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Abstract: Given a family of Riemann surfaces and a holomorphic vector bundle
Beilinson and Schechtman construct a canonical connection on the associated
determinant bundle. We prove the conjecture which states that their connection
coincides with the Quillen connection. This is done by reducing to the case where
d along fibers are invertible. Both connection forms become more accessible in this
case.

Introduction

Let π: X -» S be the parametrization of a family of compact Riemann surfaces,
E -> X a holomorphic vector bundle, and λE = dQt(Rπ^E) the determinant bundle
over S. Given C°° connections on Tx/s and £, not necessarily arising from metrics,
Beilinson and Schechtman [BS, §5] construct a formal parametrix p(z, ζ) for dz

(<ί along the fibers) and using p they derive a (1,0) connection VBS on λE. These are
given by local formulas in terms of VTXIS

 and V£ and fiber integrals. Local

calculations show that the (1,1) curvature d"5VBs is equal as a differential form to
the fiber integral prescribed by the Grothendieck Riemann Roch formula. The only
nonelementary part of the connection VBs is in identifying it with splittings of
complexes on X, which depends on the relative duality theorem.

On λβ1 of course there is the well known Quillen metric and the associated
Quillen connection VQ determined by metrics on Tx/s and E. For locally Kahler
families of compact complex manifolds the form level Grothendieck Riemann Roch
for curvature of VQ is known [BF, BGS]. Beilinson-Schechtman remark in [BS,
5.6]: "It seems very probable" that when VE, VTχ/s arise from hermitian metrics on
E, Tx/s, then VBs is just the connection associated to the Quillen metric for λE.
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82-0208-M-002-125-T, and NSERC of Canada Grant No. OGP 0121883
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Since VQ determines uniquely a connection on λE which we denote by — VQ,
Beilinson-Schechtman's conjecture is the identification VBS = — VQ. The Quillen
metric and VQ, being defined in terms of ^torsion, are highly analytical in nature;
on the other hand VBS acting through the Kodaira-Spencer class and formal
parametrics has a rather geometric and sheaf cohomological flavor. It is obviously
of interest then to unify the two seemingly disparate objects.

The purpose of this paper is to give such an identification. By adding to
E a vector bundle of the opposite index along fibers we may reduce to the case
where the index of E is zero. Under this hypothesis it is easy to further reduce to
families in which dz is invertible over a dense open subset of S, this being so in the
moduli space. In this case there is a canonical holomorphic section of λE

 ί with
respect to which the connection one form of VQ has a striking interpretation as the
heat kernel renormalization of Trs\_D ~ 1 (V£>)] [β, £F]:

ί-» 0

where D = dz + d* and V is the connection on an infinite dimensional bundle
induced by VE and VTX/S- In general VBS,V is represented by a cohomology class on
X. In the situation where dz is invertible there exists a canonical integrable
connection V on λE, and if the metric on Tx/s is locally Kahler then the difference of
VBS and V is given by the fiber integral of a smooth form:

VB S,,-V,= J (p^-GK^t?), (2)
x/s

where ϋ e 3~x is the horizontal lift of v e 3~s with respect_to the jnetric, so dzϋ is
a representative of the Kodaira-Spencer class of v9 p~1(dzΰ) = (dzv(z))p(z, ζ) and
G is the kernel function of d~ 1 .

The formulas (1) and (2) readily reduce the identification problem VBs — — VQ

to proving the vanishing statement:

(3)
ί-»0

This is an analogue (extended to first derivatives) of the vanishing result of Quillen
[β> §5] This is the most technical part of the proof, and it relies on the expansion of
e~ίΔ and p ( z , ζ ) in local geodesic coordinates in Sect. 4. Having proved
VBS = — VQ for a locally Kahler metric we use variation formulas to show
VBS = — VQ for any hermitian metric on Tx/s . For two metrics g and g' on TXjS and
the associated connections VQ, VQ the difference VQ — VQ is given in terms of
Bott-Chern forms [BGS III]; we show by a direct calculation in Sect. 2 that we
have precisely VBS - VBS = - (Vq - VQ).

We may interpret this identification as saying that the Quillen connection
which depends on data of metrics, has a canonical extension to a connection which
depends on data of connections. This leads to some natural questions which we
hope to address elsewhere. At present the construction of the Beilinson-Schecht-
man parametrix p is limited to families of Riemann surfaces. There is a Cech
cohomological construction of an analogous p in higher relative dimensions which
also yields a connection Vp on λE and a form level Grothendieck Riemann Roch
without any Kahler hypothesis [T]. However it will not be possible to identify Vp

and VQ for the simple reason that the Chern forms appearing in the fiber integral in
[T] for dsVp are the Atiyah-Chern forms which are different from the standard
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Chern forms defined from metrics. The Atiyah-Chern forms for example are
ίίclosed but in general not d closed. Thus the fiber integrals giving the curvatures of
Vp and VQ are different.

We thank J.M. Bismut, J.B. Bost, H. Donnelly, L. Lempert, and C. Soule for
helpful discussions.

1. The Beilinson-Schechtman Connection

Let π: X -> S be a proper smooth map of complex manifolds of relative dimension
one, E-+X a holomorphic vector bundle and λE = detRπ^E the determinant
bundle associated to the direct image complex. The Atiyah algebra of λE is the sheaf
of local connections of λE which in this case is an extension of the tangent sheaf ̂
by the structure sheaf Θs:

0 -> &s -> j^£ -> 3TS -> 0 .

In [BS] Beilinson and Schechtman construct a differential graded Lie super
algebra tτjtf'E on X whose direct image cohomology R°n^(ir^'E) is canonically
isomorphic to stfχE.

Let Cs be the sheaf of germs of C°° functions on S then a C°°(l, 0) connection on
λE is a splitting of the exact sequence:

0-> Cs-> C.̂ -> .Γs-> 0 . (1.1)

To represent (1.1) as cohomology of complexes on X let <z/E,π <= ^E be the
subalgebra whose image in the natural map ε:«β/£ -> yx equals ̂ , the projectable
vector fields. Further let j/£/s c j/£ π be the ideal which differentiates in the fiber
directions. Cir^E

 l is the push forward of ir^E

 1 by the map Ω'x/s-^Ω'χis, where
Ω'χ/s is the complex of holomorphic relative forms and Ω''' = Q'x'/s the complex of
bigraded C°° relative forms. In local coordinates near A in X x s X the elements of
C t rj/£ l are given by:

where α(z) and β(z) are holomorphic (£(z) takes value in E® £*) and c(z) is C00.
Taking residues along zl defines a map #: Cirj/E

 1 -> j3/£/s and there arise maps of
complexes

T T T

t t

The vertical complexes in (1.2) are assigned degree zero in their top degrees, and
R°π% applied to (1.2) is canonically isomorphic to (1.1).

Suppose given C°° connections VΓ and V£ on T = Tx/s and E respectively, the
Beilinson-Schechtman connection VBs = R°π*(p), where p is a splitting of (1.2).
Namely VΓ and V£ determine a formal parametrix p(z, ζ)e CE [xl E'(Δ\
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E' = E* ® ί2^/s [BS, §5.3]. Thus p(z, C) is C°° in z, holomorphic in C with a first
order pole along A, and βP = 1 e «s/£/s. For w e «a/£/s, set

p-» = (0, βu(z)p(z, 0) e Q° 1 Θ C'̂ 1 ,

where β is tr°zl* applied to nonsingular terms of u(z)p(z, ζ) and leaves singular
terms unchanged. dxp

-1 naturally extends to a sheaf map jtfEt1t -* Ω*/s ® ̂ * * »
and

P°(v) = (&p-*)(v), v) e Ω

where <3~z denotes d along the fibers.
In local coordinates suppose the (1, 0) components of V τ and V£ along the fiber

directions are

V τ d = dz + Φτdz9 VF d = dz + ΦEdz .
Λ'd~z **Tz

The components of curvature forms valued in QχΛ are denoted by_C(VT) and
), and their projections into Ω^s are denoted C(Vτ) = dzΦτdz and

C(VE) = dzΦEdz. Furthermore, c1(VE) = —trC(V£), £ι(V£) = —trC(V£) and
2π 2π

similarly for Vτ. ω = ωx/s is the relative canonical bundle and VΓ induces Vω with

V d = dz — Φτdz. To write down p in local coordinates let u = a— + B E J#E/S
ω'fo ^z

and define πVε: <tfE,π-+ End(E)®Ω°'° by

πVε(v) = V — VE,ε(v) .

We now have

-z t 0

0(z) = Φτ(z) + ΦE(z),

,(z) = \Φ'τ(z) - ±-Φ2

τ(z) - \Φτ(z)ΦE(z) + iφi(z) - Aφ|(z), (1.3)
D IZ 2 Z Z

and

(1.4)

(the minus signs in p°(t>) come from shifting — to — in definition of Cj).
2nι 2n
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To calculate the action Λ°π j j ί(p') we consider first resolutions of (1.2) by Cech
complexes. Let fy, be an acyclic covering of π~1(C7), where U c S is a sufficiently
small open set and p a partition of 1 subordinate to .̂ We have

0 - »sfE.*(*

ΐ ΐ < ΐ < ί/

0 - > s / E / s f r - ^ U ) ) - > C°(#, Λ/£/S) - > C1^, Λ/£/S) - > . . .
δ

(1.5)

R°πHί(j/£)(C/) is represented by

{(», M) e C°(4f, J/B. ,) Θ C1 («, ̂ E/s), -δv + iu = 0,δu = 0}

modulo the coboundaries (i, δ)C°(<%, 3/E/s) Let

p:

be given by

Then p defines a quasi-isomorphism on total complexes which at degree zero is:

Let v e fs(U) be a vector field and {ί;} e C°(Φ, Λ/£,π) be local lifts, then
Cl(%, jtfE/s) and it is easy to see that if v = p{v} (cf. [TT, §1])

. (1.7)

We may similarly form Cech resolutions of

(1-8)

and (1.6) defines quasi-isomorphisms on the corresponding total complexes. Now
the advantage of Cech complexes is that the sheaf level splitting (1.4) extends
immediately to a chain map of the bicomplex in (1.5) to that of (1.8). We thus have
a chain map of the total complexes (associated to Cech complexes) and via
p a splitting of the following diagram of complexes (of sections over π~1(t/)):

> ι o v

o o

(1.9)
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where q:ir£/E

 1 ® Ω0'1 -» Ω l f l is the projection given by q= 1 — p~1R. It is
straightforward to check that the splitting of (1.9) is given by the maps

Applying the splitting to the element in (1.7) one obtains

The cohomology class of this element in the left column of (1.9) represents the
action of the Beilinson-Schechtman connection:

VBS.* = [v + p-i&υ) + p°(ί>)] . (UO)1

2. Comparison of Variation Formulas

Let g be a hermitian matrix on Tx/s and h a hermitian metric on E. In the present
case of relative dimension one g induces a Kahler metric on the fibers. These
determine a Quillen metric || ||Q on λE

l and the corresponding Quillen connection
VQ. The metrics g and h also determine (1, 0) hermitian connections VΓ and VE, and
from Sect. 1 we obtain the connection VBs on λE. In this section we compare the
variation formulas for VQ and VBs when g is changed to a metric g±.

Let g1= eφg, where φ is a C°° function on X and let VQ be the Quillen
connection associated to (gl9h). By [BGS III, Th. 1.23].

^ - V Q = -ds\ J fd(g,gί)ch(h)]
L x/s Jo

= - J
x/s

where [ ]f denotes the component of degree (z, i). Let gf f = e^gf be the family
connecting g to gl9 then

tdφ ,

= >

. (2.2)
2π

In the present case

ch2(VE) ,

1 Added in proof: There is a simpler justification that (1.10) represents the action of a connection
This will be discussed elsewhere.
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where m = rk(E). Then using the Bott-Chern formulas [Bt C, 3.15, BGSI, Th.
1.27], one gets readily

V G — V/2 = — f < — dφ Λ c^V r) + —dφ Λ —-ddφ + -dφ Λ Ci(V £ ) > . (2.3)
x/s I6 12 2π 2 J

To compute the variation formula for the Beilinson-Schechtman connection let p ?,
pi* denote the maps (1.4) computed with respect to the connections VT = VΓ + dφ
and V£. Then by (1.10)

This is a cohomology class of a smooth form in ΩX'/S and hence the class is uniquely
determined by the fiber integral of the form. Therefore,

Vέs,, - VBS., = ί (PΓ1 - P"1)^) + (p? - p°)(v) . (2.4)

Proposition 2.1. VBS — VBs = — (Vq — VQ).

/ The integral (2.4) is independent of the choice of ϋ which lifts v. In local
5 d d

coordinates let υ = — be a germ of &~s and let ι;0 = — + a~ be a lift to C°°(^π).
^s cs dz

We then set

(2.5)
US (JZ

With this choice

(2.6)

We also have

8zv0 = (dza)—9 dzv = (dza)— + dzBdz oz

and differentiating (2.6): ( J denotes contraction)

dzv-VE,d-zVo= -t ojC(JE). (2.7)

We now expand by (1.4)

itrί^δ - V£,a>0)(θz</>) j (iii) . (2.8)



450 Y.L.L. Tong, I-Hai, Tsai

Next using (2.6) we have

(Pi ~ P°m = (Vi

(E) (iv). (2.9)

From (2.3), using the commutation relation υ JJχ/s = §x/sv0 J, the integrand for
— (Vq „ — VQ „) can be expanded as (note that we only want the component in

'

7(00 J Wcι(VΓ) - ^3zφ Λ »o J C l(VΓ) (i)
6 o

)—dzdzφ-—dφ Λ ϋ0J^-3zδ0 (ii)
12 2π

V£) - ^2(/> Λ ί;0 J C l(V£) (iii) . (2.10)

We can now prove Proposition 2.1_through the following scheme of equalities. We
denote by " = " equality modulo dz exact forms in Ωχ'/s . First

(i) = (2.9)(ϋ) + (2.8)(i)

where we have used the identity

dz(Vωtυo(dxφ)) = Vω^Vo(dzφ) - (volcι(Vω))(dzφ) + Vω.vo(d,dzφ) .

Next
ίi) = (2.8)(ϋ)

and here one uses

Finally,

by using (2.7).
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3. Identification of the Connections

Let π: X -» S be a proper smooth map of relative dimension one, then it is always
locally Kahler [Bing]. This means that on sufficiently small open sets U c S,
π~ 1(C/) has a Kahler metric. However we assume Tx/s is given a hermitian metric
g which needs not be the restriction of a Kahler metric on π ~* U. Let h be a hermitian
metric on E, VQ and VBs are the associated connections on λE

1 and λE. The next
proposition reduces the problem of showing VQ = — VBS to a simpler context.

Proposition 3.1. It suffices to check VQ = — VBs for families where χ(Xs, E \ X S ) = 0
and dz: C°°(XS, E \ X β ) -> C°°(XS, E&Ω0'1 \ X s ) is invertible.

Proof. By taking the direct sum of E with a suitable F9 e.g. F = £* ® ω we have
χ(Jfs, E0F|X s) = 0. Assume that we can prove VQ @ F = - Vf s

e F when the her-
mitian metric on E φ F is direct sum of h and any hermitian metric h1 on F, then
since λE@F = λE®λFί VQ Θ F = VQ + Vξ and likewise for VBS. Since h and h1 are
arbitrary we must have VQ = — Vfs, VQ = — VBS Thus we are reduced to
showing VQ = —_VBs for bundles E with index zero along fibers. Next we reduce to
the case where dz is invertible. The problem is local in S; it suffices to show
VQ = — VBS in the neighborhood of a given point s0 e S.

Let A be the (infinite dimensional) affine space which parametrizes the complex
structures on a vector bundle over a Riemann surface (cf. [Q]). Over the moduli

p

space of Riemann surfaces of genus g let δ *Jίg be the fiber space with fibers
isomorphic to A and whose local sections over Mg parametrize holomorphic
vector bundles over families of Riemann surfaces. The family E -> XS9 sell
corresponds to a holomorphic map/: U -» δ Pf(s) = {Xs}> We want to extend E to
a vector bundle E over the family Xs x Dε ->U x Dε, where Dε c (C is a disc of
radius ε around 0 such that E\(XstQ) = E and dz acting on E\(Xstt) is invertible for
£ =t= 0. This corresponds to ̂ extending / to a holomorphic map /: U x Dε -> <?,
/(s, 0) = /(s) and such that/(s, t) satisfies the above requirement. The condition
E\Xs has index zero implies there is an open dense set in A where dz is invertible,
thus we can find such extensions /.

Now consider such a family over U x Dε. The set where dz is invertible is an
open dense subset. Let the metrics be extended to this family. If we know
VQ = — VBS on the open set where dz is invertible then by continuity we conclude
that VQ = — VBS on U. This finishes the proof.

From now on we assume E -> X satisfies the conditions in Proposition 3.1. Let
G ( z 9 ζ ) be the Schwartz kernel of the inverse d~x. Then the condition dz d~1 = l is
equivalent to

<^(z>ζ)G(z, Q = A as distributions. (3.1)

We may consider G(z, £) as a parametrix and (3.1) implies that 3~(2fζ)G(z, C) = 0 as
a smooth form extended across A. Let έ%E c £ IE1 E'(2A) be the subsheaf with pole
along zl of order 2 or less and which by residue map R has image in ̂ E/s. There is
an exact sequence

0 £,* > »E,π >V

t (3.2)

" S*E/S » 0
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and given u e J/E/S> G(u) = uzG(z, ζ) e $E gives a splitting of (3.2). There is a natu-
ral projection $E -> tr jtfE

 1 . We can use (β ° G, 0) in place of (p ~ l, p°) in Sect. 1 to
β

get a splitting of (1.2).

Lemma 3.2. TTze connection on λE corresponding to the splitting (/?°G, 0) is
integrable.

Proof. Under the hypothesis R°π*E = Rlπ*E = 0 we have R*π*(8E - •«/£.«)
s ys and by [BS 2.3.2(iii)], V = R°π*(β°G) is the integrable connection.

Using (1.10) and Lemma 3.2 we express the difference of the Beilinson-Schecht-
man connection and the integrable connection as fiber integral of C°° forms,

VBS,» - V, = f (p-1 - G)(d,v) + p°(g) . (3.3)
x/s

Lemma 3.3. Suppose g^ is a hermitian metric on Txjs which is the restriction of
a Kahler metric on Tx\π~^(U). Let v0 be the lift ofv to Tx which is orthogonal to
TXJS for the Kahler metric, and v = V£$ VQ , then

ί P>~) = O .
X/S

Proof. With the choice v = VE,VQ, πVjί(ι>o) = 0. So by (1.4),

ί P°(v) = % ί ^^(c^Vf)) + \ I Vω,vo(c,(VE)) . (3.4)
x/s ° x/s ^ x/s

Let ωz be the Kahler form along the fibers arising from g^ , then by [BFI, (1.8), BGS
II, Th. 1.14]

v j c1(VE) = v J <
x/s x/s

ω,t;oω2>}ωz . (3.5)
x/s

fjr/s Cί(VE) is constant ins and Vω,Voωz = 0. Hence by (3.5) Jx/s Vωtv0Cι(VE) = ° In

the same way the other integral in right hand-side of (3.4) vanishes.
We consider next the connection form for VQ, computed with respect to the

metrics #ι and h. VQ will denote the horizontal lift prescribed in Lemma 33. λE

 1 has
a canonical holomorphic section T (d) nonzero over the points where dz is inver-
tible. With respect to the section T(d\ VQ has connection 1 form which is the (1, 0)
component of (cf. [BGS III, (1.43), (1.48), (1.63)])

δ0 = ] Trs[exp( - uD2)(VD)D-]du , (3.6)
o

where D = dz + d* and Vv = V£j vo + VΓ is considered as a connection on an
infinite dimensional bundle. By [BFI, Th. 1.15] this may be expressed as

<$o - limTrs[exp( - ίD^β-^VD)] . (3.7)
ί-»0
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Since δ* ° d~ 1 = 0 we have

Hence d~l - Vdz = D~l Vδz, and since Vvd* = 0 by [BGS II, (1.51)] we have

D-1(VvD) = dz-
ί(Vvdz). (3.8)

Next from [B, Th. 2.5] Vdz = V°dz + d z°V, hence

Vvdx = Vυ*dx-dx Vυ= -dzv. (3.9)

We now have

δ0(υ) = - limTrs[exp( - tD2)D~l(
ί^O

= lim Trs[exp( - ίD2)^1

= lim Trs [exp( - tD2)(d~ 1 - p ~ *
r->0

ίD2)p-1(a2ί;)] . (3.10)
ί^O

In Sect. 4 we shall prove

Proposition 3.4.

limTrs[exp( - tD2)p~1(dzv)'] = 0 .
ί->0

Given this proposition and the fact that d~ 1 — p ~ 1 has a smooth kernel it follows
from (3.3), (3.10) and Lemma 3.3 that VQ = — VBs when the connections are
defined in terms of the metrics g± and h. But then by Proposition 2.1 VQ = — VBS

for any hermitian metrics g and h.

Theorem 3.5. Let π: X -> S be α proper smooth map of relative dimension one. Let g,
h be hermitian metrics on TXfS and E and let VQ and VBs be the connections on
λβ ί and λE respectively. Then VBs = — VQ .

4. Calculations Involving the Heat Kernel

We can restate Proposition 3.4 as

- ί2 lp-1(a rf;)] = 0, (4.1)
ί-»0

where A = d*dz. Reecall that in local coordinates

zv = dz— + dzB(z) .
oz oz
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Lemma 4.1. The kernel function ofe~tAGp~1(dzv) is given by

ale-'*(x, y)p(y, z)dvy] + (\e-tΔ(x, y)p(y, z)dυy}dzB(z) .
y / \y /

Proof. Let φ be a smooth section of E with compact support. Recall by (1.3) that
p(y, z) is a 1 form in dz,

fe-"(x,y)P(y,z)dv,\(dfB)φ(z).
s y /

Clearly then (4.1) will follow by showing:

(i) ]im-?-le-tA(x9y)p(y9z)dΌy\x=x = 09

(ii) lim J e ~ tΔ(x, y)p(y, z)dvy\z=x = 0 . (4.2)
ί->0 y

We shall first prove (4.2) (i). Consider the asymptotic expansion of e ~ tΔ (cf. [P]),

where d is the distance function. We set in local coordinates x = 0, and make the
change of variable y — z = reiθ. Note that since \xmt-+oe~tA(x,y) is the delta
function at x we need only consider the integrals of (4.2) for y in coordinate
neighborhoods around x. Using (1.3) and the substitution for y, the limit in (4.2) (i)
breaks up into a sum of the following types (omitting some constant factors):

ί->o
(i) lim

f l _d-d 1
(ii) lim l-^e * — (UQ + Wl + ... )—θdvy\z = 0 ,

r->0 J r Oz re

ft Γ
(iii) lim - \e ~ tΛ

t->o o z j i
(iii) lim - e ~ tΛ Σ *ίy)(z ~ y)'d»,l,-o (43)

t->o o z j igo

Lemma 4.2. (i) There exist complex geodesic coordinates y at 0 satisfying

dgyp(0) = dgyy(0) = d2gyf(Q) = d2gyp(0) =

dy 3y (dy)2 (dy)2
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(ii) For any complex coordinate y at 0, there exists a local frame {e1? . . . , em} of
E near 0 such that

2dy dy (dy)2 (dy)

Proof. Although the proofs are similar, the statements here are slightly more than
what is available in standard references (cf. [W, p. 83)]. We will thus prove (ii); the
same argument works for (i). It is standard that there exists a frame [e^ , . . . , em } at
0 such that /z^O) = %and dh(ϋ) = 0. Consider

Then

α β

By using /i^O) = <5zyand d/ι(0) = 0 we have

K$(Q) = δf and dft(0) = 0 .

d2 ~ δ2% 32 -
Further -r-^/*i/(0) = -τ- (̂O) + atj. Hence to make T-J Aί/(0) = 0 it is equivalent to

ί/ώ t/2 c/2ι

52/Z -
choosing α^ = — T^(^)

Using Lemma 4.2 and the expansion formula for the distance function [D,
(2.2)]:

d2(0, z + re1'0) =\z + rew\2 + const |z + reiθ\4 + O(r5) . (4.4)

It follows that

|-d2|z = o = re~w + constr3β- fθ + O(r4) . (4.5)
oz

Also it follows from [P, (4.9)] that

l/0(0,y) = / + M|z + reίθ\2 + O(r3) , (4.6)

where M is a constant matrix.

_
Lemma 4.3. limf^0 j-^e"2* ig flϋy = 0 .

Proof. Use polar coordinates dvy = grfrdrdθ and change variable r = ^/ίf,
d = .v/ί J; the above integral becomes

which proves the lemma.
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By (4.5) and Lemma 4.3 we can reduce (4.3) (i) to

+ t U d v , , (4.7)lim -̂

where t2 U2 + . . . is dropped by the same argument as in Lemma 4.3. We consider
the most singular term in (4.7), the other terms can be treated in the same way,

f 1 _-
lim -^e 2tU0e

 2lθdvy

f-»0 J *

- lim \\e-dϊϊ(I + Mr2 + O(r3))e-
2ίθgrr-rdrdθ

= lim - + ̂  + *o<'5))(/ + Mir2 + t0(f3))e-2ίθtrdfdθ , (4.8)
ί^O J ^

where we made the change of variable r = *Jtr in the last integral.

Lemma 4.4. lim^e'^2+ tf4\I + Mtr2 + t^O(r3)}e'2iθtrdrdθ = 0 .
ί^O *

Proo/ The term involving O(r3) vanishes as in Lemma 4.3. The remaining terms
vanish when we integrate in θ.

Expanding e

(t~2°(f5]} = 1 + t^O(r5} + O(ί2) the last integral in (4.8) is reduced
to

Iim4ί^~^2 + ί"4)(^0(r5) + O(ί2))(7 + M + tr2 + . . . }e-
2iθtrdrdθ = 0(4.9)

t->o ^

This proves the vanishing of (4.3) (i). Similarly using (4.6) instead of (4.5) one can
show the vanishing of (4.3) (ii). Finally to evaluate (4.3) (iii) we do not make the

substitution y = z + relθ. Differentiating — in the integrand of (4.3) (iii) we have
oz

Iimje- ( d(0,y)(/l1(y) + 0(|y|))d»,. (4.10)
f-»0

By (1.3) and Lemma (4.2)

Aί(y) = A1(Q)

Hence (4.10) reduces to

]imSe-tA(09y)0(\y\)dvy = 0.
f->0

This finishes the proof of (4.2) (i). Finally note that the proof of (4.2) (ii) is much
simpler, e.g. expanding p(y9 z) in two parts the vanishings are already covered in the
vanishings of (4.3) (ii) and (iii). We have therefore proved (4.1).
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