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Abstract: We study the relative index of two orthogonal infinite dimensional pro-
jections which, in the finite dimensional case, is the difference in their dimensions.
We relate the relative index to the Fredholm index of appropriate operators, discuss
its basic properties, and obtain various formulas for it. We apply the relative index
to counting the change in the number of electrons below the Fermi energy of certain
quantum systems and interpret it as the charge deficiency. We study the relation of
the charge deficiency with the notion of adiabatic charge transport that arises from
the consideration of the adiabatic curvature. It is shown that, under a certain covari-
ance, (homogeneity), condition the two are related. The relative index is related to
Bellissard's theory of the Integer Hall effect. For Landau Hamiltonians the relative
index is computed explicitly for all Landau levels.

1. Introduction

An interesting observation that emerged in the last decade is that charge transport
in quantum mechanics, in the absence of dissipation, often lends itself to geometric
interpretation. A good part, but not all, of this research has been motivated by, and
applied to, the integer and fractional Hall effect [2, 8, 11, 17, 20, 26, 32, 34, 35, 38,
44].

The framework that will concern us here is that of (non-relativistic) quantum
mechanics. Within this framework common models of the integer Hall effect are
Schrodinger operators associated with non-interacting electrons in the plane, with
(constant) magnetic field perpendicular to the plane and random (or periodic) potential.
The Hall conductance has been related to a Fredholm Index by Bellissard [5], and to a
Chern number by Thouless, Kohmoto, Nightingale and den-Nijs [40]. The Fractional
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Hall effect is associated with electron-electron interaction and this goes beyond what
we do here.

Quantum field theory is another framework where transport properties and ge-
ometry are related. The focal point here has been the Fractional Hall effect and the
associated Chern-Simons field theories [7, 8, 18, 26, 42, 44]. We shall not address
these issues.

The Chern number approach to quantum transport has been extended to a large
class of quantum mechanical systems, including models of the integer Hall effect [17,
24, 25, 29-31, 41], to models with electron-electron interactions [3, 23, 30] and to
other systems that bear only little resemblance to the Integer Hall effect [8, 14, 29,
35, 38]. The Index approach has not been as popular, and has not been substantially
extended beyond the one electron setting considered by Bellissard for the integer Hall
effect [5, 11, 28,45].

We have two main purposes in this work. The first is to develop the Index approach
from the physical point of view of "charge deficiency": Consider a quantum system of
(non-interacting) electrons where the Fermi energy is in a gap. We allow an infinitely
large number of electrons below the Fermi energy. Now consider taking this system
through a cycle, so that at the end of the cycle the Schrodinger operator is unitarily
related to the one at the outset. The examples we shall focus on here are where the
initial and final systems are related by a singular gauge transformation corresponding
to piercing the system with an infinitesimally thin flux tube, carrying one unit of
quantum flux. Because of the unitary equivalence, at the end of the cycle we can put
the Fermi energy in the same gap as at the outset, and can ask for the difference in
the number of electrons below the Fermi energy. This deficiency of charge counts the
charge transported in or out of the system as a result of the additional flux quantum.
In interesting cases this difference is oo - oo. For non-interacting electrons, such
a difference is the difference in dimensions of a pair of two infinite dimensional
Hubert space projections. This is the relative index. It turns out to be related to an
index of an appropriate Fredholm operator. In particular, it is an integer. (The charge
deficiency introduced here is reminiscent of a charge that enters in computing the
vacuum polarization in Fock space. See [27].)

The identification of charge deficiency with an index implies integral charge
transport. This holds for a wide class of two dimensional quantum system, including
the conventional models of the integer Hall effect mentioned above. But it also holds
for more general models whose geometries and background potentials may be far
removed from the Integer Hall effect.

The theory described below appears to be restricted, at the moment at least, to non-
interacting electrons. This is consistent with the common wisdom because electron-
electron interaction will, in general, lead to fractional transport.

Our second purpose is to examine the relation of the charge deficiency (associated
with an index) and the notion of charge transport that arises in theories of linear and
adiabatic response. The latter is associated with Kubo's formulae, Chern numbers
and adiabatic curvatures. These two notions are distinct in general. They turn out to
be related for homogeneous systems. These are the kind of systems relevant to the
Integer Hall effect.

This relation between charge deficiency and charge transport is reminiscent of
known identities in related contexts: Streda's formula (which is relating the Hall
conductance with a gap label) [39] and certain Ward identities in Chern-Simons fields
theories giving rise to relations between transport coefficients in linear response theory
[18, 42].
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2. Comparing Dimensions

In this section we describe various formulas for comparing dimensions of two
orthogonal projections, P and Q. The index for two projectors of finite rank is just
the difference of their dimensions.

Index(P, Q) = dim P - dim Q = Tr(P - Q). (2.1)

A possible and, as we shall see, natural generalization of (2.1) to the infinite
dimensional case is:

Definition 2.1. Let P and Q be orthogonal projections so that P — Q is compact,
then

Index(P, Q) = dim(Ker(P - Q - 1)) - dim(Ker(Q - P - 1)). (2.2)

This Index is a well defined finite integer since dim(Ker(P - Q ± 1)) are both finite
by the compactness of P — Q. (One could take a broader perspective and define the
left-hand side of (2.2) by the right-hand side whenever the latter makes sense). Before
we discuss in what sense (2.2) is a generalization of (2.1) we note that the relative
index indeed has some of the natural properties of an object that compares dimensions
of two projections:

Index(P, Q) = - Index(Q, P) = - Index(Px, Q±) = Index(UPU~\ UQU~ι),

P ^ Ξ Ξ I - P , Q± = i - Q ,

(2.3)
for any linear and invertible map U. The basic formulas for computing the relative
Index is:

Proposition 2.2. Suppose that (P — Q)2n+ι is trace class for a natural number n, then

Index(P, Q) = Tr(P - Q ) 2 n + 1 . (2.4)

It follows that the right-hand side of (2.4) is independent of n for n large enough,
and that it reduces to (2.1) in the finite dimensional case. We shall return to the proof
of this proposition shortly.

To see where (2.4) comes, we start by noting an algebraic identity for any pair of
projections P and Q:

(P - QfP = P- PQP = PQ±P = P(P - Q)2 . (2.5)

In particular this says that (P — Q)2 commutes with P and Q. This leads to:

Proposition 2.3. Let n be a nonnegative integer so that (P — Q)2n+ι is trace class,
then:

Tr(P - Q ) 2 n + 3 = Tr(P - Q)2n+ι (2.6)

Proof. Subtracting the two equations below from each other

(P - Q)2n+2P = (P - Q) 2 n (P - PQP),

(P - Q ) 2 n + 2 Q = (P - Q)2n (Q - QPQ), ( 2 ' ? )

gives
(P - Q)2n+3 = (P- Q)2n+ι - (P - Q)2n [PQ, QP]. (2.8)

Since:
[PQ, QP] = [PQ, [Q, P]] = [PQ, [Q, P-Q]), (2.9)
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we get, due to Eq. (2.5), the identity:

(P - Q ) 2 n + 3 = (P - Q)2n+ι - [PQ, B], B = [Q, (P - Q ) 2 n + 1 ] . (2.10)

PQ is bounded and £ is trace class, so Tr[PQ,£Γ) = 0. Tracing (2.10) gives

(2.6). D

In the applications we never go beyond the trace class situation discussed above,
in fact the case n = 1 covers all the cases we shall consider.

Proof of Proposition 2.2. (2.6) implies that Tr((P - Q ) 2 m + 1 ) is independent of m
for m > n. As m goes to infinity, this trace converges to Index(P, Q) since
- 1 < P - Q < 1. Thus (2.4) is proven. D

In future work we'll examine this result further providing several other proofs
which illuminate it.

In the applications we consider projectors P and Q on subspaces with energies
below some fixed Fermi energy. Index(P, Q) then counts the difference in the number
of electrons, which we identify with the charge deficiency. Physical considerations,
that we shall describe in the following sections, motivate considering P and Q which
are related by a unitary U:

Q = UPU*. (2.11)

In the finite dimensional case P and Q are related by a unitary if and only if their
dimensions coincide. In the infinite dimensional case of a separable Hubert space
with dim P = dim P± = dim Q = dim Q± = oo such a U always exists, and does
not force Index(P, Q) = 0.

In the case that P and Q are related by a unitary map the index of the pair can
be related to a Fredholm index of one single operator:

Proposition 2.4. Let Q — UPU*, P an orthogonal projections and U unitary and
suppose that ( P - Q ) 2 n + 1 is trace class. Then, T r ( P - P Q P ) n + 1 andΊτ(Q-QPQ)n+ι

are trace class; PUP is a Fredholm operator in range P and

Index(P, Q) = Tr([P, 17] C/*)2 n + 1 = Tr(P - PQP)n+ι - Tr(Q - QPQ)n+ι

= - (dimKer(£/ | Range P) - dimKer(£/* | Range P))

= - Index(PtZP). (2.12)

Proof The first identity is a rewrite of (2.4) upon noting that

P-Q = [P,U]U*. (2.13)

The second identity follows from (2.5) which gives:

(P - PQP)n+ι = ((P - Q)2P)n+ι = (P - Q)2n+2P,

(Q - QPQ)n+1 = ((P - Q)2Q)n+ι =(P- Q)2n+2Q,

(proving our trace class assertion), subtracting and tracing using (2.4) and (2.6) gives
the second identity. To get the third identity note that:

p - PQP = p - PUPU*P,
* (2.15)

Q - QPQ = U(P - PU*PUP)U* ,
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using the unitary invariance of the trace we see that the third term in (2.12) can be
written as:

Tr(P - PUPU*P)n+i - Tr(P - PU*PUP)n+ι . (2.16)

Since both terms are finite the oprators (PUP) and (PU*P) are inverses of each other
in range P up to compacts. A formula of Fedosov [19, 16] then says that under such
circumstances (2.16) is a formula for Index(P£/*P) respectively — Index(PtZP). D

We can now use the relation Index(P, Q) = — Index(P£/P), to transfer known
facts about the Fredholm Index to the relative index, and vice versa.

Proposition 2.5. Let P,Q,R be orthogonal projections, which differ by compacts.
Then

Index(P, R) = Index(P, Q) + Index(Q, R). (2.17)

This identity is, of course, trivial in the situation where P,Q,R differ by trace class
operators. When interpreted as charge deficiency, it is a statement of charge (or
particle) conservation.

Proof. For simplicity we suppose that P, Q and R are unitarily related. Elsewhere we
shall give a proof of the general case.

Equation (2.17) equivalent to:

= lndtx(PU{P) + Index(QC/2Q). (2.18)

Now we rewrite all expressions in terms of Q and the necessary unitaries:

lndQx(PU2UλP) = IndexiU^QU^

= lnάex(QUιU2Q)

lnάtx(PU{P) = JndcxiU^Q

= Index(Q?71<2).

Hence it remains to show

IndextQt/j U2Q) = IndexίQ^ Q) + lnάcx(QU2Q). (2.19)

The left-hand side can be replaced by Index(QUxQU2Q) because the difference of
the corresponding operators is compact,

QUXQU2Q - QUXU2Q = Q[UuQ]U~ιU{U2Q.

This follows from the compactness of [Uι, Q] t/f1 and the fact that all the remaining
terms are bounded. By a basic result of stability theory for indices [22] the index is
invariant under perturbations by compacts. Furthermore by the product formula for
Fredholm indices one gets

Index(Qi71Qt72Q) = IndexίQ^Q) + Index(Q[/2Q), (2.20)

This prove the proposition. D

Related questions are addressed in [9, 12, 15].
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3. Gauge Transformations and Computations with Integral Kernels

In this section we introduce additional structure into the general operator theoretic
framework of the previous section, which will accompany us throughout. It is
motivated by the applications we have in mind, and involves conditions on the kind
of projections we consider and the unitaries that relate them. In particular, the unitary
that relates the orthogonal projections P and Q will be associated with a (singular)
gauge transformation which corresponds to piercing the quantum system with a flux
tube carrying an integral number of flux quanta. That is, U is a unitary multiplication
operator whose winding is the number of flux quanta carried by the flux tube. (More
precise conditions will be stated shortly.) This naturally forces us into considering two
dimensional quantum systems. Furthermore, it turns out, that for Index(P, Q) φ 0 the
orthogonal projection P has to be infinite dimensional and time reversal invariance
must be broken.

We describe this additional structure under

Hypothesis 3.1. (a) The Hilbert space is L2(Ω), where Ω C IR2 is a two dimensional
domain in M2 with smooth (possibly empty) boundary dΩ. In particular, the orthogonal
projections P and Q of the previous section are projections in L2(Ω).
(b) The projection P has integral kernel p(x, y), x,y £ Ω, which is jointly continuous
in x and y and decays away from the diagonal, so that:

with η > 2 and dis(x, y) is the distance between x and y.
(c) U is a multiplication operator on L2(Ω) by a complex valued function u{x), with
u(x)\ = 1, and u(x) is dijferentiable away from a single point which we take to be

x = 0. The derivative is if I —- 1. More precisely, we assume that there are constants
Cx and C2 such that: \ x^

\u(x + y)-u(y)\<cM (3.2)

for \x\ < C2\y\. The winding number ofU about the singularity is denoted by N(U).
This is the number of magnetic flux quanta carried by the flux tube associated with U.

Example 32. Let Ω = M2, and let z = x + iy.

\ W = { \z\ (3.3)

t 1 , z G [0, oo)

are unitaries which, for integer α, are smooth away from the origin and have winding
number a. Such unitaries are associated with an infinitesimally thin flux tubes through
the origin carrying a units of quantum flux. In particular, for a = 1 condition (c)
above holds with Cι = C^x — 2. This follows from the elementary inequality

\ux(z) - ux{z')\ < \z — z'\ max ( — , — ), which implies (3.2). On the other hand,
V 1̂ 1 \z I /

if a ^ Z, condition (c) clearly fails near the positive real axis.

The fact that U is a gauge transformation distinguishes coordinate space, and in
the rest of this section the integral kernel of P ~ Q will play a role. In particular,
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we'd like to know that an object like Tr(P — Q)3 can be computed from the integral
kernel of P — Q by integrating on the diagonal. This somewhat technical issue is
guaranteed by the following preparatory result:

Proposition 3.3. Let K be trace class with integral kernel K(x, y), x,y G MJ1, which
is jointly continuous in x and y away from a finite set of points (xifyi) so that
K(x,x) G L 1 in neighborhoods of these points, then:

= J K(x,ΊxK = K(x,x)dx. (3.4)

Sketch of proof Let Eε, Fε, Gε be the characteristic functions of the union of ε-balls
about the singular points, the exterior of a 1/ε ball and the complement of these two
sets. Then

Ύr(K) = Ίv(EεK) + Ύτ(FεK) + Tτ(GεKGε), (3.5)

where we used cyclicity of the trace to get the last term. Since Eε and Fε converge
strongly to zero as ε goes to 0, EεK and FεK go to zero in trace norm (as can be
seen by writing K as a finite rank plus small trace norm), and since a result in [36]
says that Tτ(GεKGε) is the integral over Gε of K(x, x) the result follows by taking
the limit using the fact that K(x, x) is L1. This proves Proposition 3.3. D

Proposition 3.3 could be replaced by the following statement which is a kind of a
Lebesgue integral version of Proposition 3.3 [6]. Its application to the concrete cases
we have in mind requires however somewhat more care.

Remark3A. Let K be trace class on L2(Rn). Then, its integral kernel K(x,y) may
be chosen so that the function L(x, y) = K(x, x + y) is a continuous function of y
with values in Lι(Rn). Furthermore if l(y) = J L(x, y)dx then Tr K = 1(0).

Our first application is the following result that guarantees that Index(P — Q) = 0
if P — Q is trace class:

Proposition 3.5. Suppose P — Q is trace class with Q = UPU~ι, U and P satisfying
Hypothesis 3.1. Then Index(P, Q) = Tr(P - Q) = 0.

Proof. The integral kernel of P - Q is:

(P - Q) (x, y) = p(x, y) (l - ^ - ) . (3.6)

By Proposition 3.3, Tr(P — Q) is the integral of (3.6) on the diagonal with x — y.
But the kernel of (P - Q) vanishes on the diagonal. Hence the trace is zero. D

This means the trace class situation is like the finite dimensional case, i.e.
unitary equivalence of P and Q implies equality of dimensions in the generalized
sense. In particular, for Index(P, Q) φ 0, (P - Q) must not be trace class, so
dim P = dim Q = oo.

The following proposition is central.

Proposition 3.6. Under Hypothesis 3.1 (P-Q)p is trace class for p > 2. In particular
Tr(P - QΫ is an integer and

= /— Index(P£7P) = / dxdydzp(x, y)p(y, z)p(zy x)

_ u(x)\ ( _ u(y)\ (

u(y)J
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Remarks 3.7. 1. In the case where p(x,y) is CQ° the proposition is in [11].
2. The index is real, of course. Under complex conjugation the first triple product
in (3.7) becomes p(y,x)p(z,y)p(x, z), since, by self adjointness p(x,y) = p(y,x).

( u(y)\ ( u(z)\ ( u(x)\
The second triple product transforms to f 1 111 — 111 — 1 by the

V u(x)J\ u(y)J\ u(z)J
unimodularity of u(x). This reduces to the original integrand upon interchanging x
and z.
3. If we were to consider, for example, M3, then the integrand in (3.7) under
Hypothesis 3.1 would lack decay in the direction of the magnetic flux tube, and (3.7)
would become meaningless, in general.
4. Flux tubes that carry fractional fluxes are associated with unitaries of Example 3.2
with a φ Z. For such C/'s, the integrand in (3.7) lacks decay along the cut, and the
integral is divergent in general.
5. This proposition also tells us that, as far as Sect. 2 is concerned, n = 1 is all we
have to consider.

(Proof. B y H y p o t h e s i s 3 . 1 P — Q i s a n i n t e g r a l o p e r a t o r w i t h k e r n e l p ( x , y ) \ l 1.
^V) J

To prove that (P - Q)p, p > 2, is trace class it is enough to show that the function

9(y) = J \p(x + V,y)(l - ^ (

+

}

y > ) 1 dx£Lp-\R2), l/p+l/q=l, (3.8)

because of Russo's theorem [33]. To prove (3.8) notice that close to the diagonal
x = 0 the second term of the integrand in (3.8) is small, off the diagonal it is the first
one which is small. To put this in analytic form we note firstly that it is enough to

/ u(x + y)
prove (3.8) in the following situation: Replace in (3.8) p(x + y,y)[ 1 — —
by the function ^ u^'

1 r \rr- ϊ

(3.9)

where C2 is the constant introduced in Hypothesis 3.1; i.e. it is enough to prove

F(y) = J(f(x,y))qdx e LP~\R), (3.10)

u(x + y)N

because, by construction, y,y)( 1 - is pointwise dominated by a
u(x)

constant multiple of /(x,y). Secondly we show that F is uniformly bounded in y.
This follows from the y independent bound on f(x,y),

( l V
(f(x, y))q < const — (3.11)

together with ηq — 2>0 (use η > 2 and q > 1). Hence the right-hand side of (3.10)
is integrable. Thirdly we analyze the behavior of F for large y. To do that we split
the defining integral into two pieces and prove that each term is in L2 9""1^). The first
term is defined by

= ί= ί(f(x,y))qdx, (3.12)



Charge Deficiency, Charge Transport and Comparison of Dimensions 407

where I(y) = {x \ \x\ < C2\y\} denotes the domain close to the diagonal x = 0. By
construction it satisfies the estimate

W I
Cutting out the unit ball B in I(y) we get the inequality

<jrkϊdx- <314)

Ky)\B
The second term is bounded up to a constant 2τr by

\y\

— / rq+ι~ηqdr = — I =• - 1 I . (3.15)
\y\q J \y\q \\y\Vq Q 2 J

Hence one gets the inequality

FΛ < const -—— + const — r . (3.16)
I " \y\q \y\m-2

Because (p-l)q-2 = p-2 > 0 and (p-l)(ηq-2)-2 = (η-2)p > 0 both terms on
the right-hand side of (3.16) are in Lp~ι(M^). The second term in the decomposition
of F is

F2(y)= J (f(x,y))*dx = C2 J
( 1 + | g | ί ? ) g d x . (3.17)

\χ\>c2\y\

The integrand has no decay in y, however the domain of integration shrinks for
increasing y. An explicit computation proves

(3-18)

Hence F is again in Lp~ι(M), and the theorem is proved. D

We close with the following observations about Index(Pf/P). The first is a
statement of stability of the relative index with respect to deformations of the flux
tube such as translating and other local deformations, and is a consequence of the
stability of the Fredholm index under compact perturbations. We state one special
case only:

Proposition 3.8. Let U be a gauge transformation as in Hypothesis 3.1 and let T be
a translation, then:

Index(Pί/P) = Index(PT£/T*P) = Index(P τ f/P τ ), P τ = TPT* . (3.19)

Sketch of Proof. P(U — T*UT) is a compact operator. This can be seen by an
adaptation of the proof of Proposition 3.6 to the present case. The stability of the
index under compact perturbations gives the first equality. The second one follows
from the invertibility of T and the definition of the index. D

This makes the charge deficiency insensitive to the positioning of the flux tube,
(and so a global property of the system).
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There are classes of projections where the relative index is guaranteed to vanish.
Experience with examples, such as the quantum Hall effect, have led to the recognition
that nontrivial charge transport is intimately connected with breaking time reversal
symmetry. Indeed:

Theorem 3.9. Let U and P satisfy Hypothesis 3.1 and P be time reversal invariant,
then lndex(PUP) = 0.

Proof. Since the relative index is real, (3.7) is even under conjugation. On the
other hand, time reversal invariance says that (3.7) is odd under conjugation, so
the index must vanish. To see this, recall that time reversal says that (in the spinless
case) the integral kernel of P is real [43]. It follows that the first triple product in
(3.7), p(x,y)p(y,z)p(z,x), is even under conjugation. The second triple product of

/ u(x) \ ( u(y) \ ( u(z) \
(3.7), 1 111 111 I, is odd under conjugation, since u(x) is

V u(y)J\ u(z)J\ u(x)J
unimodular. It follows that the integrand in (3.7) is odd under conjugation. D
Remark 3.10. It is easy to extend this proof to the case of spin, and to generalized
notions of time reversal.

The next triviality result has nothing to do with time reversal, but rather with the
geometry of Ω. It states that one can not remove too much of M2 around the flux tube
without making the relative index trivial. In particular, if Ω is contained in a wedge,
and the flux is outside Ω, the index vanishes. More precisely:

Theorem 3.11. Let U be a flux tube through the origin so that U and P satisfy
Hypothesis 3.1, and let Ω be contained in a wedge excluding the origin, i.e. Ω C
{z I z e C, ε < arg z < 2π - ε, ε > 0}, then, Index(PUP) = 0.

Proof Suppose Indεx(PUP) = m, m Φ 0. Take V = Uχl2rn with cut along [0, oo),
and so entire outside Ω. Since P is a projection in L2(Ω), p(x, y) = 0 if either x or
y is in Ω. Proposition 3.6 then can be adapted to this case with V replacing U, using
the fact that near the edges of the wedge the decay in (3.1) replaces the decay in (3.2).
It follows that lnάex(PVP) must be an integer. On the other hand a little argument,
using Proposition 2.5 and Eq. (2.3) shows that m = lndtx(PUP) = 2mlndtx(PVP).
This is a contradiction. Hence m = 0. D

4. Covariant Projections

In this section we consider the relative index for projections arising in the study of
homogeneous systems. Here we concentrate on the case of a single Hamiltonian. In
Sect. 8 we shall consider families of Hamiltonians with random potentials which are
covariant and ergodic under translation. The random case is of course much more
interesting from the point of view of applications to real systems. Mathematically the
case of one single covariant Hamiltonian is however the core of the matter as it will
be seen latter.

The main result of this section, Theorem 4.2, gives a formula for Index(Pf/P)
which holds for projections, which, in addition to the assumption on the decay of
their integral kernel, (3.1), also satisfy a condition of covariance (or homogeneity):
Projections that are translation invariant up to a gauge transofrmation. This formula
plays a key role in relating the index to the adiabatic curvature and Kubo's formula,
something we shall return to in the following sections.
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Definition 4.1. We say that a projection P in L2(Rn) is covariant if its integral kernel
satisfies:

p(x,y) = ^a(x)p(x -a,y- a)%-\y) a,x,y G Rn . (4.1)

?άa(x) denotes a family of unitary continuously differentiable multiplication operators,
i.e. nonsingular gauge transformations.

This notion of covariance is motivated by the covariance for Schrόdinger operators
with constant magnetic fields [46].

It follows that the first triple product in the integrand in (3.7) is invariant under
translation of all arguments x,y,z:

p(x, y)p(y, z)p{z, x) =p(x-t,y- t)p(y - t , z - t)p(z -t,x-t) teR2

= p ( 0 , y - x)p(y - x , z - x)p(z - x , 0 ) . (4.2)

This property can be used to reduce the six dimensional integral in the compu-
tation of lnάtx(PUP) in (3.7) to a four dimensional one, provided we can say

/ u(x — a)
something about two dimensional integrals with the integrand I 1 —

/ u(x -b)\ ί u(x - c)λ v uκX ~ ^
x 1 1 , where α, b and c are fixed points in R2. That

\ u(x — c) J \ u{x — a) J
such integrals can be evaluated explicitly, and have geometric significance is a result
of Connes [11] and is a rather amazing fact. Lemma 4.4 is in part a simplification of
the derivation and a generalization of the original observation of Connes to the case
of singular gauge transformations (Connes proof works however also for the upper
half plane).

Theorem 4.2. Let P be a covariant projection in L2(R2) satisfying the decay prop-
erties (3.1) and let U be a (singular) gauge transformation satisfying Hypothesis 3.1,
with winding N(U). Then:

f
lnάtx(PUP) = -2πiN(U) / dxdyp(0,x)p(x,y)p(y,0)xAy, (4.3)

where x Ay = xxy2 - x2yv x = (xvx2) andy ΞΞ (yuy2).

Remark 4.3. The self-adjointness of P gives p(x, y) = p(y, x)9 making the Index real.
If p(x, y) is real the index is manifestly 0, as it should (by Theorem 3.9).

The proof of the theorem needs an evaluation of an integral.

Lemma 4.4. Let N(U) denote the winding number of the multiplication operator U
satisfying Hypothesis 3.1. Then:

. u(x-a)\f u(x-b)\f u(x-c)
ax l — 1 I l —

u(x — b)J\ u(x — c)J \ u(x — a),

= 2πίN(U) Area(α, 6, c) (4.4)

with a,b,c,£ R2 and Area(α, 6, c) = a Ab + b Λ c + c Λ a is twice the oriented area
of the triangle with vertices α, b and c.

Proof Let

(φφλ (4.5)



410 J. E. Avron, R. Seiler, B. Simon

Then

C(d) 6, c) = / dx(e(x — α, x — b) + e(x — 6, x - c) + e(x — c, x — a))

- _ [ d ( ι _ ̂ a ) \ Λ _
y V (b))\V u(x-b))\ u(x-c)

x f 1 - ψ^\) , (4.6)
\ u(x — a) J

since the integrands of the two integrals are the same up to a minus sign. The integral
converges absolutely since each of the 3 factors can be estimated by:

1 -
u(x — α)

u(x — b)
< const \a — b\ max

1 1

\x — a\ x-b\

c o n s t \^Λ ? (4.7)

for \x\ > const x(|α| + \b\).
C(a, 6, c) has several manifest properties that want to make it proportional to the

oriented area of the triangle with vertices α, 6, c: 1. It is even or odd under cyclic or
anti-cyclic permutations of α, 6, c respectively. 2. It is translation invariant:

C(a + ί,b + t,c + ί) = C(α,6,c), α,5,c,ίGlR 2 . (4.8)

This suggests looking at mixed second derivatives. There is a problem however with
differentiability of the integrand in the vicinity of α, b and c and with convergence of
the integral at infinity. For that reason this bad set is cut out. Let B£(a) denote the
ball of radius ε around a and let Dε be defined by:

Dε = Bι/ε(0)/(Bε(a) U B£(b) U Be(c)). (4.9)

Dε is a large disk punctured near the three points α, b and c. C(a, 6, c) is the ε —> 0
limit of:

Cε(a, b,c) = / dx(e(x - α, x — b) + e(x — 6, x - c) + e(x - c, x - α)). (4.10)

Since Cε(a, b, c) changes sign if two of its arguments are interchanged, it is enough
to look at the anti-symmetric second derivatives, i.e.:

(d

ai

dbi ~ ( 9α 2<VCε(α> b, c) = I (daιdbi - daidbχ)e(x -a,x-b)

Dε

= / φ2ΰ{x — b)dxu(x — a) — dλΰ(x — a)d2u(x — b))

Dε

- ( 1 ^ 2 ) , ε > 0 . (4.11)
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Using the notation of differential forms and Stokes' theorem one gets in the limit

db2 - da2

dbx)
 Cε(ai 6> C) = ~ I / dίl(x - a) du(x - b) - C.Cdb2

- /
— / (u{x — b) du(x — a) — c.c)

dDe

->-4πiN(U). (4.12)

The boundary dDε is made of one large circle, and three tiny circles around the
puncture at α, b and c. In the limit ε —• 0 the small circles around a,b,c do not
contribute to the integral. The large circle however produces the winding number up
to the factor 2(2τri).

An additional argument shows that the only non-vanishing second derivatives of
C(α, 6, c) are the ones just considered (and their cyclic permutations) and that the
limit ε —> 0 and derivation may be interchanged.

To reconstruct (7(α, 6, c) from its second derivatives we integrate (4.12) twice and
get:

C(a, b,c) = a + /3(α, 6, c) - 2πiN(U) Area(α, b, c), (4.13)

where a is a constant and β a linear function. Since (7(0,0,0) = 0, we learn that
a = 0. Since <7(α, 6, c) and Area(α, 6, c) are even/odd under permutations of α, 6, c,
so is /3(α, 6, c). Since β is linear it must vanish identically. This finishes the proof of
Lemma 4.4. D

Now we return to the proof of Theorem 4.2. Using the previously introduced
notation (4.6) and translational invariance (4.2) in (3.7) one gets:

lnάtx(PUP) = / dydzp(0,y)p(y,z)p(z,0)C(0,-y,-z). (4.14)

By Lemma 4.4 the proof is finished. D

5. Charge Deficiency and Charge Pumps

The wave function of n non-interacting fermions gives rise to an n-dimensional
projection in the one particle Hubert space. Therefore Index(P, Q) — dim P - dim Q
counts the difference of the corresponding number of fermions. We shall adopt the
point of view that, with Definition 2.1, Index(P, Q) also correctly counts the difference
in the number of Fermions associated with infinite dimensional projections P and Q.

Suppose we fix the Fermi energy in a gap in the spectrum of the Schrodinger
operator, and consider the associated spectral projection P. We show in Appendix A
that for a wide class of Schrodinger operators, the integral kernel of P satisfies
the decay and regularity hypothesis in Sect. 3. (Presumably, these conditions are
satisfied under weaker conditions, e.g. in the absence of an energy gap, but provided
the Fermi energy is in a region of "localized states".) Let U be a singular gauge
transformation which introduces N(U) flux quanta into the system. Q = UPU*
describes the spectral projection associated with the same Fermi energy, (also in a
gap, by unitary invariance), with extra N(U) units of quantum flux, piercing Ω at
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points. Hence Index(P, Q) counts the change in the number of electrons below the
Fermi energy.

It is clear from Proposition 2.5, and is manifest in Theorem 4.2, that Index(Pt/P)
is linear in the number of flux quanta carried by the a flux tube: If the flux tube U{

adds charge qγ and U2 adds charge q2, then UXU2 would add (qι + q2) charges. It is
therefore natural to define the charge deficiency in terms of what a flux tube carrying
one unit of quantum flux does. And, for the sake of concreteness we chose a specific
(rotationally symmetric) flux tube:

Definition 5.1. For a spectral projection P of a Schrόdinger operator in L2(i7), Ω C

( z

M2, and z = x + iy, the charge deficiency is the Fredholm index Index I P —-.
whenever the latter is well defined. ^ z

In many simple cases the charge deficiency vanishes. Proposition 3.5 tells us that
this is always the case for (reasonable Schrodinger operators associated with) compact
domains where the number of electrons is finite. Nontrivial deficiency therefore
requires an infinite number of Fermions. Theorem 3.10 tells us that even for non-
compact domains with infinite number of Fermions, the deficiency vanishes whenever
the flux tube is outside Ω and Ω is contained in a wedge. This leaves us with infinite
domains that encircle the flux tube. Finally, even for these, Theorem 3.9 tells us that
the deficiency vanishes whenever P is time reversal invariant. In particular, this is
the case in the absence of gauge fields.

It is now natural to ask whether there are examples of Schrόdinger operators whose
spectral projections have non-trivial deficiencies. One way to break time reversal is
with constant magnetic fields. As we shall see in Sect. 7, the simplest example of this
kind, the Landau Hamiltonian associated with the Euclidean plane, has unit deficiency
for each Landau level. It would be interesting to have aditional examples where the
deficiency is computable and non-zero. In particular, it would be interesting to have
examples where time reversal is broken in more subtle ways, for example, with
Aharonov-Bohm fluxes.

Charge pumps are quantum mechanical devices which transfers an integer charge in
each cycle. An interesting class of such pumps has been introduced by [29]. The kind
of systems discussed in this paper are also charge pumps. They have a natural cycle
of one unit of quantum flux and the periodicity is exact for non-interacting electrons.
As real electrons are pumped, the pump charges. This may modify the effective
potential in the one electron theory, and ultimately change the index, destroying
the periodicity. Charging effects are, of course, smaller the larger the capacitance
of Ω.

A pump of the kind discussed here is stable in the sense that deformations in the
domain Ω, the potentials, the location of the flux tube or the Fermi energy would
preserve the deficiency.

To clarify the concept of charge deficiency for the pair of projectors P and
Q = UPU~ι of the two Schrodinger operators H and UHU~ι let us introduce
a canonical interpolation between the two:

H(t) = (-iV - φ(t) (V arg z) - A0)
2 + V , t e [0,1],

where φ(t) interpolates smoothly between zero and one. V arg z denotes a vector
field on the real two plane respectively the complex plane. H(t) has, by definition,
a time independent domain of definition. It is not unitary equivalent to H through
conjugation with U(t) = eιt mg z because the domain of H is not invariant under U(t)
for t in the interior of the interval [0,1].
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If we consider the time dependent dynamical system defined by the Schrόdinger
operator Hit), it is evident, that in addition to the magnetic field B = V x Ao

there is an electric field 0(£)Varg£. It points in the azymuthal direction. Hence a
charge experiences a Lorentz force and is pushed from the center of the flux tube to
infinity. This motivates the interpretation of P and Q as physical states related through
adiabatic dynamics of the time dependent Hamiltonian H(t) and the terminology
"charge deficiency."

Much of the discussion above has analogs in the analysis of the quantum Hall
effect based on localization of wave functions [26, 20, 32, 41].

6. Adiabatic Curvature and Hall Conductance

In this section we discuss the Hall charge transport, which is a priori distinct from
charge deficiency discussed in previous sections. This notion is related to adiabatic
curvature, Chern numbers, and to Kubo's formula. We describe this in some detail.
The main result, Theorem 6.8, says that under appropriate conditions the Hall charge
transport and charge deficiency are related.

As in our discussion of charge deficiency, we consider a cycle of Schrόdinger
operators associated with a gauge transformation. However, the gauge transformation
is not associated with a flux tube that pierces the system. Rather, it is associated with
a (finite) voltage drop across the system whose time integral is a unit of quantum
flux. This voltage drop is associated with a class of functions, which we call switches
and which, roughly, look like the graphs of ^ tanh(x). More precisely:

Definition 6.1. Λ(x), x G M, a function of one variable, is called a switch if it is a
continuously differentiable, real valued, monotone, non-decreasing function such that
the limits at +oo and — oo exist and

Λ(oo) - Λ(-oo) = 1. (6.1)

The setting relevant to this section is described in the following:

Hypothesis 6.2. Consider the family of, unitarily equivalent, magnetic Schrόdinger
operators in L2(R2),

H(A,V) = (- i d - A)2 + V

= e

2 ( Φ l Λ l + φ 2 y l 2 ) ( ( - i d - A 0 ) 2 + V)e~i(φ{Λι+φ2Λ2), (6.2)

A = Ao + ΦιdΛι + Φ2dΛ2 ,

where:
a) Ao and V, the vector and scalar potentials, satisfy the (mild) regularity conditions
in Appendix A; Φ = (Φx, Φ2) G M2 and Ax, A2 are both switches.
b)

P(Φ) = e ^ φ i^ i+ φ 2^2)p(θ)e~ ϊ ( Φ i y l l + φ 2 / l 2 ) (6.3)

is a family of spectral projections for H(A, V) associated with a Fermi energy in a
gap in the spectrum.

Remarks. 1. In Appendix A we show that b) of Hypothesis 6.2 implies that the
integral kernel of P satisfies the regularity and decay properties in Hypothesis 3.1.
2. In the case where Φ is time dependent, Φγ is the voltage drop along the x-axis and
Φ2 is the voltage drop along the y-axis.
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3. The monotonicity condition on the switch functions implies integrability of the
derivative of switches in the absolute sense and enters in the proof of Proposition 6.9.

We recall:

Definition 6.3. The adiabatic curvature associated to P is:

ωl2 = ίP[dΦιP,dΦiP]P. (6.4)

A direct calculation gives:

ωl2 = -i[PΛ1P,PΛ2P]

= iP[A,P±A2 - Λ2P±Λλ]P = i{[P,Aλ\PA[P,A2\ - (1 <-> 2)). (6.5)

Furthermore, since Ax and Λ2 are multiplication operators:

It would be nice if Hypothesis 6.2 were to imply that the adiabatic curvature is trace
class. Since we do not know if this is the case, we shall study traces by taking limits.
To this end we introduce:

Notation 6.4. Let Ω c M2 denote the square box [-L, L] x [—L, L], and let χΩ be
the characteristic function of the box. \Ω\ denotes the area of the box.

The unitary equivalence of the family in (6.2), makes the adiabatic curvature Φ
independent in the following sense:

Proposition 6.5. Let P be a spectral projection associated with a gap, then XΩωl2χΩ

is trace class and its trace is independent of Φ.

Proof. Since AXP\A2 —Λ2P\Aγ is bounded it is enough to prove that χΩP is Hilbert-
Schmidt (recall that all Schatten classes are ideals). By the theorem in Appendix A
the integral kernel of P satisfies the decay properties (3.1). Consequently,

dxdy\χΩ(x)p(x, y)\2 < oo . (6.7)

The Φ-independence is obvious from (6.6). G

For our purpose, the most convenient way of introducing charge transport in the
Hall effect is to define it by:

Definition 6.6. The Hall charge transport, Q, is

Q = - 2π ^lirr^ Tr χΩωnχΩ . (6.8)

Remark 6.7. a) Theorem 6.8 below guarantees the existence of the limit, under the
conditions in Hypothesis 6.2.
b) In our units, the Hall conductance is Q/2π.
c) Our sign convention is such that the Hall conductance of a full Landau level is
l/2π.

The physical interpretation of charge transport introduced here is the following. It
is the charge that crosses the x{ axis, in the positive direction, as the Hamiltonians
in (6.2) undergo a cycle corresponding to adiabatically increasing Φx from 0 to 2π.
(Alternatively, it is minus the charge that crosses the x2 axis as the Hamiltonians in
(6.2) undergo a cycle corresponding to adiabatically increasing Φ2 from 0 to 2τr.) This
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is the transport in the Hall effect. For more on this the reader may want to consult
[3, 20, 23, 30, 31].

The following theorem is the central result of this section. It says that the Hall
conductance can sometimes be interpreted as an index. The strategy is to show that
Definition 6.6 can be put into the form of Theorem 4.2.

Theorem 6.8. Suppose P is a covariant projector, P and Ax 2 satisfy Hypothesis 6.2.
Then the Hall charge transport Q equals the charge deficiency:

Q = -2πij dydzp(0, y)p±(y, z)p(z, 0)yΛz = - Index (p^ (6.9)

The proof of the theorem, like that of Theorem 4.2 depends on an explicit evaluation
of (another) area integral and this one too is related to areas of triangles. We start
with this preparatory proposition:

Proposition 6.9. For A a switch

f dx(Λ(x + α ) - Λ(x)) = a , aeR. (6.10)

If both Ax and Λ2 are switches, then

dxxdx2((Λx(xx + ax) — Ax(xx))

M2 x (A2(x2 + b2) - A2(x2 + α 2 ) ) - ( 1 ^ 2 ) ) = o Λ 6 , (6 .11)

where a A b = axb2 — a2bχ. Both integrals converge absolutely.

Proof a) Look at

oo oo x+a oo α

/ dx(Λ(x + α) - A(x)) = ί dx ί dtA'it) = ί dx ί dtΛ'if + x)
— oo —oo x —oo 0

α oo o
r r r

dt dxA'it + x) = dt = a. (6.12)
j j J

= dt

0 - o o 0

Monotonicity of the switch implies absolute convergence,
b) From, (6.10)

/ •
dxιdx2(Λ1(x1 + a,γ) — Λι{xι))

κ2 x (Λ2(x2 + b2) - A2(x2 + a2)) = a{(b2 - α 2 ) . (6.13)

And similarly with 1 <-> 2. Subtracting the two gives (6.11). D

Proof of Theorem 6.8. To compute the transport according to Definition 6.6 we look
first at the integral kernel of the adiabatic curvature (the last identity in (6.5)) restricted
to the diagonal

ωl2(x,x) = i / dydzp(x,y)p±(y,z)p(z,x)

R 4

x {(Aλ{yx) - A^x^iΛ^zJ - A2(y2)) -( !<-> 2)). (6.14)
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Due to translational invariance the integrand in (6.14) can be replaced by

ip(P,y)pjL(y,z)p(z,O)

x ((Λι(y[ + xγ) - Ax(xx)) (Λ2(z2 + x2) - Λ2(y2 + x2)) ~ (1 <-+ 2)). (6.15)

To compute the charge transport we have to integrate the above expression over the
domain Ω and after that let L —» oo. Since all integrations converge absolutely even
for Ω — R2 we are permitted to exchange the order of integration and the limit
L —> oo. Hence we integrate first over x, then we let L —> oo and then we integrate
over y and z. The x integration can be done by b) of Proposition 6.9. Putting this
into the definition of the Hall charge transport

f
Q = - 2πi / dydzpφ, y)p±(y, z)p(z, 0)y A z

j

f
= 2τri / d y d z p ( O , y ) p ( y , z ) p ( z , O ) y Λ z . (6.16)

This proves the first part of the theorem. The second part is a consequence of
Theorem 4.2. D

To relate this expression to Kubo's formula is rather simple. We start from (6.9),

multiplying the integral formula by 1 = —— J dx, and use the covariance of the
projectors (4.3) to get: ' ™ Ω

2πi

W\
dx I dydzp(x,y)p±(y,z)p(z,x)(y - z) Λ(z - x). (6.17)

Ω

The terms arising from terms linear and quadratic in x again vanish. Hence, the
conductance,

Q -mhl ' A z
2π

Ω

= ~]h\ Ίxiχ^Px\p±x2p - Pχ2P_LχxP)), (6.18)

which is Kubo's formula.

7. Landau Hamiltonians

It is instructive to consider an example where the theory of the previous section
applies and, moreover, is non-trivial in the sense that it gives non-zero deficiency.
Such an example is provided by Landau Hamiltonians and the spectral projections on
Landau levels. The Landau Hamiltonian in L2(M?) is:

\{-iά-A)2, (7.1)

where dA — Bdx A dy. B > 0 is a constant magnetic field. Spectrum(iί(Λ)) =

{̂  B(2n + 1) I n G N}, and each point in the spectrum, a Landau level, is infinitely

degenerate. We shall denote the spectral projection on the n t h Landau level by Pn.
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Clearly, dimP n = oo. We show below that projections on Landau levels satisfy
Hypothesis 3.1, and that the charge deficiency of each Landau level is unity.

Proposition 7.1. Let H(A) be the Landau Hamiltonian with B > 0, A differentiable
and Pn the projection on the nth Landau level. Then pn(x, y) is covariant, jointly
continuous in x and y, and decays like a gaussian in the variable \x — y\. In particular,
Hypothesis 3.1 holds.

Proof, a) Let Ta denote the translation by α G I 2 . Since B is constant and M2 is
simply connected, A(x-a)-A(x) = dAa(x) = i^*d?^a with %6a{x) = exp -iAa(x).
It follows that

TaH(A)T_a = (-id-A{x-a)f = (-iά~A(x)-dΛa(x))2 = ^*H(A)^a . (7.2)

Hence H{B) commutes with magnetic translations §&a = %aTa [46]. The spectral
projections are covariant in the sense of Sect. 4 and

p(x,y) = %-\x)pφ,y - x)<%M ( 7 3 )

b) With A and A' related by a (smooth) gauge transformation A, A! — A + dΛ,
the corresponding integral kernels are related by pA,(x,y) = eιΛ<<x^pA(x1y)e~ιΛ<"y\
and so pΛ,(x,y) is continuous in x and y if pA(x^y) is. It is therefore enough to
check the regularity and decay for a specific choice of A. By scaling the coordinates,
we may take B = 2. We shall now show that for Ao = ^(—ydx + xdy),

pQ(0,z) = Polynomial(z)exp-|z|2/2, which proves the regularity and decay. The
corresponding Landau Hamiltonian is:

H(A0) = 2D*D + l, D Ξ Ξ ( ^ + | ) ' z = x + W (7-4)

The lowest Landau level is spanned by:

(z I n, 0) = (πn\)~ι/2zne-^2/2 , n = 0,1, . . . , (7.5)

and the n t h Landau level by

(z I n,m) = ( π n ! ( m + l ) ! ) ~ 1 / 2 ( D * ) m ( ^ n e ~ i z | 2 / 2 ) . (7.6)

Since (0 | n, m) = 0 for m φ n we have:

Pm(°>z) = Σ ( ° I n,m)(n,m \ z) = (0 | m,m)(m,m | z) (7.7)
n

which is smooth and with gaussian decay. D

It follows that the results of the previous sections apply. In particular, the
deficiency is a finite integer and the Hall conductance for the n t h Landau level is

Index I P^ —Γ P, 1. It remains to compute the index. This computation depends

2π V \A )
on the following simple lemma:
Lemma 7.2. Let M be a semi-infinite Fredholm matrix so that its non-zero entries lies
on the iih sub-principle diagonal, i.e.;

(M)mn = cmδm+iin , n, m e N, i G Z, (7.8)

then, Index M = ί.
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Proof. Suppose first that all the c m φ 0. The kernel of M is spanned by the projection
on the first i dimensions. The kernel of M* is empty. Consequently Index M = ί.
Now to the general case: Since M is Fredholm there is at most a finite number of
cm = 0. Deforming a finite number of cm to zero, does not change the index by the
stability under compact perturbations, and so Index M = i. •

That the Hall conductance of each full Landau level is l/2π is known from 1001
different calculations and arguments. The following computation, via an index, gives
the 1002 way of seeing that:

Proposition 7.3. For the mth Landau levels:

Index {Pm-Pmj=-i. (7.9)

In particular, the charge transport and charge deficiency of each Landau level is unity.

Proof From (7.6) one sees that the state (z | n, m) has angular momentum

proportional to n — m. Consequently, the matrix elements of ί Pm -— Pm ) are:

V \Z J nn'

= δny+ιc(m,n). (7.10)
n,n'

The result now follows from Lemma 7.2. D

As we have discussed in previous sections, the charge deficiency may be thought
of as the change of number of electrons in a cycle where a flux tube carrying one
unit of quantum flux is introduced into the system. In the present situation one can
follow this cycle by the spectral analysis of the Landau Hamiltonian with a flux tube
carrying any real flux. One finds that as the flux increases by one unit, n states from
the n t h Landau level descend to the n — 1 Landau level, and one state is lost to infinity
[1, 26].

8. The Ergodic Case

In this last section we extend the results of Sects. 4 and 6 about covariant families of
projectors to the case of an ergodic family of Schrodinger operators, H(A, Vω): ω is
a point in probability space Ω, the action of translations on Ω is ergodic and:

VJx + a) = VTaω(x). (8.1)

We shall denote integrals with respect to the probability measure by (•). This family
of Schrodinger operators is one of the canonical models for the integer Hall effect.

Proposition 8.1. Let Pω be a spectral projection for H(A, Vω) satisfying Hypoth-
esis 3 A, ω G Ω. Then Index(PωUPω) is measurable with values in ΊL. In fact
lnάex(PωUPω) is integer and constant almost everyhwere.

Proof We prove first that lnάex(PωUPω) is measurable. Due to Proposition 2.2 and
2.4 the index can be expressed in terms of a trace

Index(PωUPJ = Tr(Pω - QJ2n+ι , Qω = UωPωU~ι. (8.2)
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Hence it is enough to prove measurability of the operator as an operator valued
function of ω, i.e. measurability of the scalar product (/, (Pω-Qω)2n+ιf), f G L2(R2).
But the resolvent and therefore the projector Qω, which by assumption can be
expressed in terms of an integral over the resolvent, is measurable. This proves the
assertion.

Secondly, the function I{ω) = lndex(PωUPω) takes integer values. Hence Ω —
I~ι(Z). Furthermore for every k G (Z), I~ι(k) is an invariant set in Ω under the
action of translations. This is seen as follows: Let £&a denote again the magnetic
translation. Since

(&aVω&al) 0*0 = VJx - a) = VTaω(x), (8.3)

we have:

&aP»&:ι = pTau, (8-4)

Since the index is shift invariant (Proposition 3.8) we have:

lnάox(PωUPω) = lndtx(PTaωUPTaJ . (8.5)

So the index is constant on the orbits of translations. Due to ergodicity, the measure
of I~ι(k), is zero or one for all k G Z. Since

\k)) (8.6)

it follows that there is just one k0 G Z for which μ(I~ι(k0)) = 1. D

In the ergodic situation the analog of (4.1) is:

Pω(x,y) = ^a{x)PTaω(x -a,y-a)<%-\y). (8.7)

This means that the analog of (4.2) is: The triple product that enters the basic formula,
(3.7),

x3,xι)), (8.8)

is translation invariant, i.e. it does not change under the substitution xi —» xi + α,
ω -+ Taω, a G M2.

We see that we get an analog of Theorem 4.1 at the price of averaging over
probability space. Namely,

Theorem 8.2. Let H(A,Vω) be a family of ergodic Schrδdinger operators and U a
unitary operator with unit winding number satisfying Hypothesis 3.1 for all ω G Ω, in
particular pω(x,y) satisfies inequality (3.1). Then the average Hall charge transport
{Q) satisfies, a.e.:

<Q) = - I n d e x ( P ^ P J . (8.9)

Proof The proof of this statement is an adaptation of the one given in Sect. 4,
Theorem 4.2; integrating the basic euality (3.7) for the index over probability space
brings us into the situation we had encountered in the proof of Theorem 4.2 since the
average of the triple product (8.8) is invariant under translations. D
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Appendix A

The purpose of this appendix is to show that Hypothesis 3.1 on the regularity and
decay of the integral kernel of spectral projections is guaranteed whenever the Fermi
energy is placed in a gap. Although we have not attempted to give optimal conditions
on the vector potentials, the conditions are mild enough to cover the physically
interesting models.

Theorem A.I. Let H(A, V) be a one particle Schrδdίnger operator in n = 2,3
dimensions with dίfferentiable vector potential A and scalar potential V which is in
the Kato class Kn=2^ (which includes Coulombic singularities).
a) The integral kernel for spectral projections for H(A, V), p(x, y) is jointly continu-
ous in x and y.
b) Suppose, in addition, that H(A, V) has a gap in the spectrum. Then the spectral
projection below the gap has integral kernel which decays exponentially with \x — y\.

Remark. The two parts of the theorem have rather different proofs. The Kn condition
is natural for (a). Part (b) only requires form boundedness of V which is slightly
weaker than the Kn condition.

Proof, (a) exp(—tH) (x, y) has a jointly continuous integral kernel by the path
integral (Ito) way of writing the kernel - see, e.g. [37]. Because H is bounded below
and has a gap, P — g(H), where g is a smooth function of compact support. Since
f(y) = exiρ(2y)g(y) can be approximated by polynomials exp(—y) uniformly, we can
write

g(H) = limg^H), g.(H) = vκ${-H)fό(H)wp(-H), (A.I)

where the operators fj converge to / in norm as L2 —> L2 operators and each fj(H)
is a polynomial in exp(—H). On general principles (see, e.g. [37]), exp(-iJ) is a
bounded operator from Lι to L2 and from I? to L°°. Thus the limit in (A.I) gives a
bounded operator from Lι to L°° and so in infinity norm for the integral kernel (see
e.g. [37]). Since g has a continuous integral kernel the result follows.

b) Let Bs = eiS'*, a e C, be a complex boost. Then:

BaH(A, V) B_a = H(A, V) + ά-a + ά {-%V - A). (A.2)

This gives an analytic family of type B in the sense of Kato [21] if the form domain
is independent of α. In particular, this is the case if V is form bounded relative to the
kinetic energy. By the diamagnetic inequality it is enough to check that V is bounded
relative to the Laplacian. Kn implies form boundedness (see [37]). In particular, if P
is a spectral projection associated with a gap, then the gap is stable and:

Pa(x,y) = eιa χp(x,y)e-za y (A3)

is real analytic in a uniformly in x and y. In particular, (A.2) says that p(x,y) is
exponentially decaying in \x — y\. This is a version of the Combes-Thomas argument
[10]. D

Remarks. 1. For potentials V which are perturbations of Landau Hamiltonian, an
adaptation of the above method gives decay which is faster than any exponential.
2. It is easy to construct families of Schrodinger operators, with ergodic A and V so
that H(A, V) has gaps in the spectrum.
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3. A central open question is whether the integral kernel of spectral projections
for ergodic Schrδdinger operators in two dimensions automatically satisfy the decay
assumption of Hypothesis 3.1 for most Fermi energies.
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