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Abstract: The Cauchy problem for the Yang-Mills equations in the Coulomb gauge
is studied on a compact, connected and simply connected Riemannian manifold
with boundary. An existence and uniqueness theorem for the evolution equations
is proven for fields with Cauchy data in an appropriate Sobolev space. The proof is
based the Hodge decomposition of the Yang-Mills fields and the theory of non-linear
semigroups.

1. Introduction

Quantum theory is usually formulated in a way which depends on the global structure
of space. On the other hand it is supposed to describe phenomena in the atomic and
subatomic scale. Hence, it is of interest to study the quantum theory of systems of
finite spatial extension, and the role played by the boundary conditions.

Yang-Mills theory is a non-linear generalization of electrodynamics. Yang-Mills
fields are connections in a right principal fibre bundle 77 over the space time manifold
X = M x R with structure group GG describing the internal symmetries of the theory.
The canonical variables in the Yang-Mills theory can be described as a pair of g-
valued, time dependent 1-forms A = A,dz’ and E = E,dz* on a typical 3 dimensional
Cauchy surface M, where g is the Lie algebra of the structure group. We assume that
g is equipped with an ad-invariant metric.

The Yang-Mills equations split into the evolution equations and the constraint
equations. The constraint equation is

SE+[A,E]=0, (1.1)

where § denotes the co-differential with respect to a given Riemannian metric g on
M, [-,-] denotes the Lie bracket in g, and the dot denotes the scalar product of forms,
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that is [A-, E] = g¥ [4;, Ej]. The evolution equations can be written in the form

A=FE+d¢—[4,A], (1.2)
E=—*dB—*[A/\B]—[¢,E], (1.3)

where d denotes the exterior derivative, x denotes the Hodge star operator on M and
A denotes the wedge product so that x[A A B] = sijk[AJ, B, ]dx*. Furthermore ¢ is
the scalar potential and

*[AN, A]

B = *xdA + 5

(1.4)

is the dual of the curvature form of the connection defined by A.

There are no evolution equations for the scalar potential. Its arbitrariness reflects
the gauge degrees of freedom of the theory. In order to obtain uniqueness of the
solutions of the Cauchy problem for the evolution equations we have to assume a
gauge condition determining the scalar potential.

The existence of solutions of the Cauchy problem for the evolution part of
Yang-Mills equations in Minkowski space-time has been studied by several authors,
[1-3], who used the temporal gauge condition ¢ = 0. The aim of this paper is to
extend their results to the situation when the Cauchy surface M is a connected and
simply connected compact 3-manifold with smooth boundary OM, and the Cauchy
data are supplemented by boundary conditions requiring the vanishing of the normal
component nA of A, the normal component nF of E, and the tangential component
tB of B. These conditions have physical singificance as they describe the boundary
behavior of the gauge fields in the MIT bag model [4]. We find that the temporal
gauge condition ¢ = 0 is inadequate for this problem and use an analogoue of the
Coulomb gauge.

The differentiability conditions on the fields involved can be expressed in terms
of the Sobolev spaces H* consisting of g-valued 1-forms on M which are square
integrable together with their derivatives up to order k, where the scalar product is
defined in terms of the metric g on M and the ad-invariant metric on g. In this setting
we consider

D={(A,E)c H* x H'|nA =0, ndA =0, nE =0} (1.5)

as the phase space for the Yang-Mills fields with the bag boundary conditions.
One should remark that the prescribed boundary conditions for (A, E) are in fact
independent of the Riemannian metric on M. The results of this paper are summarized
in the following:

Main Theorem. Assume that M is a smooth, compact, connected and simply con-
nected Riemannian 3-manifold with smooth boundary OM. Then, for every (A, E,) €
D, there exists T > 0 and a unique continuous differentiable curve [0,T) — D.t —
(A@), E(t)) satisfying the Yang-Mills evolution equations (1.2), (1.3), where ¢ is a
solution of the Neumann problem

Ap=—6E and ndp=0, (1.6)

and the initial conditions A(0) = A,, E(0) = E,. If the Cauchy data (A, Ey) satisfy
the constraint equation (1.1), then the solution (A(t), E(t)) satisfies the constraint
equation for all t € [0,T).
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Yang-Mills equations are invariant under conformal rescalings of the Lorentzian
metric in M X R,

dt* — g,,da*dz’ — o*(dt? — g;da’da’) (1.7

accompanied by the transformation of the fields (4, F) — (A4, o~ 'E), where the
conformal factor p is a positive function on M x R. Allowing conformal factors to
vanish on the boundary corresponds to the conformal compactification of unbounded
Cauchy surfaces, followed by attaching the sphere of directions at spatial infinity [5].
In this way one can transform the Yang-Mills equations in Minkowski space into the
Yang-Mills equations in spatially bounded domains. In particular, our theorem gives
rise to a corresponding existence and uniqueness result in Minkowski space. This
approach yields results in weighted Sobolev spaces over R® with the weight factor
determined by the conformal factors.

The proof of this theorem is based on the theory of non-linear semigroups, [6].
In Sect. 2 we review elements of the Hodge decomposition and apply it to the Yang-
Mills equations. The existence and uniqueness of solutions of the linearized evolution
equations is studied in Sect. 3. The full non-linear evolution equations are discussed
in Sect. 4. In Sect. 5 the conservation of the constraint equation is studied. Proofs are
given in the Appendix.

The authors would like to thank Jacek Tafel for many interesting and helpful
discussions, and Larry Bates, Paul Binding, Bogdan Lawruk and Wolf von Wahl for
their interest in this work.

2. Hodge Decomposition

The Hodge decomposition of the space L? of square integrable 1-forms on M is
P=%F02®%, where & ={xdu|uc H' tu=0},
Z ={df|[f€H', flopy =0}, @D
H# ={uc [*|du=0, 6u=0},

are the spaces of exact 1-forms, of co-exact 1-forms, and of harmonic fields,
respectively. The decomposition (2.1) is orthogonal in the L? scalar product. We
remark that nv = 0 for all v € & . Similarly, we have a direct sum decomposition,

H =(#nHYs @ZnHY® (#nH, (2.2)

cf. [7]. It is convenient to combine exact and harmonic fields together and obtain what
is called the Helmholtz decomposition [8] for any 1-form v € L? into its longitudinal
and transverse component,

v=ovl4oT, where v'e T dH# and v € 7. (2.3)

Observing that xdB € &, since tB = 0 by the boundary conditions for A and by
(1.4), and that d¢ is L?-orthogonal to %, we can decompose the evolution part of the
Yang-Mills equations this way to obtain

AL = BEY +d¢ — 4, A1,

AT = ET —[¢, A",

BE = —(«[AA, BDE - [¢, 1",

ET = — xdB — (+x[AA, B)T — [¢, EIT .

2.4)
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The scalar potential ¢ we choose as the unique solution of the Neumann problem
Ap=—6F and ndp =0, 25)

which is L?-orthogonal to harmonic functions on M. Since M is connected and
simply connected these functions are just the constants, so the last condition becomes

/d)dV =0, (2.6)

M
and this choice of ¢ together with the boundary condition nE = 0 yields
EY = —dg. 2.7)

Since the operator dd coincides on % with the Laplacian A and *d* = §, we can
rewrite the evolution equations as

AL = _[¢7 A]L7
AT = ET - [¢5A]T7

. 2.8
E' = —(+[AA, BD" ~ [, ET", @9
ET = —AAT — L 6[AA, A] - <[AN, B)T — [, E)" .
3. Linearized Equations
Linearizing the evolution equations given by (2.8) we obtain
AY =0 and EF =0,
3.1

AT =E" and ET =-AAT.
To study the linearized dynamics we introduce the Hilbert space
H={(AE)c H x*|AY e H*>, E* ¢ H'; nA*=nEl =0}, (3.2
endowed with the scalar product
(A, B), (4, B))y = (A", ALY yo + (xd AT xdAT) >
+(EY BV + (BT ET) 2, 3.3)
and show:
Proposition 1. Equations (3.1) define an operator *, given by
F(A,E) = (ET,-AAT), 3.4)
which is skew adjoint in K and has as its domain
D={(A,E)cH|AT ¢ H*, ET € H', ndA =0} . (3.5)

The group exp(t.Y) of unitary transformations in H, generated by .7, induces a group
of transformations in D, which acts continuously with respect to the graph norm

1A, BYE = I(A, B)llf + 1A, B) s - (3.6)
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By definition the longitudinal components of .¥"(A4, E) vanish. To make this more
explicit we can write

F(A,E) = 0" + ET,0f — AAT). (3.7)

The operator . maps to D to H, and its domain D coincides with the phase space for
the Yang-Mills equations given by (1.5). Moreover, the corresponding graph norm on
D is equivalent to the norm

ICA, B)32s it = A2 + 1B - (3.8)

4. Non-Linear Evolution

In terms of the generator . corresponding to the linearized Eq. (3.1), we can rewrite
the full evolution equations (2.8) for curves x(t) = (A(t), E(t)) in D as

X(t) = 7(x@®) + J(x(2)), 4.1

where the non-linear term is given by
J(x) = J(A,E) = ([¢, Al 3 6LAN, Al — «[AN, B] - [$,E]),  (42)

with B given by Eq. (1.4) and ¢ uniquely determined by Egs. (2.5) and (2.6). In order
to apply the general theory on the existence and uniqueness of solutions of non-linear
equations of the form (4.1) to the case of Yang-Mills equations we show:

Proposition 2. The function J, given by Eq. (4.2), maps D to D, and is of class C*
with respect to the graph norm in D given by Eq. (3.6).

Since exp(t¥’) acts as a group of continuous transformations in D endowed with
the graph norm || - ||, we can rewrite Eq. (4.1) together with the initial condition
x(0) = x,, in the integral form

t
x(t) = exp(t)x, + / exp((t — 8).)j(x(s)) ds . 4.3)
0

J restricted to D is a continuous and smooth function from D to D, and so we can
use the theory of non-linear semigroups [6]: For every x, € D there exists 7" > 0 and a
unique curve x(¢), defined for ¢ € [0, T"), satisfying the integral equation (4.3) and also
the differential equation (4.1) with the initial condition x(0) = x,. In fact it suffices to
show that J is Lipschitz in order to obtain this result [9]. With .“(x) = (ET, —AAT),
the following is obvious:

Corollary. For every (Ay, Ey) € D, there exists T > 0, and a unique continuously
differentiable curve (A(t), E(t)) in D, defined for t € [0,T), satisfying the Yang-
Mills evolution equations, given by Egs. (2.8), and the initial condition (A(0), E(0)) =
(Ag, Ep).
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5. Constraint Equation

Let (A(?), E(t)) be a curve in D satisfying the evolution equations. The Lie algebra
valued 1-form A,dx* + ¢dt, where ¢ is determined by Eq. (2.5), define a connection
in the pull-back of & to M x [0,T). The left-hand side of the constraint equation
(1.1) is the covariant, with respect to this connection, co-differential of F, denoted
by
o4 =0E+[A E]. (GCR))
Thus, the constraint equation reads
§,E=0. (5.2)

One can show by direct computation that the evolution equations (1.2), (1.3) imply
the vanishing of the covariant time derivative of 6 4 F,
D
dt

Since the scalar product in g used in the definition of the Hilbert space structures is
ad-invariant, it follows that

d D
o 164E%, = 2<£ 5AE,6AE>L2 =0. (5.4)

Hence |8 AEH2L2 is a constant of motion. In particular, the evolution preserves the
constraint equation (1.1).

Appendix

For the proof of the existence and uniqueness result for the Yang-Mills system the
knowledge about the ellipticity of a Neumann problem for 1-forms and scalar functions
is crucial:

Proposition A.1. Let M be a smooth Riemannian 3-manifold with smooth boundary.
(i) On M the boundary value problem given by

Av=f with nu=0 and ndv=0 (A.1)

is elliptic, where v is a 1-form. Especially, for v € H?, obeying the given boundary
conditions, one can estimate

[oll g2 < K (|40l g2 + [0l ) - (A2)
(ii) For w € H' and nw = 0 the Neumann problem on M given by
Ap=—bw with ndyp =0 (A.3)

is elliptic and has a unique solution 1) in the space of functions L*-orthogonal to
constants. ) is of class H? and the following estimate holds:

¥l g2 < Kallwlipn - (A4

Proof. For (i) we need to show that the boundary value problem (A.1) satisfies the
Lopatinskii-Sapiro condition [11].! Therefore, let p € OM be a boundary point

! See also [10] for a more explicit version of that condition
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and choose g-orthogonal coordinates (z,,,,z;) in the tangent space T, M at this
point such that (0,0, 1) is the inward pointing normal vector. Fourier-transforming
the homogeneous problem corresponding to (A.1) at p with respect to the (x|, z,)-
coordinates yields

(—I&[* + 92)8(), &, 23) = 0, (A5)
where |¢|? = &2 + & and ¥ = §,dz,. The boundary conditions turn into
,53(51352;()) = O»
i£21~)3(£l ’ 62’ O) - 8@3 52(51 s 62, O) =0 ’ (A6)

i§253(§1»§2a0) - am3'51(§1a§2;0) =0.
As the solution set for the (ordinary) differential equation (A.5) we get
7t = {vexp((|¢|z,) | 7 € C} (A7)

so that the linear system corresponding to (A.6) is bijective on %™*. Hence the
boundary value problem (A.1) is elliptic and defines a Fredholm operator [11]. Using
a general argument about Fredholm operators on Banach space [10, Theorem 12.12]
we then get the estimate (A.2).

Considering (ii) the ellipticity of the Neumann problem (A.3) can be shown in the
same way as for (A.1). The existence of a unique solution under the given conditions
as a well established fact [10]. Hence one concludes from ellipticity that 1 is in H?
for w € H'. Therefore one then obtains

19l g2 < Kslléwl| 2, (A.8)
which yields (A.4) by using the continuity of the operator §: H! — L?. [J
In order to study the linearized Yang-Mills equations, given in Sect. 3, we need:
Lemma A.2. The operator A = 6d on & with domain
V={ve #nH|ndv=0} (A.9)
is self-adjoint with respect to the L*-product.

Proof Clearly A maps V to &, and is symmetric on V, since by Stoke’s theorem

/(w - 6dv)dV = /(*dw -xdv)dV + / tw A xndv , (A.10)
M

M oM

and the boundary term vanishes for v € v. Furthermore nv = 0 by definition of V. In
order to prove that A is self-adjoint in & one has to show [12, Theorem 5.19] that
range (I + A) = 7. Therefore let W = ' N H', and a(v, w) be the bilinear form on
W given by

a(v,w) = (v,w) ;2 + (*dv, *dw) 2 . (A.11)

Clearly a(v, w) is continuous and symmetric on W. Since for all w € H ! which are
L?-orthogonal to the harmonic fields, there is a constant C' > 0 such that Friedrichs
inequality

(xdwli}2 + [[6w32) > Cllwl3n (A.12)

[7, Theorem 7.7.9] holds, this implies that a(v,v) > C ||v||§{l for v € W. Hence the
Lax-Milgram lemma [13] implies the existence of an isomorphism A:W — W* such
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that a(v, w) = (Av|w) for all v,w € W. Given g € W*, the equation Av = f means
that

/(w -0)dV + /(*dw — xdv)dV = (f | w) (A.13)
M M

for each w € W. By applying formally Stokes’ theorem (A.10) this yields A+A)v = f
in the sense of distributions on M and ndv = 0 weakly on OM.

It remains to show that for each f € # C W*, the equation Av = f implies that
v € H?, and ndv = 0 strongly on M. The boundary value problem

I+Aw=f with nv=0 and ndv=0 (A.14)

is elliptic by Proposition A.1. Thus the corresponding regularity result? in [14]
guarantees that any solution of (A.14) is in H? for f € L?. This proves that A
is self-adjoint in . O

In Sect. 3 the Yang-Mills equations have been formulated on the Hilbert space
H: = {(4,E)c H x I*| Al e H?, EL ¢ H', nA* =nE* =0}, (A.15)
endowed with a scalar product

«AJE)?(‘Z{’E))H = <AL, AL)Hz + <*dAT, *dAT>L2

+(EE ELy ;0 + (BT ETY,,. (A.16)
Furthermore we had the subspace
D={(A,E) cH|AT € H* ET € H'; ndA = 0}, (A.17)
equipped with the graph norm || - ||, of the operator ., which can be written as
1A, B = IICA, Bl + | AAT 72 + ||+ dET[7, (A.18)

Lemma A.3. (i) The scalar product (A.16) defines on H a norm ||(A, E) ||y, equivalent
to the norm

1A, BINP = 1AM 5 + AT I3 + IEX 30 + 1ET 11, - (A.19)
(ii) The graph norm ||(A, E)||, on D is equivalent to the norm on H* x H', given by
1A, B)ll2 5 = 1A + 1B - (A.20)

Proof To show (i) we need to estimate
CyllxdAT || 2 < AT [l < Cy|%d AT |2 . (A21)

The left-hand side is obvious by the continuity of *d: H' — L?. For the right-hand
side we observe that AT € H' N % is L?-orthogonal to the space .7% and §AT =0,
such that Friedrichs’ inequality (A.12) yields the required estimate for [|AT ;1 in
terms of [[xdAT|2,.

For (ii) e use the same argument for the term ||*dET||2Lz. It remains to show that

CllAT (2 2 ([AAT (17, + AT 150 = Cull AT - (A22)

2 For scalar functions this can also be found in [10]
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Since A, considered as a mapping from H? to L? is continuous, the left-hand estimate
is obvious. On the other side we are led to consider for AT € Z N H2, the boundary
value problem
AAT = f with nAT =0 and ndAT =0. (A.23)
As shown in Proposition A.1 this problem is elliptic, so that we can read off the
required estimate from Eq. (A.2). [
Writing the linearized evolution equations (3.1) for the Yang-Mills fields in the
terms of the operator ., given by (3.4) as
(A¥ + AT E* + ETy = #(A,E) = (0F + ET,0F — AAT), (A.24)
Proposition 1 can be reformulated as follows.
Proposition A.4. The operator ., given by Eq. (A.24), with domain D given by
Eq. (A.17), generates a group exp(t.¥’) of unitary transformations in the Hilbert space
H. This induces a group of transformations in D, which are continuous with respect
to the graph norm
1A, BYII% = IICA, Bli + |17(A, B) I - (A.25)

Proof. In order to prove that . with domain D generates a 1-parameter group of
unitary transformations in H we have to show that . is skew adjoint, that is ./ is
skew-symmetric and range (I +.7") = H, cf. [12]. If (4, E) and (4, E) belong to
D, then AT and A7 belong to V, the domain of A given by Eq. (A.9). The skew-
symmetry of .% is proven by using (A.10):
(A, E), S (A, E))g = (xdAT xdET) ,, — (ET, AAT) ,
= (AAT ET),, — (+xdET,+dAT),
= —(S(AB),4,B)y. (A.26)
To show that range (I +.%°) = H, consider the corresponding system of equations
given by
Ab=f AT+ ETY=g, EY=h, and (ET —A4AT) =k, (A27)
with (f, g,h, k) € (¥ © F)NH?) x (£ NHY x (Z & F#)N H') x & arbitrary.
The solvability of the longitudinal equations is obvious. Eliminating £ we get
I+ MAT =(g—k) with (g—k) € & arbitrary . (A.28)
This equation is always solvable in H? as shown in Lemma A.2. For ET = (g—AT) e
% N H' we end up with a pair (A, E) € D satisfying Eq. (A.27).

The 1-parameter group exp(t.””) of unitary transformations in H generated by .
commutes with ./*” and preserves the domain D, [15, p. 239]. Hence one gets for every
(A, E)in D and every t € R,

lexp(t5) (A, B)I%, = || expt7) (A, B + || exp(t5).7 (4, B)y
= A, Bl + 74 B = 1A B, (A29)
which shows that operators exp(t”) are bounded on D. The group property of
exp(t¥’) in D follow from its group property in H. Moreover, the same arguments,
as used above, yield
+ || exp(t/ )7 (A, E) — (A, E)[H —0, (A.30)
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which implies that exp(t.) is a continuous group of operators in D. [
To estimate the non-linear terms of the Yang-Mills evolution we need further:

Proposition A.5. Let M be a compact 3-manifold with boundary, then the following
holds for 1-forms and functions of the indicated Sobolev classes, respectively:

vywe€H*=v-we H* and |v-wl|g < K ||vlgllolg, (A31)
veEH  we H = v-we H and |v- wlg < Kv|glwl; - (A32)
If v and w are 1-forms the dot-product stands for any algebraic product.

Proof. For functions (A.31) reflects the Banach algebra property of the space H? over
the 3-manifold M, cf. [16]; for 1-forms the estimate follows from that property.

To show (A.32) we observe from the Sobolev embedding theorem that v and w
are in L* if they are in H'. Hence we get from that theorem and Holder’s inequality

- wlis < JullZallwlize < Cllullllwll: - (A33)

On the compact 3-manifold M, any v € H? is continuous, hence sup [v] < C,||v|| ;2
and

-l < (sup o])? / PV < Cylol2p 2 - (A34)
M

Using these two estimates we see from
1
3l wli < [1Dv-wlf, + v Dwlf; + [lv-w]
< Cy||Dol3nllwll3 + Cslloll3 [ Dwl7,
+ Crllvll 3 w3 (A.35)
that (v - w) is of class H' and obeys the estimate (A.32), stated above. [J

Using this proposition, we now can show that the non-linear term J(x) in the
Yang-Mills evolution equations is of class C'*°.

Proposition A.6. Let the Hilbert spaces H and D be given by Egs. (3.2) and
D={4,E) cH*xH |nA=nE=0,ndA =0}, (A.36)
respectively. The non-linear operator

J:D—-H,

. (A.37)
where ¢ is a solution of the Neumann problem
Ap=—6FE and ndep =0, (A.38)

and B = xdA+ % *x[AN, A], has its range in D and J.D — D is bounded, continuous
and smooth with respect to the graph norm || - ||, of D.
Proof. For the range of J we observe from Proposition A.1 that ¢ is of Sobolev class

H? such that [¢, A] also is in H? by (A.31). Similarly we find *[AA, A] in H?, hence
B and *d[AN, A] are of class H', and from (A.32) we get *[AA, B] in H!.
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With respect to the boundary conditions we immediately see from (A.36) and
(A.38) that

nlg, A] = [¢,nA] =0,
ndl(¢, A] = n[dopA, Al + [¢,ndA] =0,
né[ANA, A] = §(n[AN, A] =0,
n(x[AN, B] — [¢, E]) = *[tAN,tB] — [¢,nE] = 0.

Hence the operator J maps D to D. In order check continuity it suffices by Lemma A.3
to estimate

%3 = || % [AA, B) — «[AA, B)|%,,  and (A40)
“2 =6, E1- 9, Bll5:

for || A — Al| ;2 and for ||E — E|| ;1 sufficiently small. For the first expression we get
from (A.31), the elliptic estimate (A.4) for ||¢|| 42, and the continuity of the operator
§:H* - H!,

£ < OB A = Al + A+ [AIGDIE — B3
+ A+ AR 1A - AR (A41)
Considering &5 we obtain by using the same arguments,
1Bllg < Cy(l|All g2 + ||A“i12)
and (A.42)
IB = Bllg < Gl A~ Alln(1 + [|Allg2) -

From these estimates and the argument (A.32) we obtain

(A.39)

&5 < Cyll A= A3 (1 + (| Al 2)* (A43)
Finally we see from (A.32) and (A.4) that
&h < C||E = Bl (1 + | El| ) (A44)

Putting these terms together we end up with the required estimate
1A, B) = JA, B)Y, < CsL+ 1Bl g + | Al g2)* |(A, B) = (A, B[S, (A45)
which proves the continuity of J:D — D. With respect to the differentiability of J
write y = (a, e) for an arbitrary element y € D. Then
DJ(A, E)(a,e) = (¢, Al + [¢, al, 6[AA, a] — +[aN, B]
— *[AA,b] — [¢, E] — [, €]),
where A = —de, ndy = 0 and b = *da + *x[AA, a] . (A.46)
Observing that a, e, and b are of the same Sobolev classes as A, E, ¢ and B, all
the estimates used to prove continuity of J also can be applied here. Hence one
shows, literally as above, that dJ(A, F) (a,e) is continuous. Analogous arguments

also hold for the higher derivatives of J. Actually, derivatives of J of order > 4
vanish identically. [J

This result proves Proposition 2, and completes the proof of the Main Theorem.
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