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Abstract: We derive (quasi-)quantum groups in 2 + 1 dimensional topological field
theory directly from the classical action and the path integral. Detailed computations
are carried out for the Chern-Simons theory with finite gauge group. The principles
behind our computations are presumably more general. We extend the classical action
in a d + 1 dimensional topological theory to manifolds of dimension less than d + 1.
We then "construct" a generalized path integral which in d + 1 dimensions reduces
to the standard one and in d dimensions reproduces the quantum Hubert space. In a
2 + 1 dimensional topological theory the path integral over the circle is the category
of representations of a quasi-quantum group. In this paper we only consider finite
theories, in which the generalized path integral reduces to a finite sum. New ideas are
needed to extend beyond the finite theories treated here.

Recent work on invariants of low dimensional manifolds utilizes complicated algebraic
structures, for both theory and computation. New invariants of 3-manifolds, and of
knots and links in 3-manifolds, are constructed from certain types of Hopf algebras
[RT] or more generally from special sorts of categories [KR]. These invariants are
known to arise from a 2 + 1 dimensional quantum field theory [W]. In this paper
we derive the algebraic structure from the field theory, starting with the classical
lagrangian, and so express the relationship between the algebra and the geometry
directly. With this understanding the algebra can be put to work to calculate invariants.
The guiding principle for us is the locality of field theory, as expressed in gluing laws.
The gluing laws resonate well with cut and paste techniques in topology. They are
important tools field theory offers for both theoretical work and computations. We
generalize the standard constructs in a d+1 dimensional field theory - classical action
and path integral - to spaces of dimension less than d + 1, retaining the essential
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property of locality. Whereas the classical action is always a finite dimensional
integral, the path integral over the space of fields usually involves infinitely many
variables. Our focus here is not on the analytical difficulties of path integrals over
infinite dimensional spaces; indeed we can only treat path integrals in a "toy model"
where they reduce to finite sums. Nevertheless, our generalizations of the classical
action and path integral most likely pertain to other topological field theories.

In a d + 1 dimensional field theory the classical action of a field Θ on a (d + 1)-
manifold X is usually a real1 number Sx(θ). Often in topological theories only
the exponential e

27rtSx(°) [$ well-defined. The simplest example is the holonomy of
a connection: X = Sι is the circle and the field θ is a connection on a principal
circle bundle P —> Sι. Notice that the action is not as straightforward if X — [0,1]
has boundary - interpreted as a number the parallel transport of a connection over
the interval depends on boundary conditions. Rather, the dependence on boundary
conditions is best expressed by regarding the parallel transport as a map P o —> Px

from the fiber of the circle bundle over 0 to the fiber over 1. This is the classical action
over the interval. Our generalization of the classical action asserts that the classical
action of a connection over a point, which is just a principal circle bundle Q —» pt,
is the fiber Q. The value of that action is a space on which the circle group T acts
simply transitively, a so-called T- tors or. Notice that the action of a field (connection)
on the interval takes values in the action of the restriction of the field to the boundary.
The Chern-Simons invariant in 3 dimensions is similar - the action in 2 dimensions
is a T-torsor - and the story continues to lower dimensions [F1,F2].

At the crudest level of structure the classical action in d dimensions is a set. (The
classical action in d + 1 dimensions is a number.)

The usual path integral in a d + 1 dimensional theory may be written schematically
as

J
where X is a {d + l)-manifold without boundary, Wx is the space of fields on X,
and dμx is a measure on Wx. Of course, in many examples of interest this is only
a formal expression since the measure does not exist, or has not been constructed.
This integral is a sum of positive numbers (the measure) times complex numbers (the
exponentiated action), so is a complex number. Our generalization to d dimensions
is as follows. The action is now a T-torsor, which we extend to a hermitian line, i.e.,
a one dimensional complex inner product space. The original T-torsor is the set of
elements of unit norm in the associated hermitian line. The integral is then a sum
of positive numbers times hermitian line. If L is a hermitian line and μ a positive
number, let μ L be the same underlying one dimensional vector space with inner
product multiplied by μ. We sum hermitian lines via direct sum; the sum is a hermitian
vector space, or Hubert space. Formally, then, this generalized path integral is the
space of L2 sections of a line bundle over the space of fields. When the space of
fields has continuous parameters we can formally reinterpret canonical quantization,
or geometric quantization, as the regularization needed to make sense of the integral.

In higher codimensions the classical action and path integral take values in certain
generalizations of T-torsors and vector spaces. The next step after a T-torsor is a
Ύ-gerbe [Gi, Br, BMc] and the next step after a vector space is a 2-vector space [KV,
L]. The underlying structure in both cases is not a set, but rather a category. The

The theories we consider in this paper are unitary
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continuation to higher codimensions leads to multicategories, and the foundations
become rather murky, at least to this author. We attempt an exposition of these
"higher algebraic structures" in Sects. 1 and 3. Our treatment has no pretensions of
rigor. For this reason throughout this paper we use the term "Assertion" as opposed to
"Theorem" or "Proposition", except when dealing with ordinary sets and categories.
Since we deal with unitary theories our quantum spaces have an inner product, so
are Hubert spaces. In codimension two we therefore obtain 2-inner product spaces or
2-Hilbert spaces. The terminology may be confusing: A 2-inner product space is an
ordinary category, not a 2-category.

The particular model we treat is gauge theory with finite gauge group. It exists
in any dimension. This theory was introduced by Dijkgraaf/Witten [DW] and further
developed by many authors [S2, Ko, Ql, Q2, Fg, Y3, FQ]. In some ways this paper
is a continuation of [FQ], though it may be read independently. The space of fields
(up to equivalence) on a compact manifold is a finite set in this model, hence all path
integrals reduce to finite sums. The lagrangian in the d + 1 dimensional theory is a
singular (d+ l)-cocycle, and the generalized classical action is defined as its integral
over compact oriented manifolds of dimension less than or equal to d + 1. Only the
cohomology pairing with the fundamental class of a closed oriented (d + l)-manifold
is standardly defined. In the appendix we briefly describe an integration theory which
extends this pairing. It is the origin of the torsors, gerbes, etc. that we encounter. We
define the generalized classical action in Sect. 2 and the generalized path integral
in Sect. 4. Our assertions in these sections are formulated for all codimensions
simultaneously, and we suggest that the reader decipher them starting in the top-
dimension, where they reduce to the corresponding theorems in [FQ].

In Sect. 5 we explore the structure of the generalized path integral E over a circle
in 1 + 1 dimensional theories and in 2 + 1 dimensional theories. The treatment here is
based on the generalized axioms of topological field theory2 set out in Assertion 2.5
and Assertion 4.12, not on any particular features of finite gauge theory. In a 1 + 1
dimensional theory E is an inner product space and we construct a compatible algebra
structure and a compatible real structure. The argument here is standard. In a 2 -f 1
dimensional theory E is a 2-inner product space, which in particular is a category.
The analogue of the real algebra structure, here derived from the generalized path
integral, makes this a braided monoidal category with compatible "balancing" and
duality. Such categories arise in rational conformal field theory [MS], and have been
much discussed in connection with topological invariants and topological field theory.
Reconstruction theorems in category theory [DM, Mai] assert that such a category
is the category of representations of a quasitriangular quasi-Hopf algebra, or quasi-
quantum group [Dr].3 In fact, the reconstruction also requires a special functor from
the category E to the category of vector spaces. We remark that a different quasi-Hopf
algebra related to field theories was proposed in [Ma3].

We put the abstract theory of Sects. 1-4 to work in Sects. 6-9, where we carry out
the computations for the finite gauge theory. We warmup in Sect. 6 by discussing some
features of the 1 + 1 dimensional theory. The remainder of the paper treats the 2 + 1
dimensional Chern-Simons theory (with finite gauge group). The quasi-Hopf algebras
we compute via the generalized path integral are the quasi-Hopf algebras introduced

2 These axioms are not meant to be complete, and in any case they must be modified in other
examples to allow for central extensions of diffeomorphism groups. See [A, Q2] for a discussion of
the general axioms in topological field theory. See [F3] for a discussion of central extensions
3 I believe that the quasitriangular quasi-Hopf algebras we obtain will always have a "ribbon
element" [RT] as well. This certainly holds in the finite gauge theory
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by Dijkgraaf/Pasquier/Roche [DPR]. They were further studied by Altschuler/Coste
[AC]. The computations are not difficult, but they are nerve-racking! When dealing
with categories (and, even worse, multicategories) one must be very careful about
equality versus isomorphism, at the next level about equality of isomorphisms versus
isomorphisms of isomorphisms, and so on. This sort of algebra seems well-adapted to
the geometry of cutting and pasting, but as I said it is nerve-racking. We keep close
track of the trivializations we need to introduce at various stages of the computation.
Some of these trivializations are used to define the functor to the category of vector
spaces which we need to reconstruct the quasi-Hopf algebra. Our reconstructions
do not follow the procedures in the abstract category theory proofs. Rather, in our
examples the algebras are apparent from appropriate descriptions of the braided
monoidal category. In Sect. 9 we use more sophisticated gluing arguments to choose
special bases of the algebras, and so derive the exact formulas in [DPR]. This involves
cutting and pasting manifolds with the simplest kind of corners. We formulate a
generalized gluing law for the classical action in Assertion 9.2. Clearly it generalizes
to higher codimensional gluing and to the quantum theory. Segal [SI] gives a proof
of the "Verlinde diagonalization" [V] using a quantum version of this gluing law.
This sort of generalized gluing should be useful in other problems as well. We also
briefly describe at the end of Sect. 7 how Segal's modular functor [SI] fits in with
our approach.

In gauge theory one usually makes special arguments to account for reducible
connections. In these finite gauge theories every "connections" is reducible, that is,
every bundle has nontrivial automorphisms, and all of the constructions must account
for the automorphism groups.

We formulate everything in terms of manifolds, whereas others prefer to work more
directly with knots and links. The relationship is the following (cf. [W]). Suppose K
is a knot in a closed oriented 3-manifold X. Let X' — X - v(K) denote the manifold
X with an open tubular neighborhood v(K) of the knot removed. Then a framing of
the normal bundle of K in X determines an isotopy class of diffeomoφhisms from
the standard torus Sι x Sx to dXι — —d(v(X)). In a 2 -f 1 dimensional topological
field theory this induces an isometry between the quantum Hubert space of dX'
and the quantum Hubert space of the standard torus. So the path integral over X'
takes values in the Hubert space of the standard torus. As we explain at the end
of Sect. 9 this Hubert space is the "Grothendieck ring" of the monoidal category
discussed above, and it has a distinguished basis consisting of equivalence classes of
irreducible representations. These are the "labels" in the theory, and the coefficients
of the path integral over X' are the knot invariants for labeled, framed knots. The
generalization to links is immediate.

An expository version of some of this material appears in [F3].
I warmly thank Larry Breen, Misha Kapranov, Ruth Lawrence, Nicolai Resheti-

khin, Jim Stasheff, and David Yetter for informative discussions.

1. Higher Algebra I

Whereas the classical action in a d+ 1 dimensional field theory typically takes values
in the real numbers, often in topological theories only its exponential with values in
the circle group
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is defined. We remark that nonunitary versions of these theories would replace T
by the group C x of nonzero complex numbers. For the algebra in this section we
could replaced T by any commutative group. The usual action is defined for fields
on closed4 spacetimes of dimension d + 1. In Sect. 2 we describe "higher actions"
which are defined for fields on manifolds of dimension less than d + 1 and take their
values in "higher groups." For example, over closed d-manifolds the action takes its
values in the abelian group-like category of T-torsors. On a closed (d — l)-manifold
the action takes its values in the abelian group-like 2-category of Ύ-gerbes. And so
on. In this section we briefly describe these "higher groups." We also use the term
"higher torsors." As stated in the introduction we only attempt a heuristic treatment,
not a rigorous one. Our goal in this section, then, is to explain a hierarchy:

= T circle group,

"group" of T

"group" of T-gerbes (2-torsors),

"group" of T-torsors (1-torsors),

etc.

Each of these is an abelian group in the sense that there is a commutative associative
composition law, an identity element, and inverses. However, only 3^ is an honest
group; in fact, only ^ is a set! The T-torsors &[ form a category5, the T-gerbes
a 2-category,6 etc. So the group structure must be understood in that framework.
Although this will not be relevant for us in this paper, we note that T is a Lie group
and the higher . ^ also have some smooth structure.

We begin with a definition.

Definition 1.2. A T-torsor T is a manifold with a simply transitive (right) T-action.
So "T-torsor" is a short equivalent to "principal homogeneous T-space." Of course,

T itself is a T-torsor, the trivial T-torsor. A nontrivial example, which is of no
particular relevance to us, is the nonidentity component of the orthogonal group
O(2). An example of more relevance: Let L be any one dimensional complex inner
product space. Then the set of elements of unit norm is a T-torsor. Any T-torsor takes
this form for some hermitian line L [cf. (3.2)]. Now if TY,T2 are T-torsors, then a
morphism h:Tλ —> T2 is a map which commutes with the T action: h(t λ) = h(t) λ

4 Here "closed" means "compact without boundary." There is also a (relative) action on compact
manifolds with boundary, which we describe below
5 We refer to [Mac] for the basics of category theory as well as plenty of examples. Roughly,
a category W is a collection of objects Obj(£F) and for every A, B £ Ob](W) there is a set of

morphisms Mor(τ4, B). Morphisms A — • B and B -?-* C compose to give a morphism A -̂ —• C.
This composition is associative and there are identity morphisms. Notice that Obj(£P) is not
necessarily a set. We often write "A £ £f" for "A £ Obj(£f)"
6 A 2-category W has a collection of objects Obj(^) and for each A, B £ Obj(£F) a category of
morphisms Mor(^4, B). In other words, if /, g £ Mor(v4, B), then there is a set oϊ 2-morphisms which
map from / to g. The composition Mor(A, B) x Mor(B, C) —» Mor(A, C) is now assumed to be a
functor. One obtains different notions depending on whether one assumes that this composition is
exactly (strictly) associative or whether one postulates that it is associative up to a given 2-morphism.
The former notion generalizes to n-categories. The latter notion was introduced by Benabou [Be] for
2-categories (these are called "bicategories"), and apparently a complete list of axioms for the higher
case has not been written down. (See the lists of axioms in [KV] to see the complications involved.)
Since for three,T-torsors A, B, C the torsors {A 0 B) <g> C and A 0 (B ® C) are strictly speaking
different, but isomorphic, the category .9[ does not have a strictly associative tensor product. This
propagates through to the higher ^n. Our use of the work "n-category" is in the latter, yet undefined,



348 D. S. Freed

for alH G T1? λ G T. The collection of all T-torsors and morphisms forms a category
Jf. The group of automorphisms Aut(T) of any T G ̂  is naturally isomorphic to T:
any μ G T acts as the automorphism t\-+t-μ. Also, the set of morphisms M o r ^ , T2)
is naturally a T-torsor. Finally, every morphism in &[ has an inverse.7

So far we have only described the category structure on J^, which is analogous
to the set structure on T. The important point is this: Elements of $/[ have
automorphisms. We do not identify isomorphic elements which are not equal; the
choice of isomorphism matters. In fact, any two elements of <7[ are isomorphic, so
all of the information is in the isomorphism. It does make sense to say that two
isomorphisms are equal, since MoriT^T^) is a set for any TVT2 G J/[.

To describe the abelian group structure we need to introduce new operations which
serve as the group multiplication and group inverse. These are the product of two
torsors and the inverse torsor. So if TVT2 G J f are T-torsors, define the product
Tx T2 as

Ά'T2 = {(tut2) eT{x T2}/(t{ λ,t 2) ~ (tvt2 λ>

for all λ G T. The T action on Tx T2 is

The inverse T~] of a torsor T with T action has the same underlying set but a new
T action * given by

t ^ λ ^ t λ""1 .

We denote the element in T " 1 corresponding to ί G Γ as Γ 1 6 Γ" 1 . The trivial
torsor T acts as the identity element under the multiplication. One must remember
the maxim that elements in 3\ cannot be declared equal, only isomorphic. So we do
not have T T~1 = T, but rather an isomorphism

T T~ι - > T , (t'λ,t)^λ.

This isomorphism is part of the data describing J^. All other axioms for an abelian
group, such as commutative and associativity, must be similarly modified. For
example, now the associative law is not an axiom but a piece of the structure -
a system of isomorphisms - and these isomorphisms satisfy a higher-order axiom
called the pentagon diagram.

We remark that there is a natural identification

T2'T{-ι^Hom(TuT2) (1.3)

for any Γ 1 ? Γ 2 G &[.
Starting with the group T we have outlined the construction of an abelian group-

like category i^. Now we want to repeat the construction replacing T with ^j\ In
other words, we consider "^-torsors" and then introduce a product law and inverse
so as to obtain what is now an abelian group-like 2-category ̂  of the collection of
all "^-torsors." The terminology is that a "^-torsor" is a Ί-gerbe.

The definitions are analogous to those for T-torsors, so we will be brief and
incomplete. A T-gerbe is a category 3? equipped with a simply transitive action of
^. The action is a functor 2^ x &[ -> S^ whose action is denoted (G, T) ι-> G T.
The simple transitivity means that the functor

^ x rx-± ¥ x S?, {G,T)^{G,G T)

7 So <7l is called a groupoid, which is not to be confused with the abelian group-like structure we

introduce below
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is an equivalence, and we are given an "inverse" functor and equivalences of the
composites to the identity. This amounts to the specification of a torsor T(Gλ, G2)
for GX,G2 e S^ together with natural equivalences G2 = Gγ T(G1,G2) and
T = T(G, G - T). This definition may be more rigid than the standard definition,
but it fits our examples.

Now if 5^ and ^ are T-gerbes, then a morphism S^ —> Sξ is a functor which
commutes with the j ^ " action. This means that part of the data of the morphism is a
natural transformation between the two functors obtained by traveling from northwest
to southeast around the square

^ xj^Γ > 5%

It is easy to see that the collection of morphisms 3?{ —> .^ forms a category and
that the morphisms Mor(^, 2/ξ) form a T-gerbe. The collection of T-gerbes forms a
2-category Jζ. One can introduce an abelian group-like structure on this 2-category
by defining the product of two T-gerbes and the inverse of a T-gerbe, which we leave
to the reader.

I hope that at this stage it is in principle clear how I mean to define the series
of abelian group-like structures listed in (1.1), and that it is clear what their basic
properties are, though the detailed definition promises to be a combinatorial mess.
We need one more notion, which is a symmetry of such abelian group-like structures.
Suppose A is a finite group. To say that A acts on T by symmetries means that
we have a homomorphism A —> T, i.e., a character of A, and then A acts on T
as multiplication by this character. If T is a T-torsor, then since Aut(T) = T, an
action of A on T is again given by a character of A. Note that the characters form
the cohomology group Hι(A;T). Next, an action of A on &[means that we have a
"homomorphism" A —> <7[. More precisely, for each a € Awe have a T-torsor Ta and
for ax,a2 G A an isomorphism Ta TO2 == T α i α . These isomorphisms must satisfy
an associativity constraint. Such a system of torsors describes a central extension
A= U Ta of A:

aeA

1->Ί-^A^A-+1. (1.4)

The fiber of π over a is Ta. Up to isomorphism the central extension is classified
by an element of the cohomology group H2(A; T). An action of A on a T-gerbe
& also leads to a cohomology class, since different trivializations of 5P lead to
equivalent extensions of A. The continuation of this discussion to higher ^ leads to
representatives of higher group cohomology (with abelian coefficients).

2. Classical Theory

In this section we describe a classical (gauge) field theory in d + 1 dimensions with
finite gauge group Γ. We generalize the classical theory to higher codimensions, that
is, to lower dimensional manifolds. The (exponentiated) action on fields on a (d+ 1)-
manifold takes values in T. For fields on a d-manifold the action takes values in J^,
i.e., the value of the action is a T-torsor. More generally, over a (d+ 1 — n)-manifold
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the action takes values in 3^. We construct the action using the integration theory
of the Appendix. Since this is a straightforward generalization of [FQ, Sect. 1], given
the algebra in Sect. 1 and the integration theory in the Appendix, we defer to that
reference for more details and exposition.

Throughout this paper we use a procedure to eliminate the dependence of quantities
on extra variables or choices. In [FQ, Sect. 1] we call this the invariant section
construction after the special case mentioned in the footnote below. Here, following
MacLane [Mac] (cf. Quinn [Ql]) we call it an inverse limit of a functor. Let W
be a groupoid and &: W —» @J a functor to a category (or multicategory) @J. We
define8 an element of the inverse limit to be a collection {υ(C) G ̂ (C)} such that
^{C —• C')v(C) = υ(Cf) for all morphisms C —> C'. The inverse limit is an object
in &. In our applications @J is J ζ for some n or is the multicategory 9^ of higher
inner product spaces which we introduce in Sect. 3. Also, in our applications the
groupoid W has only a finite number of components. For <$ — 9ζ the inverse limit
always exists. If & = J ^ we must also assume that 3^{C —> C) is trivial for all
automorphisms C —> C, i.e., that " i ^ has no holonomy."

Fix a finite group Γ. For any manifold M we let WM denote the category of
principal Γ bundles over M. This is the collection of fields in the theory. There
are symmetries as well: A morphism f:P' —> P is a smooth map which commutes
with the Γ action and induces the identity map on M. Notice that every morphism is
invertible. Define an equivalence relation by setting P' = P if there exists a morphism
P' —» P. Let WM denote the space of equivalence classes of fields; it is a finite set if
M is compact. If M is connected there is a natural identification

for any basepoint m G M. Here Γ acts on a homomorphism by conjugation.
Let BΓ be a classifying space for Γ, which we fix together with a universal bundle

EΓ -> BΓ. If P -* M is a principal Γ bundle, then there exists a Γ map P -> EΓ
and any two such classifying maps are homotopic through Γ maps.

Fix a singular (d + l)-cocycle a e Cd+{(BΓ;R/Z). This is the lagrangian of
our theory. The action is constructed as follows. Suppose M is a compact oriented
manifold of dimension at most d + I. Let P e ΦM. Then if F:P —> E Γ is a
classifying map for P, with quotient F: M —> .BΓ, consider the integral

exp

which is defined via the integration theory of the Appendix. We need then to determine
the dependence on F and obtain something independent of F. We treat closed
manifolds and arbitrary compact manifolds (possibly with boundary) separately,
though the second case clearly includes the first.

Suppose first that Y is a closed oriented (d + 1 — n)-manifold, n > 0, and
Q e Wγ is a Γ bundle over Y. Define a category WQ whose objects are classifying

maps f:Q—> EΓ and whose morphisms are homotopies f-^f. Define a functor

8 Think of the following example. Let W be the category whose objects are the points of a manifold
M and whose morphisms are paths on M. Let @ί be the category of vector spaces and linear
isomorphisms. A vector bundle with connection over M determines a functor & \W —> ® (the
morphisms act by parallel transport), and the inverse limit is the space of flat sections
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3%.a(f) = exp ίlπi J f*a\ = Iγj*a , (2.1)ίlπi J

where / : Y —> BΓ is the quotient map determined by / : Q —• E Γ . For a homotopy

/—»/', let ^ α (/—»/') be the moφhism

2τrz / ft*α ) :Iyj*a -» Λ-,/'*α (2.2)

[0,l]xY /

Here the homotopy /ι:[0,1] x Q —> E Γ has quotient map /i:[0,1] x y —> -BΓ.
Since <9([0,1] x y ) = {1} x Y U -{0} x y , the isomorphisms (A.6), (A.8), and
(1.3) identify the integral (2.2) as a map between the spaces shown. The gluing
law (A. 10) applied to gluings of cylinders shows that i ^ ; α is indeed a functor. An

automorphism /—»/ determines a classifying map h:Sι x Q —* EΓ, by gluing, and
so extends to a classifying map H:D2 x Q —> E Γ . Then ft:^ x y —> E Γ extends

to H:D2 x y —> EΓ, and by Stokes' theorem (A. 11) the moφhism <&Q.a(f-*f) acts
trivially. So there is an inverse limit of J ^ . α in J^, which we denote TY(Q) = TY(Q).
(We omit the ' V if it is understood from the context.) It should be thought of as the
value of the classical action on Q.

Now suppose X is a compact oriented (cf+2—n)-manifold, possibly with boundary,
and P G Wx is a Γ bundle over X. Let gp be the category of classifying maps

F\P —> E Γ and homotopies F-+F'. Restriction to the boundary defines a functor

Wp-+WdP. If F G ^p then by integration we obtain

( r \
2πi / Γ*α G IdXίdp*a = ^dP,aΦF). (2.3)

X /
TT

Furthermore, one can check that if F-^Fr is a homotopy, then (A.ll) implies that

^dP.a(dF^dFf)txV ίlm \F*(\ -exp Um ίF'*a\.
\ x J V x J

These equations imply that (2.3) determines an element

e2πiSχ(P) eTdx(ΘP). (2.4)

We state the properties of this action without proof.

Assertion 2.5. Let Γ be a finite group and a G Cd+ι(BΓ\ R/Z) a cocycle. Then the
assignments 9

Y n ' Y ' (2 6)
P _> e2«Sχ(P) 6 Γ a χ ( a p ) , p 6 ^

defined above for closed oriented (d + 1 — n)-manifolds Y and compact oriented
(d + 2 — n)-manifolds X satisfy:

9 It is possibly better notation to write e

2 ™Sχ( p ) <= e2πiSdx(dP) f o r α ^ c o m p a c t oriented X, or

perhaps instead TX(P) G Tdx(dP). We will sometimes use the latter notation, especially in Sect. 9
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(a) (Functoriality) If'ψ :Q' —> Q is a bundle map covering an orientation preserving
diffeomorphism ψ: Y' —» Y, then there is an induced isomorphism

ψ*:Tγ(Q')-*Tγ(Q) (2.7)

and these compose properly. If φ:P' —> P is a bundle map covering an orientation
preserving diffeomorphism φ :X' —> X, then there is an induced isomorphism 1 0

(2.8)

where dφ: dPr —» dP is the induced map over the boundary.
(b) (Orientation) There are natural isomorphisms

T_Y(Q) 9έ (Tγ(Q)Γl, (2.9)

and

e2πiS_x(P) ^ (e2πiSx(P)y\ ^ ^ΛO)

(c) (Additivity) IfY = YιUY2isa disjoint union, and Qi are bundles over Y{, then
there is a natural isomorphism

TY(QX U Q2) 2* TY(QX) TY(Q2).

IfX = XιL\X2isa disjoint union, and Pi are bundles over X%, then there is a natural
isomorphism

e2πiSχιUχ2(PιUP2) ^ e2πiSXχ{Pλ) m e2-κiSχ2(P2) (2Λ\)

(d) (Gluing) Suppose Y ^ X is a closed oriented codimension one submanifold and
Xcut is the manifold obtained by cutting X along Y. Then dXcut = dXuYU-Y.
Suppose P is a bundle over X, Pcut the induced bundle over Xc u t, and Q the restriction
of P to Y. Then there is a natural isomorphism

(2.12)

where ΊΪQ is the contraction

TrQ :T χ c u t (dP c u t ) ^ Tx(dP) TY(Q) Tγ{Q)~ι -> Tx{dP).

The Functoriality Axiom (a) means in particular that for any Q e Wγ there is an
action of the finite group AutQ on TY(Q). As explained in Sect. 1 the isomorphism
class of this action is an element of i7n(AutQ; T). For n = 2 this action determines
a central extension of Aut Q by T. We use an additional property of gluing in Sect. 9:
Iterated gluings commute. As always, we must interpret "commute" appropriately in
categories.

1 0 If n = 1 then (2.8) is an equality of elements in a T-torsor. Similarly for (2.10), (2.11), and
(2.12)
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3. Higher Algebra II

The quantum integration process is this: We integrate the classical action over the
space of equivalence classes of fields on some manifold. As explained in Sect. 2 the
classical action in codimension n takes values in ^ (or in a ^-torsor for manifolds
with boundary). For example, in the top dimension it takes values in T. But we cannot
add elements of T. Rather, to form the quantum path integral we embed T ^ C and
add up the values of the classical action as complex numbers. In higher codimensions
we introduce "higher inner product spaces" where we can perform the sum.11 The
collection ^ of all complex n-inner product spaces n is an n-category, which is in
some sense the trivial complex ( n + l)-inner product space, and there is an embedding
^nc~^ ^n o n t o m e s e t °f e l e m e n t s of "unit norm." We view the action as taking values
in 9^ and then take sums there to perform the path integral. Our goal in this section,
then, is to describe this hierarchy:

9% = C field of complex numbers,

3f "ring" of (virtual) finite dimensional complex

inner product spaces,

9% " r ing" of (virtual) finite dimensional complex

2-inner product spaces,

etc.

The inner product space notions of dual space (or conjugate space), direct sum,
and tensor product generalize to 9£, and this gives it a structure analogous to a
commutative ring with involution.

The notion of a 2-vector space appears in work of Kapranov and Voevodsky [KV],
and also in lectures of Kazhdan and in recent work of Lawrence [L], We in no way
claim to have worked out the category theory in detail, and we feel that this sort of
"higher linear algebra" merits further development.

The terminology is confusing: An n-inner product space is an (n — l)-category.
Thus a 2-inner product space is an ordinary category.

Recall that an inner product space V is a set with an commutative vector
sum V x V —> V, a scalar multiplication C x V —> V, and an inner product
( , -):V x V —> C. (The conjugate inner product space V is defined below.) We
will not review all of the axioms here. There are two trivial examples: the zero
inner product space O consisting of one element, and C with its usual inner product
(z,w) = z w. If Vx, V2 are inner product spaces, then a morphism is a linear map
Vj —> V2 which preserves the inner product. The collection of inner product spaces
and linear maps forms a category ^ .

Suppose T G &[ is a T-torsor. From T we form the one dimensional complex
inner product space (hermitian line)

-LJrp = = L Xηp ^U

= {(t,z)eTx C}/(ί λ, z) ~ (t, λ z) (3.2)

11 Since our basic group is T (as opposed to C x ) we obtain complex inner product spaces (as
opposed to simply complex vector spaces). Presumably one can generalize to other base fields or
rings
12 It is probably better to consider the category of virtual complex n-inner product spaces, that is,
formal differences of complex n-inner product spaces. This provides additive inverses and is more
closely analogous to a ring. However, we will only encounter "positive" elements of this "ring" so
do not insist on the inclusion of virtual inner product spaces
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for all λ G T. Note that LΊ = C. The inner product on Lτ is

If V G 9f is an inner product space, we form the dual space V* = Hom(V, C) with
its usual inner product. The conjugate inner product space V has the same underlying
abelian group as V but the conjugate scalar multiplication and the transposed inner
product. There is a natural isometry V = V* given by the inner product. If Vx, V̂  G 9jf
then one can form the direct sum Vλ θ F2 and the tensor product Vj 0 F 2

 w ^ t n t n e

inner products

(vλ θ ^ ^ θ w2) = (v{,it^) + (v2, w 2 ),

(^ 0 ^ , ^ 0κ;2) = (vuwι)(v2,w2).

Notice that there are natural isomorphisms O ΘV = V and C 0 V = V. Also, if
TX,T2 G ̂ f then LΓ_i = Lγ and L τ . τ = Lτ 0 LT 2 The direct sum and tensor

product give %ζ a commutative ring-like 1 3 structure with involution, the involution
being the conjugation or duality.

It is useful to observe that for any inner product space V, the induced inner product
on V* 0 V is

(Tx, Γ2) = TrCη^*), T2 G HomdO ,

where we identify V* 0 V = Hom(F) via the canonical isomoφhism, and T* is the
hermitian adjoint of T.

Finally, we introduce an "inner product"

by

and the associated "norm" \V\2 = y 0 V". Notice that the elements of "unit norm,"
that is of norm C, are precisely the hermitian lines, i.e., the image of the embedding
^ ^ 9f. The image is closed under tensor product and the embedding is a
homomorphism.

Starting with the field C we have outlined the construction of a commutative
ring-like category 9jf (with involution) consisting of inner product spaces over C.
Now we iterate and consider inner product spaces over 9f, which we call complex
2-inner product spaces.14 So a complex 2-inner product space W is a category with
an abelian group law W x W —> ̂ , a "scalar multiplication" 9f x W —> ^ , and
an "inner product" ^ * x # ^ —> 9f. There is a zero complex 2-inner product space
O. The dual, conjugate, direct sum, and tensor product are defined. The category
9f is a 2-inner product space which is an identity element for the tensor product.
The collection of all (virtual) complex 2-inner product spaces forms a commutative
ring-like 2-category Ŝ f with involution.

Because a 2-inner product space is a category, and not a set, there is an extra layer
of structure (natural transformations) and so additional data as part of the definition.

13 As we mentioned above, we should include virtual inner product spaces to have additive inverses
14 Since 9f is analogous to a ring, not a field, we expect that not all of its modules are free. The
ones we consider in this paper are sums of one dimensional cyclic modules, so are free. A formal
development of this concept should probably demand freeness in the definition [KV]
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We do not claim to have a complete list, but mention some additional structure related
to the inner product. Namely, for all Wx, W2 G W* there is a specified map

The "•" here is the scalar product. We might further assume that Mor(Wγ, W2) is
isomorphic to the vector space (W2, Wx)\ this holds in the examples. In addition, we
postulate a preferred isometry

(WUW2)^W^W\)
whose "square" is the identity. In particular, (W, W) has a real structure for all
W e W, and we assume the existence of compatible maps

C-+(W,W)-* C. (3.3)

The composition is then multiplication by a real number, which we call dim W.
A linear map of complex 2-inner product spaces L: ^ —> W^ is a functor which

preserves the addition and scalar multiplication. The space of all linear maps is the 2-
inner product space Hom(S^, W^) = S^*®^* :. If we assume some freeness condition
on 2-inner product spaces (see previous footnote), then we can clearly generalize other
standard notions of linear algebra. For example, we should be able to define linear
independence and bases. Then if P:W —• W is a linear operator on W, a matrix
representation relative to a basis of W is a matrix of inner product spaces Pj G 9f.
The trace Tr(P) = 0 P%

% is then an inner product space. The dimension of W is the

trace of the identity map, which is dim W = C n for some n. It makes sense, then,
to identify the dimension of W as n.

If & is a T-gerbe. Then we form the one dimensional complex 2-inner product
space

) G ̂  x ^ } / ( G T, 10 ~ <G, L τ 0 F) (3.4)

for all T-torsors T. Note that WTχ = f̂. If we define the inner product

on ^*, then we see that the image of the embedding ^ ^ 9% determined by (3.4)
consists of complex 2-inner product spaces of "unit norm". The image is closed under
tensor product and the embedding is a homomorphism.

Here is a more concrete example of a nontrivial 2-inner product space which is
important in what follows. Suppose A is a finite group. Let {9γ)A denote the category
of finite dimensional unitary representations of A. The morphisms are required to
commute with the A action. Then (5^)Λ is a 2-inner product space as follows. If
W e (%χ)A and V G ?f then we can "scalar multiply" V by W using the ordinary
vector space tensor product. We obtain V 0 W, which is a representation of A. The
vector sum in (9^)Λ is the usual direct sum of representations. The inner product on

(Wι,W2) = (Wι®W2)
A, (3.5)

where for any representation W G (^)A the inner product space WA G 9^ is the
subspace of invariants. Note that if W is an irreducible unitary representation of A,
then (cf. [FQ, Appendix A])
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since dim W is the norm square of the canonical element of W® W. The composition
(3.3) is dimVF in the usual sense. The dimension of iβγ)A is the number of
isomorphism classes of irreducible representations of A.

More generally, suppose that & is a T-gerbe with a nontrivial A action, which we
denote by ρ. For any G G 2^ let

L G = ( G , C ) € 5 ^ > . (3.6)

[Recall the definition of WF in (3.4).] Note that for any line L G 9f, the element
(G, L) G ^ is equivalent to LG, for some G' G S?9 and so any element of S ^ is
isomorphic to a finite sum LG Θ . . . Θ LG . Let A act on (M^ by

a'LG = La-Gi O Ί)

Finally, set15

{Ψ^)A'Q = span{W = L G j 0 . . ®LG : W is invariant under the A action} . (3.8)

This is our sought-after 2-inner product space. If 5^ = &[ is the trivial T-gerbe, then
according to (1.4) the action ρ determines a central extension A of A by T, and to
each a e A corresponds a T-torsor Ta which is the fiber of A over a. We can describe
(W^)A'Q = (<^)A>ρ as the category of representations of A such that the central T
acts by standard scalar multiplication. For then an element of this category is of the
form W — LT{ θ . . . θ LTk, where for each a G A and each index i there is an
index j with Ta-Ti — T . Then (3.7) is an isometry LT α <8> Lτ —> Lτ , and so each

a eTa induces an isometry Lτ —> Lτ . This describes the A action. The dimension

of (W^)A'Q as the number of isomorphism classes of such irreducible representations.

Since any T gerbe 5^ is (noncanonically) isomorphic to i^, this is also the dimension

of ( ^ ) A ' ρ . If ρ is the trivial A action on if, then (Wr^
Q = (9$A^ is the 2-inner

product space (^)A we defined in the previous paragraph.
Think of ( 5 ^ ) A ' ρ as the space of ^4-invariants in <Mf. We can also consider

invariants in the analogous situation "one dimension down." That is, if A acts on a
T-torsor T through a character μ: A —> T, then A also acts on the hermitian line Lτ

through the same character. We define

( L τ ) A ' μ = {/ G Lt: / is invariant under the A action} .

But this is simple:

(T \A,μ _ ί L τ > if μ is trivial
J ( 0 , otherwise.

We remark that whereas (^)A has a natural monoidal structure16 given by the
tensor product of representations, the category (9^)A'ρ for ρ nontrivial do not: the
tensor product of representations of A where T acts as scalar multiplication is a

1 5 To make good sense of "invariant" we must identify certain canonically isomorphic elements.
For example, we need to identify different permutations of the sum LGχ θ . . . θ L G f c . Also, this

definition is suspicious - the dimension of the invariants is larger than the dimension of ^ >
1 6 A monoidal category is a category equipped with a tensor product and an identity element. In
addition, an "associator" and natural transformations related to the identity element must be specified
explicitly. A monoidal category is the category-theoretic analogue of a monoid, which is a set with
an associative composition law and an identity element
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representation of A where T acts as the square of scalar multiplication. Also, if 5? is
a nontrivial gerbe, then (W^^)A"Q is not monoidal in a natural way.

Finally, by forgetting the A action we obtain an "augmentation" linear map

If 3? = 3\ is trivial, it takes values in WTχ = 9f.
Clearly these constructions have analogs in the higher complex inner product

spaces (3.1).

4. Quantum Theory

Now we are ready to quantize the classical d + 1 dimensional classical field theory
described in Sect. 2. We carry out the quantization on any compact oriented manifold
of dimension less than or equal to d + 1 by integrating the classical action over the
space of fields. (We first use the constructions in Sect. 3 to convert the values of
the classical action from an n-torsor to an n-inner product space.) Since there are
symmetries of the fields, we only integrate over equivalence classes of fields. The
residual symmetry, that is, the automorphism groups of the fields, must also be taken
into account. Since the gauge group is finite, the space of equivalence classes of fields
on a compact manifold is a finite set, so all we need to perform the path integral is a
measure on this finite set. We also need to define the product of a positive number μ
(the measure) by an element W G 9^. This we denote as μ W and interpret it as W'
with the inner product multiplied by μ. The rest is a straightforward generalization of
[FQ, Sect. 2], given the higher algebra of Sect. 3 and the classical theory of Sect. 2.
For a closed oriented (d 4-1 — n)-manifold Y, n > 0, the resulting quantum invariant
is a complex n-inner product space E(Y) £ 9^. If Y = 0 is the empty manifold,
then Eφ) = 9ζL_ι is the trivial space. The quantum invariant of a compact oriented
(d + 2 - n)-manifold X, possibly with boundary, is an element Zx £ E{dX). For
n = 1 we recover the quantum invariants of [FQ, Sect. 2], - the ordinary path integral
(partition function) and the quantum Hubert space. For n = 2 the quantum invariant of
a closed oriented (d— l)-manifold S is a 2-inner product space E(S), and the quantum
invariant of a compact oriented d-manifold Y is an object Zγ in the category E(dY).
Et cetera.

We first introduce a measure μ on the category of principal Γ bundles WM over
any manifold M. For P e WM set,

( 4 1 )

Clearly μP, = μP for equivalent bundles Pf = P, so μ determines a measure on
the set of equivalence classes WM. This is the assertion that the measure is invariant
under the symmetries of the fields.

If M has a boundary, for each Q e WdM set

WM{Q) = {{P,Θ):P e %M,θ:dP -* Q is an isomorphism} . (4.2)

A morphism φ: (P ; , θ') —• (P, θ) is an isomorphism φ:P' —> P such that θ' = θodφ.
The morphisms define an equivalence relation on WM(Q), and we denote the set of
equivalence classes by WM(Q). Equation (4.1) determines a measure on WM(Q). Note
that any automorphism of (P, θ) £ &M(Q) is the identity on components of M with
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nontrivial boundary. If ψ: Q' —• Q is an isomoφhism of Γ bundles over <9M, then
ψ induces a measure-preserving map

by ψ*(P,θ) = (P,ψθ). In particular, for Q' — Q this gives a measure-preserving

action of AutQ on WM{Q).
One important property of μ, which is an ingredient in the proof of the gluing

law (4.17), is its behavior under cutting and pasting. Suppose N c—» M is an oriented
codimension one submanifold and M c u t the manifold obtained by cutting M along
TV. For each Q G WN> Q' G ^ ^ ' w e obtain a gluing map

9Q :

We refer to [FQ, Sect. 2] for the proof of the following.

Lemma 4.3. The gluing map #Q satisfies:
(a) gq maps onto the set of equivalence classes of bundles over M whose restriction
to N is isomorphic to Q.
(b) Let φeAutQ act on (Pc u t; θvθ2,θ) e WM^(Q U Q) by

φ (P c u t ; θx,Θ2,Θ) = (P c u t ; φ o θλ, 0 o 0 2,0).

stabilizer of this action at {Pcxxi\θι,θ2,θ) is the image AutP -> AutQ
determined by the 6> , w/zm> P = gQ((Pcut; θuθ2,0)).

(c) There is an induced action on equivalence classes WMwAQ U Q), and AutQ acts

transitively on gQl([P])for any [P] G WM.

(d) For any [P] G WM(Q) we have

Now we are ready to carry out the quantization. We treat all codimensions simul-
taneously, but suggest that the reader first review the top dimensional quantizations
in [FQ, Sect. 2]. Again for clarity we first treat closed manifolds and then arbitrary
compact manifolds (possibly with boundary), though the second case includes the
first.

Suppose first that Y is a closed oriented (d +1 — n)-manifold, n > 0. The classical
action defined in Sect. 2 is a map

±γ. &γ —* %yn ,

which we can think of as a bundle of "n-torsors" over Wγ. By Assertion 2.5(a) for
each Q G Wγ there is an action QQ of AutQ on TY(Q). Use the construction (3.2),
(3.4) to replace each TQ by the one dimensional n-inner product space

WQ = WTγ{Q). (4.5)

Assertion 2.5(a) also implies that an isomoφhism ψ: Q' -> Q induces an isomoφhism
φ^'.^q, —> 90Q. However, an automoφhism ψ G AutQ does not necessarily act
trivially on 5^Q. Rather, it only acts trivially on the subspace of invariants under
the AutQ action [cf. (3.8)]. More precisely, we construct a "quotient" complex n-
inner product space SC^ associated to the equivalence class [Q] G Wγ as an inverse
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limit. (The inverse limit picks out the invariants under automorphisms.) Consider the
category W{Q] of bundles Q in the isomorphism class [Q], and let i ^ : W[Q] —» 9^
be the functor whose value at Q is W^. Set ̂ ^ ] to be the inverse limit of &{Q\. AS
[Q] varies we then obtain a map

The quantum space E(Y) is the integral of Wγ over ffγ, which in this case is a finite
sum:

E(Y) = jdμ{\Q\)Wγ{\Q\) = 0 μ[Q].»fQ]e%. (4.6)

[QiW

If we think of ^ as a bundle of n-inner product spaces over Wγ, then E(Y) is the
space of L2 sections of that bundle.

Now suppose that X is a compact oriented (d + 2 - n)-manifold, possibly
with boundary. The classical action on the boundary dX is a bundle of n-torsors
TQX —> ̂ x , and the classical action e 2 π ϊ 5 χ on I is a section of the pullback
τ Tdx, where r is restriction to the boundary:

r Tdx > Tdx

By Assertion 2.5(a) the action is invariant under the morphisms in ffx, that is, under
symmetries of the fields. Now for each P e Wx we use the construction (3.6) to
define an element

LX(P) = Le2^Sχ(P) € WdP = WTdχφP). (4.7)

Now LX(P) is not necessarily invariant under AutP; it transforms under φ G AutP
according to the action of the restricted automorphism dψ e Aut(dP) on Wp ( 0 P ) .
We only obtain invariance after integrating. Thus fix Q G Wdx and consider WX(Q)
as defined in (4.2). If (P,0) G ̂ X(Q) then using θ to identify Tdx(dP) ^ Tdx(Q)
we have the action e

27ΓiSχ(p^ e Tdx(Q) and the associated LX(P,Θ) G ̂ £ , as in
(4.7). If (P,0) = (P /,0 /) then there is an isomorphism between the values of the
actions on these fields as elements of Tdx(Q). By another inverse limit construction
we define LX([P,Θ]) G WQ. Set

Zχ(Q)= J dμ(lP,θ])Lx([P,θ])= 0 V[P,ei LxdPV £ &Q (4 8>
ίPθ]e&ϊ(Q)

Now we claim that ZX(Q) is invariant under the AutQ action on WQ, and so

ZX(Q) G ( ^ x ( Q ) ) A u t Q ' ^ (4.9)
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More generally, we check that for an isomorphism ψ:Qf —• Q we have

= £ χ ( Q ) , (4.10)

since (Py', ^0') runs over a set of equivalence classes in WX(Q) as (P', 0') runs over a
set of equivalence classes in WX{Q'). Using the definition (3.8) of (^τdχ(Q))AutQ'ρQ

we deduce (4.9), and furthermore (4.10) shows that {ZX(Q):Q e [Q]} is a collection
of elements in {^Q'.Q G [Q]} invariant under symmetries. In other words, it is an
element of the inverse limit ^qy

ZX([Q]) G W{Qλ.

Finally, then,

Zx([Q])e 0 μιQVWlQλ = EφX) (4.11)

is the desired quantum invariant.
The basic properties of these quantum invariants, which we might term "higher

quantum Hubert spaces" and "higher path integrals," are listed in the following.

Assertion 4.12. Let Γ be a finite group and a e Cd+ι(BΓ\ R/Z) a cocycle. Then the
assignments lΊ

x.-» zx e EφX),

defined above for closed oriented (d + 1 — n)-manifolds Y and compact oriented
(d + 2 — n)-manifolds X satisfy:
(a) (Functoriality) Suppose f :Yf —* Y is an orientation preserving diffeomorphism.
Then there is an induced isometry

U:E(Y')-*E(Y) (4.13)

and these compose properly. If F :Xr —>• X is an orientation preserving diffeomor-
phism, then there is an induced isometry 1 8

φF)*{Zχl)-+Zx , (4.14)

where dF :dX' —> dX is the induced map over the boundary.
(b) (Orientation) There are natural isometries

E(-Y) ^ E(Y),

and
(4.15)

17 Again the notation is awkward, and possibly it is best to use Zx for all X and write Zx e Zdx
18 If n = 1 this is an equality, as are (4.15), (4.16), and (4.17)
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(c) (Multiplicativity) IfY = YιL\Y2 is a disjoint union, then there is a natural isometry

If X = Xx U X2 is a disjoint union, then there is a natural isometry

ZXί®ZX2. (4.16)

(d) (Gluing) Suppose Y <-~* X is a closed oriented codimension one submanifold and
Xcut is the manifold obtained by cutting X along Y. Write <9Xcut = dXυYU-Y.
Then there is a natural isometry

Ύrγ(Zχcut)-^Zx, (4.17)

where Tr y is the contraction

Try : E(dXCΰt) *έ EφX) ® E(Y) <g> E(Y) ~-> E(dX) (4.18)

using the inner product on E(Y).

Just as on the classical level, iterated gluings commute.

Proof We only comment on the gluing law (d). The proof is formally the same as
the one in [FQ, Sect. 2], but we repeat it here anyway. Recall that for a field P over a
compact oriented (d + 2 - n)-manifold X we have the action el7riSχ(P) e Tdx(dP)
which lives in an n-torsor, and the associated LX(P) £ ^τdx{dP) w n i c n lives in an
n-vector space [cf. (2.4) and (4.7)]. Fix a bundle Qι -> dX. Then for each Q -> Y
and each Pcut e Wχcvχ(Qf LJ Q U Q) we have an isometry

Lx(gQ(Pcut)) * TrQ(L χ cut(P c u t)) (4.19)

by (2.12), where now Tr^ is the contraction

using the inner product on S ĵ. (g )9 and QQ is the gluing map

gQ: ^XcΛQ' U Q U Q) -> WX{Q'). (4.20)

Fix [P] e &X{Q') and consider gQl([P]). By Lemma4.3(c) the group AutQ acts

transitively on gQl([P]). This means that the invariants in the representation

Θ LχCut([Pcut]) (4.21)

of AutQ by its diagonal action on ^ ^ x ^τ_γ(Q) γ i a QQ X QQ are the

"constant functions" under the isomorphism (4.19). Then the inner product (3.5) in

(^Tγ(Q))AutQ'ρQ applied to (4.21) gives

l (4.22)

Fix a set of representatives {Q} for Wγ. Let ^ ( Q O Q denote the equivalence classes

of bundles over X whose restriction to dX is Q' and to Y is Q [with given
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isomorphisms as in (4.2)]. Thus using Eq. (4.4) on the measure and the isometry
(4.22) we calculate

Zχ(Q')= ί dμ([P])Lx([P])

J dμ([P])Lx([P])

* Σ ί ^ ( [ P c u t ] ) T r Q ( L χ C u l ( [ P c u t ] ) )

AutQ

= TvY(Zxcut(Qf)).

5. Product Structures

Some form of the following assertion holds: In a d + 1 dimensional topological
quantum field theory the cϋ-inner product space E(Sι) has the structure of a "higher
commutative associative algebra with identity and compatible real structure and inner
product." In this section we only discuss the cases d = 1 and d — 2. For d — \
we obtain an ordinary algebra structure on the vector space E(Sι), together with
a compatible real structure. The inner product on E(Sι) is compatible with all of
these structures. This is a standard argument, which we repeat here as a warmup. For
d = 2 the quantum space E(Sι) is a 2-inner product space, which in particular is a
category. The algebra structure we discuss gives it the structure of a braided monoidal
category [JS].19 Here the commutativity and associativity conditions give additional
data (rather than being conditions on the multiplication, as in an ordinary algebra), and
there is an additional piece of data coming from nontrivial loops of diffeomoφhisms
of the circle (a balancing). All of the arguments in this section proceed directly from
the axioms in Assertion 4.12. So they hold for any theory which obeys these axioms,
not just for a gauge theory with finite gauge group.

We begin with some standard deductions about arbitrary d+1 dimensional theories.
First, a deduction about the classical theory. Suppose Y is a closed oriented manifold
and Q e Wγ a Γ bundle. Consider the product [0,1] x Q e ^ 0 1 ] x y , which is a

bundle over the "cylinder" [0,1] x Y. The classical action20 T [ 0 j l J x y ([0,1] x Q) is
an automoφhism of TY(Q). Now glue two copies of [0,1] x Q end to end and apply
the gluing law (2.12) to construct an isomoφhism

T[o,i]χy([0,1] x Q) • T[0Λ]xY([0, l ] x g ) H Γ [ 0 1 ] x y ( [ 0 , 1 ] x Q).

This implies that there is a canonical element

* e τ[o,i]χy([°> 1] x Q)

1 9 In fact, we obtain what some refer to as a tortile category. See [Yl, Sect. 1], [Y2] for a precise
definition and more thorough discussion. The notion of a tortile category is due to Shum [Sh]
2 0 We use the notation TX(P) instead of e 2 7 r i S x ( P ) , even though X = [0,1] x Y is not closed
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which satisfies t t = t. In other words, the classical action of a product field is
trivialized. If dimy = d the classical action is the identity map of TY(Q). The
quantum version of (5.1), obtained from the quantum gluing law (4.17), asserts that

zl0<1]xY:Eor>->Eor>
is an idempotent. In other words, there is an isometry

C^[θ,i]χγ) "^ ^[θ,i]χy (5-4)

We may as well assume that Z[Ol]xY is isometric to the identity, since in any case
we can replace E(Y) by the image of (5.3) to obtain a new theory with this property.
Similarly, gluing the ends of [0,1] x Y together we deduce the existence of an isometry

ZsιxY ^ aimE(Y). (5.5)

Here the dimension of an n-inner product space is an (n — l)-inner product space,
as discussed in Sect. 3. More generally, if f:Y —•> Y is an orientation preserving
diffeomorphism, we can glue with a twist by / to form the mapping torus Sι XfY
The axioms now imply the existence of an isometry

%sι χfγ — TrS(y)(/*),

where /* :E(Y) -> E(Y) is the isometry (4.13).
Another easily deduced property also relates to the functoriality (4.13). Suppose

that fo^f1:Y
/ —>• Y are isotopic orientation preserving diffeomorphisms, and that

ft:Y'-+Yis an isotopy. Form the map

F:[0,1] xY' ->[0,1] xY,

(More generally, our considerations apply to pseudoisotopies F, that is, to arbitrary
diffeomorphisms F which restrict on the ends to / 0 and fι.) Now apply the
functoriality axiom (4.14) as follows. The partition functions Z^o ^xY/ and Z [ 0 ^xY

are the identity, according to (5.3). The boundary maps / 0 and fι induce isometries
(/•)* :E(y ' ) —> E(Y). The functoriality axiom asserts that F induces an isometry
between (/j)* o (/0)* 1 and idE(Y^ or equivalently that

F induces an isometry F* : (/ 0 )* -> (/j)* . (5.6)

The proper interpretation of (5.6) depends on the dimension of Y. For example, if
dimy = d then E(Y) is an ordinary inner product space and (5.6) asserts an equality
(/Q)^ = (/j)*. This implies in particular that the action of Diff^(Y) on E(Y) factors
through an action of isotopy classes of diffeomorphisms TΓoDiff^y) on E(Y). If
dimy = d — 1, then E(Y) is a 2-inner product space, which is a category, and
(5.6) asserts that F induces a natural transformation F^ between the functors (/0)*
and (fi)*. A further argument shows that isotopic maps F induce the same natural
transformation. In the particular case where / 0 = fx — id, this shows that π x Diff+(F)
acts on E(Y) by automorphisms of the identity functor.21 This discussion generalizes
to higher codimensions.

21 An automorphism of the identity functor (i.e., a natural transformation from the identity functor
to itself) on a category W is for each object W £ W a choice of morphism θw : W —> W such that

if W i W is any morphism in W, then

/ o θw = θw, o /
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Now fix a 1 + 1 dimensional theory and denote

E = E(Sι).

Since any orientation-preserving diffeomorphism of S1 is isotopic to the identity,
(5.6) implies that we can uniquely identify E(S) with E for any connected closed
oriented 1-manifold S. Also, any two orientation-reversing diffeomorphisms of Sι

are isotopic, so there is a well-determined isometry

c:E -> E.

Since the composite of two orientation-reversing diffeomorphisms is orientation-
preserving, cc = id. Thus c defines a real structure on E:

ER = {eeE:c(e) = e}. (5.7)

Since c is an isometry, ER is a real inner product space. The inner product identifies
ER = ER as usual. Since any compact oriented 2-manifold has an orientation-
reversing diffeomorphism, the generalized partition function of any such manifold
is real, by (4.14).

Next, we observe that the generalized partition function of the disk

1 = ZD2 G ER

is a special element of ER.
The partition function of the "pair of pants" P, which is a disk with two smaller

disks removed (Fig. 2), is an element

ZP eER®ER®ER. (5.8)

Equation (4.14) applied to diffeomorphisms of P which permute the boundary circles
(as in Fig. 5) implies that ZP lives in the symmetric triple tensor product of ER.
Identifying ER = ER with the inner product, this defines a commutative multiplication
ER <8) ER —• ER. In fact, the trilinear form

zi-*(x-y, Z ) E R , x,y,z £ ER,

dual to (5.8) is totally symmetric. This symmetry is a compatibility condition between
the inner product and the multiplication. For the complex vector space E — E(Sι)
we have the analogous statement that

x <8> y <8) z ι-> ( x y , c ( z ) ) E , x , y , z e E , (5.9)

is totally symmetric. Gluing a disk D2 onto P any applying (4.17) and (5.3) we
deduce that 1 acts as the identity map for the multiplication. Finally, a standard gluing
argument that we do not repeat here shows that the multiplication is associative.

We summarize this discussion in the following.

Proposition 5.10. In a 1 + 1 dimensional topological quantum field theory (which
satisfies the axioms of Assertion 4.12) the inner product space E(Sι) has a compatible
real algebra structure which is commutative, associative, and has an identity. In
addition, the map (5.9) is totally symmetric.

It is not too hard to see that E — E(SX) contains no nilpotents. For if x φ 0, then
since (xc(x), 1) = (x, x) Φ 0, we see that xcix) φ 0. Iterating we find x2 c(x)2 φ 0
and (x2 c(x)2 ,1) = (x2 ,x2 ) Φ 0 for all n. Standard theorems in algebra imply
that E contains a basis of idempotents ev... , e N , unique up to permutation, with
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e^j = 0 for i φ j , and that E is a product of one dimensional algebras.22 It is easy

to express the partition function of a closed oriented surface Σg of genus g in terms

of the norms λ2 = | e j 2 :

Now consider a 2 + 1 dimensional theory, and as before denote E = E(Sι).
Here E is a 2-inner product space, so in particular is a category. If f : S —> Sι is
an orientation-preserving diffeomorphism, then there is an induced linear isometry
f*:E(S) —> E. Furthermore, any two such fo,fι:S —> Sι are homotopic, and a
homotopy F:fQ —• /j induces an isometry F*:(fQ)% —> (j^)*, as in (5.6), but now
F * depends on the choice of F. (In the 1 + 1 dimensional theory F^ is an equality.)
In fact, the positive generator of πx Diff f(S' 1) = Z induces an automorphism of the
identity functor on E, that is, a morphism

ΘW:W-+W (5.11)

for each object W e Obj(E). So we cannot assert that E(S) and £ are uniquely
isomorphic.

We do need, however, to identify the spaces E(S) for different circles S to derive
the "algebra" structure on E, so we resort to the following device in what follows.
We use circles S which lie in C. There is a unique composition of translations and
homotheties which maps any such circle S to the standard circle 5'1 = T C C. We
use this to uniquely identify E(S) = E for any such S.

As for the automorphism of the identity θ, we can compute it from the diffeomor-
phism of the cylinder

τ:[0, l] x Sl -+[0,1] x S\

where here we write Sι = M/Z additively. This glues to a diffeomorphism of the
torus S{ x S[ described by the matrix

(ί ) (5 13)

By (5.5) we have an isomorphism

E(Sι x S ι ) ^

where dim E is understood as an inner product space, and in some sense the action
of (5.13) on E(Sι x S1) is the action of θ on the identity endomorphism of E.

The reflection s ι—> —s of the circle Sι = R/Z induces an isometry

c:E-^E (5.14)

On the underlying category E determines an involution on the objects. Denote

c(W) = W* , We Obj(E).

This is the definition of "*." As in (5.7) we can consider the invariants ER. For any
2-manifold Y there is an isometry Zγ = Zy determined by any orientation-reversing

2 2 We need the complex algebra since there exists a nontrivial commutative algebra over R, namely
C. Note too that the conjugation (z,w) ^ (w, z) on E = C x C produces ER = C as an algebra
over R. So it is not true in general that the idempotents belong to Em
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Fig. 1. The cylinder C

Fig. 2. The pair of pants P

diffeomorphism of Y which restricts to r on dY. Of course, this isometry depends on
the choice of diffeomorphism, which we will standardize in what follows. Namely,
our figures will sit in C, symmetrically about the real axis, and the boundary circles
will have centers on that axis. Then reflection about the real axis is our standard
orientation-reversing diffeomorphism.

To compute the relationship between c and 0, consider the cylinder C as shown
in Fig. 1. The cylinder sits in C, the boundary circles have centers on the real axis,
and C is symmetric about the real axis. Now the diffeomorphism (5.12) does not
commute with reflection in the real axis, but rather the reflection conjugates it to the
diffeomorphism (t,s) ι—» (£,s — £). However, since the orientation of the boundary
circles are reversed under reflection, this conjugated diffeomorphism represents the
positive generator of π{ Diff1" Sι for the reflected circle. Thus we conclude that for
any W e ObjCE),

θw* = 0*,, (5.15)

Here θ^ denotes the image of θw under the functor (5.14).
Let D2 be the unit disk in C. Then

l = ZD2eE (5.16)

is a distinguished element of E, and reflection in the real axis determines an isometry

1 ^ 1 * . (5.17)

Fix a standard pair of pants P as shown in Fig. 2. (The ordering of the boundary
circles is motivated by Fig. 8.) As with all of our figures it is symmetric about the
real axis and the boundary circles have centers on that axis. Any other P' with the
same properties is isotopic to P by an isotopy which moves the boundary circles only
by translations along the real axis and by homotheties. Furthermore, any two such
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Fig. 3. Associativity

isotopies are isotopic, since any self-diffeomorphism of P which is the identity on
dP is isotopic to the identity. This means that there is a uniquely defined isotopy
Zp, = ZP. Now the partition function is

ZP e E ® E <g> E,

and reflection about the real axis determines an isometry

Zp^Zp. (5.18)

By duality ZP determines a map

m:E®E -> E. (5.19)

In particular, m i s a functor E x E —> E, but it has linearity properties as well.
Denote

m(Wu W2) = WιΘW2, WuW2

This is the definition of " 0 . " The isometry (5.18) translates into a natural isometry

(Wx Θ W2f ^ W* Θ W2* , WvW2e Obj(E). (5.20)

Glue a disk to the inner boundary circles in P to obtain natural isometries

1®W^W, WΘl = W, (5.21)

for all W G Obj(E).23

It remains to discuss associativity and commutativity. Whereas in the 1 + 1
dimensional theory these are constraints on the multiplication, here they are new
structures which satisfy "higher order" constraints. The associative law is a natural
isometry

Ψwuw2,w3 (W1QW2)®W3^WιQ(W2QW3), WuW2,W3eObi(E), (5.22)

obtained from the obvious diffeomorphism indicated in Fig. 3. This figure indicates
an isometry between two different contractions of ZP 0 Zp, which is equivalent to
(5.22). One can think of (5.22) as obtained by gluing and ungluing according to the

23 There should also be natural transformations W Θ W* —>• 1 and 1 —> W QW* which we did
not succeed in finding.
Added in proof: They are described in [F3]
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Fig. 4. Gluings and ungluings of pieces of this surface prove the pentagon

dashed lines in Fig. 3. Performing such gluings and ungluings in Fig. 4 makes obvious
the commutativity of the usual pentagon diagram

© W2) Θ W3) Θ W4 © W2) Θ (W3 Θ W4)

(Wx Θ (W2 © W3)) Θ W4 -

A similar check shows that

(Wx © 1) © P

Θ Θ W3) Θ W4)

Θ (W2 Θ (W3 Θ W4))

(5.23)

(5.24)

WλQW2

commutes.
It does not make sense to say that the multiplication (5.19) is commutative. Rather,

there is a natural braiding isometry

#Wi .w,: WιQW2->W2Θ Wx (5.25)

Fig. 5. The braiding diffeomorphism β
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Fig. 6. Surface used to prove hexagon diagrams (5.27) and (5.28)

obtained from the self-diffeomorphism β:P —» P indicated in Fig. 5. The auxiliary
dashed lines indicate the motion of the boundary circle labeled 2 over that labeled 1.
There is a compatibility between the braiding R and the automorphism θ: the diagram

Rwx, w2

Wλ Θ W2 > W2 Θ Wx

i i
RW2,W\

Wx Θ W2 > W2 Θ Wx

commutes for Wι,W2 € Obj(E). (Thus θ is termed "balanced".) This follows from
an equation in Diff1" (P). Namely, let τi denote a positive Dehn twist around the
boundary labeled i. Then the desired equation is

which is easily checked using pictures like those in Fig. 5. Similar computations using
Fig. 6 show that the hexagon diagrams

RW],W2Θid ΨW2,W{,W3

(^0^)0 1̂3 > (W2QWι)ΘW3 > W2Θ(WιΘW3)

ΨWι,W2,W3

and

RWι,W2QW3 ΨW2,W3,Wi

• (W2QW3)ΘWi > W2Θ(W3ΘWι)

iάQRw w V>Wl,W3,W2

WιΘ(W2ΘW3) • WXΘ(W3QW2) > (Wι®W3)ΘW2

Wi'Wχ'W] (W3®Wi)®W2
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commute. Each of (5.27) and (5.28) follows from an equation in the diffeomorphism
group of the surface pictured in Fig. 6. The diffeomorphisms are formed from the
braiding β shown in Fig. 5. The associators are formed from gluings and ungluings,
so do not enter.

We summarize this discussion in the following.

Proposition 5.29. In a 2 + 1 dimensional topological quantum field theory (which
satisfies the axioms of Assertion 4.12) the 2-inner product space E(Sι) is a braided
monoidal category with a compatible balanced automorphism of the identity and
compatible duality.24

There is a notion of semisimplicity for such categories [Y2], and it is desirable
to prove that E is semisimple using the inner product, as we indicated for the 1 + 1
dimensional case after Proposition 5.10. Surely one should think of the 2-inner product
space structure together with the monoidal structure. In other words, one should think
of E as a higher version of the algebra encountered in Proposition 5.10.

There are reconstruction theorems in category theory which recover certain
algebraic objects from certain types of categories. For example, in [DM] it is
shown how to recover a group from its category of representations. The structure
in Proposition 5.29 is almost enough to reconstruct a quasitriangular quasi-Hopf
algebra [Mai]. (This is often termed a quasi-quantum group. Probably there is a
ribbon element as well [RT, AC] corresponding to the automorphism of the identity.)
Missing is a functor from E to the category of vector spaces, though more abstract
reconstructions are possible [Ma2]. We remark that there are examples where no such
"fiber functor" exists; the simplest is 9jf x 9f. (This arises from a three dimensional
σ-model into a space consisting of two points.) But it seems that we can always
decompose into a product of spaces where reconstruction is possible. For the finite
gauge theory we carry out the reconstruction in Sects. 7-9. There we choose various
trivializations to construct a functor from E to the category of vector spaces, and this
allows the reconstruction of the quasi-quantum group.

Finally, we remark that we can take products with any closed oriented Y in all of
these constructions to obtain a higher algebra structure on E(S} x Y). In particular,
the generalized quantum Hubert space of any torus Sι x . . . x Sι has a higher algebra
structure.

6. The 1 + 1 Dimensional Theory

We resume our discussion of the finite group gauge theory of Sects. 2 and 4. In this
section we examine the d — 1 case. We know from Assertion 5.10 that E(Sι) is an
algebra, the algebra of central functions ^ζ&nt(Γ) under convolution, as was computed
in [FQ, Sect. 5]. The new point is to compute E(pt) and Z[o λ]. The results are fairly
trivial, but they illustrate the definitions and constructions of the previous sections
and are a good warmup to the d = 2 case we discuss in Sects. 7-9.

Recall that the lagrangian is specified by a cocycle a € C2(BΓ; M/Z). We first
consider the simplest case (the "untwisted theory") where a = 0. Obviously, Wvt

has a single element, the equivalence class of the trivial bundle Qtήw = pt x T. The
value of the classical action Tp t(Q t r i v) e ^ is the trivial T-gerbe 3\. We identify

2 4 As mentioned earlier, this is sometimes termed a tortile category. Also, there is a gap here in
that we did not find the natural transformations mentioned in the footnote following (5.21).
Added in proof: This gap is filled in [F3]
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the automorphism group of Q t r i v with Γ, acting by left multiplication, and it acts
trivially on T p t(Q t r i v). Hence the associated 2-vector space WQ . in (4.5) is ( ^ ) Γ ,
the category of representations of Γ. Now E(pt) is computed by the path integral (4.6)
as an inverse limit over the category of trivial bundles Q —> pt. The automorphism
groups Aut Q which enter (4.5) are not canonically isomorphic to Γ. Rather, we use
the distinguished bundle Qtήv —> pt to trivialize the inverse limit:

[Recall that the prefactor is l/(# AutQ^).] We use this trivialization in what follows.
According to (5.4) the generalized partition function Z [ 0 2J is isometric to the

identity operator on E(pt). It is instructive to compute this isometry directly from the
definition of the path integral (4.8). There is a bijection

^ 0 ) 1 ] ( Q t r i v u Q t r i v ) ~ Γ (6.2)

by comparing the trivializations of a bundle P —> [0,1] over the two endpoints of
[0,1]. More explicitly, fix a basepoint in Qiήv and let p0 e P o, p{ E P{ be the
corresponding basepoints in P using the trivializations. Parallel transport along [0,1]
is an isomorphism ψ:PQ —» Pλ. Define g e Γ by ψ(p0) = px g. Then g is the
element of Γ corresponding to P under the correspondence (6.2). The action of
{ho,h{) e Γ x Γ = Aut(Qtriv) x Aut(Qtriv) on the left-hand side of (6.2) corresponds
to the action

(fy)Λ) ' 9 = hxgh~\ g 6 Γ,

on the right-hand side. The classical action (2.4) is trivial, so in (4.7) we obtain
L[Ol](g) = C for all g in (6.2). Since [0,1] has nonempty boundary the measure μ in
(4.1) is identically equal to 1. Hence the path integral (4.8) gives

C. (6.3)
ger

We identify this as the set of complex-valued functions J^(Γ) on Γ, with Γ x Γ
acting as

« f c o > Λ i > / ) ( 9 ) = f ( h ι g h ~ ι ) f e ^{Γ\ g e Γ , (6.4)

with the standard inner product

»Λ) =

View ,^(Γ) as an element ϋ?(pί) 0 E(pt), or using the inner product on i£(p£) as an
element in E(pt)* 0 ϋ7(pt) = Hom(E(pt)). Call this endomorphism K. Suppose that
W G E(pt) is a unitary representation of Γ with action ρ:Γ —>• Aut(W^). According
to the inner product (3.5) and the factor 1/#Γ in (6.1), the action of K on W is

* W ) = ^ ( ^ ( Γ ) 0 W)Γ .
#1

Here we take Γ-invariants under the action of h E Γ by (/ι, 1) on J^(Γ) and ρ(fe) on
W; then / I G Γ acts on (i^(Γ) 0 VF)Γ through the action of (1, h) on jT(Γ).

Now by (5.4) we can derive from the gluing law an isometry K2 —» K. (The
underlying map of categories is a natural transformation.) We compute it by analyzing
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the gluing map (4.20) for the gluing of two intervals. We find that the desired isometry
is

#Γ #Γ (6.6)

[The Γ invariance in (6.6) refers to the action (h /HflΊ,^) — f(9\h,h~ιg2) for
ft. G Γ.] This yields the desired isometry K2 —> K which on W G £"(pί) is

K\W) = ~ ' ^ Γ x Γ > ® ̂ ) Γ X Γ ""> ̂  ( ^ ( Γ ) ® W)Γ = K(W),

(These expressions are summed over i.) This is an isometry K —> id on the image of
If, and is compatible with the isometry K —>• id which on VF G £"(p£) is

( 6 ? )

/ 2 (8) wi H-> f\e)wi.

We can also check the gluing which leads to (5.5). That is to say we can check
the gluing law (4.17) when we glue the two ends of [0,1] together. Now Ws\ can
be identified with the set of conjugacy classes in Γ, and the gluing map (4.20) with
Q = <2triv sends an element in Γ to its equivalence class. The map Ύrpt in (4.18)
is l/#Γ times the Γ-invariants under the diagonal action in (6.4), and applied to
z[oti] = ̂ C O this gives

rΓrp t(^'(Γ)) = ^ . J ζ c n t ( Γ ) , (6.8)

where ^ζent(Γ) is the space of central functions with inner product (6.5). This is
E(Sι\ as follows easily from (4.6) (cf. [FQ, Sect. 5]).

If the lagrangian a G C2(BΓ\R/Z) is nonzero (the "twisted theory"), then the
classical action also enters in a nontrivial way. We compute the classical action on
the trivial bundle Q t r i v —» pt. Since there is a unique cycle in C0(pt) which represents
the fundamental class [pt] G H0(pt)9 the integration theory in the appendix gives

exp (2irijf*a\
\ pt )

for any f:pt-^ BΓ. [This is what we must compute in (2.1).] In other words, we
can think of a as defining the trivial T-gerbe bundle over BΓ9 which then lifts to the
trivial T-gerbe bundle over EΓ. The nontrivial part comes from homotopies between
classifying maps of Qtήv, which we identify with paths in EΓ. The integral in (2.2)
is then a T-torsor. The classical action T^\Qtήw) is a nontrivial T-gerbe computed
by an inverse limit over the "path category" of EΓ. The value of the classical action
on a field P —> [0,1], whose boundary we assume trivialized by an isomorphism
dP = Qtήv x Q t r i v, is then an automorphism of T^\Qtήy). By (6.2) we identify the
equivalence class of P with an element g G Γ, and by (2.8) the classical action is
well-defined on the equivalence class. Taking an inverse limit over all such bundles
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in the equivalence class we obtain for each ^ G Γ a n automorphism Tg of T^\Qtήv).
Furthermore, there are isomorphisms

from the gluing law (2.12) applied to the gluing of intervals.
As in the a = 0 case we compute the quantum space E^ipt) by taking an inverse

limit over the category of all trivial bundles. We use the distinguished object Qtήv to
trivialize the inverse limit [cf. (4.5) and (3.8)]:

E(a)(pt) <* - ^
#1

1pt
(6.9)

Here ρ is the action of Γ on T^\Qtήv) via the torsors T . If we trivialize the T-

gerbe T^\Qtήy), for example by choosing a basepoint in EΓ, then we obtain an

isomorphism T^\Qtήv) = ̂ , and so the Tg are identified with T-torsors. As in (1.4)
these torsors define a central extension

1 -+ T -» Γ -> Γ -> 1.

Incidentally, they are isomorphic to the torsors and central extension which come
from the action of Aut(Qtriv) = Γ on T^\Qtήw) = &[. This assertion follows from
the fact (5.2) that the classical action of the product bundle [0,1] x Q t r i v —> [0,1] is
trivial. With the trivialization of T^\Qinv) the isometry (6.9) becomes

E(a)(pt) * - 1 - {^f^ . (6.10)

Recall from the paragraph following (3.8) that (9^)Γ'ρ is the category of represen-
tations of Γ, where the central T acts by scalar multiplication. We emphasize that
(6.10) requires two choice of trivialization (of two inverse limits).

Computing with the trivialization (6.10) we find analogous to (6.3) that

ger

where Lg is the hermitian line obtained from the torsor Tg as in (3.2). We leave the
reader to modify the verification of (6.7) above to show that (6.11) acts isometrically
to the identity map. The twisted version of (6.8) is also easy to check.

7. The 2 + 1 Dimensional Chern-Simons Theory
and Quasi-Quantum Groups: Untwisted Case

We turn to the 2 + 1 dimensional case of gauge theory with finite gauge group, which
can be considered as a Chern-Simons theory. Our goal is to derive the quasi-Hopf
algebras of [DPR] directly from the path integral (4.6). We already investigated several
features of this theory in [FQ], The new point is an investigation of the 2-inner product
space E(Sι), which according to Assertion 5.29 is a certain type of braided monoidal
category. With suitable trivializations we claim that it is isomorphic to the category
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of representations25 of the quasitriangular quasi-Hopf algebra constructed in [DPR].
We also recover the results of [FQ, Sects. 3-4], including Segal's modular functor
[SI], from our approach here. In this section we treat the untwisted case where the
lagrangian a G C3(BΓ;Έί/Z) vanishes. In Sects. 8-9 we generalize to the twisted
case ft/0.

The holonomy of a bundle around the circle induces a bijection

Ws\ <-» conjugacy classes in Γ. (7.1)

The classical action in the a = 0 theory is trivial. Choose a bundle Q[x] —> 5 1

representing each conjugacy class [x] in Γ under the correspondence (7.1). Then
following the same steps as in (6.1), this choice of bundles leads to an isometry

E = E(Sι) 9* φ # Λ * (90AutQ[x] (7.2)
#Auty

It is convenient to use a more concrete description of E directly in terms of the
group Γ, and this requires a choice of some basepoints. (Compare with the choice of
basepoints in [FQ, Sect. 3].) Fix a conjugacy class [x] and consider the fiber F[x] of
Q[x] —> Sι over the basepoint 1 G Sι — T. A point in F[x] determines a particular
value of the holonomy of Q[x], which is an element of the conjugacy class [x]. Choose
a (base)poίnt fx in the fiber of the holonomy map F[x] —» [x] for each x e [x]. Then
fx induces an isomorphism

-^Cx (7.3)

by assigning to φ G Aut Q^ the element g G Cx in the centralizer of x which satisfies
ψ(fx) = fx-g Thus if W is a representation of Aut Q[x], then under this isomorphism
W is also a representation of Cx. Let W denote the trivial vector bundle over [x]
whose fiber at each x G [x] is W. Now Γ acts on [x] on the left by conjugation
fe x H gxg~ι), and we want to lift this action to W. For each x G [x] the stabilizer
Cx already acts on the fiber Wx = W. For x,xf G [x] there is a unique gx x, G Γ

with fx = fx, gxχ/. Then x' = gxχlχg~ι

χl. Lift gXjXf'.x »-» £ ; to the identity map
id : W^ —> Wx/. There is then a unique extension of the Cx action and the action of
the gx i on W to a Γ action on W which lifts the conjugation action on [x].

Summarizing, the choice of basepoints in the bundles Q^ leads to an isometry

E ^ ^ L VecVOΓ), (7.4)

where VectΓ(Γ) is the 2-inner product space of hermitian vector bundles over Γ
with a unitary lift of the left Γ action on Γ by conjugation. We write an element
of VectΓ(Γ) as W = φ x e Γ Wx. If WVW2 G VectΓ(Γ), then the inner product is
defined as

(Wvw2)VeariΓ) = ίφ (wx ® W2 Γ

It is easy to check that l/#Γ times this inner product is the inner product in (7.2).

25 It is probably more natural to use corepresentations here, but in any case we have enough
finiteness to switch back and forth between representations and corepresentations. Also, this will
reconstruct the algebras in [DPR] rather than their duals. Our convention here differs from [FQ,
Sect. 3], where we use corepresentations. Note also that in [FQ, Sect. 3] we use right comodules
whereas here we use left modules. Thus the groupoid (7.5) is opposite that in [FQ, Sect. 3]
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There is another description of E which is useful. Let & denote the groupoid
which is the set G x G with the composition law

(x 2,5f 2)o{χ 1^ 1) = (xι,g2gι), if x2 = g^g^1. (7.5)

Composition is not defined if x2 φ 9\X\9~{X > Then

E * ^ ( ^ , (7.6)

where (9\)^ is the 2-inner product space of finite dimensional unitary representations
of SP. What we mean by a representation of the groupoid 2^ amounts exactly to a
Γ-bundle over Γ, so (7.6) is essentially identical to (7.4). More precisely, these are
representations {left modules) of the "groupoid algebra"

φ j ) , (7.7)

with multiplication

t 0, otherwise.

The unit element is
l = Σ(x,e).

X

ΊfWe VectΓ(Γ) = (ty^f we use the notation

AY = Ag:Wx^Wgxg^

for the action of (£, g) G S .̂ In terms of the 5^ action we have

Wx = (x,e)-W. (7.8)

We use the trivialization (7.4), or equivalently (7.6), in what follows.
An irreducible element W G E is supported on some equivalence class [x], and

the fiber Wx is an irreducible representation ρ of the centralizer Cx. Since the various
Cx, x e [x] are identified up to inner automoφhisms, the equivalence class [ρ] of
the representation is well-defined. Up to isomorphism the irreducible elements of E
are labelled by the pair ([#], [ρ]). These labels appear in all treatments of this theory
[DVVV, DPR, DW, FQ].

It is convenient to use the isomorphism (7.6) to identify the path integral (4.11)
over a compact oriented 2-manifold X, which is an element of E(dX), as an element
in tensor products of E. Recall our convention stated after (5.11) for identifying dX
as a disjoint union of copies of the standard circle S1. For this we restrict to surfaces
X which are subsets of C. Under these identifications each component of dX has
a basepoint corresponding to the standard basepoint 1 G S 1. Let W^ denote the
category of principal Γ bundles P —> X endowed with a basepoint in the fiber over
each basepoint in dX. Morphisms are required to preserve the basepoints. Let W^
denote the set of equivalence classes. For the cylinder C the holonomy and parallel
transport define a bijection

Ψ^W (7.9)
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Fig. 7. The bundle over C corresponding to (x,g) e ^

as illustrated in Fig. 7. [Compare with (6.2).] Now for a surface X we can glue C to
any component of dX using the basepoints. This induces a W action on W^ for each
component of dX.

Proposition 7.10. Let X c C be a compact oriented 2-manifold.26 Then under the
isomorphism (7.6) the path integral over X is

Z x ^ L 2 ( g f ) (7.11)

with the & actions induced by gluing cylinders onto components of dX.

Proof Let P e W^ and fix a component S of dX. The basepoint determines an
isomorphism P\s —» Q ^ for some [#]. If the holonomy around S is x, then the
basepoint maps to fx. Apply this to a pointed bundle P £ W^ over the cylinder C
which corresponds under (7.9) to an element (x,g) G S .̂ Using parallel transport
along the axis of C, this bundle also determines an element of AxxtQ[x]. lί g e Cx

then the correspondence between the automoφhism of Q^ and g agrees with (7.3).
[This follows from (5.2).] Also, the bundle labeled by (x,gXjXή corresponds to the

identity in A u t Q ^ for all xf £ [x]. Thus the action of S? « WQ on the quantization
(7.11) induced by gluing is the action described in the text leading to (7.4) and (7.6).

The 2-inner product space E has extra structure determined by the path integral
over special surfaces and special diffeomoφhisms, as described in Sect. 5.

Proposition 7.12. The finite gauge theory described in Assertion 4.12 with a = 0
determines the following structure on E.
(a) (Automorphism of the identity (5.11)j. For W £ E we have

θW\wx=Ax:Wx^Wx. (7.13)

(b) (Involution (5.14)) For W € E the dual W* e E is defined by (W*)x = W*_t

(c) (Identity (5.16)) The identity 1 is

with Ce — Γ acting trivially on l e .
(d) (Multiplication (5.19)) The tensor product ofWλ,W2eE is

Θ W2)x = 0 (Wi)Xl ® (W2)X2 (7.15)

26 The same arguments apply to arbitrary surfaces with parametrized boundary. If the surface has
closed components, then we must modify the inner product in (7.11)
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with the Γ action

(e) (Associated (5.22)) The associator φ is induced from the standard associator of
tensor products of vector spaces.
(f) (R-matrix (5.25)) For WVW2 e E we have

wltw2 i x ι 2X2-+ **™*ϊι l 8 ' ' (7.i7)

Wγ 0 W2 I—> Λχ (W2) (&) Wγ

and all other components are zero.

A few remarks are in order. First, since x is a central element of Cx, the trans-
formation (7.13) is a scalar on each irreducible component of Wx. (We decompose
Wx under the Cx action.) If W is an irreducible element of E labelled by ([#], [ρ]),
then the scalar transformation Ax is independent of x e [x]. The conformal weight
h([χl [Q]) ̂ S ̂ efin e (l UP t 0 a n integer by the equation

Ax = e

2 7 r i / ι<^].[β]> . (7.18)

This agrees with the results of [FQ, Sect. 5], where we calculated the conformal
weight from the action of (5.13) on the torus. Notice that θw can also be described
as the action of

?; — \ ^ (r r) Π 19Ί

on W, where v is a special element27 of C [ ^ ] . The identity element 1 corresponds
to the label ([e], trivial). Another description of the multiplication (7.15), (7.16) is

where μ: Γ x Γ —> Γ is group multiplication and W1 IE1 W2 -^ Γ x Γ is the exter-
nal tensor product. Finally, we invite the reader to verify (5.15), (5.17), (5.20),
(5.21), (5.23), (5.24), (5.26), (5.27), and (5.28) directly from the data listed in Proposi-
tion 7.12.28

Proof We use Proposition 7.10 to compute the path integrals over the various
surfaces.
(a) We compute the action of the diffeomorphism (5.12) on the cylinder C. From
(7.9) and (7.11) we obtain an isomorphism

Zc =- ,^(Sf). (7.20)

An argument similar to that in Sect. 6 [see (6.7)] shows that Zc acts isometrically to
the identity on E via the isometry

~«n*)*wy-*w ( 7 2 i )

2 7 This element plays the role of the inverse of the ribbon element of Reshetikhin/Turaev [RT]. The
quasitriangular quasi-Hopf algebras we encounter have a ribbon structure (cf. [AC])
2 8
q g q p g
2 8 The natural transformations WΘVK* —> 1 and 1 —* WΘV^* mentioned in the footnote following
(5.21) are evidently the duality pairing 0 Wx 0 W* —> C and its dual
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Fig. 8. The bundle over P corresponding to (xί,gι) x (x2,92) G & x ^

where π : W —>• Γ is an element of WtctΓ(Γ). On the left-hand side of (7.21) we take
^-invariants under the action α :/*(•) <S)Wχ\-^ P(a~ι) ® αi/^, and then o e ^ acts
on the invariants by α:/*(•) ® iu2 ι—> fι(-a) ® u^. Here "•" indicates the argument of
the function. Now the diffeomorphism r in (5.12) induces by pullback the map

τ*(x,g) = (z,gx), (x,g)e& (7.22)

on fields (7.9), and so the map

(r*/) ((*, g)) = /((*, ̂ ) ) , / G ^ ( . ^ ) ,

on the quantization (7.20). In terms of the element υ G C [ ^ ] in (7.19), this is

(τ*/)( ) = /(•«)•

Thus on the left-hand side of (7.21) the diffeomorphism τ induces the action

Γ (•) <g> T^ H-> (T*/* ) (•) (8) wz = f{ v) (g) ̂  ,

which corresponds to the action w *-> vw <m the right-hand side of (7.21). This is
(7.13).
(b) We first calculate that the reflection of Sι induces the map Q^ ι—> Q^-ij on
fields by pullback. (Actually, this is the map on equivalence classes of fields written
using our distinguished representatives.) Since the reflection reverses orientation, this
induces a map &[ \-+ 3\~ι on the classical action, and in the quantization leads us
to use the dual space. Under the identification (7.4) this gives (W*)x — W*_{. Then

the induced representation of A\xtQ[x] = AutQ^-ij is A™* = {AW__XΫ.

(c) It is easy to see that ^ 2 consists of one element, and the restriction of any

representative bundle to 3D1 — Sι is Q[ey Furthermore, AutQ^ = Γ acts trivially.
(d) For the pair of pants P we identify

x 3? (7.23)

using the parallel transports and holonomies indicated in Fig. 8. This leads to an
isometry

^ ) . (7.24)

The actions of (x, g) G & corresponding to the two inner components of dP are
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The action of (x, g) e & corresponding to the outer component is

{ /*// \ / \\ *£ —1 —1

l i t *f̂  /# it \ I 'ί* tt it \ 1 I T /y* — fΐ /Ύ* /~*t /~i /j* /ι

/ \\ei/i « u u i / % \ **/ 9 » U C/o / / . 11 t t — U i Jb i (71 Cy Λ *Λ/ O CVΛ *

0, otherwise.
(7.26)

Using the inner product (7.6) on E we see that the multiplication (5.19) is the map{#1 )

where & x W acts on £?(& x &) via (7.25). The & action on the right-hand side
is via (7.26). Then a routine check shows that

(7.27)

fij 0 w\l) <g> wf K* fij((n(wx), e), (τr(w2), e ) ) ^ 1 } 0 ^ 2 )

is an isometry, where W{ 0 W2 is defined by (7.15) and (7.16).
(e) This is immediate from the definition of the associator.
(f) We compute the action of the braiding diffeomorphism β (Fig. 5) on the fields
(7.23) by pullback as

(xu9x) x (x2,92) ^ {xii9\X\9Tl9i) x (x\,9ι) - (7-28)

So the action on the quantization (7.24) by pushforward is

Under the isometry (7.27) this corresponds to (7.17), as desired.
Reconstruction theorems in category theory assert that E is (equivalent to) the

category of representations of a Hopf algebra H. In fact, since E is braided H is
a quasitriangular Hopf algebra [Dr]. We do not need the general arguments from
category theory to carry out the reconstruction, as the Hopf algebra H is apparent
from our explicit descriptions of E in (7.4) and (7.6), and from the formulas in
Proposition 7.12.

Indeed, as an algebra H is the "groupoid algebra" H = C[3^] defined in (7.7). We
have already seen in (7.6) that E is isomoφhic to the category of representations
of the algebra H. Explicitly, if ρ:H —» End(VF) is a representation of H, set
Wx = ρ((x,e))(W) as in (7.8) and set Ag:Wx -> Wgxg~i equal to ρ({x,g)). The
quasitriangular Hopf structure on H is easily deduced from Poposition 7.12. From
(7.15) and (7.16) we see that the coproduct Δ: H —> H 0 H is

Δ((x, g)) = 22 ( x i ' 9} ® (X2' 9) -

The counit ε: H -> C is

1, x = e

0, otherwise,

as we see from the action of i f on 1 (7.14). The antipode S:H —> H is implemented
on the dual (Proposition 7.12(b)), so is
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The quasitriangular structure is an element R G H 0 H such that for every pair of
representations (Wι, ρ{), (W2, Q2) of H, we have

Rw{,w2 = τwuw2 ° (ft ® ft) (Λ)>

where τw w :W1 <&W2—>W2®Wι is the transposition. Hence from (7.17) we
deduce

Since the associator φ is the standard associator on vector spaces (Proposition 7.12(e)),
we obtain a Hopf algebra (as opposed to a quasi-Hopf algebra). Finally, we have
already observed that the automorphism of the identity θ in (7.13) is implemented by
the element v in (7.19):

This special element in H is the inverse of the ribbon element of Reshetikhin/Turaev
[RT]. We interpret it here in terms of the "balancing" of the category of representa-
tions.

The quasitriangular Hopf algebra H is identified in [DPR] as the "quantum double"

Finally, we indicate how to recover the "modular functor" [SI, FQ, Sect. 4]. Once
and for all fix a basis {Wλ} of the 2-inner product space E = E(Sι). Here λ runs
over the labeling set Φ mentioned earlier. Now suppose X is a compact oriented 2-
manifold with each boundary component parametrized. The parametrizations identify
EφX) with a tensor product of copies of E and E. Thus we can decompose Zx

according to the chosen basis for E\

x

where λ = ( λ 1 ? . . . , λk) runs over labelings of the boundary components and

the signs chosen according to the orientation. The inner product spaces EiX, λ) define
the modular functor. The gluing law for the modular functor follows directly from
Assertion 4.12(d).

8. The 2 + 1 Dimensional Chern-Simons Theory
and Quasi-Quantum Groups: Twisted Case

In this section we extend the results of Sect. 7 to the 2 + 1 dimensional finite gauge
theory with nontrivial lagrangian a G C3(BΓ; R/Z). The classical theory is nontrivial,
and this leads to corresponding modifications of the quantum theory. We must choose
additional trivializations (of gerbes) to express the theory in terms of familiar objects,
and in particular to construct a quasi-Hopf algebra. (Recall the remarks following
Proposition 5.29.) Such trivializations appear more naturally in Sect. 9, where we cut
open the circle and make calculations on the interval. We rely here on the exposition in
Sect. 7 and only indicate the necessary modifications. The cocycle a e C3(BΓ; 1
is fixed throughout. We often omit it from the notation.
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We use the choices made in Sect. 7 of representative bundles Q[x] —• S1 and

basepoints fx. The classical action T^\Q[x]) is a T-gerbe, which we denote 3 ^ . The
automorphism group Aut Q^ acts on this gerbe, and the action is a homomoφhism

$ M M f ] . (8.1)

Fix a trivializing element

and so an isomoφhism 5 ^ = ^ . This can be done as in [FQ, Sect. 3] by fixing
a representative cycle 5 G C^S1) for the fundamental class [S1] G H{(Sι), and
by fixing classifying maps Q[x] —• ET1. With these trivializations the action (8.1)
determines a central extension of AutQ^j by T, as in (1.4). There is an induced
isometry [see (4.6), (6.10)]

E(a) = Ei«)(Sl) ^ 0 \ (^)A u tQ[χ].β[x] .

We want to express this directly in terms of Γ, using the basepoints fx as in
Sect. 7. The central extensions of Axxt(Q[x]) lead via the isomoφhism (7.3) to central
extensions Cx of the centralizer subgroup of any x G Γ. That is, for each g G Cx we
have a T-torsor T(x, g) together with appropriate isomoφhisms under composition.
Note that there are trivializations

T ( x , e ) ^ T (8.3)

since T(x, e) T(x, e) = T(x, e). [This is (5.2).] Extend to a central extension of
the groupoid S? in (7.5) as follows. First, for any two elements x,x' in the same
conjugacy class let

X t X , ) = Ύ, x'e[x]. (8.4)

[The element gxχf G Γ was defined following (7.3).] Then for any x,g G Γ
we have (x,g) = (x,gXygXg-i) ° (x,h) for some unique h G Cx. Set T(x,g) =
T(x, gx gXg-\) T(x, h). This determines the desired central extension

1 -> T -> .^ ( α ) -> .^ -> 1,

where for (#, #) G ^ the T-torsor T(x,g) is the preimage of (x,#) in ^ ( α ) . There
are appropriate isomoφhisms under composition. Let L{x,g) be the hermitian line
corresponding to the T-torsor Γ(x, g), and

! ( i , e ) 6 L ( i , e ) (8.5)

the trivializing element derived from (8.3). We ignore the trivializations (8.4), which
are artifacts of our definitions.

With this understood an element of E{a) corresponds to a vector bundle W =
0 Wx over Γ with isomoφhisms

xer

which compose properly. Set

i ) ζ & ) . (8.6)
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Define an algebra structure29 using the multiplication in S?:

9*9ϊ\ ( 8 . 7 )gι) ί ^ }
t θ , otherwise.

The identity element in H{θί) is

Σx,e). (8.8)

We can view J5 ( α ) as the 2-inner product space of representations of iJ ( α ) , with the
natural inner product multiplied by 1/#Γ. Or, by analogy with (7.6), we write

(̂ f\ (8.9)
TΓ-Z

where we only take representations in which the central circles T(x, e) = T act as
scalar multiplication.

Now suppose X is a compact oriented surface, either with a given parametrization
of the components of dX, or with an embedding X C C which induces such
parametrizations according to our conventions. Suppose P G W^ is a Γ bundle
over X with basepoints on the boundary. Let Y be a component of dX and suppose
the holonomy of P\γ is z. Then the basepoint in P\γ and the parametrization of
Y determine an isomorphism P\γ = Q[x], and so an isomorphism T^(dP) =
T{^\Q[x]) = &{xγ This T-gerbe is trivialized by our choice in (8.2). Hence the

classical action (2.6) of P can be identified with a T-torsor T{χ\P), using this
trivialization. As in (4.7) this T-torsor determines a hermitian line, and by taking
an inverse limit we obtain a line L^\[P]) depending only on the equivalence class
of P. (This line could degenerate to 0 if X has a closed component.) Let

denote the resulting line bundle over the finite set W^. The following generalizes
Proposition 7.10.

Proposition 8.10. Let X C C be a compact oriented 2-manifold.30 Then under the
isomorphism (8.9) the path integral over X is space of L2 sections

Z^^tffβZ,^), (8.11)

with the & action induced by gluing cylinders onto components ofdX.

Proof The only new point is an isometry

Lc(x,g)^L(x,g), (8.12)

where Lc{x,g) = Lc([P{xg)]) for P{x^g) -> C a pointed bundle over the cylinder
corresponding to (x, g) E & under (7.9). Recall the proof of Proposition 7.10, where
we show that the basepoints determine an isomorphism dP^x^ = Q[x] U Q[x], and
so P(Xt9) determines an element of AutQ[x]. The classical action of P(Xi9} is then an

2 9 In [FQ] we defined a coalgebra structure instead
3 0 The same arguments apply to arbitrary surfaces with parametrized boundary. If the surface has
closed components, then we must modify the inner product in (8.11)
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element of Aut(^ x ] ) = Jf. But by (5.2) the classical action Γc([0,1] x Q[x]) of a
product bundle is trivial, and then the desired isometry (8.12) follows easily.

We adopt the notation

lc(x, e) = l(x, e)

for the element in (8.5).
We need a few preliminaries to generalize Proposition 7.12. For any x e Γ there

is a trivialization

lc(x,x) G Lc(x,x) (8.13)

as follows. By (7.22) the diffeomorphism τ:C —>• C satisfies τ*(x,e) = (x,x).
Notice that r is the identity on ΘC, so it respects the trivializations (8.2). By the
functoriality of the classical action (2.7) the diffeomorphism r induces an isomorphism
Tc(x,x) = T c(x,e), and so an isometry Lc(x,x) = Lc(x,e). Then / c(x,x)
corresponds to lc(x,e) G Lc(x,e) [cf. (8.5)].

Next, consider the diffeomorphism of the cylinder C

L:[0, 1] x S 1 -+ [0,1] x S 1

It is not the identity on dC. Rather, dι swaps the two boundary components,
and if we identify them in the obvious way, dι is the reflection s ι—> -s. By
the functoriality (2.7) and the orientation axiom (2.9) this reflection induces an
isomorphism Ts\(Q[x])~ι —> T5i(Q[a._ij), and so we can compare the trivializations
in (8.2). Use this isomorphism to define the T-torsor

T[x] = G[x) 'G[χ-1]- ( 8 1 4 )

Let L[x] be the hermitian line corresponding to the T-torsor T[x]. Then since i induces
the map L*(x,g) = (gx~ιg~ι,g~ι) on fields, the induced isometry on the classical
action is

ι^Lc{gχ-χg-\g-1) 0 L[x] -> Lc(x,g) 0 I ^ - i j . (8.15)

Of course, L[gxg-\] = L[x], so we can cancel these terms from (8.15).
We use (7.23) to identify an equivalence class of pointed bundles over the pair of

pants P with an element in S? x ^ (see Fig. 8). Let

Lp(Xγ Xj) = Lιp\Xγ, e; x^ β)

denote the hermitian line obtained from the classical action on the equivalence class
corresponding to (x 1 ? e) x (x2,e). We claim that for any xι,x2,x3,g <G Γ there are
isometries

\x3) ® LP{xx\x2) -» LP(xx\x2x3) ® Lp(x2\x3), (8.16)

and

7a;! ,x2,g
 :

Lp(gxγg~ι\gx2g~ι) 0 Lc(xvg) 0 Lc(x2,g). (8.18)
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Fig. 9. Field used in the proof of (8.16)

Fig. 10. The isometry (8.19)

Fig. 11. The isometry (8.18)

For (8.16) we use the gluings in Fig. 3 to see that both sides are isomorphic to the
bundle L(xι,e; x2, e; x3, e) indicated in Fig. 9. The isometry (8.17) is constructed from
the braiding diffeomorphism β, which by (7.28) induces an isometry

β :Lp(xγ, e; x2, e) —> Lp(x2i %\\ %\ , e ) ?

and from the gluing in Fig. 10, which induces an isometry

Lp(x2,xι;xι,e) —> LP{xιx2x^1, e; xγ, e) 0 Lc{x2,xx). (8.19)

The isometry (8.18) is constructed from the gluing in Fig. 11 and the duality

Lc(Xn g) ® Lcix^g'1) -* Lc(xτ; e) ^ C , (8.20)
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Fig. 12. The duality (8.20)

which follows from Fig. 12 and (8.5).

Proposition 8.21. Consider the finite gauge theory described in Assertion 4.12 with
lagrangian a G C3(BΓ;R/Z). This field theory and the trivializations chosen in (8.2)
determine the following structure on E^a\
(a) (Automorphism of the identity (5.11)) For W G E we have

θw\Wχ=Ax(lc(x,x)):Wx^Wx.

(b) (Involution (5.14)) For W G E the dual W* e E is defined by (W*)x =

(c) (Identity (5.16) The identity 1 is

ί £ D 2 ( [ P t r i v ] ) , x = e;

with the action of the central extension Ce on le determined by gluing a cylinder C
to a disk D2.
(d) (Multiplication (5.19)) The tensor product ofWvW2eE is

(W{QW2)X= φ LP(x1\x2)®(Wι)Xι®(W2)X2 (8.23)

with the Γ action

AW,ΘW2 = ( i d 0 ^ , ^ AW2) o ( 7 ^ ^ i f l ^ i d ) ( 8 2 4 )

on LP(xx \x2) ® (W{)Xι ® (W2) .
(e) (Associator (5.22),) For Wι,W2,W3 e E the associator is

Ψ\VUW2,W3 =Φχι,x2,x3 ® i d

<?« LP(a;1|a;2) ® LP(a;1a;2|x3) <g> ( ^ ^ j ® (W^)^ ® (W3)xy

(f) (R-matrix (5.25); For Wγ,W2&Ewe have

(O.ZJ)

and all other components are zero.

A few remarks. First, we omitted transposition of ordinary tensor products of
vector spaces from the notation in (8.24) and (8.25). Also, the conformal weight is
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defined by (7.18) with Ax(lc(x,x)) replacing Ax on the left-hand side. The special
(inverse ribbon) element of H(a) replacing (7.19) is

v(a) = Σlc(x,x). (8.26)
X

In (b) the isometry (8.15) is implicit in the equation Aj* = (A^f. In (8.22), [Ptriv]
is the equivalence class of the trivial bundle over the disk, and gluing a cylinder gives
isometries

Lc(e, g) ® LD2([PttJ) -+ LD2([PlrJ), (8.27)

which is the required action of Ce. Of course, (8.27) is equivalent to a linear map

σ ( e , 0 ) - C . (8.28)

The verifications of (5.15), (5.17), (5.20), (5.21), (5.23), (5.24), (5.26), (5.27), and
(5.28) directly from the data listed in Proposition 8.21 require some additional
identities in the classical theory easily derived from simple gluings of the type already
considered.

The proof of Proposition 8.21 is a straightforward extension of the proof of
Proposition 7.12, so we omit it.

It remains to deduce a quasi-Hopf algebra structure on H^. For this we need to
choose trivializing elements31

lP(xι \x2) e LP(xι \x2). (8.29)

Define

•<*••:*«,>-. ' ^ Γ f g ' Γ l ^ i ' eT. ,8.30,

An argument with gluings and ungluings of the four times punctured disk shows that
ω satisfies the cocycle identity

)ω(xx3jx4) _
— i, Xγ,x2,x3,x4 t i . (ojij

)ω(xλ, x2, x3xA)ω(xxx2) x3, x4)

In a sense this is the classical analog of the pentagon diagram (5.23). So ω defines a
class [ω] € H3(Γ; RZ) in group cohomology. The following proposition is analogous
to [FQ, Proposition 3.14]. We state it without proof.

Proposition 8.32. Under the isomorphism H*(Γ) = H*(BΓ) the group cohomology
class [ω] corresponds to the singular cohomology class [a].

Now we write the quasitriangular quasi-Hopf structure on H^a) induced from the
data in Proposition 8.21. The coproduct is

^f, leLc(x,9). ( 8 . 3 3 )
31 From the point of view of the reconstruction theorems, the reason we need to choose these
elements is to obtain a functor from E to the category of vector spaces which preserves the tensor
product. Hence the line which appears in (8.23) must be trivialized
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The counit is the linear map defined in (8.28); it maps Lc(x,g) to 0 if x φ 0. The
antipode is computed from Proposition 8.21 (b) as the inverse

S{a):Lc(xi9) -> Lc(gχ-ιg-\g-1) (8.34)

of (8.15). The quasitriangular element R(a) e H{a) <g> H{a) is

R =

Finally, there is an invertible element φ{a) e H{a) ® H(a) ® H(a) which implements
the quasiassociativity condition

(id ®Δ(a))Δ(a\l) = (φ(a)) (Δ(a) 0 id)zi(α)(/) (φ(a)yι , / G i ί ( α ) .

This is the element

A routine check shows that the modular tensor category described in Proposition 8.21
is the category of representations of the quasitriangular quasi-Hopf algebra H{a\

The quasi-Hopf algebra in [DPR, Sect. 3.2] looks similar to i ί ( α ) , but is expressed
in terms of a basis. We will choose this basis geometrically in the next section, and
so construct an isomorphism between H^ and the algebra in [DPR, Sect. 3.2].

9. Higher Gluing and Good Trivializations

In this section we introduce a "higher order gluing law" for gluing manifolds with
corners. The corners we use are in codimension two; clearly there are generalizations
of this gluing law to higher codimension. Also the gluing law we use here pertains to
the classical theory; there are quantum versions as well. While the formulation of this
gluing law is rather abstract, the computations which follow should make its meaning
clear. We study the classical theory over the interval [0,1]. We choose trivializations
(9.4) which replace the trivializations (8.2) we chose in the last section. The procedure
here is more natural than that Sect. 8. Furthermore, the trivializations (9.4) induce
trivializations of the lines LP(xι\x2) which we previously chose separately in (8.29),
and they also induce trivializations of the lines L(x, g) = Lc(x, g). The latter amount
to a basis of the algebra H^ in (8.6). In terms of this basis the quasitriangular
quasi-Hopf structure we computed in Sect. 8 is exactly the one constructed in [DPR,
Sect. 3.2], as we verify. The reader may wish to consider analogous, but simpler,
computations in the 1 + 1 dimensional theory.

We begin with a statement of the gluing law which should hold in any classical
field theory, but for our purposes we consider the classical d + 1 dimensional theory
of Assertion 2.5. Suppose X is a compact oriented (d + 2 — n)-manifold and F ^ I
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Y

X X c u t

Fig. 13. Gluing manifolds with comers

a neat oriented codimension one submanifold (Fig. 13), that is, dY = Y n dX and
Y intersects dX transversely. Then dX *-* dX is a closed oriented codimension one
submanifold, and

dXctit = Y Udγ (<9X)cut U_dx -Y ,

d(dX)Ctit = -dY U dY .

Suppose P —> X is a Γ bundle and Q -> Y its restriction to Y. Then the usual gluing
law Assertion 2.5(d) implies that there is an isomoφhism32

Tr12,34 -Tγ(Q) T ( a x ) C U t((dP) c u t) Tγ(QΓι -> Tdχcut(dPcm). (9.1)

Note that the left-hand side of (9.1) is an element of

TdY(dQ) TdY(dQyι TdγφQ) TQY

Also, there is an isomoφhism

Tr14,23 '.TY(Q) • T ( a x )cut((aP)c u t) Tγ(QΓι

and so finally an isomoφhism

TrQ = Tr1 ;r14>23 o

Assertion 9.2. In the situation described, there is a natural isomorphism

(9.3)

Now we resume our work from Sect. 8, retaining the notations there. As in Sect. 6
fix a trivial bundle Rtήv = pt x Γ over a point. Use the correspondence (6.2) to
identify equivalence classes of fields over [0,1] trivialized over the endpoints with
elements of Γ. Then the classical action of the equivalence class [Qx] corresponding

to x e Γ is a T-gerbe ϊ?x = Tffλ]([Qx]). Choose trivializing elements

Gx e ^ = τ^ί]([QJ)» X ^ Γ - (9-4)

Now for xx,x2 G Γ we glue [QX2\ and [Q^] to obtain [QXuX2\. Hence the
isomoφhism (2.12) implies that there is an isomoφhism

We use the notation TY(Q) for the classical action, even though Y is not closed
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In particular, (9.5) implies that 5^ has a trivialization compatible with gluing, and we
assume that Ge is that trivialization. In other words,

Ge • Ge = Ge . (9.6)

Define the T-torsor T X2 by the equation

GXι GX2 = GXχX2 TXlιX2, Xι,x2€Γ, (9.7)

where we implicitly use the isomoφhism (9.5) to compare the two sides. Equation
(9.6) implies that T = T. Three intervals can be glued together in two different ways
to obtain a single interval. The behavior of the classical action under iterated gluings,
which we did explicitly state in Assertion 2.5(d), implies that for any xι,x2,x3 G Γ
the diagram

'yχλ ^tYX2 XV

commutes up to a natural transformation. Using (9.7) this natural transformation
amounts to an isomorphism

-*-X\,X2 ' X\Xi,X3 ~ X2,X?> ' -Lχ\,X2X3 ' X\iX2'>X'i ^ ^ ' (9 θ)

In particular, taking two of x1, x2, x^ to be e we deduce isomorphisms

Tx,e -Te,χ-Ί> XeΓ . (9.9)

Now we explain the relationship of the choices (9.4) to the choices (8.2) made in the
last section. Fix x e Γ and consider the bundle Q[x] -* Sι with basepoint fx, as
chosen in Sects. 7-8. Cutting the circle at its basepoint, and using the basepoint fx to
identify dQ^ with RtήwURtriy, we obtain from the gluing law (2.12) an isomorphism

It is not neccessarily true that the trivializations of &x, in (9.4) for different x' e [x]
lead to the same trivialization of S ^ . 3 3 Now let X be a compact oriented 2-manfiold
with parametrized boundary and P e ^ [ a bundle with basepoints on the boundary.
Suppose Y is a component of dX and P\γ has holonomy x. The basepoint and
parametrization induce an identification P\γ = Q[x], and so by (9.10) an isomoφhism
Tγ\P\γ) - %χ- W e trivialize this T-gerbe using (9.4). Then as in the argument
preceding Proposition 8.10 the classical action of P is a T-torsor. It is not the same T-
torsor obtained in Sect. 8, since we use different trivializations. None of the subsequent
arguments are affected by this change, and we use these new trivializations in what
follows.

33 In this connection notice that whereas T(x,gxx/) was chosen to be T in (8.4), this torsor is
nontrivial with our current set of choices [cf. (9.16)]
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Fig. 14. The isomorphism (9.16)

As a first application of Assertion 9.2 we claim that the classical action of the
trivial bundle over the disk is

]) = Ge. (9.11)

This can be deduced from the gluing in Fig. 13 and (9.6).
Next, choose trivializing elements

*x,,x 2 eT X l i a ! 2 , xux2£Γ. (9.12)

We assume that
t x , e = t e t x = l > X e Γ > ( 9 1 3>

under the isomorphism (9.9). Define ω(x{, x2, x3) G T by the equation

where the equality refers to the isomorphism (9.8). The behavior of the classical
action under iterated gluings of four intervals shows that ω satisfies the cocycle
identity (8.31).

Let LXuX2 be the hermitian line corresponding to the T-torsor Tx and

the element of unit norm corresponding to tx x . We claim that with the choices of
trivializations we have made, the higher gluing law (9.3) constructs isometries

g>x , x ^ G Γ , (9.16)
Lgχg-\g

LXuX2, xux2eΓ. (9.17)

The isomorphism (9.16) is derived from the gluing in Fig. 14, where we obtain
the cylinder C by gluing a disk D2 along part of its boundary. The usual gluing law
(2.12) applied to dD2 yields an isomorphism

and a short computation with (9.7) shows that under this isomorphism we have

T
Ge = Ggxg-\ - Gg-G~ G~ — — ι — .

1 ι
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Fig. 15. The isomorphism (9.17)

Now (9.16) follows from (9.11) and the gluing law. The isomorphism (9.17) is derived
in a similar manner from Fig. 15. In that figure

— 'yx\xi ' 'yxη ' ^x\ '

and under this isomorphism

The gluing law and (9.11) imply (9.17).
We use (9.15) to trivialize the lines Lc(x,g) and LP(x1\x2). Namely, set

(9.18)

and

X\,Z2 '
(9.19)

The elements in (9.19) replace the arbitrary choice (8.29) we made in Sect. 8. We
now define the quasi-Hopf quasitriangular structure on H^ in terms of the choices
(9.19). The elements in (9.18) form a basis of H{a\ and our last task is to compute the
quasi-Hopf quasitriangular structure in terms of this basis. Observe also that (9.18)
agrees with the special trivializations (8.5) and (8.13).

First, we compute the isomorphisms (8.16)—(8.18) in terms of (9.18) and (9.19).
We make the obvious computations and leave the justification to the reader. (This
involves the compatibility of various gluings and diffeomoφhisms.) The isomorphism
Φχx x2 x ^s s t*^ expressed by (8.30), which follows directly from (9.14). For σx x

we compute

L

lP(xxx1x
I

xx1xι

= 1.

,X\

A direct computation yields

ω(g,xvx2)ω(gxιg \gx29
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Now for the structure on H^a\ A short computation shows that the multiplication
(8.7) is

92 >gi'gv 7 ί~ * n \ (920)
ω(g2,gιχg\ ,90

The identity element is (8.8):

1 = ̂ 2 ιc(χ>e) ( 9 21)
X

The coproduct (8.33) is

\g)

x^Lx ω(gχ\g~\g,χ2^

The counit (8.28) is

n , Λλ f 1, if x = e;
ε(lc(x,g))= { ' . (9.23)

{0, otherwise.

The quasitriangular element (8.35) is

) ι*\/\ / I or* *Ύ* i i Cj //I \

The element φ{a) which measures the deviation from coassociativity is (8.36):

χι,χ2,χ3

Recall that the antipode (8.34) is the inverse of (8.15). With the trivializations of this
section Eq. (8.14) is replaced by the equation

Ljrχ {Jχ— l = Cτ e l χ χ—\ ,

and so (8.15) by a map

L% : Lc(gx~ιg~ι,g~ι) ® Lx x-\ —>• Lc(x,g) 0 Lgxg-\gx~\g~\ .

The ratio

is the numerical factor in the expression

for the antipode. The inverse ribbon element is (8.26):

v(a) = γ^ 1C(X,X).
x

Equations (9.20)-(9.26) are exactly the equations in [DPR, Sect. 3.2], up to some
changes in notation.
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χcut

[1/2,1] x Y

Fig. 16. Gluing along a closed submanifold

Suppose we replace the trivializations tx x in (9.12) with β(xx, x^t x for some
β(xvx2) € T. We assume that β(x,e) = β(e,x) = 1 for all x e Γ so that (9.13) is
respected. Then this change of basis has the effect of twisting (cf. [Dr]) the formulas
(9.20M9.26) by the element

β(xx, x2)lc(xv e) <g> lc(x2, e).

xux2

We conclude with some brief general remarks about gluing. The first should
be valid for arbitrary topological theories in any dimension. Consider Y ^ X
a closed oriented codimension one submanifold and X c u t the cut manifold as in
Assertion 2.5(d). Form a new manifold W by identifying the two pieces in the
boundary of [0,1] x X c u t which correspond to [̂ , l] x Y, as illustrated in Fig. 16.
Then

dw = x u -x c u t u [o, \] x Y u - [o, \] x y

In the classical theory we also are given a field P on X and the corresponding Pcut

on Xcut. We claim that the gluing (2.12) of the classical action [resp. the gluing (4.17)
of the path integral] is computed by the classical action (resp. path integral) over W.
For this we trivialize the classical action (resp. path integral) over [0, ^] using (5.2)
[resp. (5.4)]. Such pictures help compute the gluing isometries.

Figure 16 is a schematic for arbitrary dimensions as well as an exact picture of
the gluing of two intervals. The reader may wish to contemplate various gluings of
this figure and relate the computations in Sect. 8 to those in Sect. 9.

There should also be refined gluing laws of the following sort. Recall from
Proposition 5.29 that in a 2 -h 1 dimensional theory E(Sι) is a "higher commutative
associative algebra with compatible real structure" which presumably is semisimple
(in a unitary theory). In particular, it is a braided monoidal category, or better a tortile
category. For such categories one can define a "Grothendieck ring" Groth(^(51))
(see [Y2, Proposition 26]). If E(Sι) is the category of representations of a quasi-
Hopf algebra H, then the Grothendieck ring is the ring of equivalence classes of
representations, the multiplication given by the tensor product. Equation (5.5) is a
gluing law on the level of inner product spaces, and in this case surely there is an
extension to an isomorphism

E(Sι x S 1)^Groth(£'(S f 1))

of algebras. (E(Sι x S{) is an algebra by the remark at the end of Sect. 5. It is
commonly called the Verlinde algebra.) The Grothendieck ring is the "dimension" of
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E(Sι) from the point of view of (5.5). Notice that Groth(E(S1)) has a distinguished
basis of irreducible representations. These are the "labels" mentioned in Sect. 7.

Appendix: Integration of Singular Cocycles Revisited

In [FQ, Appendix B] we describe some elements of an integration theory for
singular cocycles with coefficients in M/Z. Here we describe an extension of that
theory to higher codimensions in terms of the higher algebra discussed in Sect. 1.
Notice that we do not introduce any basepoints or special choices, as in [FQ,
Proposition B.5]. Instead, we extend the integration theory in a more intrinsic manner
to all codimensions. The higher algebra of Sect. 1 is a prerequisite to this appendix.

Our goal is to integrate a singular (d + l)-cocycle a over compact oriented
manifolds of any dimension less than or equal to (d -f 1). In [FQ] we described the
integral of a over closed oriented (cH-l)-manifolds, compact oriented (d+l)-manifolds
(possibly with boundary), and closed oriented d-manifolds. In the easiest case a is a
(d + l)-cocycle on a closed oriented (d + l)-manifold X. Then if x G Cd+ι(X) is an
oriented cycle which represents the fundamental class [X] G Hd+ι(X), we form the
pairing e

27ria{x) G M/Z. If x1 is another representative, then x' — x = dw for some
w G Cd+ι(X). Hence a(x') — a(x) — a(dw) = δa(w) = 0 since a is a cocycle. This
is the usual argument which shows that the integral

exp I 2πί / a j G 3ζ = T (A.I)

\ x /

is well-defined. In fact, (A.I) can be viewed as the pairing between the cohomology
class [a] G Hd+ι(X;R/Z) and the homology class [X] G Hd+ι(X). This is the only
one of the integrations we discuss which has cohomological meaning.

Now suppose a is a (c?+ l)-cocycle on a closed oriented d-manifold Y. Then we
claim that there is a well-defined integral

IYa = exp ί 2πi / a \ G 3[ (A.2)

which is a T-torsor. The following is a slight modification of what appears in [FQ,
Appendix B]. The justification for terming this an "integral" are the properties listed
in Assertion A.4. Let Wγ be the category whose objects are oriented cycles y G Cd(Y)
which represent the fundamental class [Y] G Hd(Y), and with a unique morphism
y —> y' for all y,yr G Wγ. Define a functor J ^ . α : Wγ —> i^by ^y.a(y) = T for each y
and ^.a(y —> ?/) acts as multiplication by e 2 7 Γ m ( ^, where a; is any (c?+ l)-chain with
y' = y + dx. An easy argument shows that α(:r) = α(xθ for any two choices of such
a chain. Define IYa as the inverse limit of J^λ α . 3 4 That is, an element of IYa is a
function i(y) G .^.α(2/) = T on the objects in Wγ such that i(^/0 = ^ ; α ( y —̂  yr)i(y)
for all moφhisms y -^ y'. It is easy to check that / y a exists.

Next, suppose o; is a (d + l)-cocycle on a closed oriented (d — l)-manifold S.
Then we claim that the integral

IS a — e X P

See the beginning of Sect. 2 for a discussion of inverse limits
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now makes sense as a T-gerbe. The construction is entirely analogous to the previous
one except there is one more layer of argument. So consider the category Ws whose
objects are oriented cycles s G Cd_Y(S) which represent the fundamental class
[S] G Hd_ι(S), and with a unique morphism between any two objects. Now if
s, sf G Ws, construct a category Ws s, whose objects are d-chains y which satisfy
s' = s -f dyt and with a unique morphism between any two objects. Define a
functor 3TSiS,.a: Wsy -+ 3\ by ^sy,a{y) = T for each y and ̂ sy,a(y -» y') acts
as multiplication by e

27rιa(χ\ where x is any (d-\- l)-chain with y' — y + dx. An easy
argument shows that a(x) = a(xr) for any two choices of such a chain. Define the
T-torsor /. ./._ to be the inverse limit of J ^ _/.„. Now define a functor ^ς. : WQ —> Jζ"
by iζ? ;α(s) = J^for each s and i ^ ; α ( s —» s7) acts as multiplication by Is sr.a. The
T-gerbe J 5 > α is defined to be the inverse limit of i ^ ; α .

It is clear how to continue to higher codimensions. Now we turn to manifolds with
boundary.

If a is a (d -f- l)-cocycle on a compact oriented (d + l)-manifold X, then in [FQ,
Proposition B.I] we describe the integral

exp [ 2τri / a

where i:ΘX c ^ X is the inclusion of the boundary, and / a X ) i * α is the T-torsor
described previously. We will not review that here, but rather go on to the next case.
Namely, suppose that a is a (d + l)-cocycle on a compact oriented d-manfiold Y.
Then we claim that the integral

exp

makes sense, where now lQγi*a is the T-gerbe described previously. Call S = dY
and let s G Cd_ι(S) represent the fundamental class, i.e., s G Ws. By the definition
of IdYίi*a above we must construct a torsor IYs.a G &[ and for any s, s ; G Ws an
isomoφhism

7Y,s;α ^ Js,s';a ~+ W^s' a ' ( A 3 )

To construct IYs.a let § y 5 be the category whose objects are d-chains y G C^(y)
such that y represents the fundamental class [Y, dY] G Hd(Y,dY) and <9y = ^ 5 .
We postulate a unique moφhism y — yf between any two objects of Wγs. Define
a functor J^s.a: g ^ s -> ̂ f by ^ ) S ; α ( y ) - T for each ΐ/ and ̂ s,a(y'-> y') is
multiplication by e

27rιa(χ\ where x is any (d + l)-chain with yf = y + dx. As before,
this is independent of the choice of #. Set IYs.a to be the inverse limit of\^ s.α. To
construct the isomoφhism (A.3), suppose that y G ̂ s and α G ̂  s/, i.e., y G'(7^(7)
represents [Y, 9YΊ with 9?/ = 5, and α G Cd(S) with da = sf - s. Then y + a e Wγy.
The isomoφhism (A.3) is defined to be the identity relative to the trivializations of
the torsors determined by y, a, and y + α.

This discussion indicates the constructions contained in the following assertion,
which we boldly state for arbitrary codimension.

Assertion A.4. Let Y be a closed oriented (d + 1 — n)-manίfold (n > 0) and
a G C d + 1(Y; R/Z) a singular cocycle. Then there is an element Iγ a G ̂  defined.
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If X is a compact oriented (d + 2 — n)-manifold, i: dX <—> X the inclusion of the
boundary, and a G Cd+ι(X\ M/Z) a cocycle, then

exp I2πij a\ e IdXya

is defined. These "higher Y-torsors" and integrals satisfy:
(a) (Functoriality) If f :Yf —* Y is an orientation preserving diffeomorphism, then
there is an induced isomorphism

/*: ιY,a

and these compose properly. If F :X' —> X is an orientation preserving diffeomor-
phism, then there is an induced isomorphism 3 5

exp I 2πi / F * α

\ x>

(b) (Orientation) There are natural isomorphisms

exp ί 2πi &\-
\ I
\ x /

and

exp 2πί / α | = exp I 2πi
- 1

(A.5)

(A.6)

(A.7)

(c) (Additivity) IfY = YχUY2 is a disjoint union, then there is a natural isomorphism

If X = Xx U X2 is a disjoint union, then there is a natural isomorphism

exp j 2τπ / a{ U α 2 J = exp j 2πi

\ XχUX2 / V X

exp ί 2πi a2\. (A.9)

(d) (Gluing) Suppose j :Y c-^ X w a closed oriented codimension one submanifold
and Xcut is the manifold obtained by cutting X along Y. Then dXcut = dXUYU-Y.
Suppose a G C d + 1 (X;R/Z) is a singular (d + \)-cocycle on S, and acut G
Cd+ι(Xcut;R/Z) the induced cocycle on X c u t. Then there is a natural isomorphism

Trv
exp / 2πί α c exp j 2πi / a | ,

\ X J

(A. 10)

where Ύτγ^*a is the contraction

35 If n = 1 then (A.5) is an equality of elements in a Z-torsor. For n > 1 it is an isomorphism
between elements in a "higher Z-torsor." A similar remark hold for (A.7), (A.9), and (A. 10)
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(e) (Stokes' Theorem I) Let a G Cd+ι(W;M,/Ίj) be a singular cocycle on a compact
oriented (d -f 3 — n)-manifold W. Then there is a natural isomorphism 3 6

(A π )exp llπi I a\ = 3ζ_2 •

(f) (Stokes Theorem IIj A singular d-cochain β £ Cd(Y R/Z) on a closed oriented
{d -f 1 — n)-manifold Y determines a trivialization

Λ singular d-cochain β G C d (X; R/Z) on α compact oriented (d + 2 — n)-manifold
X satisfies

e x p ( 2 ™ / <5/3 \ ^ ^ _ 2 (A. 12)

ns isomorphism.

The assertion in (e) only has real content for n = 1. If n > 1, then / ^ α is

trivialized by exp (2m J a\.
\ w /

We leave the reader to contemplate higher order gluing laws analogous to [FQ,
Proposition B. 10] and those discussed in Sect. 9.
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