On the Distribution of Zeros of a Ruelle Zeta-Function

A. Eremenko ${ }^{1 \star}$, G. Levin ${ }^{2}$, M. Sodin ${ }^{3}$
${ }^{1}$ Purdue University, West Lafayette, IN 47907, USA
${ }^{2}$ Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
${ }^{3}$ Institute of Low Temperature Physics and Engineering, Kharkov, 310164, Ukraine

Received: 14 January 1993/in revised form: 22 March 1993

Abstract

We study the limit distribution of zeros of a Ruelle ζ-function for the dynamical system $z \mapsto z^{2}+c$ when c is real and $c \rightarrow-2-0$ and apply the results to the correlation functions of this dynamical system.

Consider the dynamical system defined by the complex polynomial map $f_{c}: z \mapsto z^{2}+c$, where $c<-2$. We use the notions and results of the iteration theory of rational functions (see for example [5]). Denote by $f_{c}^{* n}$ the $n^{\text {th }}$ iterate of the function f_{c}. The Julia set $J\left(f_{c}\right)$ is a Cantor set on the real line. So in particular all finite periodic points are real. This system is expanding (hyperbolic) on its Julia set. When $c=-2$ the Julia set is the segment $[-2,2]$ and the map $P=f_{-2}$ is not expanding anymore. We have the conjugation

$$
\begin{equation*}
P \circ \phi=\phi \circ Q, \tag{1}
\end{equation*}
$$

where $\phi:[0,1] \rightarrow[-2,2], t \mapsto 2 \cos \pi t$ and

$$
Q= \begin{cases}t \mapsto 2 t & 0 \leqq t \leqq 1 / 2 \\ t \mapsto 2-2 t, & 1 / 2 \leqq t \leqq 1\end{cases}
$$

Remark that the chaotic dynamic of P on $[-2,2]$ was investigated by J. von Neuman and S. Ulam on one of the first computers.

We are going to study the dynamics of $f_{c}, c<-2$ when $c \rightarrow-2$ and then compare it with the behavior of the limit system P. The chaotic dynamics of f_{c} has to be described in probabilistic terms. This can be done by introducing an appropriate invariant probability measure σ_{c} on the Julia set. We will show that the rate of asymptotic decrease of correlation functions of the system (f_{c}, v_{c}) changes dramatically when we pass to the limit system as $c \rightarrow-2$.

Our tool is the Thermodynamic Formalism [12-15]. Let us introduce the main objects of this theory in our particular case. Consider the Fréchet space $C^{\infty}(U)$ of

[^0]infinitely differentiable functions defined in some real neighborhood U of the Julia set, such that $f_{c}^{-1}(U) \subset U$ and U does not contain the critical point of f_{c}. We define the Ruelle operator L_{c} acting on $C^{\infty}(U)$ by the formula
$$
L_{c} g(x)=\sum_{\left\{y: f_{c}(y)=x\right\}} \frac{g(y)}{\left[f_{c}^{\prime}(y)\right]^{2}} .
$$

The weight $\left(f_{c}^{\prime}\right)^{-2}$ is strictly positive on U. According to Ruelle's extension of the Perron-Frobenius theorem L_{c} has a simple maximal positive eigenvalue $\lambda_{0}^{-1}(c)$ such that the moduli of all other eigenvalues are strictly less than $\left|\lambda_{0}^{-1}(c)\right|$. Let h_{c} and v_{c} denote the eigenvectors of L_{c} and the adjoint operator L_{c}^{*} respectively, corresponding to the eigenvalue $\lambda_{0}^{-1}(c)\left(h_{c}\right.$ is a positive continuous function and v_{c} is a Borel measure). Then $\sigma_{c}=h_{c} v_{c}$ is an f_{c}-invariant ergodic probability measure on the Julia set, called "the Gibbs state, corresponding to the weight $\left(f_{c}^{\prime}\right)^{-2}$." The operator L_{c} can be also considered on the space A of functions analytic in a complex neighborhood of the Julia set. Namely, for every complex neighbourhood W of the Julia set such that $U \subset W, f_{c}^{-1}(W) \subset W$ and W does not contain the critical point of f_{c}, consider the Banach space $A(W)$ of functions analytic in W with the supremum norm. Then A is the union of all such $A(W)$. As the weight $\left(f_{c}^{\prime}\right)^{-2}$ is analytic, the spectrum and eigenfunctions of L_{c} in A are the same as in $C^{\infty}(U)$ (see [14], Corollary 3.3(i)). This fact allows us to use the explicit expressions for eigenfunctions found in [10] with the help of complex analysis. The following particular form of Ruelle's zeta-function is connected to the operator L_{c} :

$$
\zeta_{c}(\lambda)=\exp \left(\sum_{m=1}^{\infty} \frac{\lambda^{m}}{m} \sum_{x \in \operatorname{Fix}\left(f_{c}^{m}\right)} \frac{1}{\left(f_{c}^{* m}\right)^{\prime}(x)}\right)
$$

where $\operatorname{Fix}\left(f_{c}^{* m}\right)$ is the set of fixed points of $f_{c}^{* m}$. (We choose the weight $\phi=\left(f_{c}^{\prime}\right)^{-1}$ in the definition of Ruelle ζ-function. See Sect. 8 of [14] and formula (3.3) with $\sigma=\infty$ in [10].) The function ζ_{c} can be expressed in terms of generalized Fredholm determinants ([14, Corollary 8.1]). In our particular case it coincides with the Fredholm determinant D_{c} of $L_{c}[10]$; this is an entire function of order zero and its zeros are reciprocal to the eigenvalues of L_{c}. There is an explicit formula found in [10] (see also [11]):

$$
\zeta_{c}(\lambda)=D_{c}(\lambda)=1+\sum_{n=1}^{\infty} \frac{\lambda^{n}}{2^{n} f_{c}(0) \ldots f_{c}^{* n}(0)}
$$

In the appendix we will give a short direct proof of the fact that the eigenvalues of L_{c} are reciprocal to the zeros of D_{c}.
Remark. Let us consider another extension of the operator $L_{c}: C^{\infty}(U) \rightarrow C^{\infty}(U)$ to the Fréchet space $C^{\infty}(W)$ of the C^{∞}-functions of two real variables u and v, $u+i v \in W$, given by the formula

$$
L_{c}^{\mathrm{R}^{2}} g(x)=\sum_{\left\{y ; f_{c}(y)=x\right\}} \frac{g(y)}{\left|f_{c}^{\prime}(y)\right|^{2}} .
$$

(Note that $\left|f_{c}^{\prime}(x)\right|^{2}$ is the Jacobian of the map $f_{c}^{\prime}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ at the point x.) Then the eigenvalues and eigenfunctions of $L_{c}^{\mathrm{R}^{2}}$ coincide with those for L_{c}. Really, every eigenfunction of $L_{c}^{\mathbf{R}^{2}}$ restricted to $U=W \cap \mathbf{R}$ is an eigenfunction of L_{c}. Conversely, the eigenfunctions of L_{c} are analytic and, hence, belong to $C^{\infty}(W)$. In particular,
$\left(\lambda_{0}(c)\right)^{-1}$ is the leading eigenvalue of the operator $L_{c}^{\mathrm{R}^{2}}$ and the value $\log \lambda_{0}(c)$ is the so-called "escape rate" [8].

One of the reasons why the study of eigenvalues of L_{c} is important is their connection to correlation functions. For any two continuous A and B on the Julia set define the correlation function $\rho_{c, A, B}$ by

$$
\rho_{c, A, B}(m)=\sigma_{c}\left(A\left(f_{c}^{* m}\right) \cdot B\right)-\sigma_{c}(A) \cdot \sigma_{c}(B),
$$

where $\sigma(A)=\int A d \sigma$. Let

$$
S_{c, A, B}(z)=\sum_{m=0}^{\infty} \rho_{c, A, B}(m) z^{m}
$$

be the corresponding generating function. If A and B are infinitely differentiable on the Julia set then $S_{c, A, B}$ is meromorphic in \mathbf{C} and its poles can be located only at the points $\lambda \lambda_{0}^{-1}$, where λ^{-1} runs over the eigenvalues of L_{c} other than $\lambda_{0}[14$, Proposition 5.3].

1. First we investigate the limit distribution of eigenvalues of L_{c} or, which is equivalent, zeros of D_{c}. The following facts about distribution of zeros of D_{c} were established in [9]. For all $c<-2$ the zeros with moduli greater than 1000 are negative, and simple. There exists a constant $c_{0}=-2.85 \ldots$ such that for $c \leqq c_{0}$ all zeros of D_{c} are real. If $c<-2$ is close to -2 then there are non-real zeros and their number tends to infinity as c tends to -2 .

To study the asymptotic distribution of complex zeros we introduce the probability measures μ_{c} which charge equally every zero whose modulus is less than 1000.

Theorem 1. The measures μ_{c} tend weakly to the uniform distribution on the circle $\{\lambda:|\lambda|=4\}$.

Remarks. Notice that 4 is the radius of convergence of the series $D_{-2}=(4-2 \lambda) /(4-\lambda)$. Our proof is also applicable to the family of entire functions

$$
H_{a}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{a^{2^{2}-1}}, \quad a>1
$$

whose distribution of zeros was studied by G.H. Hardy [6]. He proved that for fixed a all zeros with moduli greater than $r_{0}(a)$ are negative. (In fact $r_{0}(a)$ can be replaced by an absolute constant [9]). Our argument shows that the limit distribution of zeros of H_{a} when $a \rightarrow 1$ is the uniform distribution on the circle $\{z:|z|=1\}$. Theorem 1 should be compared with the following theorem of Jentzsch and Szegö: The limit distribution of zeros of partial sums of a power series $\sum a_{k} z^{k}$ is the uniform distribution on $\{z:|z|=1\}$, provided that $\left|a_{k}\right|^{1 / k} \rightarrow 1$. Our proof is based on the same idea as Beurling's proof of the Jentzsch-Szeg̈o theorem [3].

Proof. We assume that $-3<c<-2$. It is convenient to introduce the variable $z=\lambda / 2$ and set $F_{c}(z)=D_{c}(2 z)$ and $r_{n}(c)=f_{c}^{* n}(0)$. Thus

$$
F_{c}(z)=1+\sum_{n=1}^{\infty} \frac{z^{n}}{r_{1}(c) \ldots r_{n}(c)}
$$

and

$$
\begin{equation*}
r_{n+1}(c)=r_{n}^{2}(c)+c, \quad r_{1}(c)=c, \quad c<-2 \tag{2}
\end{equation*}
$$

It is easy to see that all r_{n}, except r_{1}, are positive, the sequence $\left(r_{n}\right)$ is increasing and $r_{n+1}(c) / r_{n}(c) \rightarrow \infty, n \rightarrow \infty, c<-2$. Denote by $k=k(c)$ the smallest natural k such that

$$
\begin{equation*}
\frac{r_{k+1}(c)}{r_{k}(c)} \geqq 36 \tag{3}
\end{equation*}
$$

It was proved in [9] that the number of zeros of F_{c} in any fixed disk $\{z:|z|<R\}$, $R>1000$ is asymptotically equivalent to $k(c)$ when $c \rightarrow-2$. This fact also follows from the estimates below (formula (7) plus Rouché theorem).

Lemma 1. If $k=k(c)$ is as defined above, then
(i) $36 \leqq\left|r_{k}(c)\right| \leqq 1521=39^{2}$.
(ii) $k(c) \sim\left(\log |c+2|^{-1}\right) / \log 4, c \rightarrow-2$.
(iii) $(1 / k(c)) \log \left|r_{1}(c) \ldots r_{k(c)}(c)\right| \rightarrow \log 2, c \rightarrow-2$.

Proof. (i) From (3) we conclude that $k=k(c)>1$. If $r_{k}(c)<36$ then by (2) $r_{k+1}(c) / r_{k}(c)=r_{k}(c)+c / r_{k}(c)<r_{k}(c)<36$, which contradicts the definition of k. This proves the left inequality in (i). Now assume that $\left|r_{k}\right|>39^{2}$. Then in view of (2) we have $\left|r_{k-1}\right|>39$ and we obtain $\left|r_{k}\right|=\left|r_{k-1}\right|^{2}+c>\left|r_{k-1}\right|^{2}-3$ and $\left|r_{k}\right| /\left|r_{k-1}\right|>36$, which contradicts the definition of k. This proves the right inequality in (i).
(ii) Set $c=-2-t, t>0$. An easy induction gives

$$
\begin{equation*}
\left|r_{n}(c)\right| \geqq 2+\left(4^{n-1}-1\right) t, \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

To prove an inequality in the opposite direction we remark that $r_{n+1}(c)=\left[r_{n}(c)\right]^{2}-2-t \leqq\left[r_{n}(c)\right]^{2}-2=P\left(r_{n}(c)\right)$, so

$$
r_{n}(c) \leqq P^{*(n-1)}\left(r_{1}(c)\right) \leq P^{*(n-1)}(2+t)
$$

Using the semiconjugacy

$$
2 \cosh 2 z=[2 \cosh z]^{2}-2=P(2 \cosh z),
$$

(it is more convenient to use cosh rather than cos here) we obtain $r_{n}(c) \leqq$ $2 \cosh \left(2^{n-1} y\right)$, where y is the smallest positive solution of the equation $2 \cosh y=2+t$. There exists an absolute constant $C_{0}=30$ such that $2 \cosh x$ $\leqq C_{0} x^{2}+2$ whenever $2 \cosh x \leqq 1521, x \in \mathbf{R}$. Thus we obtain

$$
\begin{equation*}
r_{n}(c) \leqq 2+4^{n-1} C_{0} t, \quad n=1,2, \ldots, k(c) \tag{5}
\end{equation*}
$$

The statement (ii) follows from (4) and (5).
(iii) From (ii) follows

$$
\begin{equation*}
t \leqq C_{1} 4^{-k} \tag{6}
\end{equation*}
$$

In view of (4), (5) and (6) we have

$$
\begin{aligned}
\left|\left(\frac{1}{k} \sum_{n=1}^{k} \log \left|r_{n}(c)\right|\right)-\log 2\right| & \leqq \frac{1}{k} \sum_{n=1}^{k} \log \left(1+4^{n-1} C_{0} t\right) \\
& \leqq \frac{1}{k} \sum_{n=1}^{k} C_{0} C_{1} 4^{n-k} \leqq \frac{1}{k} \sum_{n=0}^{\infty} C_{0} C_{1} 4^{-n} \rightarrow 0, \quad k \rightarrow \infty
\end{aligned}
$$

This finishes the proof of Lemma 1.
Denote by $A\left(t_{1}, t_{2}\right)$ the annulus $\left\{z: t_{1}<|z|<t_{2}\right\}$ and set $A(c)=A\left(4 r_{k}(c), 9 r_{k}(c)\right)$, where $k=k(c)$. Put $M_{c}(z)=z^{k} /\left(r_{1}(c) \ldots r_{k}(c)\right)$. If $z \in A(c)$ we have

$$
\begin{align*}
\left|1-\frac{F_{c}(z)}{M_{c}(z)}\right| & \leqq \sum_{j=1}^{k} \frac{r_{k} \ldots r_{k-j+1}}{|z|^{j}}+\sum_{j=1}^{\infty} \frac{|z|^{j}}{r_{k+1} \ldots r_{k+j}} \\
& \leqq \sum_{j=1}^{\infty} 4^{-j}+\sum_{j=1}^{\infty} 4^{-j}=\frac{2}{3} . \tag{7}
\end{align*}
$$

Thus if we denote $u_{c}(z)=(k(c))^{-1} \log \left|F_{c}(z)\right|$ then by (iii) of Lemma 1,

$$
\begin{equation*}
u_{c}(z)=\left(k(c)^{-1}\right) \log \left|M_{c}(z)\right|+o(1)=\log |z / 2|+o(1), \quad c \rightarrow-2, \tag{8}
\end{equation*}
$$

uniformly when $z \in A(c)$. We are going to prove that

$$
\begin{equation*}
u_{c}(z) \rightarrow \log ^{+}|z / 2|, \quad|z| \leqq 324 \tag{9}
\end{equation*}
$$

where the convergence holds in L^{1} with respect to the Lebesgue measure (area) in $\{z:|z| \leqq 324\}$.

From the definition of $A(c)$ and Lemma 1, (i) follows that $A_{c} \subset A(144,13689)$. So from any sequence $c_{m} \rightarrow-2, c_{m}<-2$ we can choose a subsequence (which we again denote by c_{m}) such that the annuli $A\left(c_{m}\right)$ contain a fixed annulus $A\left(q_{1}, q_{2}\right)$, $q_{1}<q_{2}, q_{2}>324$. Then in view of (8) we have

$$
\begin{equation*}
u_{c_{m}}(z) \rightarrow \log |z / 2| \quad \text { uniformly in } \bar{A}\left(q_{1}, q_{2}\right) \tag{10}
\end{equation*}
$$

Furthermore we have

$$
\begin{equation*}
u_{c_{m}}(z) \rightarrow 0, \quad|z|<2 \tag{11}
\end{equation*}
$$

(convergence in L^{1} on compacts in $\{z:|z|<2\}$), because $F_{c}(z) \rightarrow F_{-2}(z)$ $=1-z /(2-z), c \rightarrow-2$ uniformly on compacts in $\{z:|z|<2\}$. Now we use the following fact (see for example [7], Theorem 4.1.9): if a sequence of subharmonic functions u_{m} is bounded from above on $\{z:|z|=R\}$ and their values at the point 0 are bounded from below then there is a subsequence which converges in L^{1} on every compact in $\{z:|z|<R\}$ to a subharmonic function u. Applying this statement to our functions $u_{c_{m}}$ and $R=q_{2}$, we obtain a subsequence (which we again denote by $u_{c_{m}}$) which converges to a subharmonic function u. This function u has the properties:

$$
\begin{equation*}
u(z)=0, \quad|z|<2 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
u(z)=\log |z / 2|, \quad q_{1}<|z|<q_{2}, \tag{13}
\end{equation*}
$$

which follows from (11) and (10) respectively. Remark that $u(z) \leqq 0,|z|=2$. This follows from (12) and the following theorem of M. Brelot [4]: if u is a subharmonic
function and $u\left(z_{0}\right)=a$ then for every $\varepsilon>0$ there exists a sequence of circles centered at z_{0} and radii tending to zero such that $u(z) \geqq a-\varepsilon$ on these circles. (It follows from the upper semi-continuity of u that $u(z) \geqq 0,|z|=2$, but we do not need this.) Now $\log |z / 2|$ is a harmonic majorant of u in the annulus $A\left(2, q_{2}\right)$, but $u(z)=\log |z / 2|$ at some points in this annulus, for example for $|z|=q_{1}$. It follows from the Maximum Principle that $u(z)=\log ^{+}|z / 2|,|z|<q_{2}$.

Thus we have proved that from every sequence $u_{c_{m}}$ we can select a subsequence tending to $\log ^{+}|z / 2|$. This means that (9) is true. In fact our proof shows that u_{c} converge to $\log ^{+}|z / 2|$ in L^{1} on every compact in the plane. Now we conclude from the general results on convergence of subharmonic functions [1, 2, 7] that the Riesz measures μ_{c} of u_{c} converge weakly to the Riesz measure of u, which is the uniform measure on the circle $|\lambda|=2|z|=4$. This proves the theorem.
2. Now we consider the application of Theorem 1 to the dynamical system $\left(f_{c}, \sigma_{c}\right)$, where σ_{c} is the Gibbs state defined in the introduction. We have

$$
\zeta_{c}(\lambda) \rightarrow 1-\frac{\lambda}{4-\lambda}, \quad c \rightarrow-2
$$

uniformly on compacts in $\{\lambda:|\lambda|<4\}$. So $\lambda_{0}(c) \rightarrow 2$ and

$$
\inf \left\{\lambda: \zeta_{c}(\lambda)=0, \lambda \neq \lambda_{0}\right\} \rightarrow 4, \quad c \rightarrow-2
$$

Thus by Theorem 1 and by Ruelle's theorem mentioned in the introduction we have the following asymptotic behavior of correlation functions:

$$
\limsup _{m \rightarrow \infty}\left|\rho_{c, A, B}(m)\right|^{1 / m}=r(c)
$$

where $r(c) \rightarrow 1 / 2$ as $c \rightarrow-2$.
We want to compare this result with the behavior of the limiting dynamical system when $c \rightarrow-2$. First we have to understand what the limit invariant measure is. Recall the conjugation (1). The Lebesgue measure l_{1} on [0,1] is invariant with respect to Q thus its image $\sigma_{-2}=\phi_{*} l_{1}$ is invariant with respect to $P=f_{-2}$. The measure σ_{-2} is absolutely continuous with the density

$$
\frac{1}{\pi \sqrt{4-x^{2}}}
$$

on the interval $[-2,2]$.
Proposition 1. $\sigma_{c} \rightarrow \sigma_{-2}$ weakly as $c \rightarrow-2$.
Proof. We will use the explicit expressions for the eigenfunction h_{c} of L_{c} and for the Cauchy transform

$$
H_{c}(z)=\int \frac{d v_{c}(x)}{x-z}
$$

of the eigenmeasure ν_{c} of L_{c}^{*}, corresponding to the greatest eigenvalue λ_{0}^{-1} (see $[16,10])$. Using the notation $r_{n}(c)=f_{c}^{* n}(0)$ we have

$$
h_{c}(x)=\sum_{n=0}^{\infty} \frac{\lambda_{0}^{n}(c)}{2^{n} r_{1}(c) \ldots r_{n}(c)\left[r_{n+1}(c)-x\right]}
$$

and

$$
H_{c}(z)=\sum_{n=0}^{\infty} \frac{\lambda_{0}^{n}(c)}{2^{n} z f_{c}(z) \ldots f_{c}^{* n}(z)}
$$

The function $z \mapsto H_{c}(z)$ is holomorphic in the complement of the Julia set $J\left(f_{c}\right)$. We have

$$
h_{c}(x) \rightarrow-\left(\frac{1}{2+x}+\frac{1}{2-x}\right), \quad c \rightarrow-2
$$

in $\overline{\mathbf{C}} \backslash((-\infty,-2] \cup[2, \infty))$ and

$$
H_{c}(z) \rightarrow H_{-2}(z)=\sum_{n=0}^{\infty} \frac{1}{z P(z) \ldots P^{* n}(z)}, \quad c \rightarrow-2
$$

in $\overline{\mathbf{C}} \backslash[-2,2]$.
Consider the measure v_{-2} on $[-2,2]$ with the density $\sqrt{4-x^{2}}$. We claim that $H_{-2}(z)$ is proportional to the Caushy transform of v_{-2}. This follows from the fact that they both satisfy the same functional equation

$$
H(z)-\frac{H(P(z))}{z}=\frac{\text { const }}{z}, \quad z \in \overline{\mathbf{C}} \backslash[-2,2] .
$$

Now Proposition 1 follows from the identity

$$
\left(\frac{1}{2+x}+\frac{1}{2-x}\right) \sqrt{4-x^{2}}=\frac{4}{\sqrt{4-x^{2}}}
$$

So the dynamical system $\left(P, \sigma_{-2}\right)$ is the limit of $\left(f_{c}, \sigma_{c}\right)$ when $c \rightarrow-2$. We will show that the asymptotic behavior of correlations changes drastically when we pass to the limit as $c \rightarrow-2$.

Proposition 2. Let A and B be holomorphic functions on [-2,2]. Then there exists a constant $a=a(A, B)>1$ such that

$$
\rho_{-2, A, B}(m) \sim a^{-2^{m}}, \quad m \rightarrow \infty .
$$

Proof. In view of Cauchy formula is enough to prove the proposition for the set of functions

$$
A_{z}(x)=\frac{1}{z-x}, \quad x \in[-2,2], \quad z \in \overline{\mathbf{C}} \backslash[-2,2]
$$

After the pullback to the segment [0,1] via the conjugation (1) we have to consider the correlations

$$
\rho_{A, B}(m)=l_{1}\left(A\left(Q^{m}\right) \cdot B\right)-l_{1}(A) \cdot l_{1}(B)
$$

with A and B of the form

$$
\frac{1}{z-2 \cos \pi t}
$$

If we introduce the operator

$$
\begin{equation*}
G: g(t) \mapsto \frac{1}{2} \sum_{y: Q(y)=t} g(y)=\frac{1}{2}(g(t / 2)+g(1-t / 2)) \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
\rho_{A, B}(m)=l_{1}\left(A \cdot G^{m}(B)\right)-l_{1}(A) \cdot l_{1}(B) . \tag{15}
\end{equation*}
$$

Now we notice that

$$
G\left(\frac{1}{z-2 \cos \pi t}\right)=\frac{P^{\prime}(z)}{2(P(z)-2 \cos \pi t)}
$$

which implies

$$
\begin{equation*}
G^{m}\left(\frac{1}{z-2 \cos \pi t}\right)=\frac{\left(P^{* m}\right)^{\prime}(z)}{2^{m}\left(P^{* m}(z)-2 \cos \pi t\right)}=S(z)+\frac{\cos \pi t+o(1)}{2^{m-1}\left(P^{* m}(z)\right)^{2}} \tag{16}
\end{equation*}
$$

where S is a function depending only on z. Combining (15) and (16) we get the statement of Proposition 2.
Remark. The analyticity assumption in Proposition 2 is crucial. Indeed consider the operator G defined in (14) in the space of infinitely differentiable functions on $[0,1]$. Its eigenvalues are $4^{-m} m=0,1,2 \ldots$, and to each eigenvalue 4^{-m} corresponds one (up to a constant multiple) eigenfunction p_{m} which is a polynomial of degree $2 m$. Now if A and B belong to the subspace of $L^{2}\left([0,1], l_{1}\right)$ generated by $\left\{p_{m}: m=0,1,2, \ldots\right\}$ then we have

$$
\rho_{A, B}(m) \sim \text { const. } 4^{-k m}, \quad m \rightarrow \infty
$$

where const $\neq 0$ and k depend on A and B.
Appendix. Here we indicate a direct proof of the fact that the eigenvalues of L_{c} are reciprocal to the zeros of $D_{c}, c<-2$ (see also [11]). Let us look at the eigenvalues of the adjoint operator L_{c}^{*}. The dual space A^{*} is the space of functions g analytic in the complement of the Julia set $J\left(f_{c}\right)$ and equal to zero at infinity. To every such function corresponds a linear functional given by

$$
h \mapsto \frac{1}{2 \pi i} \int g h
$$

where the integral is taken along some contour surrounding $J\left(f_{c}\right)$. Now a change of the variable in this integral shows that λ^{-1} is an eigenvalue iff for every function h holomorphic in a neighborhood of $J\left(f_{c}\right)$,

$$
\int\left(g-\lambda \frac{g \circ f_{c}}{f_{c}^{\prime}}\right) h=0
$$

Thus $w=g-\lambda g \circ f_{c} / f_{c}^{\prime}$ is holomorphic on J_{c}. It is also holomorphic in $\overline{\mathbf{C}} \backslash\left(J\left(f_{c}\right) \cup\{0\}\right)$ because $f_{c}^{\prime}(z)=2 z$. We conclude that $w(z)=$ const $/ z$ and after the normalization of g we get the functional equation

$$
g(z)=\frac{\lambda}{2 z} g\left(f_{c}(z)\right)+\frac{1}{z}
$$

from which follows that

$$
g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{\lambda^{n}}{2^{n} z f_{c}(z) \ldots f_{c}^{* n}(z)}
$$

Now g is holomorphic at 0 so the residue of the series in the right side should vanish, that is

$$
D_{c}(\lambda)=1+\sum_{n=1}^{\infty} \frac{\lambda^{n}}{2^{n} f_{c}(0) \ldots f^{* n}(0)}=0
$$

We thank the referee for his valuable comments.

References

1 Azarin, V.: On the asymptotic behavior of subharmonic functions of finite order. Math. USSR Sbornik 36, 135 (1980)
2. Anderson, J, Baernstein, A.: The size of the set on which a meromorphic function is large Proc. London Math. Soc. 36, 518-539 (1978)
3 Beurling, A.: Some remarks on entire functions of exponential type Collected Works, v. 1, Boston: Birkhäuser 1989, p 386
4. Brelot, M : On topologies and boundaries in potential theory Lect. Notes Math. 175, Berlin, Heidelberg, New York: Springer 1971
5. Eremenko, A, Lyubich, M.: The dynamics of analytic transformations Leningrad Math J. 1, 563-634 (1990)
6. Hardy, G.H : On the zeroes of a class of integral functions. Mess. Math. 34, 97-101 (1905); Collected Papers, v. IV, pp. 95-99
7 Hörmander, L.: The analysis of linear partial differential operators, Vol. 1 Berlin, Heidelberg, New York: Springer 1983
8 Kadanoff, L., Tang, C.: Escape from strange repellers. Proc. Nat. Acad. Sci. USA 81, 1276-1279 (1984)
9. Levin, G.: On Mayer's conjecture and zeros of entire functions. Preprint 17 (1991/92), Hebrew University, Jerusalem, 1992
10. Levin, G., Sodin, M , Yuditskii, P.: A Ruelle operator for a real Julia set. Commun. Math. Phys 141, 119-132 (1991)
11. Levin, G., Sodin, M., Yuditskii, P : Ruelle operators with rational weights for Julia sets. To appear in J. d' Analyse Math.
12 Ruelle, D.: Zeta-Functions for Expanding Maps and Anosov Flows. Invent. Math. 34, 231-242 (1976)
13 Ruelle, D.: Repellers for real analytic maps. Ergod. Th. \& Dynam. Sys. 2, 99-107 (1982)
14 Ruelle, D.: The thermodynamic formalism for expanding maps Commun Math. Phys 125, 239-262 (1989)
15. Ruelle, D.: Spectral properties of a class of operators associated with conformal maps in two dimension. Commun. Math. Phys. 144, 537-556 (1992)
16. Sodin, M , Yuditskii, P : The limit-periodic finite-difference operator on $l^{2}(\mathbf{Z})$ associated with iterations of quadratic polynomials J Stat Phys 60, 853-873 (1990)

Communicated by J.-P. Eckmann

[^0]: * Supported by NSF grant DMS-9101798

