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Abstract: We present a rigorous discussion of the analyticity properties of the beta

function and of the effective potential for the theory of the ground state of a one

dimensional system of many spinless fermions. We show that their analyticity domain

as a function of the running couplings is a polydisk with positive radius bounded

below, uniformly in all the cut offs (infrared and ultraviolet) necessary to give a

meaning to the formal Schwinger functions. We also prove the vanishing of the scale

independent part of the beta function showing that this implies the analyticity of

the effective potential and of the Schwinger functions in terms of the bare coupling.

Finally we show that the pair Schwinger function has an anomalous long distance

behaviour.
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1. Introduction

In this paper we study a system of interacting one dimensional fermions. The
Hamiltonian for n spinless particles in a periodic box of length L will be:

= ΣH = Σ
where m > 0 is the particles' mass, μ is the chemical potential, 2\v(r) is the pair
potential, which we suppose bounded, smooth, even in f and with finite range p^1.

Physically one defines the Fermi momentum pF so that the ground state energy of
H has the minimum at n = 2pFL/2π when μ = pp/2m, while the mass of particles
is defined by computing the minimum energy increase obtained by adding one particle
to the ground state.

Usually one requires that pF has a given value and that the minimum energy
increase has the form:

e(ko) = (k2

o-p2

F)/2m, (1.2)

where k0 is the smallest k of the form 2πsL~ι, s integer, larger than pF this, however,
cannot be imposed on (1.1) as there are not free parameters.

Hence we shall study:

— Δ \ n /— Δ

(1.3)

and tune α, v so that the ground state of (1.3) has the above two properties. We
require, given pF, m > 0, that pF and L are so related that 2πL~ι(nF + 1/2) = pF

with nF integer; this implies, in particular, that no particle can have momentum ± p F

and that k0 = pF + y

It is very useful to write the Hamiltonian H in second quantization, i.e. in terms
of creation and annihilation operators oj,α^". Defining:

we have:

L

^ ' (1.5)

= X dxdyv(x - y)Φ^Φ^Φ^Φ^V

LxL

Let us denote E l ( n ) the ground state energy of the system with n particles and let
us define N = 2nF + 1.
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By first order perturbation theory it is easy to see that:

(1.6)

where 2πv(k) — J dxe~ιkSv(x).
The conditions that the system has pF as Fermi momentum and m as mass in the

presence of interaction can be translated in the conditions:

(1.8)

which imply, by using v [ pF ± — — k ) = v(pF — k)± — vf(pF — k) + 0(L~2), that:
\ L J L

is + 2λ / dk[v(O)-v(pF - k)] + O(L~ι) = 0,

PF

eCk)<° ~, , ( L 9 )

m J F

e(k)<0

Recursively one can determine the higher order corrections to α, is, pursuing with
formal perturbation theory. If one, however, attempts at estimating the remainders one
meets serious difficulties, unless one is willing to take λ so small to be of order much
smaller than L~ι, say of O(ηL~ι) for some small η. In the latter case one can easily
check that there are no convergence problems for the perturbation expansions (and in
fact the first order is dominant), as it is physically obvious. For η small enough and
L fixed the perturbation theory converges, the ground state is unique and separated
by a gap of order L~ιpF/m from the first excited state.

One possible approach to the theory of low temperature Fermi gases that we
shall follow, is to study the above perturbation expansions as well as the expansions
of the other interesting quantities (like the system reduced density matrices or the
Schwinger functions, see Sect. 2), and to show that they can be resummed so that,
after resummation, they admit analytic continuation in λ up to λ's of size of order 1
uniformly in L and β.

If this goal is achieved, it is clear that we have constructed objects of interest
for low temperature physics: they can be interpreted as Gibbs states of the system
provided they verify the necessary positivity properties. The latter are, essentially,
automatically verified as we know that for L, β > 0 fixed none of the correlation
functions has a singularity for λ, α, is real (small or large).

In this paper we study a resummation algorithm, generated by the application of
the renormalization group methods to the study of the above series. We show that
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the resummation can be described in terms of stability properties of a well defined
dynamical system.

We call beta function the functions defining the dynamical system iteration map
Bh: the latter operates on a three dimensional set of parameters called the running
couplings denoted by r. Each triple r 0 of initial data generates, for h = 0, — 1, —2,..
a trajectory rh_1 = rh + Bh(rh,rh+ι, .. , r 0 ) which, under the condition that \rh\
remains small, provides a set of parameters in terms of which the relevant dynamical
quantities (Schwinger functions) can be expanded in a convergent power series

The reason we call the above a resummation is because the expansion constructed
is not in a power series of r 0: if we express r_h in powers of r 0 it may well be that
the convergence radius of the expansion shrinks to zero as h —> — oo.

Our main results are:
1) The existence and boundedness and analyticity of the functions Bh(rh,.. , r 0 ) as

functions of their arguments (regarded as independent arguments), if they are small
enough' \rh\ < ε,for all h < 0.
2) We also show that Bh(^7i, ,r) = Aifc) ^s ^ e s u m of two parts βh(r) =
β(r) -f βh(r) with βh(r) —> 0, for h —> -oo and for \r\ < ε, exponentially fast,
and with β(r) ("scaling part of the beta function") which we show (in Sect 7) to be
zero.

3) We deduce from 1),2) an expansion in powers of {rh}h<0, convergent if' \r_h\ < ε
for all h < 0, of the pair (and higher) Schwinger functions The expansion implies, if
\Lh\ — ε for aH ^ < 0, that the pair Schwinger function approaches 0 as its argument
ξ —* oo faster than the free Schwinger function does, and we compute exactly how fast
(i e we compute the anomaly exponent).

Some support to the validity of the vanishing of β(r) in 2) above was given in
[BG, BGM], by reducing it to the proof of a similar conjecture for the Luttίnger model.
In [BGM] the proof of the conjecture was reduced to a property of the Schwinger
functions which is implied by the results in 3) above, plus the independence of the
exact solubility of the Luttinger model from the cutoffs necessary to define it. Thus
we showed that the exact solubility of the latter model would allow us to establish
a rigorous proof of the conjecture if we know suitable uniformity properties on the
Luttinger model running constants defined in a way entirely analogous to the one
followed for our problem, see [BGM].

The above scheme of proof is discussed in Sect. 7 and, using the new results
derived in the previous sections (3-6), it is completed.

The discussion of 1) requires the solution of two distinct problems. The first is an
ultraviolet problem, which could be considered trivial. We perform it in detail, but we
find no unexpected difficulty (Sect. 3). The second problem is the infrared problem.
From the power counting point of view this is just a renormalizable problem with a
double singularity (the singular locus of the propagator being reduced to two points).
Therefore at first sight it looks technically similar to the ultraviolet stability of the
Gross Neveu model in two dimensions, [FMRS, GK1]. However the infrared problem
in our case presents new difficulties since it is not asymptotically free. Its solution
requires the discussion of an anomalous dimension (physically this means that the
perturbed system has correlations which decay at oo faster than the free ones). To
establish rigorously the theory of the corresponding anomalous renormalization group
flow is a major technical difficulty that we meet in this work.

Other references on rigorous renormalization group and anomalous dimensions
are [GK2, F, BG1, G, dV]. The first two, however, deal with a deeply different
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notion; namely the anomaly is not dynamically defined, but it is rather a priori
supposed to be a part of the free theory, as the free propagator is assumed to have a
scaling different from the "normal" and one finds that it remains unchanged. The last
reference, [dV], contains a treatment of an ultraviolet problem with infinite wave
function renormalization, but the paper does not seem to discuss the anomalous
scaling of the correlation functions at small distances. In this paper the analogous
infrared problem (the anomalous scaling at large distances) requires considerable
supplementary work.

Interesting technical developments to treat infrared problems with finite wave
function renormalization, which go quite far beyond the first work on it [GK3], can be
found in [O']. The main difficulty with a dynamical anomaly is that the wave function
renormalization is infinite and that this affects the correlations in a rather involved
way.

The formalism to deal with a "normal" free propagator and an "anomalous"
interacting one is set up in [BG1], (see also [G]), following the original work of
[WF], where the anomaly is a fixed (but "dynamical") constant characteristic of the
non-trivial point, and following the interpretation of [WF] that Felder provided us
(private communication). In our case the anomaly is "dynamical," (and the wave
function renormalization is infinite), but it is a function of the coupling, as we do
not have one isolated non-trivial fixed point but, instead, a "line of fixed points": this
causes a few extra difficulties.

To our knowledge this is the first example of a rigorous theory of the beta
function of an anomalous renormalization group flow with a rigorous discussion of
its consequences for the anomalous asymptotic behaviour of the correlation functions;
and, technically, the correlation functions behaviour represents the major part of this
work.

The results of Sect. 7 also imply the existence of a one parameter family of non-
trivial fixed points of our renormalization group transformation. This can be regarded
as the origin of the anomalous dimension; however we only allude (Sect. 5) to such
a corollary as it is not essential for our work.

In the next section we set up the formalism in a self consistent way trying to
discuss the rigorous issues growing out of the functional integral representation of
the Schwinger functions that we plan to use in the rest of the paper.

It is useful to state our main result in a form independent on the subsidiary concepts
(like running coupling, beta function, etc.) and based solely on the hamiltonian (1.3)
and on the standard notion of pair Schwinger function, 5(x), of the model (introduced
formally in the next section); it can be summarized in the following theorem:

Theorem. Given a pair potential \v(x — y), with v smooth and with short range p$l,
one can find analytic functions α(λ), v(\), holomorphic near λ = 0 and of order λ,
such that the one dimensional spinless Fermi gas with hamiltonian:

^ ^ H Σ ^ ^ (U0)

i—1 ϊ^j

with m(λ) = [1 + a(X)]~ιm, m > 0, admits a zero temperature Gibbs state (defined
as the T —» 0 limit ofaT>0 Gibbs state) with a Euclidean pair Schwinger function
S(x — y) verifying, for \x — y\p0 large, the relation.

Six - y) = ,_So(x ~ * L +Λ(A),_ ,_ * „ (l.ii)
(Po\χ - y\)2η(X) (po\χ -
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with η(λ), A(λ) anayltic near λ = 0, r/(λ) = O(λ2) independent on x, y, A(λ) = O(λ)
(uniformly dependent on x, y), and with So being the pair Schwinger function for the
free gas with Fermi momentum pF and mass m.

Note that S0(x-y) tends to zero with oscillations on scale p ^ 1 and speed \x — y\~ι,
so that the first term in (1.11) dominates over the second "when non-zero."

The theorem was proposed by Tomonaga who developed theoretical argument for
its validity, [T]; on the basis of Tomonaga's work Luttinger proposed a model which,
if Tomonaga's ideas were correct, should behave in the same way as the system (1.1)
that we are considering, [L]. The model differs from (1.1) in two respects: first there
are two spinless particles, and second the kinetic energy is linear in the momentum.
Luttinger also gave arguments to suggest that the model might be exactly soluble.
The model was solved exactly, later, by Mattis and Lieb, proving that indeed it did
behave as expected on the basis of its heuristic equivalence to Tomonaga's theory of
the model (1.1), [ML].

For higher dimensional many fermions systems a formalism parallel to ours, also
based on renormalization group analysis near the Fermi surface has been developed in
[FT1, FT2, FMR] with emphasis on the BCS theory. In particular a constructive result
similar to 1), (analyticity of the beta functional) but stated in a different language has
been proven in [FMRT] for many fermions in two dimensions.

2. Functional Integral Representation of Fermionic Correlation Functions

The Schwinger functions of a Hamiltonian H like (1.3) are defined by:

Zι . me~^-ι~ta)HίψZse~t3H)
Xl

 H (2.1)

for β > tι > t2 > > ts > 0, ψZ, σ = d=, being field operators on the Fock space
of a fermion system confined in a box of size L, with periodic boundary conditions,
and at temperature β~ι > 0.

At fixed /?, L the (2.1) are, by inspection, real analytic in λ, α, v\ their holomorphy
domain has complex size which, for the time being, is totally out of control and it
may shrink to 0 as β —> oo or L —> oo.

If we are willing to take λ, z/, α of O(ηL~ι) with η small, it is not difficult to see
that we have in fact uniformity in β as β —* oo. The basic reason is that, if λ, v, α are
so small, we see by perturbation theory that the lowest eigenvalues of H is separated
by a gap from the next. Hence the limit as β —> oo is simply expressed in terms of
the expectation value in the ground state |0) λ v α (which is also analytic in such small
\,v,α), as:

S(xvtvσu .. -,xs,ts,σs) =χ<v>α (0\t/>°l . • . e - ^ - ' - ^ V g l O ) ; ^ . (2.2)

This is manifestly analytic in λ, v, α. Knowing the above analyticity property we can
find the expansion coefficients in powers of λ, z/, α. The classical calculation is as
follows.

We define the imaginary time fields [see (1.4)] as:

= etτψ±e~tτ . (2.3)
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Then by using the representation [where V = V Λ- vN + αT, see (1.3)]:

e~tH= lim (e-tτ^(l-—))\ (2.4)

we find that the numerator of (2.1) becomes:

€ ; , V C , i ; i + + p s ^ 1 + +PSJ (2.5)
where V(t) = etτVe~tτ and the sum runs over integers p l 5 p 2 , . . . while the integral
is over all the t'- variables with j ψ px, px + p2, . >Pχ + p2 + + Ps and
tPi' tPi+P2 ' 'tPi+P2+ +PS a r e fixed to be t2 > t 2 > . . . > t s > 0, respectively;
finally the t1 variables are constrained to decrease in their index j , and the sign ± is
+ if the number of V factors is even and - otherwise.

Since the product of V s is an integral of a sum of products of ψit operators and
since the T is a quadratic hamiltonian in the φ± operators, Wick's theorem holds
for evaluating Tr(exp -βT( ))/ Tr(exp -βT) (see, for example, [NO]) and therefore
it will be possible to express the various terms in (2.5) as suitable integrals of sums
of products of expressions like:

g+(ξ,τ) = ψM,tl ' ( 2 6 )
τ

if ξ = x — χ\ r = t — t' > 0, which we combine to form a single function:

9&r)={y+yς' . . (2.7)
I - 0 _ ( - ξ , - τ ) if r < 0

Then it is easy to see, from Wick's theorem, that the generic term in (2.5) can be
expressed graphically as follows.

One lays down graph elements like:

x - Δ x• » »
Fig. 1. x2 x x

symbolizing respectively:

— \v(xγ — x2)ipg tψg tψg tψg t ,

- ( I / -
(2.8)
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One should then draw n + s such elements so that the first n have a shape of one
of the first three forms with labels (y^tj) attached arbitrarily to the vertices ("free
labels") and the last s have a shape of the last two forms (representing respectively
V£,t o r ^e,t) a n d c a r r y " e x t e r n a l labels" (xι,tι),..., (xa,ta).

Then one considers all Feynmαn graphs, that is all possible ways of joining together
lines in pairs so that no unpaired line is left over and so that only lines with consistent
orientations are allowed to form a pair.

To each graph we assign a sign σ = ± obtained by considering the permutation
necessary to bring next to each other the pairs of operators which, in the given graph,
are paired (one says also contracted), with the ψ~ to the left of the associated φ+,
and then setting σ = (— l ) π if TΓ is the permutation parity.

To each graph we assign a value which is the integral over the free vertices of
the product of the sign factor times the product of factors g(ξ,τ) (or of some of
its derivatives) for every line with an arrow pointing from (xι,tι) to (x2,t2) with
ξ = (χ2 — χλ)9 r = t2 —1{, times a factor —\v(xγ — x2) for every wiggly line joining
(xvt) to (x2,t), times a factor -{y - μa) or —a/2m for every vertex of the type
with only two lines.

The propagator function g is given by (2.7) and can be represented as:

-(β+r)e(k) ϊ

X(r > 0) — ^ χ(r < 0) L (2.9)
^ 1 + ^e (k) J1 + e~/3e^ 1 +

k

where χ("condition") = 1 if "condition" is verified and χ = 0 otherwise.
This can be written:

g - lim ~ Y
ko,k

with the sum running over the &0, fc verifying e~zko(3 = —1, e~ ϊ /cL = + 1 ; and Δ is
a cutoff function like one of the following:

Δs(x) = χ(x< 1), Aa(x)=il + ^-\ , ^ ( a ; ) = e"*2 . (2.11)

The (2.10) can be proved, in the case of the first regularization A — Δs ("sharp

momentum regularization"), by remarking that, if r > 0 and k is fixed in the r.h.s.

of (2.10), the sum over k0 has a limit, for K —• oc, equal to:

1 ' ~ dz (2.12)

with the contour running parallel to the real axis I nearer than \e(k)\ > em i n ~ ^ ^
\ 777/

and going from —oo to +oo if Imz < 0 and from +oo to —oc if Imz > 0. Using
that β > T > 0 we easily see that (2.10) implies (2.7). If r < 0 (but β > \τ\ so that
β + r > 0) we see from (2.10) that the sum has value - 1 times the value when r is
replaced by β + r (because e ^ ° = — 1). Hence for such values of r the value of g
is given by —1 times the value of (2.12) with r replaced by β + r, and (2.9) follows
also for r < 0.
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The cutoff Δa can be treated in the same way (if a = positive integer as we
suppose): one finds instead of (2.10) a complex integral that can be, essentially,
explicitly evaluated and one can therefore estimate easily the difference between
(2.10) and (2.9) as K -> oo.

The gaussian cut-off A^ix) cannot be treated by using complex integrals because
Δ^ has bad behaviour at ±ioo. But Δ^ix) — Δa(x) = O(x4) as x —• 0 and this,
together with the fact that we know that (2.10) holds with the regularization Δa,
easily implies the validity of (2.10) with the gaussian cut-off as well.

Therefore we can compute the coefficients of the perturbation theory for the
Schwinger functions by the above graphical algorithms and by using propagators
with one of the above cut-offs and then removing it.

The above discussion suggests the following definition:

Definition. Suppose that, for λ in a small neighbourhood D of the origin in the
complex plane, and for α, v suitably chosen as analytic functions of λ in D, the
perturbation series for the Schwinger functions can be shown to admit an analytic
continuation to the domain D, extending on the real axis to λ's of O(l), i.e. β,
L-independent, and suppose that the limits as β —• oo, L —> oo of the Schwinger
functions exist in D. Then we say that the limit as L, β —> oo of the Schwinger
functions defines a Gibbs state for our system with Fermi momentum pF and particles
mass m + O(λ) if the asymptotic relation (1.11) holds for some η(λ) and for all λ
small enough.

Note that such a definition would certainly not be adequate for d = 3 (because
changing the sign of λ destroys the stability of the Hamiltonian, see [R, Th], and the
system collapses) and probably not even for d = 2 (although in this case the sign of
λ does not affect stability, if λ is small enough). Hence, for d > 1, we would replace
the requirement that D is a neighbourhood of the origin by the requirement that it is
a domain in the right half plane.

This shows that one can conceive a purely perturbative approach to the low
temperature Fermi systems. One starts with some expressions of the perturbation
expansion for the Schwinger functions depending on various parameters to be
eventually sent to oo (e.g. β or L or others that will be introduced later). At fixed
values of the parameters the expansions should be obviously convergent for small
\,θί,v. Then one proves uniform analyticity in a region D of complex λ, where α, v
are suitably chosen as a function of λ (analytic in the same domain) and thus one
defines, by removing the cutoffs, a Gibbs state in the above sense.

As long as other cut-offs, besides β,L, are removed first, the already remarked
and obvious analyticity in λ, α, v at fixed /?, L guarantees that the functions obtained
in this way do have the required positivity property necessary to interpret them as
Schwinger functions for a Gibbs state (namely the reflection positivity). In fact the
series expansions for real λ, α, v must coincide with the non-perturbative definitions
of the same expressions by analyticity and the latter, of course, have the reflection
positivity property.

The most convenient representation of the Schwinger functions, for the above
purposes, is the Euclidean functional integral representations. Such a representation
is set up with the help of two extra regularization parameters that we call R, U, with
R <U, and of a family of Grassmannian variables.

Here the Grassmannian variables will be denoted A^σ

ω)ε
σ

k and they bear labels

h e Z, ω = ± 1 , σ = ± 1 , k = (fc0, k) such that:



102 G. Benfatto, G Gallavotti, A Procacci, B. Scoppola

They must verify anticommutation rules:

{A,Af} = 0, μ , £ } = 0, {ε,e;} = 0. (2.14)

It is most convenient to think of the A, ε as concrete objects by using a representation
on a Hubert space h. The best Hubert space is probably the countable tensor product

oo

of two dimensional spaces C 2 :h = (££) C2. Then we order (absolutely arbitrarily) the

variables labels, by replacing each of them with an integer label j = 1,2,... and set
the j t h Grassmannian variable to be:

W+, (2.15)

where σz,σ+ are the usual Pauli matrices.
Hence the Grassmannian variables can be regarded as a set of creation operators

(just creation and no annihilation) on a Fock space.
The A,ε variables are norm 1 operators on h. They will be used to define the

euclidean field on scale h and the external field φσ

x as

eiσ(kx-pFωx) ( e~7~ β(k) _ e-^γ~Zfτ+zβ(k)\l/2

k

< = Σ e > r t ί.

ί
( 2 . ! 6 )

where x = (x,t), β(k) = [fcg + e(k)2]p0

 2, and χ(t) = π ~ 1 / 2 / dsexp(-s2) is
— oo

a regularization of the step function. The motivation of such a definition will be
explained in the following sections.

We define the fields with ultraviolet cut off on scale η~u and infrared on scale
η~R as:

ΦχRJU]σ = Σψh

xZ- (2.17)
h=R

The fields ψ\^ju^σ are bounded operators on h, because the Λ's have norm 1.
The fields Φ[j^u]σ and ψ1^ are quasi-particle fields. We also define the particle

fields simply by:

ω ω

As a matter of fact, we shall not introduce the quasi-particle fields and we shall
introduce the cut-off in a different way, in the ultraviolet region h > 0; therefore the
particle fields will be defined in terms of suitable A%σ variables in a different way.
However, in order to simplify the notation, we nevertheless proceed in a symmetric
way in the ultraviolet and infrared region; it will be clear that our definitions would
work also for the representation of the field used in the following sections.

The Grassmannian or fermionic functional integral is then defined as a linear
functional on the operators on h, in the algebra generated by the Grassmannian
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variables. The integration rule is simply the Wick rule based on the following
"propagator":

/ •

(2.19)

while all the integrals of A+A+ and A A vanish. This means that the integral of
an arbitrary monomial in the A+ and A~ is obtained as a sum over the pairings
of the factors into pairs with non-zero propagator of the product of the propagators
corresponding to the pairs times a sign ± equal to the parity of the permutation
necessary to bring the considered pairs next to each other.

The above rule is just a linear functional and we may have problems in the
integration of expressions which are not finite linear combination of products of
A: but of course this is precisely the kind of operation that we shall wish to do.

Therefore it is convenient to define a class of operators on h on which we can
operate the functional integral "absent-mindedly." It will be the class of integrable
operators.

Definition. An operator O(^, φ) is said to be integrable if it has the form:

/

/ n \ / m \

I J J ώ ^ d ^ j I ΠdUjdVj \Onrn(x,y,u,υ,ω,u/)
.. φ~n , (2.20)

where the On m ( . . . ) are the "kernels of O(ψ, φ)" and ψ^ are quasi-particle operators
on various scales between two scales R, U, for all n, and ^ . . . ̂ m are differential
operators with constant coefficients (possibly dependent on h,ω), and with order
bounded by some N, for all n. Furthermore the On m should be measures (i.e. δ
functions are allowed) and:

\0{φ,ψ)\b=
n,m,u>_,u/

x \Onim(x,y,u,υ,ω,ω')\ < oc V6 > 0. (2.21)

Then we define [consistently with (2.19), as it is possible to check]:

P(dψ)O(ψ, ψ)= Σ / Π ] ] J J ) , h
n,m,ω,ω/J \ ΐ=l / \j = l /

^ ] ^ (2.22)

u
where the propagator g[R>U](x - y) is Σ g^h\x — y), with:

h=R

aW (x - υ) = ^ωω' V -i[k{x-y)-pFω{x-y)}

fe) _ p-Ί~2h+2β(k)
hk). (2.23)

o-Ί-
lhβik) _ e-Ί~

2h+2β(k)

-ιk0 + e(k)
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Remark. The r.h.s. of (2.22) is a well defined operator, thanks to (2.21), as a
consequence of the Gramm-Hadamard inequality (see Appendix 2):

| ^ . . . &2rn άet[g[R^](uτ - υM < BRU . (2.24)

Furthermore the definition is meaningful since the representation (2.20) is unique if
the kernels:

^1^2 . . ^ m f e ^ W ^ ^ . w ' ) ( 2 2 5 )

are antisymmetric in the permutation between themselves of the (ut^ϋoΊ), of the
(v^ω'i), of the xi and of the y{.

Several easy theorems follow. For instance, if O is integrable also expO is
integrable: this is a key property that overcompensates the fact that the fermionic
integration is not a positive functional in the sense of measure theory (and makes
the world of fermionic integration look like a fairy tale compared to that of measure
theory.)

Also, if O(φ, φ) is integrable and if we write φίR>u1 = φγ -\-φ2 with φ1 = φίR>u^
and φ2 = φ[UuU\ then O(φι+φ2, φ) = Σ Ox{φvφ)O2{φ2, ψ) and O% are integrable;
moreover:

/ P(dφ)O(φ, φ) = Σ P(dφλ)Ox{φvφ) j P(dφ2)O2(φ2, φ), (2.26)

i.e. "Fubini's theorem" holds.
The above obvious remarks constitute the theory of non-commutative or fermionic

Grassmannian integration.
Its interest lies in the fact that it is easy to see that the coefficients of the

perturbation expansion of the Schwinger functions are generated by:

qR jj\ψ) — lOg / Γydψ )C J x x x x yZ.Z/)

via:
~ 62nciπ τr(ω)

(2.28)

R
φ=0

Hence we shall confine ourselves to studying qR jj(φ) and reorganizing the expansion
of Sτ in powers of Λ (with z/, a also expanded in terms of λ) so that the expansion
have analyticity properties in λ uniform in i?, U as well as in L, β. We shall also use
the expansion to infer the long distance behaviour of 5 τ ( x 1 , σ 1 , . . . , # n , σ n ) [long
means O(L) in space and O(β) in time].

Remark. qR v(φ) has an expression like (2.20) (with n = 0), whose kernels are the
functional derivatives appearing in the r.h.s. of (2.28). Furthermore one can define the
\qRiU(φ)\b norm as in (2.21) and it is possible to see [using (2.24) and some standard
procedure to bound the truncated expectations, see last part of Appendix 3] that is
norm is finite for b < 60, with b0 depending on the strength of the interaction; this is
sufficient to define qRίU(φ) as a bounded operator.

In order to simplify the notation, in the following sections we shall consider, for
the propagator, only the limiting case L = β = oo, by interpreting the functional
integrals as a formal tool to represent in a convenient way the expansions of the
Schwinger functions in powers of λ, α, v. It will be clear that all our results are valid
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also for L, β finite and that one can take the limit L, β —>• oo without any further
problem.

Moreover we shall change the meaning of the symbol ψζ [see (2.3)], which from
now on will denote the formal limit R —» —oo, U —• +00 of the Grassmannian
field φ[^U]σ defined in (2.18). Then we can write the generating functional of the
Schwinger functions, in the limit where all the cut off are removed, as:

q(φ) = log ίP(d<ψ)e-vw+fdxiφ*^+φϊφ*), (2.29)

and we can say that P(dψ) is Grassmannian gaussian measure with propagator:

ΛxΛ

( 2 3 1 )

where the 0~ in the exponential means that #(0, x) must be inteφreted as

lim g(xo,x).
xo^O~

Moreover, if A = L x [0, β]:

V(φ) = λ / dxdy υ(x - +

+ iy - μa) ί dxψ+ψ~ + a f dxψ+(-Δ)ψ~

A A

v(x -y) = δ(x0 - yo)ϋ(x - y),

where A = d\ is the Laplacian in the space variables.
A very convenient object which is related to q(φ) is the effective potential defined

by:

e-v&ίi{Ψ) = _ L [ P(dψ)e-V(Φ+φ), (2.32)
SY J

where Ar is a normalization constant chosen so that Veff(0) = 0.
The relation is, if (gφ)~ = g * φ~ and (gφ)+ = φ+ * g\ where the * denotes

convolution and g'{x) = g(—x), the following:

+ (φ+,gφ~) = q(φ) (2.33)

The above relations are formally trivial if one treats J P(dψ)- as an ordinary
integral with respect to a Grassmannian measure proportional to:

and proceeding to the change of variables ψ + gφ = ψ.
The formal argument on the change of variables is meaningless as presented;

however if one writes the above calculations (i.e. the change of variables) as relations
between the power series in the fermion fields defining the fermionic integrals, one
sees that they are indeed valid.

Equation (2.33) should allow us, in principle, to reduce the study of the Schwinger
functions to that of the effective potential. However, because of the anomalous large
distance behaviour, this is not so simple, in the sense that it is not possible to use
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directly (2.33), see [BGM]. In any event, the analysis of the effective potential will
play an essential role; therefore, in the following three sections, we shall analyze
the integral in the r.h.s. of (2.32) by an iterative procedure, based on the scale
decomposition (2.17) of the field. This will allow us to define the effective potential
on scale rγ~h, whose properties will be used in Sect. 6 to study the pair Schwinger
function, by an expansion that will take the place of the relation (2.33). The same
technique could be used also to study the other Schwinger functions, but we shall not
do it explicitly.

3. Ultraviolet Limit for the Effective Potential

In this section we shall begin the analysis of the effective potential defined in
Eq. (2.32), by studying the ultraviolet problem.

We start by decomposing g(x) in its u.v. (ultraviolet) and its i.r. (infrared) part:

with
k+e(k)2)p~2

/
rlh rίh 1

(2τr)2

rίh 1 p-(ko+e(k)2)p~

where p^1 is the range of the potential, see (1.1) and (3.24) below.
It is easy to see that:

1/0

" ^ Γ J ^-tkχ-χo^ (3.3)
9

nxz r JiL

^ Γ - J ^
-PF

where θ(x0) is the step function. Hence we can write:

guw(x) = G(x) + R(x) (3.4)

with:
XQP2F ( m \ ll2 ^ * 2

G(x) = h(x)h(xo)θ(xQ)e 2 - e 2xo , (3.5)
\Zπxj

R(x) = [1 - h(x)h(xo)]gu v (x) - h(x)h(xo)g{ r (x)

- h(x)h(x0) / fΈ e-^-X0^ , (3.6)
-PF

where hit), t e R1, is a smooth function of compact support such that h(t) = 1, if
\t\ < 1, and h(t) = 0, if \t\ > 7, 7 being any number greater than 1, fixed once and
for all.

It is easy to show that R(x) is a smooth function on R2, such that, for suitable

\R(x)\ < Ae-*W . (3.7)

Equations (3.1), (3.4), and (2.32) imply that:

= ^ ϋ Γ p(i r ) W ( i r
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where

e-V®\φ) = ^ L _ I p W W ) e - V - ( Ψ ^ ) ( 3 i 9 )

and
1 f

A/' / /

with Λ^\JT^) defined so that F ( 0 )(0) = V(0)(0) = 0, and P ( i r ) ( # ) , P(R\dφ),
p(G\dψ) are the Grassmannian integrations with propagator ^ r (x), _R(x), and G(x),
respectively.

In order to give a meaning to (3.10), we now introduce an u.v. cutoff by replacing
G with:

*QP2F / 777 \ d / 2 m*2

GN(x) = θN(xo)h(x)e 2- ( — J e 2*o , (3.11)

where θN(t) is a smooth function with support in the interval [ 7 " ^ , 7] and TV is a
large positive integer.

Note that the cut-off is different from that introduced in Sect. 2, which has allowed
us to present in a symmetric way the ultraviolet and the infrared problems. However,
one can check that the results of this section do not depend on the choice of the
cut-off; in fact, one could add the new cut-off to the previous one, parametrized by
U, and note that all bounds are uniform in U. Furthermore, in this section we shall
use only the particle field representation of the Grassmannian integrations, see (2.18).

It is convenient to define more precisely θN(t) in the following way:

N

θN(t) = ^2f(rγH), (3.12)

where:
f(t) = [h(t/Ί)-h(t)]θ(t) (3.13)

is a smooth function with support on [1,72]. The function θN(t) has the claimed
support properties and:

θ(t)h(t)= lim θN(t). (3.14)
iV—K5O

It is worth remarking that:

lim GN(x) = G(x), for all X G R 2 , (3.15)
N—+00

because in the discontinuity point x0 = 0, by definition,

x)= lim

Two other consequences immediately follow from (3.15):
1) in (3.10) we can suppose that the potential (2.31) is Wick ordered w.r.t. GN, since
only products of fields at coinciding times appear in it;
2) all Feynman graphs with closed fermion loops in the perturbative expansion of
V^\φ) vanish; furthermore, because of the δ(x0 — y0) in (2.31), also the loops
containing some lines υ(x — y) are forbidden, if the directions of the fermionic lines
are compatible.
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Then we define:

Vm(φ)= lim log — ^ f p(<N\dφ^N))e-
γ{'φi-N)+φ), (3.16)

ΛΓ^oo ^T ̂  7

where P(-N\dφ^-N)) is the Grassmannian integration with propagator GN.
We want to prove that the limit exists and that it is an analytic function of

z = (λ, z/, a) in a neighbourhood of 2 = 0, in the sense that the kernels On of the
operator O = V®\φ)9 defined as in (2.20) (without the sum over ω,ωr), are analytic
functions verifying, in their holomorphy domain, bounds like (2.21). We shall also
prove that V^\φ) has some "exponential decay" properties (i.e., its kernels decay
exponentially fast as the arguments separate to 00). The extension of these results to
V®\φ) will be trivial. More precisely we shall prove the following theorem:

Theorem 1. There exist ε > 0 and D > 0 such that V{0\φ) can be written, for \z\ < ε,
if z — (α, z/, λ), in the following way:

= λ / dxdyv(x — y)ψχψyψ~ψ~ + 2λ / dxdyυ(x — y)R(x —
J J

f ί Λ.ί-Δ-
+ (v- 4πλv(0)R(0)) / dx ψϊψr + a / dx ψl [ — - —

J J \ 2m

dx dy ψ+Δψ~W2(z, x - y)

V V / + +

n = 1 nun2 J 2U XU Xn+l

/

X2n-n2

2n_n2+λ .. ΔψςinWnιn2(z,Xι... x2n), (3.17)

where the kernels Wnχni are products of suitable delta functions by smooth functions,

which are analytic inzif\z\ < ε, and satisfy, uniformly in N, the following estimate:

1Ί Ί \ τ τ τ / M % df °\xι X2n)

dxι...dx2n\Wnin2(z,xι...x2n)\e*

< \Λ\(D\z\)max{2'n-ι}, (3.18)

while W2(z,x) singles out some "special" contributions (see discussion after (3.40)
below) and satisfies (uniformly in N):

I dx\W2(z,x)\\x\e"*W<(D\z\)2, (3.19)

dxW2(z,x) = 0. (3.20)

The r.h s of (3.18) is summable in n, for \z\ small enough and we shall take this
property as definition of analyticity round z — 0 for a function of the field of the
general form (3.17), see also Sect.2, (2.20), (2.21).

We shall study the integral in (3.16) by decomposing the Grassmannian integration
< N \ ^ N ) in the product of the independent integrations P{h\dψ{h)), h =
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Fig. 2.

1 , . . . , TV, with propagator:

Ch(x) - f(jhx0Mx)e m
1/2

where Ch(x) is a smooth function such that, for suitable A and

|CΛ(a0| < Ae~h\χ\ , V/i > 1,

and R can be taken to be the same as in (3.7). In fact, by (3.12)

N

h=\

(3.21)

(3.22)

(3.23)

We shall assume that A is chosen so that also the following bound is satisfied:

\v(x -y)\< Ae-po^~y\ (3.24)

for a suitable p o ; we shall call p$l the range of the potential v, see (1.1).

We shall integrate iteratively the fields φw in (3.16), by studying the properties
of the effective potential on scale "γ~k, defined by:

V(k\φ)= lim log-irr [ P(k+ι\dψ(k+ι)

iV—>oo Jy ^ J
) .

x e

so that:

(3.25)

( 3 > 2 6 )

An essential role in our analysis will be played by the tree expansion (see [G]),
with which we assume that the reader is familiar. We start with some definitions and
notations.
1) Let us consider the family of all trees which can be constructed by joining a point
r, the root, with an ordered set of n > 1 points, the endpoints of the unlabeled tree
(see Fig. 2). Two unlabeled trees that can be superposed by a suitable continuous
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deformation, so that the endpoints with the same index coincide, will be said to have
the same topological structure and they will be regarded as equivalent.

The unlabeled trees are partially ordered from the root to the endpoints in the
natural way (we shall use the symbol < to denote the order); n will be called the
order of the unlabeled tree.

We shall consider also the labeled tree (which in general will be simply called trees
in the following); they are defined by associating some labels with the unlabeled trees,
as explained in the following items. We shall denote ^ the set of labeled trees of
order n.
2) Given r G Jζ , we associate with each endpoint one of the three terms of (2.31),
which we denote Va, a being a suitable label, and which we represent pictorially by
the following graph elements:

Fig. 3.

We shall say that the three different graph elements are of type 4,2,2', respectively,
and we shall call space vertices the corresponding integration variables (a more
appropriate name would be "space inverse-temperature vertices," but this is too long).
3) We introduce a family of vertical lines, labeled by a frequency index h, which
takes all the integer values between k and N + 1 the vertical lines are ordered from
left to right as the frequency index increases. Furthermore the root of the labeled tree
must belong to the line with index k, the endpoints must belong to the line index
N + 1 and, finally, any branch point must belong to a vertical line with index larger
than k and smaller than TV + 1.

We call non-trivial vertices of τ its branch points (this set is empty if n = 1 and,
in this case, there is only one unlabeled tree); we call trivial vertices the points where
the branches connecting two non-trivial vertices intersect the family of vertical lines;
finally, we call vertices the trivial or non-trivial vertices and the endpoints (see the
dots in Fig. 2). Note that there are no vertices on the endbranches of the tree except
the endpoints.

Given a vertex υ, we denote hυ the frequency index of the vertical line contain-
ing it; note that:

hv, < hv , if v' < v .

The first vertex of the tree (having frequency index k + 1) will be denoted υ0. Given
a trivial or non-trivial vertex υ, sv will denote the number of lines branching from υ
(then sυ = 1, if υ is a trivial vertex).
4) We can associate to the endpoints 4n4 + 2n2 + 2n2 = nr fields, if the number of
different graph elements associated with the tree is, respectively, nA,n2,n2, we shall
attach a label / = 1,..., nT to each field to distinguish them.
5) We shall denote #2i-i>x2i> i — 1,. . . , n 4, the 2n4 space vertices associated with
the n4 graphs elements of type 4 and x2nΛ+j' J; = *> >n ~ n4> those associated with



Beta Function and Schwinger Functions for Many Fermions System 111

the graph elements of type 2 and 2'; x will be the set of all space vertices. We shall

use also the notation xJ = for the time and space components of
Note that each x is associated with a pair of fields ψ+. and ψ~. or ψ+. and Aφ~.

and, conversely, to every field of label /, representing a line of a graph element,

corresponds a point x^9 representing the vertex of the graph element from which it

emerges, and a label σ^, allowing to distinguish the three possibilities ψ+ , ψ~., and

6) Finally, we denote Wh and W£ the expectation and the truncated expectation,

respectively, with respect to the Grassmannian integration P^h\dψ^).
As it is explained in [G], we can express the contribution to the effective potential

on scale η~k of order n in the z variables, say V^k\N, n, ψ^-® -f- φ), in the following
way (setting φ = 0 for simplicity of notation):

(3.27)

where:

•••&N&C,
(3.28)

J 2=1

The tree definition and the corresponding combinatorial weights in (3.28) are adopted
from [FG], rather than from [GN, G].

By remark 1) after (3.15), the last expectations in the r.h.s. of (3.28) have the only
effect of lowering the cutoff of the field to hi = hv if υτ is the top non-trivial vertex

out of which emerge the line representing Va (ψ(-N^) (this is in fact one of the main
properties of the Wick ordering); therefore we can write:

(3.29)

Li=l

This is a symbolic notation; the (ST operations have to be thought of as performed
hierarchically starting from the higher non-trivial vertices and going down along the
tree toward the root.

We need to find a more explicit expression for the r.h.s. of (3.29). We begin by
proving that V^k\N, n, φ^-k)) can be also written in the following way:

Vik\N,n,<ψ(^k))= (3.30)

where:

(3.31)

PVQ is a non-empty subset of / = {1,. ., n r } , the field labels associated with the

tree endpoints reachable from υ0 (i.e. all of them); the sum J^ is the sum over such
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subsets and x ( P υo ) is the set of space vertices from which the fields labeled by Pv

emerge. Finally:

v = Π

and the kernels F ( / e )( ) in (3.31) are suitably chosen. Note that in (3.32) there is no
Wick order: it is in fact convenient to work without it.

It is convenient to think of Iυ as an ordered set and of Pv as an ordered subset: in
this way it will be easier to keep track of the sign changes due to the anticommutation
relations between the Grassmannian variables.

If τ has no non-trivial vertex, (3.30) is trivial; hence we can proceed by induction,
by assuming that (3.30) is true for all subtrees of r branching from υ0 (if 5 = 1 ,
there is only one subtree). By using (3.29), we can write:

Pv0

V PΛI ,PsvQ j=ι

( P v i ) , . . . , ^ ^ ( P ^ o ) ) , (3 33)

where:
1) rj> i — I? -> sυ0>

 a r e t n e 5 υ 0 subtrees with root in v0, whose frequency index is
A + l ;
2) n^ is the degree of the tree r , /"with ^ nJ — rί\\

3) P j is a non-empty subset of the set / 3 of the n , fields in r ;
υo vo 3 J

4) VQ, . ,^o

υ° are the vertices immediate ly following v0 in the tree.
N o w w e use the identity:

$ < < * + Ό ( P ) = ^ ( - l ) / 7 ^ ( / c + 1 ) ( P \ Q ) 7 / ; ( < / c + 1 ) ( Q ) , (3.34)

QCP

where 77 is the parity of the permutation necessary to pass from the ordered subset P
to the ordered subset obtained by writing first Q followed by P\Q; and P\Q denotes
the complement of Q in P. We can write:

Σ

(3.35)

where PVQ = (J Qv% is the set of fields which are not contracted and Qyl C



Beta Function and Schwinger Functions for Many Fermions System

The latter relation proves our assumption (3.30) with:

113

υ°'
(3.36)

where Q,,, =/>„< Π i ^ .

By using the expression (3.36) iteratively it is easy to find the general expression
for V(N, r, PVQ , x): one has simply to write explicitly V(j\N, τ3, Pj, x_3) and so on,

reaching finally the endpoints of the tree. This yields:
j,

V(N,τ,Pm,x) = Π Σ
υ>v0 Pv

L n not e p

Π —>
v not e p

n 4

i_1 - x2i)] I,

J
(3.37)

2=1

where:
1) υ 1 , . . , υ 5 υ are the vertices immediately following v\
2) If v is a trivial or non-trivial vertex Pv = \J QvJ and Qυ3 = Pv Π Pv%, then Pυ

3

is a subset of the set Iυ of nr(V) fields in r ( v ) ; if v is an endpoint of the tree, Pυ

coincides with the set of fields appearing in the corresponding graph element.
If we expanded the expectations in (3.37) by Wick's theorem, we could represent

the r.h.s. as a sum of Feynman graphs in the usual way [see, however, comments after
(3.44) below]. Such graphs have internal lines with propagator Chv (and we shall
say that they have frequency hv), if they are generated in υ by the operation W^
the external lines are associated with the fields appearing in ψ(-k\Pv ). Furthermore,
if Sf is the set of all Feynman graphs associated to r, given g e ^ . , it is natural
to associate a subgraph gυ to the vertex v\ the internal lines of gv are the lines
generated in all vertices > v9 while the external lines are those associated with the
fields appearing in ψ(-hv~ι\Pv).

If we insert (3.37) in (3.31), we obtain a rather explicit expression for the kernel
^k\ It is an expression that we shall use to prove that the effective potential is

an analytic function of z = (λ, α, v) around z = 0 (in the sense of the theorem
that we are proving), uniformly in TV, and that it decays exponentially on scale η~k\
as the distance between the space vertices x^Pv^ goes to infinity. This will be the
interpretation of the following ultraviolet bound stating that, for all N}n

v :

f dx ( P υ o) X r ( < (3.38)
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-Δ- Δ -A

-A

X2

—
Xn-1

-A

Fig. 4. x1 x2 xn-ι xn

where (here and always in the following) C denotes a suitable positive constant and
K is the minimum between R and p0 [see (3.24), (3.7), (3.22)]; furthermore Sk\PVQ)

and χr(x}Pvo>}) are defined in the following way.

Let T be the set of all connected tree graphs joining the m(PVQ) = {x^^l space

vertices; if b e T, we call b(ι\..., 6 ( m ( P υo>-^ its bonds and bf, j = 0,1, the two

components of 6(ϊ) (0 is the index of the time component); then:

m(PVQ)-\

Sk\PVo)Ξπήn £ hk\bf\ + \bf\). (3.39)

Let 5^* C 3Γn be the family of trees satisfying one of the following two conditions:
a) the graph elements associated with the endpoints of r are all of type 2' and, as a
consequence, φ(-k)(PVo) = φ^k)Δφ~^k);

b) there are (n — 1) graph elements of type 2', while the other one is of type 2 and
its ψ~ line is an external line, so that ψ(-k)(PVo) = \ k ) ^ k )

We define:

otherwise

Note that, if r e . ^ * , the corresponding graph expansion of

contains only chains connecting xx to xn, see Fig. 4.
It is easy to see that their contribution has a singularity, as \xλ —xn\ —̂  0, whose Lλ

norm is logarithmically divergent when N —» oo; the χ r factor in (3.38) is introduced
to deal with the singularity, (see below).

The contribution to the effective potential of such trees can be easily summed; the
result can be expressed in terms of the same two Feynman graphs of Fig. 4, where

N
now the lines represent the full propagator ^ Ch. Let us consider, for example,

h=k+\
the chain of item a) for k — 0; it is easy to see, by explicit calculation, that such
graphs behave, when \xx - xn\ is small, in the limit iV —• oo, as:

anϋ(tn - tx) ^ ^ - — r e 2 ^ - t i ) (3.41)
Kn V (n-2)! at--1 Vn-tJ

which is not Lx.
The origin of this singularity can be easily understood. Suppose, in fact, that

there is an infrared cutoff on scale 1, so that the full propagator coincides with G(x).
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Hence the contribution of the chain to the two points Schwinger function S2(x — y)
is obtained by substituting the two external lines with the full propagators G(x — xn)
and G(xι — y) and one finds that the leading contribution for \x — y\ —> 0 behaves as:

^ e . (3.42)
n\ dtn ι x Ml '

The latter expression can be summed over n and we get a function with the same
behaviour of G(x - y) with the substitution m —• ra/(l + α); this result should have
been expected, since the term proportional to α in the interaction could be absorbed
in the free Grassmannian integration producing exactly such a change in the bare
mass of the particles.

The proof of Eq. (3.38) will make use of the fermionic nature of the fields and of
the explicit form of the propagator defined in Sect. 2. We shall need the following
results for the fermionic expectations:

il^oPCP,),. .,φ(h\Ps))\

^^Je-TW. ^>, (3.43)

where \P

Φ{ \ \P2
= IP11 + | P 2 | is the number of elements in P, \Pι | is the number of fields
is the number of fields Δψ{ \ Furthermore T is an anchored tree graph

between the clusters of space vertices from which the fields labeled by Px,..., Ps

emerge; this means that T is a set of lines connecting two points in different clusters,
which becomes a tree graph if one identifies all the points in the same cluster. If
bι,.. , bs are the lines belonging to T we define:

/ 2 (3.44)

Note that, if s = 1, the sum over T is void and must be understood as a trivial
factor 1.

The proof of the bounds (3.43) is in Appendix 2; here we want to stress the absence
of factorials in the number of fields, which is essentially linked to the fact that we do
not expand l.h.s. in Feynman graphs

With the aid of (3.43) we can bound (3.37) as follows:

υj v3' υ3
TT TTr ^ ΠP'J-IQ1 J+5|PM-5|Q"JK_^V | ' y?l Î Ĵ ̂

υ not e p

( 3 4 5 >
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where Q\d = ^ 0 ^ , 1 = l , 2 a n d j = l,...,sυ.
Now we have to integrate the expression (3.45) multiplied by the weight

It is clear that in the r.h.s. of (3.45) x appears only in the last line; therefore we have
to evaluate the expression:

Π 77
not

Πi

S I
. v not e p v ' Tυ

P \

Here we have to use the properties of υ(x — y): in fact a global tree graph (on all
the scales) requires in general also the υ's to insure the connection. The property of
v that we need is [see (3.24) and (2.31)]:

\λυ(x - y)\ < \\\Ae-v^-^8{t - t'), (3.47)

where x = (£, x), y = (£7, y).
The latter inequality and a standard estimation of the integral [see Appendix 3,

(A3.18)-(A3.20)], allow to bound (3.46) by:

Y[ lhv{Svl)\\\^ . (3.48)
V>VQ

By (3.48) and (3.45) we have

», ?}
f not e p ^

^1 I I p i I 1 g v^ I P

x Π [ 7 4 L r ' " J " j V" ' "'\Ί-Ϊhv(av~λ)}, (3.49)
v not e p

— - ίiv\Sυ — 1
JΛ/ 2

and we note that:

7
υ not e p

= [ Π [ 7 ϊ [ 6 n " + 4 n " + 2 n ' " | F ' ! l " 5 | F ' l l l 7 Ϊ [ 6 n 2 ' + 4 n 4 + 2 n 2 " | P " o l " 5 | P ' o | 1 (3.50)
L v not e p J

and:

v not e p L v n°t e p
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Therefore we can rewrite the last factor of 3.49) as:

lΠ^-lΠ^I+5|P υ

2 |+2<+4n2-6]Ί -

(hence > 1), except in the following cases, that we discuss separately.
1) |P^ |=2,< = 2, \Pl\=nl = 0.

The only possibly Feynman graphs associated with rυ are, in this case:

Fig. 5.
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TT 7

v not e p

where nv is the number of endpoints which follow υ in the tree, while n*, n^, n^ are
the numbers of endpoints of type 4,2,2' which follow v.

Let us observe now that:

(3.53)

where the dots on the inner lines and on the external outgoing lines represent insertions
of type 2! graph elements. However, their contribution is exactly zero by Remark 2)
after (3.15), which is valid also for Feynman graphs with propagators of different
frequencies.
2) \PΪ\ = 2,n4

υ = l, | P υ

2 | = r 4 = 0 .
This is the case of the graphs:

Fig. 6.

which vanish for the same reason of case 1).
3) |P^ | = l , | p 2 | = l , n ί = n 2 = 0 .

This is the case of the trees, whose graph elements are all of type 2'', so that only
the chains of Fig. 7 are allowed.

If v Φ vQ, one of the two lines external with respect to v is internal to the non-
trivial vertex v' preceding υ. To be definite, let us suppose that this is the case for the
line emerging from xm (the other case can be treated in the same way); then all terms

- Δ - Δ - Δ

Fig. 7.
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contributing to the expansion in Feynman graphs of W^k\N, r, Pυ ,g£Pvo)) contain a

factor of the type:

J dx2...dxrnΔXiChλ(xι - x2)... AXmChm_l{xm_l -xm)

f(xm-y), (3.54)

where ρ = 0 or ρ = 1.
Let us suppose first that all the lines have the same frequency, that is h% — hv,

for i = 1,..., m - 1. Then, since / dxrnΔCh(xm_ι — xm) — 0, we can substitute in
(3.54) CKi(xm-y) with:

= (Xm ~ Xm-\) / d t d C h υ , ( X m ~V~ ^Xm ~ Xm-\)) > ( 3 5 5 )

0

and it is easy to see that such a substitution allows us to improve the bound by a
factor η-{hv-hv,)/2^

If the lines have different frequencies, i.e. if there are other non-trivial vertices
following v, we have to apply the previous argument iteratively starting from the
higher vertices. The only change is that some covariance in (3.54) is substituted by
its gradient calculated at an interpolated point as in the r.h.s. of (3.55); it is easy to
see that the improvement for each non-trivial vertex is always the same, i.e. η~χl2

raised to a power equal to the difference between the frequency of the vertex and that
of the preceding non-trivial one. Furthermore, there is at most a factor \x - x'\ for
each line connecting x and xf and each covariance must be interpolated at most two
times; so no dangerous factorials appear.

Of course, in order to improve the bound, we have to expand in Feynman graphs
the subtree starting in the vertex v and extract the propagator Ch f (xm — y) from the

truncated expectation associated with υ'. One could be afraid that this destroys the
good combinatorial properties of (3.43), but this is not the case. In fact the subtree
starting from υ belongs to £ζ^ and it is easy to see that its expansion in Feynman
graphs contains exactly sυ\ terms, which is compensated by making use of the \/sv\
factors of (3.37); so there is no combinatorial problem here. The problem of the
extraction of Ch f(xm — y) from the truncated expectation is not really present, since
each term contributing to the r.h.s. of (3.43) has a factor equal to one of the external
propagators of v [see the proof of (3.43) in Appendix 2].

We have still to consider the case υ = υ0, but now τ 6 3ζ^ and we can use the
factor χτ(x<<Pvo)) in (3.38) to improve the bound by a factor ^ - ( ^ - f c ) / 2 .
4) \PX\ = 2, | P 2 | = 0, nA

υ = 0, n\ = 1.

This is the case of the tree with an arbitrary number of type 2' graph elements
and one of type 2. The same considerations of Case 3) apply, so that again we can
improve the bound by a factor -y-^-VV 2 .

We can summarize the discussion above, by saying that the last line of (3.49) can
be replaced by expression:

Π Ί~~ADVX(DV > 0 ) | 7 4—O ^ ( 3 < 5 6 )

υ not e p
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where χ(Dv > 0) is the characteristic function of the set {Dv > 0} (it reminds us

that the graphs of items 1 and 2 are not allowed) and

Dv = \Pλ

υ I + 5\P2

υ\ + 1n% + Anl - 6 + 2$ | P j | > 1 « | P 2 | > 1 5 n 4 > 0 « n 2, 0

+ 2 δ\Pi 1,2 δ\P} 1,0^n4,0^n2,l (3-57)

The above discussion shows the essentially trivial renormalizability of this model.
In fact, since the number of unlabeled trees with n endpoints can be bounded by
2 4 n , in order to prove the bound (3.38) it is sufficient to control the multiple sums in
(3.49) and the sum over the labeled trees with a fixed topological structure. This can

- - Dυ

be easily done by using the factors 7 4 of (3.56).
We first observe that, given an unlabeled tree f, there are only 3 n corresponding

families of labeled trees differing for the choice of the graph elements associated with
the endpoints; hence it is sufficient to consider only one of such families, say ^ .
Threes τ G ^ can be distinguished by fixing the frequency indices of the non-trivial
vertices, which we shall denote v. We can write:

) u π ^ 1 0.58)

where v1 is the non-trivial vertex immediately preceding ϋ or the root, if there is no
such vertex.

The sum over the set ̂  of the first factor in the r.h.s. of (3.58) can be bounded
in a trivial way by a factor Cn. Furthermore, by (3.57), if Dv > 0:

^ (3.59)

π ̂ D

v not e p
[π
L v

7

J
[π
L v not e p

Hence, in order to complete the proof of (3.38), it is sufficient to prove that:

Π ΣΊ~™=S(PVo,τ,n)<Cn, (3.60)
v not e p Pv

where the sums over the sets Pυ are constrained by the condition that Pv = \J Qυj
j

with Qvj a subset, possibly empty, of PυJ furthermore Pv is a fixed set with four or
two elements, if υ is an endpoint, and we have eliminated the constraint that Pυ is
a fixed subset of the fields associated with the tree graph elements.

The latter estimate, evident for large 7, can be proved in the general case 7 > 1
in the following way. We note that:

J > ~ * C V , (3.61)
v not e p pυ

where Cv counts the number of ways of choosing a subset Pυ with pv elements,
satisfying the constraints; hence it can be easily bounded by a binomial coefficient
and we obtain:

( Sy v

UPv3 ) (3-62)
Pυ '



120 G. Benfatto, G Gallavotti, A Procacci, B Scoppola

Set 7 = 7 1/ 2 4 and let us denote with & a path from the root of the tree to an endpoint
and with l(£P) the number of vertices lying on ζP. It is easy to show, by simply
performing the sums in (3.62) one after the other starting from υ0, that:

0.63)

The bound (3.38) implies that we can sum, for \z\ small enough, say \z\ < ε, and
uniformly in N, the terms in the effective potential, which have the same dependence
on the field (i.e. that have the same set of labels {σ^, / G PVQ}) In fact, we have still
to bound only the sum of all trees of order n satisfying that condition: as mentioned
above this gives simply another factor < 2 4 n, as the trees are "topological trees," see
item 1) after Fig. 2.

We can now integrate also the field fluctuations associated with the regular part
R{x) of the u.v. covariance, see (3.4) and (3.9). The regularity of the propagator R
makes this a trivial repetition of, say, the last integration lowering the u.v. cut-off
from h = 1 to h — 0 and we do not have to perform it in detail.

The bounds of this section imply that V{0\φ) can be written, for \z\ < ε, as in
(3.17) and that a similar expression is valid for the effective potential on scale η~k.
Furthermore the kernel W2(z,x) singles out the contributions coming from the trees
in 3ζ^ [see discussion after (3.40)] and therefore satisfies (uniformly in N) the bound
(3.19) and Eq. (3.20).

From the considerations of Sect. 2 it is almost obvious that the effective potentials
can be given by the expression (3.17) for \z\ < O(L~ι^~N) The results just derived
show that in fact the analyticity in z of the kernels for the effective potentials can be
extended to \z\ < ε for some ε > 0 and of order O(l) and have a uniform exponential
decay (Λ, TV-independent): see (3.18), (3.19).

This means that we can sum the coefficients of given order in z and that their sum
admits good exponential bounds.

Note that this is not sufficient to guarantee the integrability in the sense of Sect. 2
of expV{0)(ψ(ιr) -h φ) with respect to the i.r. part of the Grassmannian fields for
z\ < ε.

We shall proceed by imagining that we have a u.v. cut-off N and perform the
integrations down to the infrared cut-off R: and we shall see that it is possible to
perform a resummation of perturbation theory permitting us to express the effective
potentials as uniformly convergent power series in a sequence of constants r^, called
the running couplings, which are themselves expressed as sums of series in the initial
couplings z. The series for the running couplings will have very small L, TV, R
dependent radii of convergence. But they will be related by a map permitting us
to express their values at scale h in terms of the values at the preceding scales
h — 1,..., 0. We shall show that the relation is expressed by an analytic function,
the beta functional, of the preceding couplings with a radius of convergence which is
uniform in TV, R, L. Thus if by some other means, see Sect. 7, one can be sure that the
beta functional generates a sequence rh, h = 0, — 1,..., of running couplings which
stay small uniformly in the index h, then one will have shown the possibility of a
resummation of the perturbation series for the full effective potential kernels, which
is uniform in R,N,L and a theory of the ground state will have been constructed (up
to the technicalities analyzed in Sect. 6).
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In the next section we begin the discussion on the beta functional and its analyticity
properties.

4. The Effective Potential in the Infrared Region. Failure of Normal Scaling

In this section we shall begin the analysis of the infrared problem, that is of the
possibility of giving a meaning to the integration in (3.8) of the infrared fluctuations
of the field, associated with the propagator:

ft r (x) ^ g^° = f
J

Note that the Fourier transform of g^-°\x) has a linear divergence on the
Fermi surface k0 = 0, k = ±pF, which cannot be treated by a naive multiscale
decomposition as the one used for the u.v. problem, because of the presence of the
built-in scale pF. It is possible, however, to rewrite the problem in terms of quasi-
particle fields in the way presented in [BG], that we briefly summarize here.

We write the particle field ψ^-0) of covariance g^-°\x) as a sum of independent
quasi-particle fields:

Σ < ( 4 - 2 )
ω=±\

and, as usual, the fields ΨZ£§0\ essentially describing the fluctuations around the two
points of the Fermi surface, are decomposed as sums of independent fields in the
following way:

o
ψσ(<0) = y^ ,σ{h) ( 4 3 )
Ψω,x / j Ψω,x ? V* J )

h= — oo

where ΨZfty has covariance:

dkI daJ (2π)2

x e~ik x(ik0 + e(k))e-^1[k*+e^)2\{ωΊ-
hk). (4.4)

t
Here χ(t) = TΓ" 1/ 2 J dsεxp(—s2) is a regularization of the step function.

— oo

In Appendix 1 we show (see also [BG], Appendix A) that, for any integer m > 0:

e-7Vl ( 4.5)

for some suitable constants Cm and K, independent of h.
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In the following we shall use also the definitions:

Σ e^"sψσjβh)- (4-6)

In order to evaluate VGff(φ), by (3.8) and (3.9), we should study the functional
integral

ί (4.7)

However, the analysis of this integral is more delicate in comparison to the analogous
ultraviolet problem, because of the anomalous scaling. Therefore we split the problem
into the simpler problem of defining the running couplings and into that of evaluating
the effective potential. The first problem already emerges from the study of the integral
(4.7) for φ = 0, i.e. from the study of the normalization constant in (3.8); this analysis
will be performed in this section and in the following one. The second problem will
be faced up in Sect. 6 indirectly, through the analysis of the Schwinger functions,
which are the physically relevant quantities.

Setting ψ = ^ ( - 0 ) to simplify the notation, we represent the potential V(0\ψ), see
(3.17), in terms of quasi-particle fields and we obtain:

_ ωAmi>ZιχΦω2XV(X ~ yWΪjyΨωty

dx \ eXPF Φω x'Φω x

UJΔJ 7 C- ψ,.rγ,LUlϋη^Zs,.ψ,.rr,

+ ι/J

OO «

+ Σ Σ Σ /^i ^2

nx+n2=2nJ

xWnιn2(z,Xι...x2n), (4.8)

where β = pF/m, the covariant derivative &~ is a differential operator acting only
on the space coordinate, defined by:

g
and the contribution of the third line in (3.17) has been included in the last term [see
discussion related to (4.38) and (4.39) below].
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The ^~ operator satisfies the following identity, which will play an important
role in the following:

J dx eίPF(ω[ ~ω2)SΨ^Έh)iβ"2&J2Ψΰ£h) (4-10)
uj\ ,UJ2

It is now very natural to define the effective potential on scale j ~ h , for h < 0, as
in (3.25), through the expression:

J ( 4 . Π )

We shall see in the following that this is not the correct definition, because of the
anomalous scaling properties of the model. However we proceed for the moment with
this definition in order to show where and why the problem arises.

As explained in [BG], we can isolate the relevant part of the effective potential
by introducing a localization operator S§ which acts linearly on the monomials in the
fields of the form \\ φ^ι

x. and is zero on all monomials of degree > 6. Its action on

the monomials of degree 2 and 4 is generated by linearity from:

+ ΨΪιX2ΨΪ2X2Ψΰ3X2ΨZ4X2h (4.12)

^ s ^ e W = ΨωιXιΨZ2Xι + (X2 ~ XύΨω,Xι^ω2ΨZ2X, >

where [see (4.9)]:
^ω = (dv^J). (4.13)

We used in the second line of (4.12) the covariant derivative (4.9) instead of the
normal space derivative, which could perhaps look more natural, for a reason which
will be explained later [see remark following (4.30) below]; in any event our choice
(4.12) differs from the other one only by an irrelevant term.

If M = 1 — 3>, we have also:

+ \ lDΐlω2"ΦttXi'ΦZτXi'ΦZM +'Φt^'Φ^

+ V^VC^C^^W , (4 14)

where

0
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and for the quadratic term in the fields we have:

1 r

(x2 - Xι)
2ψ^x< JdrJdsd2ψ-2X2ι(s), (4.16)

0 0

where

1 r

We plan to evaluate iteratively the integrals in the r.h.s. of (4.11), by rewriting at
each step V(h) in the form J£V(h) +JBV(h). This implies that we have to consider
the action of 5§ also on other monomials of second and fourth order, besides those
appearing in (4.8). We shall give now the complete list of the monomials that one
has to take into account, for which the action of S$ does not give zero, together with
the result of the application of S% and ^?, deduced from (4.12) by linearity.

In the case of the fourth order monomials there is only one more term on which
5£ is not trivial, in principle; it is the one of the form Φχλωλdφ^2ω2ψ~3ω3ψ~Aω4. This
term can only appear if xγ is an interpolated point, see (4.15), so that we really need
the following equation:

τxγώγ a72:E2/C^2 X2>^3 ^ £ 4 ^ 4

2 ^χ2^\ ^2^2 X2^2> ^χ2^A ^a^2/C^l rE2/t^2 X2/C^3 2/C^4 '

By the anticommutation properties of the field, the r.h.s. can be different from zero
only if ωι — —ω2, ω3 = — ω4. However, in this case, the integration on the x-
variables cancels it, because the monomial in the l.h.s. appears multiplied by a
translation invariant function of the x-variables; furthermore the oscillating factor

eiPF(ωιxι+ω2χ2-ω3χ3-ω4x4) [$ a l s o t r a n s i a t i o n invariant, if u;χ = -ω2, ω 3 = -ω4.

Hence, for our purpose:

^ < ω , ^ + ω 2 V ς ω 3 C 4 W 4 = 0, (4.19)

and we do not have to consider any other localization operation on the fourth order
monomials, besides that of (4.12).

In the case of the second order monomials, we have to consider the following
localization operations:

(4.20)
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and the corresponding M operations:

0

1

where the symbol x , is used to stress that xjt is a point on the segment connecting
Xj and some other point.

In the r.h.s. of the last three of equations (4.20), some new local terms appear with
respect to the second relation in the r.h.s. of (4.12). However, the field dψ+ιX f in

the l.h.s. of (4.20) can appear only through a field D^2 by interpolation, see (4.15).
Hence one has really to consider the following localization operations:

(4.22)

And we can conclude that, as a result of the localization operation on the effective
potential, we get, for each scale, the following local monomials:

Ψi+ΦZ- ΦZ+ ΦZ-, ΨLψ-ωΊ ψ:jω'β&ω-ψ;ω/, Ψ+

xΛΨ~xω> (4-23)

multiplied by some constants, the running coupling constants of the model, that we
shall indicate, respectively, with \h,η

hvh,ah,ζh.
At first sight, the running coupling constants depend on the ω variables; however,

we shall see that they are actually cj-independent.
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The fourth order local part must have the form:

^^c^K^^-^)^ , (4.24)

and recalling the anticommutation properties of fermions, we can write:

λh(ω{,ω2,ω3,ω4) = -~± u w ^ . - u ^ , - ^ (4.25)

Hence we can rewrite the quartic relevant part in the simpler way:

K I dx ̂ ΨΛT'ΨZ^Ψ-^ • (4-26)

Let us now investigate the ω-dependence of the running coupling constants
associated with the quadratic terms in the effective potential on scale η~h. By the
linearity of =£?, we can calculate the local part in a different way. First we can do all the
integrations in (4.11) without introducing the quasi-particle field representation; then
we represent the effective potential in terms of the quasi-particle fields and finally we
apply the localization operator. After the first step, the quadratic part of the effective
potential on scale η~h, expressed in terms of particle fields, looks as follows:

y[2](h) = / dχdyυh(x - y)ψ+(x)ψ~(y)

+ I dxdy wh(x - y)ψ+(x)e(idg)ψ-(y), (4.27)

where vh and wh are rotation invariant kernels (this means, in one dimension, that
they are even functions in the spatial coordinate); such property follows from the fact
that the free propagator of the theory and the interaction are indeed rotation invariant.

We represent now V[2]<<h) in terms of quasi-particle fields:

j dxdyυh(x - y

dxdy wh(x - y)eiP^s-ω'^i>+xiβω'^J,φ-ly\. (4.28)

Hence the second order local part has the form:

f (4-29)
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where, if z is the spatial part of the two dimensional space-time vector z and z0 is
its time component:

ah = Jdze^ω's\wh(z) + %- ω'zυh(z)\, (4 30)

The latter definitions immediately imply that vh, ah, and ζh are independent of the
α 's, as a consequence of the rotation invariance of the theory.

The previous observation has another consequence, which will play an important
role in the following analysis. The structure of (4.22) is, in fact, not suitable for the
dimensional bounds that we want to discuss: the r.h.s. of (4.22) is written as a sum of
terms which do not vanish when xx = x2, i.e. we loose track of the fact that the l.h.s.
of (4.22) vanishes for xx = x2, a property which is manifest in the l.h.s. through the
field D^2ω this is disappointing because the property of vanishing of the l.h.s. must
be used to regularize the vertex where the field Ό\2ω appeared at a previous scale,

along the iterative construction of γ(h\
As a consequence we cannot have good bounds for the contributions to vh,ah,ζh,

coming from the individual terms in the r.h.s. of (4.22). However, if ωx = ω2, it
is easy to see that the contributions arising from the second and the third of (4.22)
cancel out, because of the translation invariance of the theory, by an argument similar
to that used in the remark following (4.18) and leading to the "effective validity" of
(4.19) (see also [BG], Sect. 11). In the first of (4.22) the translation invariance implies
that, if cϋι = ω2 = ω, the r.h.s. can be replaced by {xγ — ̂ Ψxiω^ωΨx ω> a n c * m t m s

way the needed (xλ — x2) factor is explicitly exhibited.
To summarize, if UJX— ω2 — ω, we can replace (4.22) with:

J ( i ^yΦt^ωΦχiω . 3

J = MD+^DΰJ = 0.

The previous properties are not valid anymore, if ωx ^ ω2; hence there would
be a serious problem, if we had to bound the contributions to the effective potential
associated with the local terms in the r.h.s. of (4.22) for all ωuω2. But this is not
the case, since we know a priori that vh,ah,ζh are independent of ωι,ω2 and we
are not interested in the single contributions building the running coupling constants
expansions, but only in their sums. Hence we can choose to compute the running
coupling constants via their expansions valid for ωx = ω2, which does not give any
trouble, as we shall see.

Before starting the inductive evaluation of (4.11), we write:

0 ) ) . (4.32)
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It is easy to see that:

= XQ J

ω\ω2

+ Co I dx Σ e^*" -^ψ^dtψ^* (4.33)
ω\ω2

for suitably chosen λ0, v0, α 0 , ζ0, and:

Z4

dxWJ2 ρ ρ (4.34)
n=l

Here In is the finite set of different monomials of the form:

where Φ^ has to be chosen between the fields [see (4.21)]:

1

L2l(r) (4-36)

and Φo has to be chosen between the fields:

-ipFωx / - e-WFUX(5λ „/.-
° Ψωx i ° -^ω Ψωx ?

1

2 ί W ^ (4.37)
1 1 r

-ιpFωχ2 / dr& dφ~ , ,, e~*PFα;:C2 / drJ ω Ψωx^r)' J J
0 0 0

Moreover, in (4.34) x represents the set of points appearing as labels of the fields in
the monomial Mρ.

Remark. The running couplings λ0, u0, a0, and ζ0 are in fact convergent series of the
bare couplings z = (λ, z/, a), uniformly in the u.v. cutoff N. This follows from (3.18)
for the contributions coming from Wn n , with nx + n2 — 2 or 4, but there is, at first

sight, a problem for the contributions to u0, α0, and ζ0, coming from W2. However
we can use here (3.20), which implies, for example, that the contribution of W2 to
a0 is:

-2m ί dx eipF*W2(x) = 2m ί dx [1 - e%PFiB]W2(x), (4.38)



Beta Function and Schwinger Functions for Many Fermions System 129

which can be bounded by:

2mpF / dx \x\ \W2(x)\, (4.39)

a finite bound uniformly in TV by (3.19).
It is also important to stress that, by (3.18) and (3.19), the kernels of (4.34) are

convergent series of z, which satisfy for \z\ small enough the bound:

z,x)\e^°)ω < \A\{C\z\)mΆX^n-^ , (4.40)

and the power on the r.h.s. can be really 1 only in the case of the term coming from
the action of M on the first term of (4.8).

The first order in the bare constants gives:

λ0 = 2λ / dxv(x) [1 - cos(2pFx)],

vo = ιs + 2\ dxϋ(x) [eipF*R(0, x) - R(0)], (4.41)

α 0 = a + 2Λ %- ί dxϋ(x)R(0, x)xetPF* , ζo = 0.

We can now start the inductive evaluation of (4.11), by applying at each step the
localization operator to the effective potential. We will obtain for J?V ( / ι ) a formula like
(4.33), with λ0, u0, a0, Co replaced by (Xh,η

hvh,ah,ζh)\ and (\h,vh,ah,ζh) = rh

will be called the running coupling constants of frequency h. The rh can be expressed
as a series of the running coupling constants of frequencies k > h+ 1, i.e. rh+ι ... r0.
We could show that this series, called the beta functional, is convergent if all the
running coupling constants r Λ + 1 , . . . , r 0 stay bounded within a certain radius of
convergence, and we could show as well that the irrelevant part of the effective
potential can be written as a convergent series of rh+ι,..., r 0 (for a general discussion
on the beta-functional see for example [G]).

Of course, in order to use this result, we would also have to prove that the running
constants really do stay bounded, at least if the bare constants are small enough.
However, if we try to pursue this program, we immediately find a difficulty. In fact,
if we calculate the beta functional at second order, we find ([BG, G]):

(4.42)

with β2 φ 0.
The latter equations imply that, at the second order, λ^ neither does increase nor

does decrease; so we need the third order to decide what happens to λ^. However,
even if we suppose that the third order for Xh, once calculated, will imply that λ^
goes to zero when h —> — oc, the best that we can hope to find for its behaviour is
clearly a rate yf\f\h\. Looking at second order equations for ah and ζh, this implies
that ah and ζh go to infinity at least as Σ l/\h\, i.e. we get out of the established

h

domain of convergence of the beta functional in a finite number of steps.
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From the mathematical point of view this is a big trouble, because it makes it
impossible to construct a perturbation theory for the model; from the physical point
of view this means, as it is well known, that the expectation of the number of particles
with fixed momentum, in the one dimensional Fermi gas, has a singularity, at the Fermi
momenta =bpF, of a different kind with respect to the free case, where it is simply
discontinuous.

Hence we need to introduce a different type of scaling, allowing us to study the
nature of the singularity on the Fermi surface via a consistent perturbation theory.

5. The Effective Potential in the Infrared Region.
Running Couplings and Anomalous Scaling.
The Ground State Energy

A new and more general scaling approach is based on a representation of the field
ψ{-0) alternative to the one described by (4.2)-(4.4).

In fact there are many ways to represent the Grassmannian integration
o

with ^ ( - 0 ) = Σ ψ(h\ each parametrized by an arbitrary sequence Zo =
h——oo

1, Z_ι, Z_2>... of non-zero numbers.

Denote Pz (dψ) the Grassmannian integration with propagator — g(-h) and
\ h

PZh(dψ) the integration with propagator —- g{h\ where # ( 0 ) = # ( 0 ) and g{h) will

be fixed below.
The g(~1} will be fixed, given the sequence Zh, starting from the following obvious

identities:

where T is the differential operator dt + e(ids) and t'_{ is a normalization constant
such that the term in square brackets is a normalized Grassmannian integration with
propagator:

[Z0(g^-l)Γι + (Z_! - Z0)T]~ι , (5.2)

and, according to Sect. 4:

gί<h\k) = C ^ k r \ , Ch(k) = e^2^o+e(fc)V2

 = e^
2hβ(k) ? { 5 3 )

-ik0 + e(fc)

with β(k) being defined here. Therefore the normalization constant is:

log ( l + ̂ ^ e - , 2 « ^ > V 2 ) (5.4)

and, finally, from (5.2) we define g(~l) as:

Z
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where, if z = (Z_ι - Zo)/Zo:

(5.6)

= e-^)(le-^)) z

Hence (5.1) becomes:

By iteration we define zh = (Zh - Zh+ι)/Zh+ι and g{h) as:

[Zh+iCh(k) + zhZh+1Γ
ι

 = [ZhCh_l(k)]~l 1

Zh

so that we must take:

g(h\k) = g{h\k) + rih\k),

arriving at the representation, valid for all k < — 1:

rr
=-o

ί
= Π

- 1

h=k+l

with ^ ( ^ p ) = Σ
h= — oo

(5.9)
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We recover the decomposition of Sect. 4 by setting Zh = 1.
The freedom in the choice of the sequence Zh can be used to cancel terms

proportional to (ψ(^h\Tψ(-h)) arising in the calculation of the effective potential.
We define the anomalous effective potentials V^ via:

h'=h+\
- 1

xe h'=h , (5.11)

where V(0)(ψ^0)) = F ( 0 ) ( ^ ^ 0 ) ) ; so that:

!

= ί Pz (dψ^h))e-(Zh-z*+ιHφi-h)>τφi-h^^^

^ . (5.12)

In the following the sequence Zh can and will be chosen so that SSV^ contains
no term proportional to f(ψ(-h\dtψ(-h)). And we shall apply the above ideas to
study the ground state energy per unit volume. To understand in detail the mechanism
behind the recursive definition of Zh we perform in detail the analysis of Z_γ.

Let us consider the first step of our construction, i.e. the integration of the field of
frequency h = 0. If we put Z o = 1, we can write the partition function

(5.13)= [
where the Grassmannian integration can be thought of in terms of quasi-particle fields
as well as of particle fields.

We note that, if Zo had been different from 1, V^~1^ would have changed only
because the external lines (of the generic graph contributing to it) would represent
λ / ^ 0 ^ 4 " ^ m s t e a d of ^ - - 1 ) ; in fact, in the internal lines, the factor l/Z0 coming
from the propagator is compensated by the factor (^J~ZQ)2 coming from the fields
which are contracted in that line.

We now split V^~ι\ as a functional of the quasi-particle field, into its quadratic
relevant part plus the rest. Such splitting is a quasi-particle invariant one in the sense
that the two parts of the splitting of V^~^ can be expressed independently in terms
of particle fields.

Hence we write:

+ a^-ιHβω'®J,ψ-£-l) + zψ«ϊ-»dtψ-£-ι)] + t_x\Λ\

+ ^[quadratic part of V(~ι)]

higher than quadratic part of V(~l)]. (5.14)
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The constant part t_x \Λ\ of V^~X) is introduced here explicitly as we wish to compute
the ground state energy density E. The constants n, α, and z are (of course, as Zo = 1)
the old running coupling constants of frequency h = — 1, i.e. ι/_l9 a_l9 and ζ_ι. In
terms of particle fields, (5.14) can be written:

+ [all the other terms expressed in terms of particle fields]. (5.15)

Let us remark that, by (5.15), (5.11):

(5.16)

where yV~ is a (formal) normalization factor, and provided Z_ι,V
(~ι) are defined

appropriately, and precisely as:

Z_ι=Z0(l

x [Z0(a - z)φ+

xe{ids)φ- + Zonφ+φ;]
0

= Idx [Z0(a - z)φ+

xe{ids)φ-
J

-I- [all the other terms as in (5.15)].

The above identities define Z_x and the anomalous effective potential V^~1^ in
terms of particle fields. Here we see that the property that the effective potential can
be expressed in terms of particle fields holds; this is a "symmetry property," of great
importance in the following, and we shall refer to it by saying that our definition of
anomalous scaling preserves the quasi-particle invariance of the theory.

We can write r.h.s. of (5.16) as:

(5.18)

and the r.h.s. has the same structure of the l.h.s. in (5.13), (5.16) so that we are in a
position to repeat the procedure.

Remark If we rewrite the anomalous effective potential V^~^ (which, from now on,
will be called simply the "effective potential," dropping the adjective anomalous) in
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terms of quasi-particle fields and we call V(~l)[2n] the part of V^~l) which contains
the monomials of order 2n, we get:

= Σ I

(a ~

+Jdx(j

n > 2

where the constant / in front of the quartic relevant term is of course the old λ_ι

(because Zo = 1). Hence we have only four relevant terms, including the vacuum
terms (t_λ + tf_λ) in V^~ι\φ), and therefore only four running coupling constants
which, by (5.19), are given by the equations:

(5.20)

with z,n,l,a and t_ϊ,t'_ι convergent series of the bare constants.
We repeat step by step for all single scale integrations the procedure followed in

going from (5.13) to (5.18). We define:

= ί
z

where ψ^ is the field of propagator g^/Zh defined above.
And we write also the analogous of Eqs. (5.14) and (5.15) (we shall call nh, ah,

zh, lh the coefficients of the local terms) and we define the (anomalous) effective
potential of frequency h, with running coupling constants \h, vh, δh, as in (5.16),
that is:

(5.22)

where, as in (5.17) and (5.20), we have [setting the z introduced in (5.17) z = z_ι]\

Zh = Zh+ι(l+zh), (5.23)
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and

with

t'h = f £* logΛ

135

(5.24)

( 5 2 5 )

The calculation of the integral in the r.h.s. of (5.21) is done by using the quasi-
particle representation of the fields; hence we define, as in (4.2):

(5.26)

ω=±l

In Appendix 1 we show that the field ψ^j. has a propagator g^\x)/Zh satisfying, for
any integer m > 0, the bound:

e-^hW (5.27)

for some suitable constants C m and κ9 independent of h, if \zh\ is sufficiently small,
for example:

In other words, the fields ψWj. are, really, on scale η~h.
We can describe the structure of Vh in terms of a tree expansion, similar to that

used for the u.v. problem. By (5.21), we can write:

n = l

where we used the symbol E
field of covariance g^h)/Zh.

We can obtain V^ from
operation:

to denote the truncated expectation with respect to the

with the following obvious modification of the S%

(5.30)

where ^V^h) differs from ^V(h) only because it does not contain anymore the
addend proportional to ψ+dtψ~; moreover the coefficients of the other four relevant
terms are written as in the left- hand sides of Eqs. (5.24).

The tree expansion of V^ is produced by iteration of (5.29) and (5.30), starting
from (4.32)-(4.34), as in the u.v. case. However we need to change the definition of
the trees, which was devised in Sect. 3 in connection with Eq. (3.28); in fact the latter
is no longer valid, mainly because of the localization procedure. But we shall still
call J ζ the family of labeled trees with n endpoints (see Sect. 3, Fig. 2) and we shall
use the definitions of Sect. 3, when there is no difference of meaning in the notation;
the differences are stressed in the following items.
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Fig. 8.

1) The frequency index of the vertical lines (see Fig. 2 in Sect. 3 and compare it with
Fig. 8) takes all the integer values between k and + 1 , analogously to what happens
in the u.v. case, but the endpoints do not necessarily belong to the line with index
+ 1. Moreover also the intersections of the vertical lines with the endbranches have
to be considered as trivial vertices.
2) To each endpoint we associate either one of the four different local relevant terms,
and in such a case we shall say that the endpoint is of type v, δ, λ, ϋ (the latter,
however, can be associated only with the trivial tree) respectively, or one of the
irrelevant terms of (4.34), and we shall call the endpoint of type Mρ9 see (4.35). Note
that there is an infinite number of choices for Mρ9 because after the u.v. integration
the potential will contain monomials of any order in the field; the monomials Mρ will
thus be called monomials generated by the u.v. integration

If the endpoint is of type v, δ, or λ and n > 2, there is no trivial vertex between the
endpoint and the non-trivial vertex v immediately preceding it on the tree; this implies
that the endpoint belongs to the vertical line with frequency index hv + l. Moreover,
hυ is equal to the frequency index of the running coupling constant associated with
the endpoint.

If the endpoint is of type v, δ, λ or ϋ and n — 1, there is only the vertex v0 on
the tree, besides the endpoint, and the frequency index of the corresponding running
coupling constant is equal to hv = hk+ι.

If the endpoint is of type Mρ, it must belong to the vertical line of frequency index

+ 1.
3) As in Sect. 3, we associate with each tree a set x of space vertices and a set of field
variables (called simply fields in the following), that is all the integration variables
and all the field variables appearing in the terms associated with the endpoints. We
shall still attach a label / = 1,.. ., nτ to each field to distinguish them. Analogously
we define xv for the subtree starting from the vertex v. Furthermore, as in the u.v.
case, the tree selects a class of graphs with lines of different frequencies and such
graphs can be collected into families; such families are characterized by the choice
of the external lines in all the subgraphs related to the tree vertices.

There is however an important difference, which is a consequence of the localiza-
tion procedure; we shall have to describe the effect of the J% operator on all trivial
or non-trivial vertices of the tree r, and we have to specify if the tree contributes to
the relevant part of the effective potential or to the irrelevant one.
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If the tree contributes to the irrelevant part, we shall associate a label rv with each
trivial or non-trivial vertex. The label rv depends on the set of external lines in the
subgraph related to the vertex; it specifies one of the monomials which are produced
by the JB operation at the corresponding frequency [see (4.21)] and note that there
is only one choice when the subgraph associated to the vertex has more than four
external lines).

If the tree contributes to the relevant local part, we associate a label rυ in the
same way to all vertices, except i>0, which will carry a label L = L0,Lι,L2)L3, if
the graph contributes to the running coupling constant ϋk,\k,vk,δk, respectively.

We stress that the total number of choices for all the labels {rv} is of order C m ,
if m is the number of non-trivial vertices [as one sees from (4.21)].
4) The Grassmannian field variables can be those appearing in the lists (4.36), (4.37)
or similar ones (see also next item); it will be important the remark that at most
two derivatives can act on each single field. We shall use a label u to distinguish
the different possibilities. The field variables depend also on the label ω, but in the
following we shall not indicate such dependence, as it will not play any role in the
rest of this section.
5) A Grassmannian field variable can depend upon more than one space vertex x,
if it is involved in one or more ,9B operations associated with the tree (of course as
long as it remains an external field with respect to the graph associated to the tree
vertices); in particular this can happen at an endpoint, if it belongs to a term of type
Mρ, see (4.34). Furthermore, the label u changes each time an M operation acts in a
non-trivial way on the field, together with the set of space points on which it depends,
see (4.14), (4.16), (4.21). Such sets of points are uniquely determined, once the set of
indices {rυ} is fixed. In all cases the sets contain a special point, namely the space
vertex from which the field emerged before the first application of the JB operation,
or the localization point, if the field is associated with an external line of the total
graph and the tree contributes to the local part; the special point also appears in the
factor e

ipFσω* included in the definition of the field variables (4.36) and (4.37). In
agreement with the above remarks we shall use for the fields the notation:

Kl> > ( 5 3 1 )

where uv is the label in the vertex v and x'v C xv is the set of space vertices from
which the field depends, besides x (and the set x'υ can be empty).

We can now proceed in a way very similar to the ultraviolet case, with some
natural changes due to the anomalous scaling procedure and to the different propagaors
involed. We write

Έ (5.32)
n=l r G ^

and

* \ ι / 2 ^ [ΣJ[Plψ^k\(k\τ,PVo,xVo) (5.33)

where, in the integral over the space-time coordinates, also the sum over the ω's is
included and the dependence of V(k) on the ω's is not explicitly indicated; furthermore
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PVQ is a subset of IVQ = { 1 , . . . , nτ} and

ΊJ;(<W(P Λ - I T ψiUf)v*{-k) (* -XΛ\

Note that the l.h.s. of (5.34) is not completely identified by the set PVQ, but we
shall use it all of the same for sake of simplicity.

If PVQ is empty, i.e. if we consider a vacuum contribution, the corresponding

contribution to V^ will be written as a constant times \Λ\.
In order to simplify further the notation, we shall suppose, from now on, that there

is no endpoint of type MQ. It will be clear that the following analysis extends to the
general case without any difficulty. This is equivalent to setting at the beginning the
u.v. cut-off at h = 0.

If n = 1 (i.e. if the tree has only one line) and the endpoint is of type #, λ, v or
δ, there is only one contribution to the sums in the r.h.s. of (5.33) and

V«\τ,Pυo,x) = Ί

2kΰk,λk,Ί\,δk (5.35)

respectively.
If n > 2 and r 1 . . . τSvo are the subtrees starting from v0 (the first vertex above

the root) the definitions are such that

l^>(τ, Z j / y ^ > ) = & —^ E l + λ [ V ^ \ r \ Z l

k ^ ^ \ . . . ) ] , (5.36)

No-

where the symbols Eh,E^ denote the expectations with respect to a measure with

covariance Z^λg^h) (we reserved the symbols ^ , &£ for the expectations with respect

to the measure with covariance g^) and &' is equal to =S?*, if the tree contributes to

the local part of the potential, or M, if it contributes to the non-local irrelevant part.

The relations (5.33) and (5.36) imply that

We write now, as in the u.v. case,

Qvo

By using the relations

_I v \P\
El[ψh{Px\ . . . , VίΛ(Pβ)] = (Zh)

 2 i % ̂ [ψh(Pλ),..., $ Λ (P θ ) ] , (5.39)
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(5.37) can be rewritten as

J

s.

*s Σ Σ
P i , ,P β«n Q i, ,Q s υ n i = l

υ0 vn ° V0 vn

Sv0'
\Qυ>«o)]. (5-40)

0

where Q i a P % and P,, = II Q, * represents the external lines of the subgraph

associated with w0.
The situation is now slightly different if compared with the u.v. case, because the

propagator associated with Eh contains the factor Z^1.
We can rewrite (5.40) as

Σ
P . , ,Pυ

^ ), ,Ψ(k+1\Pvsvo\Qυsυo)], (5.41)

where (ξυ — ξf

v )Zvo is the factor, depending on the space vertices, which is produced

by the M operation and is selected by the label rVQ; zVQ is a positive integer less or

equal to 2 and (ξVQ - ξf

VQ)Zv° must be interpreted, if z = 2, as a tensor of rank two.

Note that ψ^-k\PVQ) has in general a different meaning in (5.40) and in (5.41), as

a consequence of the (9 operation [see also the remark after (5.34)].
From (5.41) we get a recurrence relation for V^k\τ, Pυ ,xυ ),

1 | p I

/ 7 \ 2 ' o I
V{k)(τ P x ) = I k+ι I

Σ
6«o

V 0 υ n

(5.42)
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By iterating (5.42) and using (5.35), we can write the following closed expression:

/ y \j\Pv\

V(k)(τ P x ) - V TT 1 hv 1
{Pv} vnotep ^ hv-\

where 5^ denotes the set of endpoints of type a (recall that we are supposing there
is no endpoint of type Mρ) and hi is the frequency of the non-trivial vertex which
precedes the endpoint i.

The symbol ^ denotes the sum over all the compatible choices of the subsets
{Pv}

Pυ in all the non-trivial vertices of the tree, except υo; such subsets are constrained by
the same inclusion relations of the ultraviolet case. Hence the following constraints
must hold:

QυcPυ, Pυ = {J QVi. (5.44)

As in the u.v. case, we now define the kernels

W(k\τ, PVQ, x ( ί V = J d(x\x(P"o )V(k\τ, Pvo, x) (5.45)

so that

υoy (5.46)

Here x^Pvo^ is the set of points on which the monomial ψ(-k\Pυ ) depends (recall

that there can be more than one point for each field). In particular x^Pv^ is a single
point (or an empty set), if the tree contributes to a local (or vacuum) term, and in that
case W^ is a constant, (by translation invariance), whose value is used to calculate
the running coupling constants of frequency k.

Let us now suppose that we know all the constants \h,vh,6h,Zh, ϋh, with h > k.
In order to get from (5.46) the values of the kernels, we must first calculate Zk. It is
easy to see, by using (5.23) and (5.29), that we can write

J2J2 W%(τ), (5.47)
«=2 rern

where Wj^ t (r) is obtained by applying the S% operator to the monomials with
two external lines associated with the tree and then summing the coefficients of

ί k ) ΰ ί - k \ divided by Zk+ι.
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We can now calculate the new coupling constants and we get, Vfc < — 1,

141

Jk+1 Σ

+
oo

Σ Σ

If Σ
(5.48)

Σ

where the constants W^] are defined in an obvious way through (5.45), taking into
account the remark about the independence of ω of the r.c.c, allowing us to restrict to
consider only the terms with two external lines having the same ω label. Furthermore
λ0, v0 and δ0 = a0 are defined as in Sect. 4 [see (4.41) for their first order values in
the bare constants].

Let us define
" " * Eu = m a x | r j , (5.49)

h>k

where the rh can take also complex values; then we can formulate the main result of
this section:

Theorem 2. There exists a constant ε > 0, such that, if

and, for some c2 > 0,

sup
k<h

then, for a suitable K > 0,

(5.50)

(5.51)

(5.52)

where d(Pυ ) is the length of the shortest tree graph connecting the set of points a ^ V

and D(P ) is the "scaling dimension" of the monomial φ(-k\P ), defined by

» = -2+ y ; a+mf), (5.53)

with rrif being the order of the derivative operator applied to the field of label f.
Our proof will also imply that, see (5.47),

(5.54)
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Remarks. 1) It is easy to see that (5.52) and (5.54) imply that the series in the r.h.s. of
(5.47) and (5.48) are convergent, uniformly in k, if (5.50) holds. Hence the condition
(5.51) is satisfied for any k, for a suitable c2, if ε is small enough and (5.50) stays
valid. However it is not obvious at all that it is possible to choose ε so that the condition
(5.50) is satisfied for all k. In order to get this result, one has to choose in a suitable
way the constant v of (2.31) and one has to compare the beta functional with that
of the exactly soluble Luttinger model, as suggested in [BG, BGM], see Sect. 1. The
problem will be discussed in detail in Sect. 7 below (and solved).
2) It is important to keep in mind that (5.45) and the bound (5.58) below allow us
to get a version of the bound (5.52) without the integration, i.e. in the form

o

r^Tn h=k

which is valid if the points belonging to x^Pv^ are pairwise at a distance greater than
PQ1, say [in order to avoid the trivial ultraviolet divergences due to the irrelevant
terms present on scale 1, see (4.34)].

Hence the dimensionless potential, i.e. the kernels obtained from those of V(k) by

multiplying them by jkD(pvo)-2k(\χ °|-i) a n c j ^y replacing their x's arguments by
η~kx [we do not need to apply also a wave function renormalization, because the Zh

factors were already extracted from the definition of the kernels, see (5.46)], verify

W (άr υo}) =

and the bound can be improved by replacing εk with ε'k = Σ ^~ϋ<<h~k)\rh\ for some
h>k

ϋ > 0 (so that if rk > 0 the dimensionless potential tends to zero: a situation
k—> — oo

not arising in our problem but which can arise in asymptotically free theories).
3) The discussion of Sect. 7 will imply that the dimensionless potentials have a
well defined limit as k —> — oo, which can be interpreted as an exact fixed point
of the renormalization group transformations that we consider, if regarded as a
transformation of the dimensionless potentials. However the Schwinger functions are
related to the non-rescaled potential, see (2.33). The latter also has a limit as k —> oo,
but this cannot be seen directly from the discussion in this section, because of the
divergence of Zh, which will be also proved in Sect. 7. Hence we cannot use (2.33)
to study the Schwinger functions; in the next section we shall solve this problem by
developing a more refined tree expansion, based on the application of the method
of this section directly to the Schwinger functions. The structure of the effective
potential on all scales found in this section will play an essential role, especially
through the bound (5.68), in getting the "right" bounds on the asymptotic behaviour
of the Schwinger functions.

It is important to remark that, also if the wave function renormalization constants
were finite, we could not hope to use directly (2.33) to estimate the asymptotic
behaviour of the Schwinger functions. We could only obtain a convergent expansion
for their values at fixed distances.
4) The following general statement, ultimately relying on (5.52) and the latter
improvement (5.68), can be also derived from the estimates of Sects. 5 and 6: the
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dimensionless effective potential V ^ " ^ governs the corrections to the free asymptotic
behaviour at large distances of the Schwinger functions (by "free" we mean here that
the Schwinger functions can be evaluated from the pair Schwinger functions via the
Wick rule, to leading order in the arguments distance), while the dimensional effective
potential V% Γ formally equal to lim V^i^ίZ^ )] describes the correlations on

[ h^-oo J
all scales. Hence the vanishing of V ^ j ^ has the physical meaning of trivial, i.e. free,

asymptotic behaviour. The V^j^s *s ^ u ^ t e independent from the initial potential, it is

universal; while Veff is, of course, explicitly dependent on the initial potential.
The proof of (5.52) is based on the following estimates of the truncated and

simple expectations, which are very similar to those used in the u.v. case, and which
are proved in Appendix 2:

f l

-Y f dr *\ (5.57)

where
1) P3 denotes the subset of P related to the fields containing a derivative operator
of order j .
2) r ( p ) is the set of interpolation parameters, appearing in the definition of some of
the fields in P, see (4.36) and (4.37);
3) T is an anchored tree graph between the clusters of space vertices (depending on
r ( P ) ) from which the fields labeled by P 1 ? . ., Ps emerge; this means that T is a set
of lines connecting pairs of points in different clusters, and T becomes a tree graph
if one identifies all the points in the same cluster; ^ ( P l 5 . . . , Ps) is the sum of the
lengths of the lines in T.

Hence, after some algebra, we can bound (5.43) as

Π
{Pυ} v notep

Jhυ

Jhv-\

iesλ

where QJ

V is defined analogously to PJ and

j(τ,pvo,χυo)= J ] (ξυ-
v not e p

Sv]

 Tυ

-2\Pv\

0 *

xJ(τ,Pυo,xυo)-Ί

ieSv iesδ

' < 5 5 8 >

(5.59)
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In Appendix 3 we prove also that

<\Λ\ 11 C
v not e p

—2h v (sv — 1)—h v zv

if

(5 60)

(5.61)

Note that in the bound (5.60) we took into account also the sum over the α 's, giving
at worst an extra factor 2 4 n .

The bounds (5.58) and (5.60) imply that

dx

< • Σ Π
{Pυ} v not ep

Jhv

1 IP I
2 ' '

esδ

(5.62)

Remarking that, if υ φ- υ0, D(PV) > 0 (the M operation was defined so as to
obtain this result, see [BG]); furthermore, we have

D{Pυ)>\\Pυ\.

Then, by using also (5.51), we find, if ^ c2ε
2 < 1/6 — 1/8,

Π
{Pv} v>υ0

υ not e p

(5.63)

(5.64)

and this shows that the leading terms in the estimate are given by the contributions
from the trees without trivial vertices (note that such trees are "concentrated" near the
infrared scales in the sense that all their frequencies are between k + 1 and k-\-n\ this
happened also in the u.v. case of Sect. 3 but for a somewhat different mechanism).

We can now proceed as in the ultraviolet case and show that actually

Σ Σ Π
re^n {Pv} υnote

K\ <cn^ (5.65)

ending the proof of the bound (5.52) and of the above theorem.

Remarks. 1) The bounds (5.64) can be easily converted into bounds on the functional
derivatives

% ) / \ / ^ > ) , (5-66)
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where, by (5.32), (5.33), and (5.46),

oooo r

Σ Σ Σ Σ /
n=\ τern PV0 feP+o

J

(5.67)

P+o being the set of field labels associated with fields of type ψ+ or dψ+ in φ ^ - Q

The functional derivative will be used in next section to study the Schwinger
functions and we should get in trouble with the representation (5.67), unless there
are no terms with m^ > 0 in the r.h.s. Of course the definitions used so far do not
imply such a property; however we could easily change them so that the field of label
/ selected in (5.67) always appears [in ψ(-h\Pv )] exactly in the form ψ+, without
any derivative acting on it. This is achieved by considering the path 5^ on the tree
joining the root to the top vertex v^ whose graph element contains the selected field
of label /, and undoing all the M operations, acting in the vertices of S^ and involving
subgraphs with four external lines. Then we recombine the various terms by using a
new localization operation consisting in choosing as localization point always x (i.e.
we do not use the localization prescription of Sect. 4 in which the two ψ+ fields in
a four external line subgraph are treated symmetrically: this means eliminating the
factor 1/2 in (4.12) and keeping only one of the two addends in the first line of (4.12),
and precisely the first if x1 = x or the second if x2 = x). The new prescription does
not affect the running coupling constants, by symmetry reasons, as the two terms in
(4.12) produce the same contributions to the running couplings.

It will be useful in the following section to have a bound of the kernels of (5.67)
analogous to (5.52). We consider the contribution to 6V^/δψ^ coming from a
monomial containing \P^\ fields of type dJψ, j = 0,1,2, and look for the part
of degree g in the running coupling constants. We immediately get the bound:

2 V Λ 7 . (5.68)

Note the factor y /Z^7~ / ι/2 to be associated with the field selected by the functional
derivative.
2) Note that the above arguments do not hold for the functional derivatives with
respect to ψ~. The reason is simply that fields drnφ~, m > 0, arise also in the JB
and J&* operations on second order monomials.

Of course, however, the role of ψ+ and ψ~ is symmetric. This means that the
same bounds hold for the functional derivatives of V^ with respect to ψ~ I

A way to check explicitly the latter (obvious) statement would be to do once more
the whole theory so far developed, by exchanging the role of ψ+ and ψ~. Hence one
would start by writing the kinetic part with the laplacian operating on the ψ+ field
and so on, and in particular the localization operations would have to be defined by
localizing over the points corresponding to the ψ~ fields.



146 G Benfatto, G. Gallavotti, A Procacci, B Scoppola

6. The Two Point Schwinger Function

As discussed in Sect. 2, in order to study the Schwinger functions (our results are
summarized in the theorem at the end of this section), one has to calculate Vefί(φ),
which is related to the effective potential Vr(0) by the relation (recall that Zo = 1),

By using (4.7) and the formal change of variables φ + φ —• Ψ (to be correctly
interpreted as in Sect. 2), one can easily check that

= ± J

where ψ = ψ(-°\ Co is the convolution operator defined by (5.3) and g 1 is the
differential operator dt + e(idg).

By using (2.33), we find

q(φ) = (φ+, (1 - C0)gφ~) + g(-0)(C0</?) (6.3)

with the functional q(-°\φ) defined by

Equation (6.3) implies a simple relation between the two point Schwinger function
S(x - y) and S^°\x - y) = δ2q^°\φ)/δφ+δφ-\φ=0, that is, in terms of Fourier
transforms,

—ιk0 -t- e ^ j

which means that, if we are interested in the infrared behaviour of the theory [i.e.
k0, e(k) small), it is sufficient to study g(-0)((^), as we shall do in the following.
We could study directly q(φ), by the same technique discussed below, obtaining in
this way information also on the ultraviolet behaviour of the two point Schwinger
function; we would find results in agreement with the discussion of Sect. 3.

In order to study S^-°\φ), we shall use a tree expansion similar to that used in
Sect. 5, by suitably taking into account the new terms, linear in the external field φ,
which are added in (6.4) to the effective potential V^°\

The expansion is generated inductively, as in Sect. 5, by integrating step by step
the fields of decreasing frequency index. We shall suppose again, for simplicity, that
only the local terms are present in Vi0\ The first step will be the integration of the
field of frequency index h = 0 in (6.4); we obtain the identity

zo zo zo

where * denotes convolution, Kff is Zo times the kernel of V̂  \ψ) [i.e.

it is the kernel of V̂  \y/Έ^ψ) as a functional of ψ] and S^-ι\x — y) =

δ2q^-ι\φ)/δφ+δφ-\φ=0, with q^~ι\φ) defined by
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Here Pz_χ{dφ) is an abbreviation for Pz_χ(dφ{^-2))Pz_χ{dφ(-ι)), see (5.18), and:

W(~ι\φ, φ) = (φ+, Qoφ~) + (φ+, Qoφ~)

+ Yψ * G _ 1 * Z 0 \ / ^ 2

/ *U_{*ψ

x+W(Rl\φ,ψ), (6.8)

where

Q o = 1 > G_1 = J - 5 ( 0 ) * g 0 ) (6.9)

and we used for V^± a definition analogous to (5.66) and V>2 represents the

terms of the second functional derivative of V^~γ) with two or more external legs;

moreover W£ \φ, φ) represents the terms which do not contribute to S^-~ι\x — y)

[because either they are of order φ3 or they contain a factor (φ+)2 or (φ~)2].
In order to use the bounds on the functional derivative, that we found at the end

of Sect. 5, we have to write (6.8) in terms of V^~ι>> instead of V^~ι\ Therefore we
localize V^~l) and then we extract the local terms proportional to [dt + e(z<9-)].

The terms proportional to [dt + e(id^)] can be conveniently added to the terms
(φ+, QQΨ~) and (φ+, Qoφ~), so obtaining the following representation of (6.8):

, Q_XΦ~)

G_x *

x +W(~ι\φ,φ), (6.10)

where

l G , ! = Qo - z_xwQ * Qo ,

^ ) ] § ( 0 )

Note that no localization operation is performed on ^ " ^ .
The construction can be iterated and, at each step, we get new contributions to

the two point Schwinger function, as in (6.6). We build in this way an expansion for
^°\ — y) of the following type:

h—\

Σ
h——oo k= — oo n=0

oo

Σ Σ SH,k,Λ*-V),
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Fig. 9. 0 +1

where the family of labeled trees ^h'k can be described as in Sect. 5, with the
following modifications (see Fig. 9).
1) There are n -\- 2 endpoints, n > 0, and two of them, denoted υx and υ in the
figure, represent the following functions:

!•
dy ^

d
(6.13)

where the following recursive relations for the convolution operators Qh,Gh, hold:

_i =Qh~ zh_,Zh[dt + e(ids)] \θh + ~

(6.14)

γ
wh = [dt

2) The two special endpoints of item 1) belong to the vertical line with frequency
index h + 1 and are attached at the same tree vertex υxy bearing a frequency label h.
This implies that h is the scale at which the lines φx and φ~ become connected by
graph lines.
3) There are no external lines in the root of the tree.
4) There are no JM labels associated with the tree vertices v belonging to the line y
joining the root to vxy.

In the quasi-particel representation (which is used for the bounds) the renormalized
propagator Gh(x) can be written as

Gh(x) = Gh>ω(x) = Σ, Y
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where $nω(x) has a definition similar to that of g^\x)9 see (5.9) and (4.4), that is

s-ik -gW(k)Qh(k)χ(ωΊ-h^h ( 6 1 6 )

JiJ-

In Appendix 1 we show that §Q^ω(x) satisfies a bound like (5.27):

I^Q Ĉ )I — ̂ Ί e K Ί \χ\ (6.17)

for any n1 < K, provided the zh verify \zh\ < Cε2 for all h, with ε small enough
(i.e., by the bounds of Sect. 5, provided the running couplings rh verify \rh\ < ε for
ε small enough).

Hence, for the purpose of establishing bounds in x space, we could replace Qh by
1. It is possible to prove that a similar property is valid in k space, but we shall not
give the details.

Equation (6.17) easily implies that, for any R < K,

hlh^\Gh,ω(x)\<ClΊ-^-. (6.18)

We want to show that

h-\ h

Σ Σ \Sh>ktT(x-y)\<(Cε)nl-e-*'>h\χ-y\. (6.19)
k= — oo τpΰ^h,k h

We shall treat explicitly only the bound of the contributions to the values of the tree
in Fig. 9, coming from the second terms in (6.13) only; the other three possibilities
can be (more easily) treated along the same lines. For such contributions we can write

- y) = Σ /
ω'

By (6.18), it is sufficient to show that

k=~°°
Σ

Note that, if we are interested in the contribution of order m in the running coupling
constants, we have to pick out of (6.13) the terms of order n± = 0 , 1 , . . . and consider
trees with n = m - n+ — n_.

The remarks at the end of Sect. 5 and the bound (5.68) play a key role. In order
to prove (6.21) we have to consider the contributions to the functional derivatives

(h)+o and δV^h)/δφ~Q coming from the monomials containing \P^ \ fields of

and of degree n± in the running coupling constants. In this way we expand
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Shkτ(x0 - y0) in a sum of term, that we can bound proceeding as in Sect. 5. We
obtain:

"l
]

x (Cε) n [ 7

2 / l ]
v e p

(6.22)
v not e p

where the first two factors arise from the bound (5.68) and 62(v) = 1 if the end point
of the tree represents a chemical potential running coupling vhj

h. The extra factor
[sy2h] in square brackets is there because there is no integration on y0 but we count
sv - 1 space integrations for all vertices, while there are really only sVχ — 2 for
υ = υxy (recall that hVχ = h in our notations).

From (6.22), after a power counting computation, we get:

( C ε ) n + n + + n - ZhΊ
3he-^hlx°-y°ι

x JI 7 - W . ) - ^ l JJ 7 , V ̂  ? (6>23)
v not e p v€zL/

where we have written j ~ 2 η , with

2η = lim inf fc (6.24)

instead of the correct value ZhvZ^x_χ (asymptotic to it), to simplify the notations,
and D(PV) is defined in Sect. 5,*(5.53).

The bound (6.23) implies (6.21) by the same arguments used in Sect. 5. The
conclusion is that:

Theorem 3. The pair Schwinger function can be written in the form

o

— ( 0 ( / o + e S ( Λ ) ) , (6.25)

where ε is supposed to be small enough and to be a bound on the running couplings
on all scales, and

\g(h\x ~ y)\ < BΊ

he~hΊh\χ-y\ , (6.26)

B < 0 being a suitable constant, independent on ε. Furthermore, under the same
conditions, S(x — y) is analytic in the running couplings with a domain independent
on x — y.

An immediate corollary of the theorem is that the pair Schwinger function decays,
for \x — y\ -> 00, as \x — y\~ι~2η, with η defined by (6.24), if the sequence in the
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r.h.s. is convergent, as the analysis of the following section implies. Furthermore, by
explicit calculation it is easy to prove that η = c λ 2 ^ + O(ε3), with c > 0. In Sect. 7
we shall also prove that the running couplings are analytic functions of λ0 near 0;
hence since the analysis of Sect. 3 implies that λ0 is analytic in λ, we have, using
(4.41):

η = c[2λ(«(0) - v(2pF))]2 + O(ε 3). (6.27)

7. The Vanishing of the Beta Function and Completion of the Theory
of Spinless Fermi Systems

It remains to prove that there is a small ε such that | λ j , \δh\, \v^\ < ε, \/h, if the
initial coupling constant λ is small enough and the parameters a and v [see (1.3)] are
suitably chosen. This was conjectured in [BG] on the basis of heuristic arguments;
some further heuristic arguments for the proof of such a statement were presented
also in [BGM]. Here we want to reduce the proof to some technical lemma, which
we think are easy consequences of the analysis of Sect. 5, of the results of [GS],
and of some properties of the exact solution of the Luttinger model (see [ML] and
[BGM]). A more detailed proof will probably be published elsewhere as it would
make this paper too long, but we think that it is not really necessary as all the steps
are clearly outlined below referring to the estimates of the previous sections, and no
further information is needed.

A direct proof of the boundedness of the running coupling constants might also
be possible, by using the symmetry properties of the propagators (see [S, DM] for
a heuristic discussion), but we met serious obstacles in trying to do it, although we
succeeded in proving the key property (7.6) below (i.e. the vanishing of the beta
function in the scaling limit) to fourth order and to see several cancellations to all
orders.

Let us call μh = (λh^Sh); by eliminating the Zh constants from the r.h.s. of
Eqs. (5.48) through (5.47) and using the theorem and the remark following them in
Sect. 5, it is possible to prove that we can rewrite the beta functional as

h+w > Mo> *Ό) >

where the Bh are analytic in μh,,vh,, h! > h, if |/v | , \vht\ < ε, for a suitable small
ε.

The property 7 > 1 can be used to show that the above relation is equivalent to

μ/1-1 = MΛ + ^ ( f t ' • > w vh) >
vh~\ = ivh + ^ ί ( f t > > μ<>; vώ

with J9h analytic for \μh,\ < ε, h! > h, and \vh\ < ε. See Appendix4 for the proof.
By direct calculation one checks also that:

,. . ., μo; vh) = vh\\^'h{μh,.. . , μo; uh) + Ί

hΉ"h{μh,..., W vh) (7.3)

with \39lh\ < C, \JΘ"h\ < Cε2 for a suitable C and for ε small enough, see [BGM].
The relations (7.2), (7.3), given any infinite sequence μh with \μh\ < ε, imply that

there is a unique ι/0 such that \uh\ < ε and vh —> 0 as h —> — 00, and vQ is analytic
in the running constants μh for \μh\ < ε; moreover the convergence to 0 will be at
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the rate vh = 0(7^) (see [BG]). This is a version of the existence of an unstable
manifold theorem.

Furthermore, since the analysis of Sect. 3 implies that u0 is an analytic function
of λ, α, v, this value of v0 is obtained, given a and λ, by a unique choice of v.

In [BG] it was shown that δh_ι = δh-\-O(X2

hδh)\ hence, if λ^ stays bounded away
from zero, as h —> —00, one can apply the previous arguments to show that also δ0

can be chosen so that δh —> 0, as h —• —00; this choice would fix also the value of
a. However, the following analysis shows that this choice is not necessary to control
the flow of μh, while of course the choice of z/0 is essntial.

Remark The previous considerations imply that we can consider the running cou-
plings as functions of μ = (λ, a). If we also take into account the results of Sect. 3,
we can claim that there is a small ε0, such that, if for all μ with \μ\ < ε0 (so that μ0

is well defined as an analytic function of μ and |μo | < ε) it happens that \μh/\ < ε
for h! > h, then μh,, h! > h — 1, is holomorphic in μ, for |μ| < ε0.

We want to show that the running couplings stay really bounded (and analytic in
μ) for all h < 0, if |μ| < ε < ε0. In order to do that, we shall need the following
function:

lim J ^ ( / i , μ , . . . , μ ; 0 ) = ^ ( / 2 ) , (7.4)
h ^'

where J?h % is the beta function of Luttinger model, defined in a way entirely

analogous to the above Jff1^. Such a definition is rather delicate in the part concerning
the ultraviolet cut-off (i.e. in the part corresponding to the contents of Sect. 3) but it
has been discussed in detail in [GS]. The part concerning the infrared cut-off requires
an analysis identical to the one just carried out (this was pointed out in [BG, BGM]);
such analysis and the fact that vh — O(^h) als° imply that:

+ 7hRΪ(μh, μh+ι, . . , μo; uh), (7.5)

where i — μ,v and Rh has the same structure and satisfies the same bounds as
h. This essentially follows from the observation that the single scale propagator
\ [see (4.4)] differs from the analogous Luttinger model propagator [obtained

by linearizing e(k) around k = ωpF] by terms of order 7^, and exponentially decaying
in jh\x\ (see [BG]).

Furthermore the function J?£%(μh,... ,μo;O) vanishes because of the special

symmetries of the Luttinger model, see [BGM], i.e. in such case the unstable manifold
is the plane v — 0.

The main point of our analysis will be the proof that, in the Luttinger model (with
v — 0, see above), the running couplings stay bounded for all h < 0, if μ is small
enough. From this property we shall deduce the strong property:

J5^(μ) = 0 , for all small μ . (7.6)

The latter equality will, in turn, be used to prove that the running couplings are
bounded also in our model.

We start by remarking that the Luttinger model is exactly soluble, even if the
particles are constrained in a finite space box of size L, with periodic boundary
conditions, [ML]. Furthermore the analysis of the previous sections and the results of
[GS] could be applied to the model in finite volume without any uniformity problem,
and we would get bounds uniform in L. By some refinement of our techniques, we
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can also prove a "continuous L-dependence" of the running couplings in the following
sense.

Let μ^ be the running couplings for the model in finite volume, while μh still
denotes the infinite volume running couplings and let ε be the radius of convergence
of the beta function, independent of L; and we define Lh = ry~hpΰι.

Lemma 1. If'μh, is defined and \μh, \ < ε < ε/2,for h' > h, then there exists n0 > 0

such that also μh/
h~n is defined for hi > h and for any positive integer n > no;

furthermore

\μhf
h~n ~ μhr\ < b0ε

2e~κn , h! > h (7.7)

for some positive constants b0 and K.

It is very easy to prove this statement at any order of perturbation theory (in the
running couplings), by using the exponential decay of the single scale covariances
(which makes very slightly dependent on L, for L large, the integrals involved in the
definition of the beta function) and the remark that g^L) - g^ is of order 1/L. It
is also easy to see that the completion of the proof rests on a "good" bound of the
difference between the finite and infinite volume expectations of a generic monomial
ψ(h\P). In Appendix 2 we show that this "good" bound can be indeed obtained in a
simple way.

Another key remark is that the finite volume acts as an infrared cut-off, so that
the running couplings μ^ "stop" flowing after the scale corresponding to L has been
reached. This property can be formalized in the following lemma.

Lemma 2. There exists εx < ε, such that, for any fixed h, if μh, is defined and

\μ^,h)\ < έ < εγ for h! > h, then μ(^h) is defined also for all h! < h, and the limit

- lim μh; does exist and

< bγe
ι (7.8)

for some constant b{.

We do not give a formal proof of such a statement, quite obvious from the
discussion of the preceding sections. In fact, once the scale j ~ h p^1 becomes larger
than the size Lh of the container, the space integrations yield a factor proportional to
η~h rather than η~h hence the beta function vanishes exponentially fast as j ~ ^ h ~ h \
when h! <h,hr^> — oo.

Note that we are setting a cut-off only on the spatial part of the variables, while no
cut-off is imposed on the time part (as we must, since the Luttinger model is exactly
soluble only with no cut-off on the time variables). Setting a cut-off also on the time
part would lead to an even faster approach to zero of the beta function (~ ^-2(h~h ))?

but we could not compare the results with any exact calculation.

The last important remark is that it is possible to calculate μ_^, by using the
explicit expressions of the Schwinger functions in the version of the Luttinger model
studied in [BGM] (which is slightly different from the model solved in [ML], but it
is more suitable for the comparison with the model studied in this paper).

In fact, in the presence of an infrared cut-off, Z^L) is not divergent for h —> -oo;
hence it is possible to define the no^-anomalous effective potential through a relation
similar to (2.33), by introducing an external field depending on ω (the Luttinger
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model is defined directly in terms of the quasi particle fields). The analysis of [BGM]
immediately implies that we can write, if the spatial momenta are translated so that

p
= c o n s t + Σ dxdy v^x - y> ω)ψtχ

ω J

+ / dxιdx2dx3dx4V4(xι,x2,x3,x4)

(7.9)

Furthermore, it is possible to see that

L

1 1 fί
77T 77 -̂ = 1 — dx dxnίωxsr V>(x,ω),

(1 +0_oo) ZJ^^ J J
L

1 1 ί ί (1 1 (Tl
WΓΊ ^ALΓ δi-°° = dx* dxo(iωxsL + x0cL)V2(x, ω),

(1 + o_ΌO) Z _oo J J

1 1 Γ
, τ , ί T \ ^ r>^ — / CLX CίX'i CLX Λ V Λ\\J, X. X'XΊ XΛ)CT CT «

0 1 f ( L J \4 / ry\Li) \0 ^ ^ / ^ ^ ^ ^ ^ ^ -ί-y

T~ 0 ) ( ^ ) «̂

fπx\~ . πx πx . π(Xn — x4)where sL = ( — 1 sin — and c L cos — , cL = cos —.
V LJ J LJ LJ LJ

By (2.33) V2 and V4 are simply related to the two point and four point Schwinger
functions, which are explicitly known, see [BGM], Eqs. (2.4), (2.5), and (2.9); hence
μ ^ can be calculated and one can check, by a cumbersome analysis of the explicit
expressions in terms of elementary functions of the integrands in (7.10), that (using
the definitions of [BGM]):

Lemma 3. There exist ε0, such that, if\μ\<εQ

\μ{-L - μ| < b2\μ\2 , for all L > 0 (7.11)

for some constant b2 and

μ= Q«(0),α+^«(0)Y (7.12)

Let us now suppose that, given ε < ε/2, there exists hQ > — oo, such that

\μh\<^ <\μho\<εJ h > h0. (7.13)

Note that if \μh,\ < ε < ε, hi > h, then the bounds of Sect. 5 imply that

\^h> ~ / # + i \<bέ2> f o r a 1 1 h' > h > ( 7 1 4 )

for some positive b, independent of L.

We start with a small μ, say |μ| < ε < ^ ε and remark that μhι stays close

to the finite volume running couplings μh,
h° for hi > ho:\μh, - μh,

h° \ <
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b0ε
2e~κn < ^ ε (see Lemma 1), having fixed once and for all n to be such that the

second inequality holds.

But we know that μhQ

h°~n is close to μh{^~n by 2bε2n [by (7.14)] (the factor 2

takes into account the small growth of μh,
h°~n for h! < h0); the latter is close to

μ_oo°~
n by bxε

2, (by Lemma 2); and the latter is close to μ by b2ε
2 by Lemma 3.

Hence μho is close to μ by b2ε
2 + bλέ

2 + 26ε2n + | ε. It is now sufficient to choose

ε small enough to conclude that

\μh0\<\e (7.15)

in contradiction with (7.13).

Remark. The above formal proof has a simple meaning. If, starting with |μ| < ε < ε/4,
it is nevertheless \μh\ > \ ε > 2ε, this means that the running couplings can start
arbitrarily small and reach size O(l) [actually O(ε), as in this argument ε has to be
regarded fixed] in finitely many steps.

However the value that they reach is (Lemma 1) close to the value that they would
reach in the theory with cut off at scale Lh (Lemma 2). But by the exact solution, we
know that such a value is still of O(ε), hence it cannot be of size O(l) (i.e. > ε/2),
and this is a contradiction.

The previous considerations can be summarized in the following theorem.

Theorem 4. In the infinite volume Luttinger model, for any h < 0, the running
coupling μh is a well defined analytic function of μ, if \μ\ < ε, for a suitable ε,
and:

\μh-μ\<C\μ\2. (7.16)

We are now ready to prove (7.6).
We can write:

..,μo)> ( 7 1 7 )
k=h+l

where

D ' (μ^,μ^ + 1 , . . . ,μ0) = ^7μ ^ (μ^, . . . ,μ^,μ f c ,μ f c + 1 , . . . ,μo;O)

From the analysis of Sect. 5, it is not difficult to deduce that:

(7.19)

if, of course, \μh\ < ε for all h < 0. The function ^ ^ ( μ ) is holomorphic near μ = 0
(\β\<ε).

Let us suppose that (7.6) is not true; hence there exists r > 2 such that

^ W ) = brμ
r

h + O(μr

h

+ι), 6r φ 0 (7.20)

and in fact, by explicit calculation, one verifies that r > 3, see for instance [BG or
BGM] for this (well known) fact.
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We want to show that this is in contradiction with Theorem 4 above and the
structure of the beta function.

In fact, by Theorem 4, if \μ\ < ε,

r

Vh=β + Σ °n V + 0^r+l) > ( 7 2 1 )
n=2

and for each fixed n the sequence, labeled by h < 0, {4^}h<o is a bounded sequence.
Hence, if we insert the power expansions (7.21) in the first equation of (7.2) and

in Eq. (7.17) and use (7.19), (7.20), we can write

n , (7-22)
n=2 n=2 k=h+\ n=3

r
where 5D d!^h μn represents the Taylor expansion of Dh>k up to order r.

n=3

The coefficients d ^ can be bounded by recalling the analysis of Sect. 5. We see
that for all complex μ's, \μ\ < ε, it is Dh>k = (μh-μk)Dh>k because Dh>k is at least
of first order in μh — μk; it is also of third order in μ, because μh — μk is of order

μ2. So that for some constant b3 it is \Dh'k\ < ε3637 ^ , where the exponential
decay in k — h is due to the tree estimates of Sect. 5 and this can be used to get
bounds on the coefficients dl^k of the Taylor expansion of Dh)k in μ via Cauchy's
theorem. It also follows that the coefficients d^k depend only on 6m = ό$ — c^

n - l
with 2 < m < n - 1 and are ^ ^m<i^'_m, so that

m=2

sup | c ^ - C W | (7.23)
2<m<n-l

with dn than can be taken ε3b3ε~nn.
Hence, if we define d2 = 0, by (7.22) and (7.23), if 2 < n < r - 1 it is

(7.25)

jfc=h+l 2 < m < n - l

which easily implies that, if n < r — 1, c n = lim c^^ does exist and

for some constant b, depending on r, and 0 < θ < 1/2. In fact, (7.25) is trivial for
n = 2; for n > 2 it can be proved by induction, noting that \c^ — όk)\ does not
appear in the r.h.s. of (7.24).

Finally, we have

o

c<*-» = cih) + br 4- Σ dhrk + ° (7 Λ ) , (7.26)

which would imply that {c^}h<0 is a diverging sequence, in contradiction with the
remark following (7.21), if the Hypothesis (7.20) were verified; this easily follows by
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0

noting that, by (7.23) and (7.25), Σ dr'k i s s m a 1 1 o f o r d e r Ίθh- Hence (7.6) is
proved. k=h+ι

Remark The idea behind the above argument is simply the following. The recursion
relation is essentially local or with short memory: i.e. (7.2) is essentially a memoryless
dynamical system because (7.23) shows that the memory, i.e. the number of scales h!
above h at which one must know μh, in order to compute μh_χ is essentially finite
[by the exponential decay factor in (7.23)]. On the other hand a dynamical system
without memory of the form μh_{ = μh + B(μh) with B analytic and vanishing at
least to second order cannot have trajectories bounded by a constant ε for all small
enough initial data unless B = 0.

We can now come back to our model; from now on μh will again denote the
corresponding running couplings.

We note that, by (7.5), (7.6), (7.18), and (7.19):

h h + u 0 . (7.27)
k=h+\

Furthermore, the analysis of Sect. 5 implies that, if \μk\ < ε < ε, k > h, and ε is
small enough:

\Dh''k(μh,,μhl+ι,...,μ0)\<bεΊ~^\μk-μhl\, ti > h, (7.28)

which implies that, for all hi > h:

0 -kzhL
J2 h (7-29)

k=h'+\

By induction on h\ it is easy to prove that \μh/_x — μh/\ < bηθh , for any positive θ

smaller than 1/2 and a suitably chosen 5, independent of h! > h.
Hence it follows that, if |μ| < ε, with ε small enough, the sequence μh, h < 0, is

well defined and:
μ.oo = lim μh (7.30)

h—> — CXD

does exist as an analytic function of μ, for |μ| < ε, if v is suitably chosen (as an
analytic function of μ). Furthermore we can choose a (as a holomoφhic function of
λ near λ = 0), so that δ_oo = 0 , if we want to impose that the Fourier transform of

the pair Schwinger function behaves as [/CQ + e(k)2]2η[—ik0 + e(/c)]-1 near the Fermi
surface (see [BG, BGM]). Hence our theory of the one dimensional spinless Fermi
systems is complete, and it can be summarized in the theorem of Sect. 1.

Appendix 1: Bounds on the Free Propagators

In this appendix we want to prove the bounds (4.5), (5.27), and (6.17) on the single
scale quasi-particle covariances.

We consider first g^\x)\ if x = (£, x), we have:

%\ ™ (Al.l)
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hence it is sufficient to consider the case ω = + 1 . We write:
2

7

J
7

1

where ξ — ̂ hx and

dk

/

where 6(fc) = (fcg + β2e(k)2)pΰ\

->( - Ί

h \
e(k) = k[ 1 + fc— . (A1.4)

The k0 integration can be explicitly performed and we get, if ξ = (ξ0, ξ),

gh(a,ξ) =

where ε = ηh/(2pF).

The integrand in the r.h.s. of (A 1.5) is an analytic function of k in all the complex
plane; hence we can shift the integration path in the imaginary direction, by putting
k = p + iq, with q a fixed real number, having the same sign of ξ. It is now very
easy to show, by using the fact that a > 1, that

where c(q) is a suitable constant, independent of h.
The estimate (A 1.6) and Eq. (A 1.2) immediately imply the bound (4.5), for ra = 0.

The bound on the derivatives of the covariance is obtained by a straightforward
extension of the previous arguments.

Let us now come to the bound (5.27); by (5.9), we have to prove that a bound
like (A 1.6) is valid for the function

( A L 7 )

for 1 < a < 2.
There are two differences with respect to the previous case. The first one is that

we cannot explicitly perform the k0 integration; we can solve this problem by shifting
also the k0 integration path. The second difference is that the integrand is not analytic

in all the complex plane, as a function of kn and k, because of the factor —r-τ,
υ 1 + zhe~b(k)

which has an infinite number of poles. However, if zh is sufficiently small, for example
\zh\ < 1/2, it is easy to see that we can find a strip around the real axis in both
variables, so that the integrand is bounded and fast decreasing at infinity. Hence we
can prove a bound like (A1.6), for \q\ small enough, say \q\ = K.

Finally, we shall prove the bound (6.17).
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wωQ Wωp-ι yωp

Fig. 10. χQ X l Xp_1 Xp

The recursive relation defining Qh, in the first line of (6.14), can be easily
solved; the solution can be graphically represented as a sum of chains of single
scale propagators, separated by operators z-ZJ+ι[dt-\-e{id^\. If we insert the solution

in (6.16), we get the following representation of gq^ (see Fig. 10):

\h\

Σ
p=\ ho=h<hι< <hp<0 k\ kp

+ Σ Σ Σ Σ [dxi .dx,

A'
L i = l

where

w%\x) = eι^ωS [ - ^ 2 e~tk X(~iko + e{k))9{h\k)χ{ωΊ-
hk). (A1.9)

J y^K)

By the same arguments used above it is very easy to prove that

Hence, if K' < K and \zh\ < Cε2 for all h, we get the bound

| Λ | ~ " Λ o

p=\ ho=h<hx< <hp<0 kλ kv

-j(l-Cε2)
^ 7 - J U - O 1 ° }, (ALII)

p=\

which implies the bound (6.17) for ε small enough.

Appendix 2: The Gramm-Hadamard (and Related) Inequalities

This appendix is mainly devoted to the proof of the bounds (3.43) and (5.57), involving
the simple and truncated expectations of monomials in the field variables. We shall
also study the "good" dependence on the volume of the simple expectation, see the
remark after Lemma 1 in Sect. 7.

We shall first study the bounds involving the simple expectations. Then we consider
a monomial in the fields of frequency h, which, in agreement with the notations of
Sects. 3 and 5, we denote ψ^h\P). In general φ(h\P) has the following structure:
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where 2m = \P\ and

= dq

t

jdf , if h < 0 ,

= dqtiΔqJ, i f f t > 0 , ( A 2 ' 2 )

with <7J,<zJ non-negative integers. We shall also denote

M = |<?ll + . . . + |<?2ml ( A 2 3 )

the total number of derivative operations present in the monomial ψih\P).
Note that, when h < 0, the field variables depend also on the quasiparticle ω-

indices, but we have omitted them for the moment, to simplify the notation.
We will prove the following estimate:

\&h[ψ(h\P)]\ < C ' p ' 7 ^ | P | 7 ^ I , (A2.4)

where a(h) = h, if h < 0, and a{h) = - , if h > 0. The bound (A2.4) immediately

implies (3.43) and (5.57) in the case of the simple expectation (s = 1).
By the definition of simple expectation we can write:

g [Qkm+ί\ψ-(h) Qkjlψ+ih)] ? (A2.5)

where the sum is over all the couplings, that is over all the possible ways to join each
ψ~ variable with a ψ+ variable, and ( - l ) π is the parity of the permutations which
bring next to each other the joined variables, with the φ~ variable on the left.

It is an easy task to show that (A2.5) may be rewritten as a determinant, up to a
sign:

%h[ψih\P)] = ±detg{h\ (A2.6)

where g{h) is the m x m matrix with elements [see (3.22) and (5.22)]:

(h) = r 0 iw. iaMc f c ( a ; m + t -Xj) if ft > o

% \d\^^d^δωτω]g
h

ωt(xm+ι-Xj) ifh<0- }

In order to show (A2.4) we need a good bound of the determinant in (A2.6); we
shall use the well known Gramm-Hadamard inequality. Let M be a square matrix,
with elements Maβ, and suppose that Maβ can be written as

Maβ = (Aa,Bβ), (A2.8)

where Aa and Bβ are vectors in a Hubert space with scalar product (•,•)• Then the
following inequality is satisfied:

ΠAJII|£JI, (A2.9)

where || || is the norm induced by the scalar product.
Hence (A2.4) will be proved, if we show that, both in the ultraviolet and in the

infrared case, the matrix g(/ι) can be written as in (A2.8), with:

.l ||J3 || < C^ • , , ^ - , ( A 2 . 1 0 )
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Let us define
if ft > 0
if ft < 0 '

and note that the Fourier transform g{h\x) satisfies, for any n > 0, the following
bound:

/ \k\n\g(h\k)\d2k < CnΊ

a{h)+n . (A2.12)

This immediately follows, for ft > 0, from the definition (3.21), that is

m
e 2*o , (A2.13)

and from the remark that the functions f(x0) and h(x) were chosen as smooth
functions. For h < 0, (A2.12) follows very easily from the expression for the Fourier
transform of g^\ given in Appendix 1.

Let us now observe that we can write

= fd
J

I
I (2τr)2 ^tiy -/

o — ik(Xj—z)/ L./\\qj\f> sh./\ / A O ] A \

where (-ik)M = {-iko)
qi (-ik)qS and

Hence, if ft > 0, we define:

AψXz)
/

dk

J (2π)z

(A2.16)

so that, by (A2.12), A^ and B{^ are L2 functions, satisfying the relations (A2.8)
and (A2.10) with respect to the L2 scalar product.

If ft < 0, we have to take into account also the ω dependence. This is easily done
by considering, in the tensor product of L2(R2) a n d C 2:

where Sω £ C 2 is defined by

1 \ ι

°J ' " + (A2.1S)
if ω = -1



162 G Benfatto, G Gallavotti, A. Procacci, B. Scoppola

SO that

(Sωt,Sωj) = δωιωj , \\Sωi\\ = \\Sωj\\ = 1. (A2.19)

This concludes our discussion for the simple expectations.
The bounds on the truncated expectations are obtained by using for them the well

known expansion in terms of interpolating parameters (see, for example [B]), as in

[LeL
It turns out that the sum of the connected graphs can be written in the following

way:

= / Π Π d^i Π dfij,i

Π (VJ,f + Vf,^ ί
. .1, _ Λ ^ J

ί V(s), (A2.20)

where

1) η3; i and fjj i are Grassmannian variables, each associated with the zth field of the j t h

monomial (cluster) of fields appearing in (A2.20). The fields on scale h will be denoted

from now on with ψx^l and g^h\x-i {l —Xj {) will denote the corresponding covariance;

P3(qj) are the number of ψ+(ψ~) fields in the j t h cluster and J2 Pj = Σ Qj = n We
3 3

are assuming for the sake of simplicity that no derivative fields are present.
2) Σ is the sum over all the tree graphs between the clusters thought of as points.

f

3) Vjtjt - Σ Σ Vj'^9{h\xj' %< - xJi%)ηάii and V(s) - Σ V- + £ SjjfVjtjf.
i'=\ i=\ j=ι j/yy

4) Sjj/ is a p r o d u c t o f i n t e r p o l a t i n g p a r a m e t e r s sn,n— 1 , . . . , fc — 1, v a l u e d in [ 0 , 1 ] ,
/-i

and the clusters can be ordered in such a way that S-t = Y[ sn (j1 > j).
n=j

5) dPf(s) is a normalized measure, / dPf(s) — 1, which depends on the interpolating

parameters s n and on f.
It is easy to extract from (A2.20) the exponential factor appearing in (3.43) and

(5.57). Let us in fact develop, for a fixed tree graph f, the product Π (V3 jf + Vy j);
0,/)

we get:

**h)HA -^...ί-^^-piί-, -^-.,*fc-ι) ( A 2 2 1 )

Recalling the definitions of Sects. 3 and 5 of anchored tree graph, it is now obvious
that once ΐ and the sets i{,. . , i f c _ 1 , i[,.. , ^ _ i are fixed, an anchored tree graph
T is also uniquely chosen. We recall that T is a set of k — 1 difference vectors
x •/ ,/ — x , . . . , x •/ •/ — x • • which realize the connection between the

Jp*l 3\W J f c_pϊ f c_i Jfc-l^fe-l

fc clusters of fields ^(P j ) , . . . ,ψ(Pk), see remarks after (3.43) and (5.57). Thus we
can rewrite

Σ Σ Σ =Σ
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Now, using the bounds (3.22) and (5.27), we can also write

163

i (A2.23)

where d^(Px,... ,P S ) is defined as in (3.43) or as in (5.57). Hence we can bound
(A2.20) as

k Pj

ΠIK
j=\ 2=1 2=1

(A2.24)

where ητητ = η3uiχηj[A ... ^ ^ Λ U i ^ - f

It is now a standard task to prove, using the properties of the Grassmannian
variables, that, for a fixed anchored tree graph T, the integration over the variables

13

Π Π drlj,i Π
M = det Gτ(s), (A2.25)

= \ i=\ i=\

where Gτ(s) is a (n — k + 1) x (n - k + 1) matrix whose elements are Gτ..,., =

j j j ' , ϊ ~~ xj,ΰ w ^ m xj/,i/ ~" xj,2 n o t belonging to the anchored tree graph Γ.
Such a determinant can be bounded again using Gramm-Hadamard inequality. In fact
Gτ

i Ίi, can be rewritten as a scalar product of two vectors, as in (A2.8), performing
the tensor product between the A^ and Bιfj, defined as in (A2.16) (taking care of

the indices) and the vector e defined as follows [Le]. Let vi G C^ be the unit vector
(υ^j = δφ then the ê  are defined inductively by

ex=vγ
x=vγ, e3

which implies that

e3 = ViVi + ί1 - s)-0l' \ j = 2 , . . . , fc - 1

= 1, (e J ? e y ) = sj
Sj

j + ι
. . . sjf_λ -

(A2.26)

(A2.27)

where ( , •) denotes the usual scalar product in Ck.
Hence, writing Gj^,^ = (e^ 0 A^, ê  / 0 -Byi/) and performing the same steps as

before we obtain the following bound:

Σ \Pj\-a(h)(k-l) ι

C ^ (A2.28)

Inserting now (A2.28) in (A2.24) and taking into account item 5) above, we obtain
the bounds (3.43) and (5.57) for the case that no derivative is acting on the fields.
The generalization to the case in which also derivative fields are allowed is trivial
and we left it to the reader.

Finally we want to show the result claimed in Lemma 1 of Sect. 7; i.e. we want to
compare the finite and infinite volume expectations of a generic monomial ^h\
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We can obviously define in the finite volume the vectors A\ ' , B^ ' such that

(A(*>L\Bf>L)) = g$L). (A2.29)

This is done in a way totally analogous to (A2.16), with the integral replaced by a
sum. The result that now we want to prove is therefore the following:

^'L\ βf L))| < ~ 7 ^ "V1'1 (A2.30)

This is easily achieved using the obvious property:

μ w _ ^ D n < ̂ f + M w ^ \\ψ-B? L)\\ <j^+hlq'1, (A2.31)

and the well known relation:

det(M + M') = ̂  detm(M) detm C(M') + det M + det M ' , (A2.32)

where Σ is the sum over the (non-void) minors of the matrix M + M', and detm(M)
m

(detmC(M7)) is the determinant of the minor m (of the complementary mc of m) of
the corresponding matrix.

In fact, let us write:

det(4A\ Bf>) = dct(A[h) + Af'L) - Af'L\ Bf'L))

= d^((A[h) - A(^L),Bf'L)) + {Af'L\ Bf>)). (A2.33)

Using now (A2.32) we have:

- -4^'L ), β f } ) (A2.34)

Using (A2.31) and the Gramm-Hadamard inequality it is now obvious that the second

and third addend in the r.h.s. of (A2.34) can be bounded by —ι—- 7 2 j h ^ (note
L

that the total number of non-void minors is 4'pl/2 — 2). Repeating the same argument

for Bf] we obtain (A2.30).

Appendix 3. The Bound (5.60)

In this section we want to prove the bound (5.60). We can write:

VT Vυnotep v

where

fY[e-^hι^ΛίH(ξυ-ξ'vyA. (A3.2)
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Here r is the set of all interpolation parameters and T is a set of lines obtained
by choosing one of the anchored trees Tv in each non-trivial vertex. Moreover, if
I G T, we denote ht the corresponding frequency index and ξt, ηι its endpoints; ht is
the frequency of the contraction between the two field variables, emerging from the

space vertices ξι and ηt, which gave rise to the factor e~KΊ ι\^ι~^ι\ (see Appendix 2).
Note that ξι and ηι

a) either coincide with one of the integration variables x, and in this case we shall
say that they are simple space vertices;
b) or are convex combinations of the integration variables through the inteφolation
parameters, and we shall say that they are interpolated space vertices.

Note also that T is not in general a tree, if some space vertex is an interpolated
one. However, we can uniquely associate to T a tree f connecting the set x of the
integration variables, by substituting ξL and ηι with the space vertices xι and yι (which
can coincide with them), from which the corresponding field variables emerge before
the application of the M operations [see Sect. 5, item 5 before (5.31)]. There is of
course a one-to-one correspondence between the lines of T and f.

Given a non-trivial vertex υ £ r, we shall denote Sv the subset of f, connecting
the points in xυ (recall that xυ is the set of integration variables associated to the
vertex v) and Sv the corresponding subset of Γ; of course:

sυ= U τ« < A 3 3)
n t ϋ>v

Finally, we shall say that a line in T is a simple line if it connects two simple
space vertices, an interpolated line if one of its endpoints is an inteφolated space
vertex; note that, if the line / G T is a simple line, then it is also true that / G T.

The main point of this appendix is the proof that

(H (A3.4)

where C is a suitable constant and

f ( l ) (A3.5)

As in Sect. 5, we shall suppose, for simplicity, that only local terms are associated
to the endpoints of r.

We first bound the factors (ξυ - ξf

υ)
Zv; recall that zv is a positive integer < 2 and

that (ξv — ξ/

vy
v denotes the tensor of rank two, if zv = 2. We can write:

ι=\ j=l

r
where Λ̂  and μ- are inteφolation parameters, hence they are positive and Σ \ ~

s i=l

Σ μ, = l

We have, for any ε > 0,

\ihv Σ \χι-υι\
\ξv -Q< sup \χ. -yό\< CεΊ~

hve ι ^ , ( A3.7)
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where Cε is a suitable constant and Sv is defined before (A3.3). Since zv < 2, (A3.7)
implies that

eihv Σ \*ι-yι\
\ξv - C\2v < C2

εΊ-
h^e *sυ . (A3.8)

We observe now that, given any line / e f, we can associate to it all the factors

eεΊ ι\χι-yι\ c o m i n g from the r.h.s. of (A3.8), for each non-trivial vertex containing
2ε\xι-yι\ Σ Ίh

that line; the product of these factors can be bounded by e h-hι (the factor 2
in the exponent comes from the observation that, in each line of τ connecting two
non-trivial vertices, at most two trivial vertices can array a factor \ξυ — ξf

v\
Zv with

zυ > 0). Hence we have:

Π &-&I*" < (UCh-hυίυ)( Π ^ 7 k ' | l r ή (A3.9)
J \ )

In order to complete the proof of (A3.4), we have to bound the first factor in the
r.h.s. of (A3.2). Let us define K' SO that

(A3.10)

that is

«' = ^ ( l - - l . (A3.ll)

Hence we have, for any / G T:

" *-*fΊh\ξι-vι\γ m (A3.12)

h<hι

If the line I G T is a simple line, we associate to it a factor e~κ Ί zl^~^l, taken
from the r.h.s. of (A3.12), whose remaining part will be used as explained below.
Note that all the lines associated to the higher non-trivial vertices in r, different from
the endpoints, are simple lines.

Let us now suppose that the line / e T is an interpolated line, but y{ is a simple
r

space vertex. We can write ξt = Σ \x^ with x% simple space vertices associated to

some non-trivial vertex υ of r, having frequency index hυ > ht\ the set {xx,..., xr}
has to contain the special space vertex xt [see the remark before (A3.4)]. We have:

l»i -Vι\<\xι- ξι\ + \ξι ~ Vι\ < Σ λ i l x « -χι\ + \Zι~ Vι\

<\x-Xl\ + \^-yi\, (A3.13)

where x is defined so that \x — x{\ = sup \xi — X/|.
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Fig. 11.

In the tree Sv we can find a unique path W connecting x \s xx. We shall distinguish
two cases.
a) W is made by lines belonging also to Γ. In this case, for any I e W, since hi > ht,

we can extract from the r.h.s. of (A3.12) a factor e~κ Ί ι\χι~yι\\ then we associate to

I all these factors, together with the factor e~κ Ί ι\€ι~yι\ coming again from (A3.12),

applied to the line I itself. Hence, by using (A3.13) and the trivial inequality

~ xι\ - Σ \xϊ ~ yϊ\' (A3.14)

we can bound the overall factor associated to the line / by e κ Ί ι\χι yι\ as in the
case of the simple lines.
b) At least one line of W does not belong to T. In this case, the inequality (A3.14)
is not useful; however, if we can associate to W a subset Tx of Sυ, such that

(A3.15)

the argument of item a) can be immediately generalized. We shall now prove that this
is in fact possible.

Let v be the higher non-trivial vertex containing W and let vx,..., vs, 2 < s < sϋ,
be the non-trivial vertices or endpoints following ϋ in r, which are intersected by
W, that is such that at least one line of W has an endpoint belonging to xv , for any
i = 1,. . ., 5; at least one of these vertices has to be different from an endpoint of r,
otherwise we would be in the situation of item a), since all the lines associated to the
higher non-trivial vertices of r are simple lines. The vi are ordered so that, if we fix
a positive direction in the path W, going from x to xl9 vi is crossed by W before v^
if i < j (see Fig. 11).

Let lz, i = 1,.. ., s — 1, be the line of W going from υi to vι+ι and let xi G xv ,

Vi ^ ^-vι+ι t>e m e endpoints of ζ; we shall denote by ξi9 ηi the corresponding endpoints
of the line ϊi G T, which corresponds to ϊi. We consider now the path ^ ( 1 ) , connecting
x to xt, obtained by taking the s — 1 lines l% with endpoints ^_{ and ηi (we define
η0 = x) and the line with endpoints ξs = xι and ηs_l9 see Fig. 11.
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We have

s - l s - l

x —:
i=\ i=\

- ^ - i l > ( A 3 1 6 )

Moreover, \/i = 1,..., s, ξi and ηι_ι either coincide or are convex combination of
space vertices contained in the same cluster xv , so that:

< SUp \χ-y\ = \x{ - y% (A3.17)

We can now define inductively the construction of the set Tl9 satisfying (A3.15).
We first put in Tt the lines l{, i = 1,. ., s — 1, then we consider all vertices vi9 such
that ξi φ r)i-\, and we look for new sets of lines, contained in Sυ , whose total length
is larger than \xt - yt\. This can be done by iterating the previous procedure and
the overall construction will end when all the vertices involved are endpoints of r or
non-trivial vertices containing only simple lines, for which the construction of item a)
can be applied; this will happen after a finite number of steps, by the remark above
about the higher non-trivial vertices. The bounds (A3.16) and (A3.17) immediately
imply that the set Tt satisfy (A3.15).

The previous construction can be extended without any difficulty to the case
of a line I, whose endpoints are both interpolated space vertices. In fact the two
corresponding sets of interpolated space vertices have to belong to two disjoint vertices
of r.

To complete the proof of (A3.4), it is sufficient to observe that, if we apply previous

construction to all the lines of T, each line contributes a factor e~KjΊ l^~^l, for each
h < ft/, at most two times. This follows easily from the properties of r and from
the observation that at most two interpolated lines of the same frequency may have
endpoints interpolating not disjoint sets of space vertices.

We can now complete also the proof of the bound (5.60). It is sufficient to show
that, given ε > 0,

1 π
n t V>VQ

v not e p

sυ

" N
Ί

-2hv{sv-l) (A3.18)

where Tv is the anchored tree corresponding to Tυ, vι,... ,υSv are the non-trivial
vertices immediately following υ, and Nyl — \PV%\ — \Qυί\ is the number of the
external lines in v\

If we fix in an arbitrary way a point in xυ , we can bound the other integrations

in the l.h.s. of (A3.18) as usual, starting from the endpoints of T, and we get

Π (Cj~2hv)Sv~ι -ί- \fυ\, (A3.19)

s !
n t V>VQ υ '
v not e p

where \Tυ\ is the number of possible choice for Tυ, which can be bounded in the
standard way, by observing that the number of anchored trees with di lines branching
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from the vertex vΊ can be bounded by:

__ ̂  ~ 2 j ! _ NdJ . N^ . (A3.20)

The bound (A3.18) easily follows from (A3.19) and (A3.20).

Appendix 4: Simplified Beta Functional

To show that the ratios ZhjZh, can be eliminated we remark that they can be computed
recursively, from (5.47), (5.48), provided (5.51) holds. On the other hand, if we
suppose that \rh\ < ε for all h > k then it follows from the bounds of Sect. 5 and

from (5.54) that \Zh+{/Zh\ < eC2ε for h > k. Hence the ratios Zh+ι/Zh, regarded as
recursively defined functions of rh+ι,. ,r 0, are holomorphic in the domain \r^\ < ε,
j > h. It follows that the r.h.s. of (5.48), as a function of rh, h > k, is holomorphic
in the domain \rh\ < ε.

In this appendix we prove Eqs. (7.2). Let us consider the second of (7.1) for

with B°'u holomorphic in μ0, uQ for |μo | , \vQ\ < ε, and

sup \B°^(μo,vo)\ <bε2 (A4.2)
| l k l

for some b > 0.
The image of the disk \uo\ < ε under the map i/0 -^ ̂ γuo-{-Bo^(μo, ι/0) will contain

the disk of radius r — ηε — bε2, which is larger than ε, if ε < ε = (7 — l)/6, as we
shall suppose from now on.

Hence for all \v_γ\ < ε there is a point u0 with \uo\ < ε such that (A4.1) holds:
such a point is clearly unique if ε is small enough. Then (A4.1) can be inverted in
the form

ô = 7" 1 ^-i+C f (z/_ 1 ,μ o ) (A4.3)

with C(^_1?/x0) holomoφhic if |z/_j|, |/io| < ε and

< bε2

Ί~
ι

In fact we see that the analyticity domain in v_λ of C(v_ι,μ0) could be taken as
large as εηλ~^ with ξ > 0 prefixed and for ε small enough (depending on ξ).

Let us consider now the equation:

v-i = 7^_i +B-2^(μ_vv_vμo,Ί-
χv_χ +C(y__λ,μ0)). (A4.4)

Equation (A4.4) has the same form as (A4.1) if one sets

and B verifies the bound bε2 and b can be taken to be the same b as in (A4.2), by
the bounds of Sect. 5; hence we can proceed inductively.
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By repeating the argument we arrive at

vh-\ = Ί"h + -^(μh, μ h + v -, μo'>vh) (A4.5)

with .&£ analytic for \μh/\ < ε, h! > ft,, and \vh\ < ε. And, by the same substitutions,
we get also

with J5^ analytic for \μh,\ < ε, h! > ft, and \uh\ < ε.
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