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Abstract: The author considers an elliptic analogue of the Knizhnik-Zamolod-
chikov equations - the consistent system of linear differential equations arising
from the elliptic solution of the classical Yang-Baxter equation for the Lie algebra
δIN. The solutions of this system are interpreted as traces of products of intertwin-
ing operators between certain representations of the affine Lie algebra 5Ϊ#. A new
differential equation for such traces characterizing their behavior under the vari-
ation of the modulus of the underlying elliptic curve is deduced. This equation is
consistent with the original system.

It is shown that the system extended by the new equation is modular invariant,
and the corresponding monodromy representations of the modular group are
defined. Some elementary examples in which the system can be solved explicitly (in
terms of elliptic and modular functions) are considered. The monodromy of the
system is explicitly computed with the help of the trace interpretation of solutions.
Projective representations of the braid group of the torus and representations of
the double affine Hecke algebra are obtained.

Introduction

In 1984 Knizhnik and Zamolodchikov [KZ] studied matrix elements of products
of intertwining operators between representations of the affinization g of a finite
dimensional simple complex Lie algebra g at level k. These matrix elements are
analytic functions of several complex variables, and it was found that they satisfy
a certain remarkable system of linear differential equations which is now called the
Knizhnik-Zamolodchikov (KZ) system:

- - r (i)

Here Ψ ( z ί 9 . . . , zn) is a function of n complex variables with values in the product
W = Vι (x) V2 ® ' ' ' ® Vn of n representations of g, K is a nonzero complex number,
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and

Ωij = Σ(Xp)i(Xp)j>
P

(xp)i = Id, (x) - ® Id,,! ® xp® Idί+1® ® IdπeEnd(PF) , (2)

where the summation is over an orthonormal base {xp} of g with respect to the
invariant form, and Id7 denotes the identity operator in Vj.

Solutions of the KZ equations are very interesting special functions which
generalize the Gauss hypergeometric function. By now explicit integral representa-
tions of these functions have been found [M, S V], and their monodromy has been
completely computed [Koh, Dr], [TK] (for g = sI2), [V]. It turned out that the
monodromy of the KZ system expresses in terms of the quantum .R-matrix - the
quasitriangular structure of the corresponding quantum group Uq(§), where

(2πi\
q = exp(^-J.

Cherednik [Chi] considered a general consistent system of differential equa-
tions of the "factorized" form

BΨ n

KJΓ= Σ ry(z l -zj)y, (3)
VZi j=l,jφi

where r(u) is a meromorphic function with values in g <g) g, and rtj(u) denotes the
action of r(u) in W: the first factor acts in Vt and the second one in VJ9 and the
unitarίty property rί<7 (w) = — rβ(— u) is assumed (this condition is equivalent to the
invariance of solutions of system (3) under the simultaneous translation of all
variables z,- by the same constant). It was observed in [Chi] that system (3) is
consistent if and only if the function r(u) is a classical r-matrix, i.e. if it satisfies the
classical Yang-Baxter equation:

[rj/Zj - Zjl rik(Zj - zk)] + [ r ί j ( z j - zk), rjk(zk - zf)]

+ [rίfc(zfc - z£), rjk(Zί - z;)] = 0 . (4)

Therefore, a consistent system (3) is called a local r-matrix system.
Clearly, the KZ system is a special case of a local r-matrix system, for a simplest

r-matrix r(u) = Ω/u, Ω = ΣPXP®XP, (the summation is over an orthonormal base
{xp} of g). This gives rise to a question: what other r-matrix systems are possible?
This question was essentially answered by Belavin and Drinfeld in 1982 [BeDr].
They classified all solutions of (3) satisfying the nondegeneracy condition: r(u) is
invertible as a map g* -» g for at least one complex number u. This classification
states that all such solutions are unitary and, in terms of dependence on M, up to an
equivalence relation, there are only three types of functions r(u): rational, trigon-
ometric, and elliptic. For instance, the function r(u) = Ω/u which is involved in the
KZ system is a rational r-matrix.

Trigonometric and elliptic nondegenerate unitary solutions of the classical
Yang-Baxter equation are completely classified [BeDr]. On the contrary, a satis-
factory classification of rational solutions is unknown.

The Belavin-Drinfeld classification suggests a two-step generalization of the
KZ system: KZ equations (rational r-matrix equations) - trigonometric r-matrix
equations - elliptic r-matrix equations. One should expect that these local
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r-matrix systems should have remarkable properties and provide new interesting
special functions as their solutions.

Cherednik [Ch2] found an interpretation of solutions of nondegenerate unitary
r-matrix equations in terms of representation theory of affine Lie algebras. It was
proved in [Ch2] that the general solution is the coinvariant (or the so-called
τ-function) of the Lie algebra of g-valued rational functions on a rational or elliptic
curve with singularities at designated points z 1 ? . . . , zn with respect to a certain
representation of this algebra. This interpretation has found many applications.

The properties of the trigonometric r-matrix equations are now fairly well
understood. Let g = n + 0 I ) 0 n ~ b e a Cartan decomposition of g, and let Ω+, Ω~,
Ω° be the orthogonal projections of Ω to the subspaces n+ ®n~,π" ®n+, and
I) ® I), respectively. Then the simplest trigonometric g ® g-valued r-matrix has the

Ω+ eu + Ω~ ,
form r(ύ) = —, where Ω± = Ω± + ^Ω0. It turns out that there exists

a transformation of coordinates which maps the n + 1-point KZ equations to the
n-point trigonometric r-matrix equations with the above r(u) (which are called the
trigonometric KZ equations), which allows one to carry over to this case all the
results about the KZ equations, including the integral formulas.

Trigonometric r-matrix equations with more general r-matrices were studied by
Cherednik [Ch2], who gave an explicit integral formula for the general solution.

Nondegenerate unitary elliptic r-matrices exist only for g = $\N. They were
found in the case N = 2 by Sklyanin and in the general case by Belavin [Be] (note
that the N = 2 elliptic r-matrix is the quasiclassical limit of Baxter's quantum
.R-matrix which arises in statistical mechanics):

p(z|τ) = Ωζ(z) + X (1 ® βny-™)(Ω)(ζ(z _m + m

c -

N

m + nτ

N
(5)

where β, γ are two commuting inner automorphisms of sIN of order N with no
common invariant vectors, τ lies in the upper half of the complex plane, and C(z|τ)
is the Weierstrass (-function. The properties of the corresponding r-matrix equa-
tions are not very well understood. For example, integral formulas (or any other
explicit representations) for solutions are unknown.

It has been anticipated that some progress in the elliptic case can be achieved by
using the intertwining (vertex) operator language which was originally used by
Knizhnik and Zamolodchikov [KZ]. Frenkel and Reshetikhin [FR] conjectured
that if one takes traces of products of intertwiners rather than matrix elements, one
should be able to obtain solutions to the elliptic r-matrix equations. The same idea
occurs in the paper of Bernard [Ber] who studied expectation values for the
Wess-Zumino-Witten model on an elliptic curve and was led to consider trace
expressions of a similar sort. Bernard deduced some differential relations for traces,
but they were not a closed system of differential equations since the two commuting
inner automorphisms did not enter the game. The idea to consider traces is also
suggested by the aforementioned theory developed in [Ch2] which states that
solutions of an elliptic r-matrix system should express in terms of the τ-function for
the corresponding elliptic curve, which is basically a trace expression involving
vertex operators.
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This paper is devoted to making this idea work (at the price of a few modifica-
tions). More precisely, we represent solutions of the elliptic r-matrix equations in
the form

F(zl9.. . ,zn\q) = Ύr\Mλk(φi(Zl). ..Φn(zn)Bq-d), (6)

where Mλιk is a Verma module over (a twisted version of) the affine algebra sϊ^,
Φ'fo): Mλi9k^> M λ ί _ 1 ? f c ® Vi are intertwiners for sϊN (the action of $ΪN on Ff:
(a (x) tm)v = zmav, a e g, v e Kf; the hat denotes a completion of the Verma module),
q e <C, |g| < 1, d is the grading operator in Mλ>fc, and B is the map of Verma modules
induced by an outer automorphism of sϊN of order N (rotation of the affine Dynkin
diagram, which is a regular JV-gon, through the angle of 2π/N). This representation
helps to compute the monodromy of the elliptic r-matrix equations. It is still
unclear how to deduce integral formulas for solutions similar to those existing for
the rational and trigonometric KZ equations.

Remark. The recent paper [CFW] studies generalized hypergeometric functions
on the torus - integrals over twisted cycles of products of powers of elliptic
functions. These functions satisfy certain linear differential equations with elliptic
coefficients, but it is not clear how these equations are related to the elliptic
r-matrix equations.

In Sect. 1 we introduce a realization of an affine Lie algebra twisted by an inner
automorphism and twisted versions of Verma modules and evaluation modules.
This twisting is necessary to eventually produce solutions of the elliptic r-matrix
equations.

In Sect. 2 we define twisted intertwiners and deduce a differential equation for
them. Then we define twisted correlation functions and show that they satisfy
a twisted trigonometric KZ system. This system, however, can be reduced to the
usual trigonometric KZ system by a simple transformation.

In Sect. 3 we study trace expressions of the form (6) and prove that they satisfy
an elliptic r-matrix system of differential equations in the variables logzj. (We call
this system the elliptic KZ equations.) We also deduce one more differential

equation which expresses the derivative — in terms of F. Thus we get a consistent
dq

system of n -f 1 differential equations - the extended elliptic KZ system.
In Sect. 4 we show that the elliptic KZ equations are modular invariant - they

are preserved under the action of the congruence subgroup Γ(N) of the modular
group. The n + 1th equation involving the derivative by q is "almost" invariant - it
undergoes a very minor modification under the action of an element of Γ(N). This
implies that the fundamental solution of the extended elliptic KZ system changes
under the action of the modular group according to a certain representation of this
group. In other words, the functions F(z l 5. . . , zn\q) yield nontrivial examples of
vector-valued automorphic (modular) forms.

In Sect. 5 we consider a few simple special cases of the extended elliptic KZ
system for s!2 in which it can be solved in quadratures. In this case, solutions are
expressed in terms of elliptic and modular functions.

In Sect. 6 we compute the monodromy of the elliptic KZ equations. According
to the results of [Chi], this monodromy yields a representation of the generalized
braid group of the torus. We compute this representation and show that local
monodromies (around the loci zf = z7 ) are the same as for the usual KZ equations
and can be described in terms of the quantum .R-matrix - a known result from the
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theory of r-matrix systems [Chi]. Global monodromies (around the τ-cycle of the
elliptic curve) are described in terms of ordered products of ^-matrices, of the type
occurring in the quantum KZ equation (see [FR]). In the special case when for all
j Vj is the JV-dimensional vector representation of sIN, the monodromy representa-
tion is a representation of the double affine Hecke algebra recently introduced by
Cherednik [Ch3]. As an aside, the examination of monodromy helps to prove that

if K = , where M is an integer then the elliptic KZ equations are integrable in
NM

elliptic functions.
A generalization of the results of this paper to the case of a quantum affine

algebra will be described in a forthcoming paper.

1. A Twisted Realization of Affine Lie Algebras

Let g be a finite dimensional simple Lie algebra over <C of rank r. Denote by <, > the

standard invariant form on g with respect to which the longest root has length ^/2.
Let t) denote a Cartan subalgebra of g. The form <,> defines a natural

identification I)* -» t): λ\-^hλ for λel)*. We will use the notation <, > for the inner
product in both ί) and I)*.

Let A + be the set of positive roots of g. For α e A +, let eΛ, /α, hΛ be the standard
basis of the s!2-subalgebra in g associated with α: [/ια, ea~] = <α, α>eα,
tΛx>/«] = — <α> #>/α> IXo/α] = ^α Let |α| denote the number of summands in the
decomposition of α in the sum of simple positive roots.

Let N be the dual Coxeter number of g. Let p = i£α6j+ α. The elements p and
hp satisfy the relations p(hΛ) = oc(hp) = |α|.

2nilhp

Let γ be an inner automorphism of g: γ(a) = Ad C(a\ αeg, where C = e N ,
/eZ, 1 5Ξ / < N, and /, N are coprime1. This automorphism is of order N.

The action of y on root vectors is as follows: γ(ea) = ε | α |eα,y(/α) = ε" |α |/α, where
ε = e2πil/N is a primitive ΛΓth root of unity.

Let xj9 1 ̂  j ^ r, be an orthonormal basis of I) with respect to the standard
invariant form.

Let g = g ® C[ί, ί"1] 0 Cc be the affine Lie algebra associated with g. The
commutation relations in this algebra are

[α(ί) + λc, b(t) + μc] = la(t), ft(ί)] + ̂  $ ^'(O&WX'^ί c (1.1)
zπi | f | = 1

for any two g-valued Laurent polynomials a(t\b(t\ and complex numbers λ, μ
[Ka]. The elements ea (x) ίm, /α ® ίm, x£ (x) ίw, c, for m e Z, α e J +, form a basis of g.

Define the subalgebra gy of g consisting of all expressions a(t) + λc with the
property a(εt) = γ(a(t)).

Lemma 1.1. (see [PS], p. 36) The Lie algebra gy and g are isomorphic.

1 Note that throughout the paper we denote the complex number i = ^/ — 1 by a roman "i", to
distinguish it from the subscript i, which is italic.
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Proof. The elements eΛ ® ί |α|+m",/α <g> Γ |α |+mΛΓ, xt (x) ίm*, c, for meZ, αezl +, form
a basis of gy. Define a map φ: gy -» 9 by:

φ(xj®fnN) = Xj®tm, m φ O ,

1 c
<£(Xi) = X j - — p(x*)c, <£(c) = — . (1.2)

It is easy to check that φ is an isomorphism of Lie algebras.
Thus, the twisting of g by γ does not create a new Lie algebra. However, the

twisted realization gy of the affinization of g will be very convenient in further
considerations.

Let us translate some well known results about representations of g into the
"twisted" language.

First of all, define the polarization of gy: gy = gy

+ 0 g~ φ ί) 0 <Cc. Here gy

+ is the
set of polynomials a(t) vanishing at 0, and g~ is the set of polynomials a(t)
vanishing at infinity.

Next, define Verma modules over gy. This is done exactly in the same way as for
the untwisted affine algebra. Let λ e ί)* be a weight, and let A; be a complex number.
Define Xλtk to be a one dimensional module over gy

+ 0 t) 0 (Cc spanned by a vector
v such that gy

+ annihilates υ, and cυ = kv, hv = λ(h)v, hel). Define the Verma
module

M^^IndtθDθCc^, fc. (1-3)

Now define evaluation representations. Let V be a highest weight module over
9. Define the operator CeEnd(F) by the conditions: Cαw = y(α)Cw for any
we F, αeg, and Cw0 = w0, where w0 is the highest weight vector of V.

Let V(z) denote the space of V- valued Laurent polynomials in z, and let Vc(z) be
the space of those polynomials which satisfy the equivariance condition
vv(εz) = Cw(z).

The natural (pointwise) action of g on V(z) restricts to an action of gy on Vc(z).
For this twisted action we have an analogue of Lemma 1.1.

Lemma 1.2. The isomorphism φ transforms the §y-module Vc(z) into a ^-module,
isomorphic to V(z).

Let us introduce the twisted version of currents. Set

Jββ(z)= £ e^ί^ + ̂ .z"^-^"1 ,
meZ

Jh(z)= X h®tmN z~mN-\ /ze ί) . (1.4)
meZ

Thus by linearity we have defined Ja(z) for any αeg.
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Define the polarization of currents:

Λ»= Σ * β®f | β | + m N z- | β |-m N-1,
m<0

(1.5)
m<0

This defines Jfl

+ (z) for all a e g. Now set

Jfl-(z) = Jα

+(z)-Jα(z). (1.6)

Note that this polarization is not quite the same as the standard polarization of
currents for the untwisted g [Ka], i.e. the isomorphism φ does not match up these
two polarizations.

The Lie algebra gy has a natural Z-grading by powers of ί. Thus every Verma
module Mλ,k is naturally Z-graded: the degree of the highest weight vector v is zero,
and for every homogeneous vector w deg(α (x) ί~mw) = deg(w) — m. Let
deEnd(Mλfk) be the grading operator: if w is a homogeneous vector then
rfw = deg(w)w. The operator d satisfies the commutation relations
[<U(f)] = ta'(ί), [d, c] = 0.

Let us find an expression for d in terms of elements of gy - a twisted version of
the Sugawara construction. We assume that k Φ — 1.

Proposition 1.3.

where : : is the standard normal ordering:

®tnfx®rn n < 0

:>ι
Proof. Let ι̂,χ be the Verma module over g with highest weight A and central
charge K. Lemma 1.1 implies that the isomorphism φ transforms the module
Mλίk over gr into the module JΐAtK over g, with K = Nk, A = λ + kp. Let D be the
grading operator in JίAtK which is associated with the grading of g by powers of ί.
Then, according to Lemma 1.1, φ(d) = ND + hp. Therefore,

d = φ-^ND + hp) = Nφ~l(D) + hp + <p, pyk . (1.9)
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For the standard affine algebra g, the operator D is given by the Sugawara
formula:

D= ~1ΓΓ^ Σ ( Σ :e α ®ί m / α ®ί~ m : + ̂  Σ :xj®tmxj®Γ
K + W meZ \ α e d + Zj=l

where the normal ordering is defined by (1.8) and

) - (1-11)

Substituting (1.10) into (1.9), after some algebra we get (1.7).
Let us now extend the Lie algebra gy by adding a new element d satisfying the

relations [δ, α(ί)] = ta'(*)» [δ, c] = 0. Denote the obtained Lie algebra by gr Then
the action of gy in every Verma module Mλtk extends to an action of gy: one sets

d = d - —-1 — - (to get rid of the free term in (1.7)). The action of d can also be
2(k + 1)

d
defined in evaluation representations Vc(z)\ d = z — . Thus Vc(z) becomes

αz
a gy-module.

2. Twisted Intertwiners and Knizhnik-Zamolodchikov Equations

We will be interested in gy intertwining operators Φ(z): Mλtk-> MVtk® zAVc(z),
where the highest weight of V is μ, (g) denotes the completed tensor product, and
A is a complex number.

Lemma 1.1 and the results of the untwisted theory imply the following state-
ment:

Proposition 2.1. Operators Φ are in one-to-one correspondence with vectors in V of
weight λ — v. This correspondence is defined by the action of Φ at the vacuum level.

Let z0 be a nonzero complex number. Evaluation of the operator Φ(z) at the
point z0 yields an operator Φ(z0): Mλίk -» MV j f c (x) F, where M denotes the comple-
tion of M with respect to the grading.

From now on the notation Φ(z) will mean the operator Φ evaluated at the point
ze(C*. This will give us an opportunity to regard the operator Φ(z) as an analytic
function of z. This analytic function will be multivalued: Φ(z) = zJΦ°(z), where Φ°

is a single-valued function in C*, and A = —-—— ^—.
2(k + 1)

Let u belong to the restricted dual module V*. Introduce the notation
Φu(z) = (1 (x) w)(Φ(z)). Φu(z) is an operator: Mλ>k -> MVίk.

The intertwining property for Φ(z) can be written in the form

It is convenient to write the intertwining relation in terms of currents.
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Lemma 2.2.

± _ 1 ζN + ZN

2ζ z — ζ

[J±(0, ΦB(z)] = Cy_*r Φβ.B(z), α6 J +

[ J± (f), ΦB(z)] = r

z/_5c/ */.«(4 ^ e zl + . (2.2)

The identities marked with + make sense if | z| > | ζ |, and those marked with -
make sense if |z| < |£|.

Now we are ready to write down the twisted version of the operator
Knizhnik-Zamolodchikov (KZ) equations.

Theorem 2.3. The operator function Φu(z) satisfies the differential equation

(k+1}Tz Φu(z] = ^+

 (Jί (*)*/.«(*) - Φf.u(z)Jem (z))

+ Σ

+ Σ Jΐωφ^ω - Φ,,u(z)j-(z)) . (2.3)
7=1

The logic of deduction is the same as in the untwisted case (see e.g., [FR]).
Equation (2.3) is nothing else but the intertwining relation between Φ(z) and d:

z^-Φ l l(z)=-[3,ΦM(z)]. (2.4)
az

Substituting the expression for d (Eq. (1.7)) into this relation, after some calcu-
lations we obtain (2.4).

Now let us define the twisted correlation functions. Let Vί , . . . , VN be highest
weight representations of & and let ΦLf(zί): M A f j f e -> Mλi_ί f k , 1 ̂  i ̂  n be interwin-
ing operators. Set λn = λ and A0 = v. Let t;λ be the highest weight vector of MA>fe,
and let t;* be the lowest weight vector of the restricted dual module to Mv>fe.
Consider the correlation function

Ψ U ί t tUΛ(zl9.. . ,zπ)= (υϊtΦtizJ. . .Φn

un(zn)vλ\ u^V, , (2.5)

which makes sense in the region \z^\ > - - > \zn\. The function Ψ can be regarded
as taking values in the space V± (x) ® Vn.

The function Ψ satisfies a twisted version of the trigonometric KZ equations.
Before writing these equations down, let us recall the definition of the trigonomet-
ric classical r-matrix [BeDr].

Let ί2 = Σ«^ + (e«®/«+/«®<> + Σ;=ι*;®*;> ^eg®g. For O ^ p ^
N — 1, let Qp be the eigenspace of γ in g with the eigenvalue e2πip/N. Let Ω? be the
orthogonal projection of Ω to the subspace gp® g_ p of g (x) g. The trigonometric
r-matrix has the form

O° N~l

- + Σ - (2.6)
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Introduce the convenient notation.

\ then rv = Σ(W)y (2.7)

The main properties of the trigonometric r-matrix r(z) are the classical Yang-
Baxter equation and unitarity:

[Tij(Zi/Zj)9 rik(zi/zk)~] + [r /Zi/Z;), Ofcίzj/Zfc)] + [rik(Zi/zk\ r>(zj/zk)] - 0 ,

r ί /(z)=-r j l(z-1). (2.8)

Theorem 2.4. TTze function Ψ satisfies the following system of differential equations:

dΨ 1
(k + l)zf — = Σ ryίzi/z,) y + - (ΛΛ + Λ v) y . (2.9)

OZi 7 Φ 1 Z

Proo/ The proof is analogous to that in the untwisted case (see [FR]). It is based
on the direct use of relation (2.3).

Since the twisted intertwining operators are obtained from the usual ones by
a simple transformation, we should expect that system (2.9) should reduce to the
untwisted trigonometric KZ equations. This turns out to be the case. Indeed, set
ζi = zf , and Ψ(ζl9 . . . , £ „ ) = (zf)x . . .(z^)ΛΨ(zl9 . . . , zj. Then the function
y satisfies the trigonometric KZ equations:

where Ω± are the half Casimir operators defined in the introduction, and
λ = λ + kp9 v = v + kp. Therefore, the standard theory of the KZ equations can be
applied to the study of the properties of (2.9).

3. Traces of Intertwiners and Elliptic r-Matrices

From now on the letter g will denote the Lie algebra sIN(<C) of traceless NxN
matrices with complex entries. The dual Coxeter number of this algebra is AT, and
the rank is N — 1. The Cartan subalgebra ί) is the subalgebra of diagonal matrices,
and the element C is the matrix diag(l, ε"1, ε~ 2 , . . . , ε~N+1) (up to a factor).

Let B be the N x N matrix of zeros and ones corresponding to the cyclic
permutation (12. . .AT). Note that EC = εCB.

Define a new inner automorphism β of g: β(a) = BaB'1, αeg. This automor-
phism has order N and commutes with y: β o y = y o β.

The action of the automorphism B naturally extends to 9 and gy. Note that on
gy, unlike g and g, B is an outer automorphism: it corresponds to the rotation of the
affine Dynkin diagram of gy (which is a regular N-gon) through the angle 2π/N.

The action of β in gy preserves degree, hence, it preserves the polarization.
Therefore, it transforms Verma modules into Verma modules. In other words,
we can regard B as an operator B: Mλ,k-* Mβ(λ)tk, where by convention
β(λ)(h) = λ ( β ~ ί ( h ) ) . This operator intertwines the usual action of gy and the action
twisted by β: β(a)Bw = Baw,ae§y,
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Let v = β~l(λ\ and let Φj

Uj(zj) be as above (cf. Sect. 2). Let q be a complex
number, 0 < \q\ < 1. Following the idea of Frenkel, Reshetikhin ([FR], Remark
2.3) and Bernard [Ber], introduce the following function:

FUί. f«>ι, - - - , zn\q) = ττ\Mvtk(Φ^(Zl). . . Φ"Un(zn)Bq-6) . (3.1)

This function takes values in Vί ® . . . ( § ) VN. From now on it will be the main
object of our study.

It turns out that the rc-point trace F(zί9. . . ,zn\q) defined by (3.1) satisfies
a remarkable system of differential equations involving elliptic solutions of the
classical Yang-Baxter equation for $1N. Let us deduce these equations. The idea of
the method of deduction is due to Frenkel and Reshetikhin.

Differentiating by zJ9 we get

(k+l)^-F(zi9...,zn\q)
δz

(3.2)

Now let us pull the currents J+, J~ around: the currents J~ will move to the
right up to the end, then jump at the beginning and continue to move to the right,
and so on; the currents J+ will move to the left up to the beginning, then jump at
the end and continue to move to the left, and so on. As we do these permutations,
we will need relations (2.2) and also the following identities:

9 (3.3)

BΛ±(z) = ^±

(β)(z)B. (3.4)

After J+ and J~ have made M complete circles, Eq. (3.2) will have the form

= Tr
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Ύ (qMJ^(Xr)(zj)ΦlU](zj)

+ £ X%F(Zl,...,zn\q), (3.5)
i = l

where

rU' - J (3.6)

and

+ Σ (̂ r)),̂ ), . (3.7)
I zzi 4 zί ~~ zj

Now we want to pass to the limit M -* oo. Right now we cannot do so since the
limit does not exist. In order to be able to pass to the limit, we should write down
Eq. (3.5) for M = L, L + 1, . . . , L + N — 1, add these N equations together, and
divide by N:

ι L + N-1 Γ /

= ΰ Σ Tr ΦiΛzJ
JV M=L L \
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+ Σ Xίj~F(zl9...,zn\q)9 (3.8)

In the obtained equation it will already be possible to take the limit. Moreover,
since ΣP=O/?P(^) = 0 for Λ el), the part of the right-hand side of (3.8) involving
currents associated with the Cartan subalgebra elements will disappear as M -> oo.
The same will happen to the currents associated with the root elements eΛ,fΛ

because these currents do not contain a term of degree — 1 which is the only term
that could possibly have given a nonzero limit. Thus, in the limit we get a simple
equation:

/- F(Z!, . . . , zΛ\q) = (i Xϊj V(*ι, , *.!«) > (3-9)
02 J \ i = l /

where Xf} = limL_00— '^m_^

The function X jj admits a simple description in terms of elliptic functions.
First of all, it is easy to check that Xfj = 0 for any M.

1
Next, the function X^ can be represented in the form X™ = — pfj (zt/Zj), where

pM(z) is a rational function with values in g ® g:

M

pM^ _ y

N-l /,PN JV -

Therefore, Xg' = — pyfa/Zjlq), where ρ(z\q) is an elliptic function of logz with

values in g (x) g (we have used notation (2.7)). We can tell what this function looks
like by looking at its residues.

From (3.10) we see that the only poles of p ( z \ q ) are at the point εmqp, and all
these poles are simple. The residue of p ( z \ q ) at z = εmqp is equal to that of pM(z) for
M ^ |p I, i.e. it equals

Γ α ) + L Xr®βP(X
r=l J

(3.11)
IV

dF
Because of the obvious homogeneity property 2^zt- — = 0, we have the unitar-

ity relation p{j(z) = — pβ(— z).
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Let q = e2™. Let

1 Γ 1 x Ί
ζ(x|τ) = -+ lim Σ + ^ (3 12)

be the standard Weierstrass function. Equation (3.11) implies that

Ω ,Λogz
p(z\q) =

2πiΛΓ V 2πi
Nτ

Thus, we have proved

Theorem 3.1. The function F(zί9. . . , zn\q) satisfies the system of differential equa-
tions

dF
(k + l)zf — - Σ Pij(zi/Zj\q)F9 l^i^n. (3.14)

dzι j*t

The function p(z\q) is a solution of the classical Yang-Baxter equation. It is
easy to see that this function is nothing else but the elliptic r-matrix for s\N due to A.
Belavin [Be]. Thus, we have given a representation-theoretical interpretation of the
local system associated with the elliptic solutions of the classical Yang-Baxter
equation.

Remark. A Belavin and V. Drinfeld [BeDr] showed that elliptic solutions exist
only for the simple Lie algebra slN, and every nondegenerate elliptic solution
is equivalent (= conjugate) to const p(z\q) (for a suitable primitive Nih root of
unity ε).

Observe that Eqs. (3.14) transform into the KZ equations (2.9) as <?-> 0. This

was to be expected since limq^Qq~2(k + vF(z\q) = Ψ(z). We will call Eqs. (3.14) the
elliptic Knizhnik-Zamolodchikov (KZ) equations.

There is one more equation satisfied by the function F - a differential equation
involving the first derivative by q. Differentiating F by q9 we obtain

dF
-q^ = Ύϊ\Mvk(Φ1

Uί(zί). ..ΦUn(zn)Bq-dd\Mvk) . (3.15)

Plugging the Sugawara expression for d in (3.15), we see that in order to obtain the
differential equation for F, it would suffice to express the traces

Trln (Φ^ (7-,} Φn (7 }Rn~df 6δ t~\cl\~ιnNP 6bt\a\+mN}Λ. L i j^fv jς v MI \ 1 / u n v n/ Ί Jy. ^^ Λ ^^ / '

Trl^ίΦίΛzO. . . Φn

Un(zn)Bq~dxr ® Γ™Nxr ® ΓN) (3.16)

in terms of the original trace F(z\q). This can be done as follows.
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Take the expression for the first trace in (3.16) and move the factor ex (g) ί |α| +mN

from left to right. When it has made N full circles, we will have

= Σ "Σ

i.ίz!). . .Φ"Un(zn)

mJV)/c))

It is easy to see that for any h e h,

Tr|Mvt(Φu\(Zl). . .Φ^zJ

Similarly we have

= ~ Σ z7M~m"( e| +

Thus, we obtain the following expression for the first trace in (3.16):

TrL-r (Φ1 (z*} Φn (z }Ba~df 6δ t~\a\~mNp 6δt\"\ + mN}11 i M v . k V ^ M i V ^ l / ψun\
Δn)1->ίi Jv.vy L ^α ̂  l )

= ~ | α | ~ m A r l . α | + mN - -i\*\ + mN-ι

(3.17)

(3.18)

(3.19)

+ (1 - ^"(H + mΛO)-!^ _ / j- i)- i(_ fcβ)

+ (|α| + mΛΓ)Jt)F(z|9). (3.20)

The second and the third trace in (3.16) are treated quite similarly, and finally
after some calculations we obtain:

dF Zi
(3.21)

where

= Σ Σ z~M~mN(ί~β~ίίlM+mNΓ1(f«)®(l-β~1q-M~mNΓί(e«)
a.eΔ+ m^O

Σ zH"miv(l-^"19~ |α |+""V)~1(e£()
<x.eΔ+ m>0

N-l

+ Σ Σ ^~ I^(i-/J"1im A rr1(
/)=! m>0

+ i Σ α-Γ'Γ'WΘα (3.22)
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is a function with values in g (x) g (once again, we use notation (2.7)). Note that
Ltj = Lβ. If i =j, then by Lu we mean μ(L)i9 where μ: £/(g)® t/(g)-> U(Q) is
multiplication: μ(a ® b) = ab.

The form of Eq. (3.21) can be simplified. Indeed, the consistency of (3.21) and
(3.14) for all k implies that

" Le

L(z\q) + L^^q) = 2L(l,q) + ̂ J^-dz . (3.23)

Therefore, we finally get the theorem (in the formulation we use notation (2.7)):

Theorem 3.2. The function F satisfies the differential equation

(k+l)q^= Σ I "'-"' ' ^ '

/ I \ C Vί ^rvH1!/ i /O o/l\s(z|g) = J az . (3.24)

Corollary.

Tr|Mo ,k(Bq~d) = 1 . (3.25)

Proof. Apply Theorem 3.2 to the case of a single intertwining operator Φ(z):
M0)fc -> M0>fc (x) F?(z), where F° is the trivial representation of g. In this case it is
obvious that Φ(z) = Id. Therefore, (3.23) simply follows from the fact that (3.22)
acts by zero in F°.

4. Modular Invariance of the Elliptic KZ Equations

Let us now discuss the modular invariance of the elliptic KZ equations. Introduce

• iv 1U&Z/' 1°8#new variables j . = — . , τ = ——7-. From now on let us use the notation
2πι 2πι

K = k + 1. Rewrite Eqs. (3.14) and (3.24) in the new coordinates:

where

_2πi

N

(4.3)
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Let Γ(N) be the congruence subgroup in SL2(%) consisting of the matrices
equal to the identity modulo N. We have the following almost obvious property.

Proposition 4.1. Equations (4.1) are invariant with respect to the group Γ(N). That is,

they are preserved under the change of variables yt = - —Ί , τ = - - if
cτ + a cτ + a

Proof. Partial derivatives with respect to the new coordinates are given by

^-. (4.4)

Thus we only have to prove that p*(y\τ) = (cτ + d)p*(y\τ). To do this, it is enough
to observe that both sides of this equation

(i) have simple poles at the points of the lattice m + pτ with the same residues

(ii) satisfy the unitarity condition: ρ*2(y\τ) = — p*ι( — yl τ)

Now let us study the invariance properties of Eq. (4.2). First of all, it is easy to
see that

^p = (cτ + dr ̂ > + c(cτ + dγ *(yp*(yw . (4.5)
oτ oτ oy

Integrating this equation against dy, we get

s * ( y , τ ) = (cτ + d)2s*(y\τ) + c(cτ + d)(yp*(y\τ) - lim xp*(x|τ) ) . (4.6)
V χ^o /

Ω
By our definition, limx^oxp*(x\τ) = — . Thus, under the change of variable

τ -» τ, y -> y, Eq. (4.2) transforms into the following equation:

dF dF
(cτ + d)2κ — + c(cτ + d) X κy{ —

+ Σ c(cτ + d)(yi - yj)p*(yί - yj\τ) - F + Σ^X^F . (4.7)
i<j \ ^ / iJ

Combining (4.7) with (4.1), we can get rid of the derivatives by yt and reduce (4.7) to
the form:
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Now we need to find the law of transformation of L*(τ).

Lemma.

L*(τ) = (cτ + <f)2L*(τ) + . (4.9)

Proof. Let C(τ) = L*(τ) - (cτ + d)2 L*(τ) - c(cτ + ^69® 9. We know that

both Eqs. (4.2) and (4.8) are consistent with (4.1). Therefore, we have

)] = 0 . (4.1^C11(τ)+2C12(τ)+C22(τ) + - "~" "'.P?2(y|τ) | = 0 . (4.10)

Observe that Ωtl = z l ® l , Ω 2 2 = 1 ® zl, where Δ e ί/(g) is the Casimir element.
Since the Casimir element commutes with the Lie algebra action, (4.10) reduces to
the relation

[Cnίτ) + 2C12(τ) + C22(τ), pJ2(y|τ)] = 0 . (4.11)

This relation has to hold for all y, which implies that the expression
C(τ) = Cn(τ) + 2C12(τ) + C22(τ) commutes with all y-invariant elements in g ® g,
i.e. with all elements of the form xt ® xJ9 ea ® βp(fΛ) and /α ® βp(ea).

We are going to prove that C(τ) = 0. Let

Pick arbitrary two elements X and Y in fy. Consider the expression

(for brevity we do not specify explicitly the dependence on τ). This expression has to
commute with xt ® Xj for all i, j. This immediately implies that Cxγ = 0 for all
X, F, i.e. bxp = 0 for all α, p. Therefore,

(4.14)

Let A'f = 1 ® xt + x4 ® 1. Then C = Σijaijχiχj Therefore,

[C, eΛ ® βp(f^ = Σ ^(ί1 - β-p)(Xi))aij(XjeΛ ®

(4.15)

In order for (4.15) to be zero for any α, p9 we must have
Σί, jα((l "~ β~p)(χi))aίjχj = 0 for all α, p, which can only happen when all atj are
zero (because the roots span the space I)*). Q.E.D.

The lemma we just proved implies
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Proposition 4.2. Under the change of variables (y9 τ)-> (j), τ) system of equations
(4.1), (4.2) transforms into a system of equations equivalent to the combination of (4.1)
and the following equation:

rlF n n cλ
* -a = j, ιw + Σ 4< * - ai«>'

Zl; /5 ί/ιe Casimir operator in the ith factor of the tensor product
V,®V2®...®Vn.

Thus, the system of equations (4.1), (4.2) is almost invariant under Γ(N): the first
n equations are unchanged under the action of this group whereas the last equation
gets a very simple extra term.

Consider the fundamental solution J*(y|τ) of the system (4.1), (4.2) - a solution
with values in End(Fi (§) ® Vn) defined by the condition: if v = v{ (x) (x) vn is
a vector in V1 (§) (§) Vn9 vte Vi9 1 ̂  i ̂  n, and toj = Xi(h)vi9 foef)*, Λel), then

'), (4.17)

where λj are defined by the formula

i = l / ί=l

and ΦVι λ'v(z) is the intertwiner Mλ k -> Mv k®zΔ VAz) { Δ = — — 1 such
V 2(k +1) /

that (v*^Vi'*"v(z)viy = Vi.
T.pt Af=Γ(NΪ

Theorem 4.3. (ow the modular invariance of solutions of the elliptic KZ equations).

, 3>.|τ) = (cτ + d)^^'^(yι, . . . ,yn\τ)χ(A) , (4.19)

where χ(A) is an operator in V± (§) V2 ® . . . (8) ̂ n dependent only on the 2 x 2 matrix
A (i.e. independent of j^ am/ τ).

Assume that the representations F, are irreducible. Then Δj are simply complex
numbers. In this case the function χ(A) is a projective representation of Γ(N):

X ( A 1 ) χ ( A 2 ) = σ(Aiy A2)χ(A1A2) . (4.20)

The 2-cocycle σ(Al9 A2) is very easy to describe. Let A = ( \eSL2(TL) be
\c dj

called positive if either c > 0 or if c = 0 but d > 0; otherwise, let A be called
negative. Then

f 1, A is positive
σ(Aί9A2) — φ(Aί) + φ(A2) — φ(A1A2), φ(A) = < πi^jAj

^e 2^κ 9 ^ is negative

(4.21)

By definition,Jhis cpcycle is a coboundary, so the action of Γ(N) in the projectivi-
zation of V± (§) V2 ® - - (§) Vn comes from a linear action.
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Thus, the theory of the elliptic KZ equations gives us a natural method to
assign to every set of irreducible finite dimensional representations Vl , . . . , Vn of
$IN an action of the congruence subgroup Γ(N) of SL2(7L] in the tensor product of
these representations, Fx (g) ® Vn.

In fact this construction allows us to obtain a representation of the entire
modular group SL2(ΊL). For this we need to assume that Vi are finite dimensional
representations of GLN(<C) for all ί. For brevity we will also assume that N is odd
(this assumption is not very essential, but in the even case one has to be a little bit
more careful).

We will need to use the Weil representation of the group SL2(Z/NZ). This
representation is defined as follows. Take the Λf-dimensional vector space U = <CN

and define an action of the Heisenberg group HN = <x, y\xN = yN = 1, xyx~1y~ί

commutes with x, y> in this space by x -> B, y -> C. This is the basic irreducible
representation oΐHN. Now observe that SL2(Έ/NZ) acts by automorphisms oΐHN:

if A = ( . ), then A(x) = xayb, A(y) = xcyd. Moreover, the representation UA

\c d)
of HN obtained from U by twisting of U by A is isomorphic to U. Therefore, the
group SL2(ΊLINΊL) project! vely acts in U in such a way that Azu = A(z)Au,
AeSL^Z/NZ), zeHN,uePU, and this action is unique. The space U with the
constructed project! ve action of SL2(Z/NZ) is referred to as the Weil representa-
tion. This representation defines a homomorphism WQ: SL2(ΊL/NΈ)-+ PGLN(<E).
Since the group SL2(7L/NΈ) for odd TV does not have non-trivial central extensions,
this homomorphism lifts to a map W\ SL2(%/N%)^> GLN(<C).

Proposition 4.4. Let A = \ }eSL2(Z\ and let the change of variables
y d)

(y,τ)-+(y, τ) be defined as in Proposition 4.1. Then

i, . Λlτ A ) = (cτ + dF*Z'*θ(A)*(y1,. . . , yn\τ)χ(A) , (4.22)

where χ(A) is a projective representation of SL2(%) in V± ® - * * ® FJv, and θ is the
composition of the three maps:

modN
GLN(<C) - v Aut(Ft

(4.23)

where Uj\GLN-+ Aut(F^) are the homomorphisms defining the action of the group
GLN in V{.

The proof of this statement is simple and similar to the proof of Theorem 4.3.
The Weil representation of SL2(Ίί/N7L) arises naturally when we consider the
transformations of the lattice L of poles of p*(y\τ) which do not preserve the lattice
of periods NL.

The function χ(A) satisfies Eq. (4.20) with the 2-cocycle σ still being defined by
(4.21) (now for the entire SL2(Έ)). This cocycle is a coboundary, so χ(A) comes from
a linear action of SL2(Έ).

Remark. It is not clear how to compute the representation χ(A) for any nontrivial
example. A good example to start with would be N = 2, n = 1, and V^ is the
4-dimensional irreducible representation of s!2. In this case it seems that V will be
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a direct sum of two irreducible 2-dimensional representations of Γ(2), and the
solutions of (3.24) will be some nontrivial vector-valued modular functions.

5. Some Examples

Let us consider the special case N = 2, cj = s/2. In this case β acts as follows:
β(e) =f, β(f) = e, β(h) = - ft. Therefore, we have

P(z\q) = \la(z\q}(e ® e

where

, (5.1)

2τ + aQ(q),

4πiΓΛ 2πi

and the constants α0, bQ, c0 are chosen to satisfy the condition p(z\q)
We also get from (3.22),

(5.2)

-p(-z\q).

2πiL(l\q)=-

— y
m > 0 (

Z_ί /ι
>θ( 1

ft®ft . (5.3)

Now let us calculate some nontrivial 1 -point traces.

Example 1. Let Φ(z): M-λik-^ Mλ,k® ^c(z) be an intertwining operator, where
F1 is the two-dimensional irreducible representation of δ!2. Then we must have
λ = ± i Denote the corresponding operators by Φ1, and introduce the notation:
T±(q) = Tτ(Φ±Bq~d). It is clear that these traces do not depend on z. Let us
compute them.

We have proved that T±(q) satisfy the equation

dF
— (5.4)

In the case the matrix L we are considering turns out to be a scalar 2 x 2 matrix:

1 1 a2m 2a4m+2
1 . λ v-> 4 \-^ ^4

16 4m + 2\ (5.5)
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Therefore, we can explicitly integrate Eq. (5.4), which gives us the following answer.
Let v± be the basis of F1, such that hv± = ± v±, ev- = v+, fv+ = v~9

ev+ =fo- = 0. Let η(q) be the Dedekind function:

η(q) = 41/24 f[ (ί - qm) . (5.6)
m = l

Then

T±(q) = η(q2)^v±. (5.7)

Since the Dedekind function is a modular form of weight 1/2, the function (5.7) is
a modular function of weight 3/8 TC, which is by no means a surprise in view of
formula (4.16).

Example 2. Let Φ(z): M-λik-> Mλtk (x) F£(Z) be an intertwining operator, where
F2 is the three-dimensional irreducible representation of δ!2. Then we must have
λ = 0 or ±1. Denote the corresponding operators by Φ°, Φ±

9 and introduce the
notation: T0(q) = Ύr(Φ°Bq~d), T+(q) = Ύr(Φ±Bq~d). These traces are computed
similarly to Example 1. The matrix L(\\q] is now no longer scalar, but it is
a diagonal matrix, so Eq. (5.4) is still easy to integrate. Here is the answer:

Let v+ , v0, v- be the basis of F2, such that hv+ = 2v+ , hv- = — 2v- , hv0 = 0,
ev- =fv+ = DO. Then:

Let us now calculate a simplest 2-point trace (a part of this computation is due
to A. Kirillov, Jr.).

Example 3. Consider intertwining operators: Φ±(z): MΛ>fc-> Mλ ± 1 > / c ® FC(Z). We
can combine four traces out of these operators:

T±±(z\q) = Tr(Φ±(zί)Φ±(z2)Bq-dl z = *± . (5.9)
Z2

It is possible to calculate these traces explicitly using the elliptic KZ equations.
We have proved that the traces (5.9) satisfy the equation

dF
κz— = p(z\q)F. (5.10)

In the case under consideration, the traces take values in the four dimensional
space FC ® FC, and this equation can be explicitly solved. Indeed, let us seek the
solution in the form

g(z\q) = g+ + (z\q)v+ ®v+ + g+-(z\q)v+ ®V-

+ g.+(z\q)v- ®v+ +g-.(z\q)v- ®v.. . (5.11)
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Consider the functions

hι(z\q) = -(

493

+ + (z\q) + 0_ _(z, q))

+ + (z\q) - g--(z, q)) ,

+ -(z\q) + 9- +(z9 q)) ,

(5.12)

We have

g(z\q) =

Equation (5.10) yields a separate first order linear differential equation for each
of the functions /z1 ? h2, h3, h4:

/κ;z -— = -(-
oz 2

,
= -(a + c)h2 ,

2

(5.14)

These equations are easily solved. To write down the solutions, it is convenient
to use the function

2πi

(5.15)
m.psZ

In terms of this function, the solutions of (5.14) can be written in the form:

h3(z\q) =

h4(z\q) = (5.16)
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The coefficients Cj(q) are easily found from Eq. (3.24):

i

C2(q) = C2η(q4)«η(q2)~

£3(4} = c3,

C4(q) = C4η(q2)κη(q4)~κ , (5.17)

It remains to say what values of constants C/ correspond to the traces (5.9). This
information is given below:

T+ + : Ci = C2 = 1, C3 = C4 = 0

Γ_ + : d = C2 = 0, C3 = - 1, C4 - 1

TV _ : d = C2 = 0, C3 = C4 = 1 . (5.18)

In general, solutions of the elliptic KZ equations cannot be expressed in terms
of classical elliptic and modular functions. Their components are more complicated
special functions associated with an elliptic curve.

Example 4. (T. Kojima, private communication). Consider the elliptic KZ equa-
tions with coefficients in F1 ® F3. Let vί9v-ι be the basis of F1 introduced in
Example 1 (earlier we used the notation v + , v _ for this basis), and let w _ 3 , w _ ί , w ι ,
w3 be a basis of F3 in which /w3 = w^/Wi = 2w_ 1 , /w_ 1 = 3w_ 3 ,/w_ 3 = 0,
ew-3 = w _ l 5 ew-ι = 2w1? ew^ — 3w3, ew3 = 0. Let us look for solutions of the
elliptic KZ of the form:

F(z\q) = ft(^k)(^ι ® W! + i;-! ® W-0 +f(z\q)(v1 ® w _ 3 + U-i ® w3) .

(5.19)

The functions h and / can be found from the following 2 x 2 linear system of
differential equations:

dh

KZ — = - bh — - c f' (5 20)

System (5.20) is defined on the elliptic curve <C/<1, 2τ> and has four singular
points - the points of order ^ 2. Therefore, if we make a change of variable

2τ 1 then system (5.20) will become a system with rational coeffi-
2πi (

cients and four regular singularities at E± = p(l/2|2τ), E2 = #>(τ|2τ),
£3 = p(τ + 1/212τ), and oo. Using Eqs. (5.20) and (5.2), we find that the leading
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coefficients of the right-hand side of (5.20) are equal to KΓ1 times the following four
matrices:

3/4 0 \ /1/4 1/2 W-5/4 0 W 1/4 - 1/2 \

0 3/4/^3/2 -3/4 A 0 3/4j'\-3/2 -3/4J' ( ' }

at E1,E2,E3, oo, respectively. We see that the E1 coefficient is a scalar matrix,
which means that this singular point is removable, so our system reduces to
a system with three singularities, and therefore its solutions can be expressed in
terms of the Gauss hypergeometric function. It has been shown by T. Kojima that
the same is true for all solutions of the elliptic r-matrix equations with values in

6. Monodromy of the Elliptic KZ Equations

In this section we will study the monodromy of the elliptic KZ equations with
respect to the lattice of periods, and compute the monodromy matrices. Although it
is difficult to compute the solutions, the calculation of monodromy is fairly
straightforward.

Let us first describe how to interchange the order of intertwining operators.
Let Φw>A>v(z): Mλtk-> MVtk®zAVc(

z) be the intertwining operator such that
<ι>*, Φw>A'v(z)ί;A> = z jw, we F A ~ V . Suppose that z l 9 z2 are nonzero complex num-
bers, and we have a product Φ W ί > λ l > λ o ( z ί ) Φ W 2 > λ 2 > λ ί ( z 2 ) : Mλ2tk -> MA θ j f c (g) V1 (x) F2,
where V1 and V2 are finite dimensional representations of g. The question is: can
this product be expressed in terms of products of the form Φ(z2)Φ(z1)? Of course,
we can only talk about such an expression after analytic continuation, since the
former is defined for \z^\ > |z2|, and the latter for \z^\ < |z2|. However, if we apply
analytic continuation, the answer to the question is positive, and given by the
following theorem.

Theorem 6.1 (see [FR, TK]). Let xίv be a basis of V\~λ°, and let yiv be a basis of
Vλ

2

2~\ Then

(6.1)
v,i,j

where A± is the analytic continuation along a path in which z± passes z2 from the
right (for plus) and from the left (for minus), respectively, R(λ, μ)ViV2 is a matrix, and
σ is the permutation: V1 ® V2 -» V2 (x) V1 .

Clearly, the matrix Λ±(λ, μ)VίV2 represents a linear operator (VΊ ® V2)
λ~μ-+

(V2 ® V1)
λ~μ. Therefore, if we define

fcW* = 0^±(/l, μ)FlF2 , (6.2)
μ

then R±(λ)VlV2 will correspond to an operator: V^ ® V2 -> F2 (x) VΊ. This operator
has the property: R + (λ)VlV2R~(λ)V2Vί = Id.

The operator ^±(/l) has been computed [Koh, Dr, TK, SV], and it turned out
to be proportional to the product of the quantum .R-matrix of the quantum group
ί/^(g) and the permutation σ (the order of this product depends on the sign, plus or
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minus), where q = e2πi/Nκ. Hereafter we will assume that the matrix JR
±(/l)FlF2 is

known.
Let us now compute the monodromy of solutions of the elliptic KZ equations.

Again, we will need to assume that V1,. . . , Vn are finite dimensional representa-
tions of GLN.

The elliptic KZ system is a local system with singularities, <£, on the space En,
where E is the elliptic curve <C*/Γ, and Γ is the multiplicative subgroup in C*
generated by qN. The fiber of this local system is FI (x) (x) Vn. Such an interpreta-
tion, however, is not very convenient for computation of monodromy since & has
too many singularities: they occur whenever Zi/Zj = smqp. It would be more natural
to regard the elliptic KZ system as a local system on the nih power of a smaller
elliptic curve E = C*/Γ, where Γ is generated by q and ε. In this case, the
singularities would occur only on the loci zt = Zj. But unfortunately, the elliptic
KZ system is not a local system with singularities on En\ its right-hand side
is not q, ε-periodic. Therefore we would like to produce a local system on En

starting with g. For this purpose we will use the fact that 3? has a finite group of
symmetries.

Recall the notation of Sect. 4: HN denotes the Heisenberg group of order JV3.
Let HN denote the nih Cartesian power of HN. Since the group HN is naturally
embedded in GLN (it is generated by B and C), we have a natural representation
of HN in Vi and hence a representation of Hn

N in Vί (x) (x) Vn. On the other hand,
the group HN operates on E: Bz = qz, Cz = ε~ίz9 so the group Hn

N naturally
operates on En. These two actions can be combined into an action of Hn

N in the
trivial bundle over EN with fiber V± ® ® Fn. This action has the following
property.

Lemma. The group H^ preserves the local system J£?.

Proof. The lemma follows from the definition of the elliptic r-matrix (formula
(3.13)).

Now we can create a new "local system" £f = ^/Hn

N. The fiber of this local
system is no longer the space V± ® - - ® Vn but rather the quotient of this space by
the action of the center of Hn

N (which is, of course, not a vector space). In this section
we will describe the monodromy of this local system. This monodromy will be
a^ linear representation of a suitable central extension of the fundamental group of
£"\{diagonals}, and it obviously contains all the information about the mono-
dromy of the elliptic KZ equations.

As before, we will use the fundamental solution ^(zi,. . . , zn\q) defined by
(4.17) (now we prefer to use the z, q variables rather than y, τ variables). This
solution takes values in the spaces End(Fi (x) (x) Vn).

Below we study the monodromy of the fundamental solution. This is equivalent
to studying the monodromy of the local system £f.

We will use the representation of £ as a parallelogram on the complex plane:
logz x
——r- = —h yτ, 0 ̂  x, y < 1, and write z = (x, y). We choose a base point
2πι N

( z ? , . . . , z?) = ( x ? , y ? , . . . , x j , ) t f ) on En such that 1 > x? > - > xn° > 0,
l>yϊ> >y°n>V.

It follows from the definition of ̂ (zl9. . . ,zn\q) that it can be represented in
the form ^o(zι? > zn |g)zf *zf 2 . . .zfn, where ̂ 0 is a single-valued function, and
D1 ? . . . , / ) „ are operators in Vv (x) (x) Vn defined as follows. Let vectors i^ e Vj



Representations of Affine Lie Algebras

satisfy the condition hvj = Xj(h)vj, fteί), χ7 eί)*. Let

λ- = (β — i)"1 ί y y I + y y
Then

DJ(V! ® "®vn)= J"1 ? J"^
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(from this definition of D7 it immediately follows that [DI? /)/] = 0 for any ί,y).
The fundamental solution has a defining property: if w is a vector in

F! (x) ® Fπ then J 0̂ ^ is the solution of the system (3.14), (3.24) which tends to
u as q -> 0 and Zi/zi + ί -» oo.

This observation helps us find the monodromy of the function ^ around the
ε-cycles on En. It Zj is rotated around the origin anticlockwise, through the angle
2πil/N, with the rest of the variables fixed, the function 3F multiplies by the matrix
e2πiiDj/N from tke right, and undergoes a conjugation by C/ - the action of C in Vjf

We denote these monodromy operators by £7 :

= CJ (6.4)

The monodromy of the fundamental solution in the neighborhood of the locus
Zj = zj+ ! can be found with the help of Theorem 6.1. Using this theorem and the
representation of solutions as traces of products of intertwiners, we immediately
find that the monodromy of the function 3F around the locus z7 = zj+1 (in the
anticlockwise direction) is

(6.5)

where

and the linear operators

VJ9 VH)RJ (V19 . . . , VJ9 . . . , Vn)

are defined as follows: if vte Vi9 1 ̂  i ̂  n, and Λi^ = Xt(h)vi9 χjef)*, ft el), then

where λj are defined by (4.18).
The monodromy is obviously the same as for the usual (trigonometric) KZ

equations, whose solutions are given by matrix elements of intertwiners rather than
traces (see Sect. 2) - a known fact which was first observed by I. Cherednik [Ch2].

Let us now find the monodromy of the function 2F around the ^-cycles.
Consider the cycle on En in which Zj passes zj+l9. . . ,zn from the right, hits the
circle |z| = |g| (which is identified with the circle |z| = 1 through the map zι— >gz),
jumps over to the circle |z| = 1, and then passes z 1 ? . . . ,zj-1 from the left,
returning to its initial position (this corresponds to the path y7 (f) = y° — f mod 1,
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with the rest of xt and yι remaining unchanged). Using Theorem 6.1 and the
expression of <F in terms of traces, we find the monodromy matrices Qj for the
described ^-cycles. Indeed, we have to interchange Φ(zj) in the trace expression
with Φ(zj+ί\ . . . , Φ(zn\ then with q~d and B, and then with Φ(zί\ . . . , Φ(zj-1).
This results in an expression of Qj as a product of .R-matrices. To write this
expression do wn,̂  introduce the following notation: if seSn is a permutation of
n items then set R*(s) = Rf(Vs(ι}, . . . , Fs(n)). Let tj be the elementary transposi-
tions O'J+l), and let sjm = tm-ί . . .tj+ίtj,j < m ̂  n,sjm = tm. . .ί7 _2ί j _ 1 ,
l ^ m < 7 (we make a convention that for two permutations σ 1 ? σ 2
σι&2(j) = σ\(<*2(i}\ 1 ̂ 7 ̂  ft> i e. the factors in a product of permutations are
applied from right to left). Also let Rf(s) = s~1tjRj:(s)s. Then R* is a linear
operator in Fx (x) (x) Fπ.

Now the operators <2; are expressed as follows:

(6.6)

where £, denotes the action of 5 in F, .

Remarks. 1. Expressions similar to (6.6) (ordered products of ^-matrices) occur in
the theory of correlation functions for quantum affine algebras. Such correlation
functions satisfy a quantum analogue of the Knizhnik-Zamolodchikov equations -
a system of difference equations discovered by Frenkel and Reshetikhin [FR]. The
structure of the right-hand side of this system resembles (6.6). It is not clear if it is
merely a coincidence or not.

2. It is seen from the definitions of Ej and Qj that [Eh £,-] = [Qh Qj~] = 0 for
any z, j.

As we have already remarked, the monodromy of the local system ^ defines
a representation of a central^extension of the fundamental group of the complement
of the diagonals zf = Zj in En - the pure braid group of the torus. To describe this
representation in more detail, let us assume that V{ = V for all z, where V is some
finite-dimensional GLN-module. This does not cause any loss of generality since we
can always set V = V± 0 0 Vn to include the previously considered case. But
now the elliptic KZ system (and the local system &*) has an additional symmetry -
the symmetry under the simultaneous permutation of the variables zf and the
factors in the product V® V® ' ' ' ® V. Therefore, the monodromy representa-
tion can in fact be regarded as a representation of a certain (in general, not central)
extension of the full braid group of the torus.

The braid group of the torus, BTn, is generated by the elements
7], 1 rg ί ̂  n — 1, -XΊ, F l5 satisfying the defining relations

TiTj=TjTh 7 > z + l ;

ϊlX;*Y1 = T2

l9 where X£ + ! = TJX, 7J

^=Y^X^ where X<> = X^X2. . .XH. (6.7)
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It is also convenient to define the elements Yj+ί = jy1 YjT]'1 and
Y0=YίY2...Yn.

To picture the braid group of the torus geometrically, one should imagine
n "beetles" crawling on the surface of the torus <C/(Z + τΊL) starting from some fixed
positions zl9. . . ,zn (zj = N~ίxj + τyJ9 xί > x2 > . . . > xn, yi > yi > - - > yn)
so that at no time two beetles can be at the same point and after some period of
time (say 1) the "beetles" return to their original positions, possibly with some
permutation. Then the beetles will trace out some collection of curves in
Torus x [0, 1] - a braid diagram. Such diagrams can be composed by attaching the
bottom of one of them to the top of the other. Under this composition law, braid
diagrams form a group - the braid group of the torus BTn. The element
7} corresponds to the intertwining of the /h and j + 1th braids (the /h and j + 1th

"beetles" switch, the /h "beetle" passing the j + 1th one from the right), and the
elements Xj and Yj arise when the /h "beetle" crawls around the x-cycle and
y-cycle of the torus, respectively, in the negative direction of the x-axis (respectively,
y-axis), with the rest of the "beetles" unmoved.

Now we are in a position to formulate the result about the monodromy of the
local system 5 .̂

Theorem 6.2. The monodromy representation of an extension of BTn associated to
the local system £f is defined as follows:

. . .Rn-^Bj R^ . . .Rj_2Rj-ι 9

. (6.8)

Remark. Since all the spaces F7 are the same, we have dropped the permutations
labeling the β-matrices.

Proof. The theorem follows from Theorem 6.1 and formulas (6.4)-(6.6).

The extension of BTn involved in Theorem 6.2 is very easy to describe. Consider
the quotient of the group BTn by the relations Γ? = 1. Then we will obtain the
group Snx(Zn®Zn)9 where Sn acts on both copies of 7Ln by permutations of
components. Let H be the Heisenberg group - the central extension of ΊL 0 TL by
TL by means of the 2-cocycle ω(x, y) = x^y2 — X23Ί- Then we can construct the
group SnxHn (Hn is the nth Cartesian power of H) which is a rank n abelian
extensionof Snx(Zn ® TLn\ Let us denote the pullback of this abelian extension to
BTn by BTn. The monodromy representation of £f is thus a representation of B Tn in

Now assume that Fis irreducible. Then instead of the group BT^WQ will have to
deal with a rank 1 central extension BTn of BTn which is constructed as follows.
Take the group Snx(Zn 0 ΊLn\ construct a rank 1 central extension of this group
by adjoining a new central element c satisfying the relations
XtYi = YiXic,XiYj = YjXi9i*j, and then pull this extension back to BTn. It
follows then that the monodromy representation of ̂  is a projective representa-

tion of BTn whichjsomes from a linear representation of BTn.
The group BTn is closely related to the double aifine braid group of type

ΛJ-I defined by I. Cherednik in his recent paper [Ch3] - the group generated by
the elements ThXiy Ύ{ and a central element δ satisfying modified relations (6.7):
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the relation X27f1X2

 1 YI = T\ has to be replaced by X2 Yϊ 1Xϊ1Y1 = δTl. Let
us describe the connection between them.

Observe that the elliptic KZ system commutes with the diagonal action of the
Heisenberg group H#ag generated by X0 and Y0 in V (x) (x) V. Decompose
V® - ®V into a sum of irreducible representations of /f$ag:
V®' - (x) K= @iPi ® Wi, where Pt are distinct irreducible representations of
HN, and W{ are multiplicity spaces. Then each summand Pt (x) W{ is a subrepresen-
tation of BTn. Let φt: BTn -> End(P/ (x) fl^) be the corresponding homomorphism.

Assume that n and N are coprime. Then we can define a homomorphism

ξ:^BTn^HNbj ξ(Xi) = Cί/n, ξ(Yί) = B1/n, ξ(T^ = 1. (Here l/n is regarded as an
element of the ring Z/NZ.) Composing this homomorphism with the diagonal
action of HN in V® - - - (x) F, we get a projective representation ψi( ) of BTn in

Notice that ψi(g) = φi(g) if geH^. Let us write φt as
• = Ψi(g) ψi(g)~1φί(g). Because the elliptic KZ system commutes with

#Λrίag> Ψi(g) commutes with ψ ί ( g ) ~ 1 φ i ( g ) , which implies that
ψi(g)~1φi(g) = Id (x) #/(#), where χ,( ) is some projective action of BTn in W{. We

also have ψί(g) = ψi(g) ® 1, where i^ is an action of the group in Pf. Therefore, we

have φi = ίj/i (x) χt. Therefore, we can easily compute the 2-cocycle on BTn corres-
ponding to Xi as the difference of the 2-cocycles for φt and ψ. This cocycle is the
pullback from Snx(Zn 0 Zn) of the 2-cocycle given by:

M ι n

rnίίy v1 v1^ f c Y2 v2^ — V Γv 1 !? 2 v2!;1^ V ί'v1 i;2 v 2 !? 1^^U^i, x , y j, (s2, x , y )) — ̂  (x t y, — x t y t j — 2^ i^x/ y7 — xt y j ) ,

The extension of BTn by means of this cocycle is exactly the double affine braid
group. We denote this group by BTn.

The special case when V is the ΛΓ-dimensional vector representation of GLN is
especially interesting. In this case, we are getting a representation of the double
affine Hecke algebra I)f. This algebra was recently defined by I. Cherednik [Ch3] as

the quotient of the group algebra <C[B7;] by the relations (7} - q)(Tj + g"1) = 0.

Indeed, the matrix R^ is diagonalizable and has the eigenvalues ql~™ and

— q~1 ~2N9 (recall q = e2πi/Nκ). This statement easily follows from the fact that this
matrix is a monodromy matrix of the elliptic KZ equations. Therefore, the matrix

jRr = q2NR7 satisfies the equation

Thus, the correspondence

1

where RJ =qϊΰR79 defines a projective representation of BTn in the space
V® V® - - (g) V which can be written as P (x) W, where P is the ΛΓ-dimensional
irreducible projective representation of BTn obtained by composing the homomor-
phism ξ defined above with the standard action of HN in <CN, and Wis a representa-
tion of the double affine Hecke algebra §•*.

The element δ acts in the representation Wby multiplication by q~1/Nε~1/n.
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Remark. In fact, the monodromy of the elliptic KZ system (3.14) extended by
Eq. (3.24) yields a representation of the semidirect product SL2(Z)xBTn in the
space End(F(x) (x) V\ As we have already remarked in Sect. 4, it is not clear
how to compute the modular part of this monodromy, i.e. the action of SL2(%).
This computation, at least for one nontrivial example, is a very interesting and
challenging problem.

As a conclusion, let us note that the study of monodromy helps us to find out
for what special values of K the elliptic KZ equations are integrable in elliptic
functions.

Proposition 6.3. If κ= 1/MJV, where M is an integer, then the matrix elements of the
fundamental solution 3F(zι , . . . , zn\ q) are finite products of rational powers of theta
functions of expressions qmεpZi/Zj, O ^ w , n^ N — 1.

Idea of Proof. If K = l/NM then q = 1. Therefore, R+ is a scalar matrix times the
permutation of factors, so Sjtj+ί = aid, and bjj+l(^) = α .̂ Let α = e2πis (s is
rational). Then we have

, . . . ,zn\q)= Π Σ θ(qmfzi/zJ\qNY^p(ίω) , (6.12)

where ω is a matrix- valued elliptic differential form on En and

θ(z\q) = Π (1 - *m*)(l - ^w+1z-1)(l - </m+1) . (6.13)
m^O

Remark. A similar result holds for the trigonometric KZ equations (1): if
fe + hy = 1/M, where M is an integer then solutions of the KZ equations are
algebraic functions.
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