^ Π [0,ε0] x H2

r = [0,ε0] x{/ιG # r

2 , |/ι|L2 < 50} . (5.2)

We then consider @'x = {h G H2 such that (λ, h) G ̂ } . Therefore the homotopy
invariance property of degree yields

T λ , ^ λ ) - c , V λ > 0 . (5.3)
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- &χ = 0 for λ large since (9 is bounded, therefore

T λ , ^ λ ) = 0. (5.4)

- For 0 < ε < ε0 small enough, we claim that

d e g ( I d - T ε , φ = l . (5.5)

Indeed, since ff2 is bounded in M+ x H2, from (5.2), Proposition 5.4 and Theorem 4.2,

Vεe[0,ε0], &n@ε = {hε} and \hε\H2 < cε2. ( 5 . 6 )

F u r t h e r m o r e t h e F r e c h e t d i f f e r e n t i a l o f h - » T ε ( h ) [ d e f i n e d b y ( 4 . 1 2 ) ] i s f o r h , k e H2,

dTε(h) (fc) - &(lε(k) + dqε(h) (k) + dkε(h) (fe)),

where
dqε(h) (k) = Jζ(Qh)k+ J/ε\Qk)h + 2Jζ(kh)Q,

dkε(h) (k) = Aε(h2) k + 2Jζ(hk) h.

Therefore from estimates on jVε and \hε\H2 [Proposition4.7 and (5.6)], we deduce

\dTε(hε)(k)\H2<cε2\k\H2,

and for ε > 0 small enough

d e g ( i d - T ε , φ = l .

Thus, we have a contradiction from (5.3)-(5.5). This concludes the proof of
Theorem 5.2 and Part ii) of Theorem 1.

Proof of Proposition 5 3 The continuity follows from Lemma 4.10. Let us prove that
the operator

(λ,h)^Tx(h)

is compact on (0, +oo) x H2. Let a bounded sequence (λn, hn) of (0, +oo) x H2 such
that

λ n —> λ > 0 as n —• +oo .

We have to show that the sequence

is relatively compact in H2. Writing (P n , Nn) = (Q + hn,J^n((Q + hn)
2), we have

from the definition of the operator T λ that

From the property of S§ (Proposition 4.1) it is sufficient to show that the sequences
PnNn and 3Q2Pn are relatively compact in L2.

From the estimate \hn\H2 < c and hn = Pn — Q,

\PU\HI<^ (5-7)

and the sequence 3Q2Pn is relatively compact in L2.
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Furthermore, from Lemma4.8 we have \Nn\LOO < c and using estimates (5.1),

there exists a constant c > 0 such that

Vn, Vr, |7Vn(r)| < ^ - ^ 3 . (5.8)

From (5.7) and

(λ2

nr
2 - l ) < ( r ) + 3λ2rNn(r) = 2Pn(r)P'n(r),

we deduce that there exists a subsequence of (P n , iVn) such that

Pn-^P in Hloc and (Pn,Nn) -* (P,N) a.e. (5.9)

From (5.7)-(5.9) we derive that PnNn converge to PN in L2 as n —> +00. This

concludes the proof of Proposition 5.3.

Proof of Proposition5 A It follows directly from parts i), ii) of Proposition 5.1 and

Proposition 4.13.
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