
Commim. Math. Phys. 159, 287-318 (1994) Communications ΪΠ

Mathematical
Physics

© Springer-Verlag 1994

Stability of Moving Fronts
in the Ginzburg-Landau Equation

J. Bricmont1*, A. Kupiainen2**
1 UCL, Physique Theorique, Louvain-la-Neuve, Belgium
2 Rutgers University, Mathematics Department, New Brunswick NJ 08903, USA

Received: 13 January 1993/in revised form: 24 March 1993

Abstract: We use Renormalization Group ideas to study stability of moving fronts
in the Ginzburg-Landau equation in one spatial dimension. In particular, we
prove stability of the real fronts under complex perturbations. This extends the
results of Aronson and Weinberger to situations where the maximum principle is
inapplicable and constitutes a step in proving the general marginal stability
hypothesis for the Ginzburg-Landau equation.

1. Introduction

There are very few general approaches to the study of long time existence and
asymptotics of solutions of nonlinear parabolic partial differential equations.
Typically one has to resort to the use of positivity properties of the linear
semigroup, e.g. the use of maximum principle and then use comparison theorems
together with compactness arguments to obtain the asymptotics. Such approaches
usually work only for equations of special form, e.g. with second order linear part,
and positive initial data.

It was noted in [3, 12,13], that scaling and renormalization group (RG)
concepts that were very successful in statistical mechanics and quantum field
theory are also applicable to this study. In [5, 6] we have been developing
a mathematical RG theory to prove global existence and detailed long time
asymptotics for classes of nonlinear parabolic equations. The RG approach does
not depend on the applicability of positivity conditions such as the maximum
principle. The theory moreover shows how universality emerges in such equations:
the long time asymptotics is independent on the initial data and the equation
within classes of data and equations.
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** Supported by NSF grant DMS-8903041
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In this paper we study one such problem lacking positivity, the stability of
moving front solutions in the Ginzburg-Landau equation

ύ = d2u + u- \u\2u , (1)

where u: R x R -» C is complex, d = — and the dot denotes the time derivative.
δx

There is an extensive study [1, 4] of the stability of moving front solutions
to (1):

u = rc(x - ct), (2)

where rc is a real (and non-negative) function. The analysis is based on the use of the
maximum principle and applies to the case of positive initial data of (1). However,
for complex data very little is known, because the maximum principle is no longer
applicable. We show in this paper how the RG ideas can be used to prove the
stability of the real front solutions (2) under complex perturbations.

Equation (1) has been an important model in the physics literature for the study
of velocity selection for propagating patterns [9,10, 2]. Equation (1) has solutions
(2) for a whole range of values of c (see Sect. 2) and, for c ^ 2 the solutions are
linearly stable in a space of functions with a prescribed odependent exponential
decay at infinity. A natural question is: which of these moving fronts, if any, is
selected for an initial data of compact support (this is also the physically realistic
case)? The marginal stability hypothesis [9] states that the marginally stable c = 2
is the one selected. For real positive initial data this indeed is proven by Aronson
and Weinberger [1,4]. For complex data there is a large set of complex front
solutions [2, 8], many of which are linearly stable [8]. An outstanding problem is
to prove or disprove the marginal stability hypothesis for complex compactly
supported data (for an argument, see [2]). While this is still beyond our methods,
the present paper can be considered as a step in this direction.

2. Results

We write the Ginzburg-Landau equation in radial and angle variables, u = reiφ:

-r\ (1)

(2)

It is well known that these equations have real, positive, front solutions, i.e.
solutions of the form

Φ = 0, r = r c ( x - c ί ) ^ 0 , (3)

such that rc interpolates between a stable and an unstable solution of (1), i.e.
rc -» + 1 for x -* — oo, rc -• 0, for x -> + oo. Indeed, from (1), we see that rc satisfies

r'c + cr'c + rc - rc

3 = 0 (4)

which, if we reinterpret the variable as "time," can be seen as Newton's equation of
motion of a particle of mass one subjected to a friction term cr'c and to a force
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r2 r4

deriving from the potential —, which is an inverted double-well. It is intuit-

ively clear and easily proved that, for c not too small, solutions exists that satisfy

the required conditions, i.e. such that rc tends, as "time" goes to + oo, to zero, the

stable critical point of the potential, and to one as "time" goes to — oo. For large

"time" w, rc(u) will decay exponentially, as is seen from the linearization of (4) at

r = 0. One gets
rc(u)^(Cl+c2u)e-y\ (5)

where y is given by y2 — cy + 1 = 0, i.e.

(6)

which is real for c Ξ> 2, in which case yc ^ 1 (actually, one can take c2 = 0 in (5), if
y < 1). Thus, the larger the friction, the slower the decay. For c < 2, the solution
"overshoots" the minimum at zero, i.e. rc is no longer positive. Each of the solutions
rc with c ^ 2 is stable under real perturbations (φ = 0): if we start with initial data
r(x, 0), with r = rc + s with 0 ^ r ^ 1, s decaying faster than e~7cX for x -> + oo,
r(x, t) will converge, as t -» + oo, to rc(x — ct\ see [1, 4].

However the solution with c = 2, yc = 1 is more stable than the others in the
sense that any initial data r(x, 0) with 0 ^ r ^ 1 which decays faster than e~x as
x -» + oo (in particular, if r is of compact support) will converge, as ί -^ + oo, to
r 2 ( x - 2 ί ) [ l , 4 ] . <

Now we consider a complex perturbation of rc: r(x, 0) = rc + 5 with φ(x, 0) + 0
and s(x, 0) small in a suitable sense. The equations satisfied by φ and s are:

φ = d2φ + 2(drcδφ + dsdφ)(rOiC + s)" 1 , (7)

i = δ25 + 5(1 - 3r2) - rc(dφ)2 - s(dφ)2 - 3rcs
2 - s3 . (8)

We want to solve these equations for all t ^ 1 with a given initial data
φ(x, 1) = φ{x\ s(x, 1) = s(x) (it will be notationally convenient to take the initial
time t = 1). We will state the main result only in the hardest case c = 2 and will
comment on c > 2 in the course of the proof. We consider the initial data in the
Banach space of C1-functions φ, s with the norm

\\(φ9s)\\ = sup(l + \x\f + δ(\φ(x)\ + \φ'(x)\ + (1 + ex)(\s(x)\ + \s'(x)\)) (9)
X

and prove the

Theorem. For any δ > 0 there exists an ε > 0 such that Eqs. (7, 8) with c = 2 and
initial data φ(x, 1) = φ(x\ s(x, 1) = s(x) with ||(φ, s)|| < ε have a unique classical
solution φ(x, t\ s(x, t\ for all t ^ 1, swc/z that

+eu)~1ί 1 + y j . (10)
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Remark. We actually solve the integral equations associated to (7, 8) (see (3.14),
(3.15) below) in a Banach space whose norm is related to (9). This yields more
detailed and slightly sharper bounds, as well as bounds on dφ(x, t\ ds(x, t).
Moreover, it is not difficult to show, using the regularity of the heat kernel and
integration by parts that these solutions are actually classical solutions.

Before we go to the proof of the theorem, we want to discuss the result in
an informal manner. Since rc is a function of x — ct it is convenient to consider
also the equation in the frame of reference of the front: let u = x — ct and
ψf(u, t) = ψ{u + ct, t), sf(u, t) = s(u -f cί, t); then φf and sf satisfy equations like
(7, 8), with cdφf added to the RHS of (7) and cdsf added to the one of (8). Now
rc = rc(u) is time-independent.

To understand the expected behaviour of φf{u, t\ let us consider the linearised
equation around the zero solution:

ψf = d2φf + 2drcdψfrc

 ι + cdψf . (11)

It is convenient to rewrite this equation as an imaginary time Schrόdinger
equation: Let

£

φf(u,t) = e~ϊurc(u)~1φ(u,t). (12)

Then φ satisfies

φ = d2φ-Vφ (13)

with

c2 r" r' c2

v = j + t c

 + cfc

=^~ί + r'' (14)

To derive the last equality, we used Eq. (4), satisfied by rc. Since rc ~ 1 for
u -> — oo, rc ~ e~yu for u -> -f oo, we have V ̂  c2/4 for u -> — oo, V ̂  c2/4 — 1 for
u -> + oo. So, starting with φ(u, 0) localized around u = 0, we expect

~4ί
: U ~> — 00

<A(«, 0 ~ < cl u± • (15)
g-(4~1)ί-4ί

Hence,

c2t u2 c

r W-> — 00

φf(u, t)
ft

_(c±_ \ _«t_(L_ \
e v4 xr 4 ί v2 γ ) u

7= M-> + 00

(16)
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c2 (c — 2γ)2

which, using (6) under the form — — 1 = , can be written as

φf(u, t)

(u + ct)2

{u + (c-2γ)t)2

At

— 00

U -> + 0 0

(17)

Since u + ct = x, the first part of (17) is a diffusive wave stationary in the fixed
frame. Since c — 2γ ^ 0 (see (6)), the second part vanishes rapidly, as u -> + oo,
except when c = 2, y = 1. There φ contains also a diffusive wave which is "carried
along" by the front. This is a rough, but basically correct picture. However, we shall
see later that a proper treatment of the effect of the potential yields a different

power law than —p in (17). From now on, we shall concentrate on the most

interesting front namely the one with c = 2, y = 1 and write r for r2.

Let us consider the linear equation for sf in that case, in the front frame:

sf = d2sf + 2dSf + sf(l - 3r2) .

Writing Sf = e~uσ, we get

(18)

* £}2 7/
(j = o (5 — VG

with V = 3r2.
Following the analysis leading to (17), we get

(19)

s(u9

e- 3 ,

\

u2

4 ί

ft

A
-2t (« + 2ί)2

-e 4 ί as u -> — oo

(20)

as + oo

There is a "wave" which is stationary in the front frame, but exponentially
decreasing in w, while the wave which stays in the fixed frame is suppressed by the
factor e~2t. Of course, when we take into account the nonlinear terms in (7, 8), we
see that a term like — r(dφ)2 will prevent s from decaying exponentially in time,
due to the slower decay of φ, see (17).

3. The Proof

3.1. Preliminaries: The RG-setup. The proof of the theorem is based on the
Renormalization Group method [12, 5, 6], which for the purposes of the present
work consists of the Picard iteration composed with a scaling. Let us define

,L2"t), (1)

L2»t), (2)
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and

ΦH(x) = <p(Lnx, L2n) = φH(x, 1 ) , (3)

Sn(x) = s(L"x9L
2*) = sH(x9l). (4)

We shall prove, inductively in n, bounds on φn, sn for the finite time interval
[1,L 2 ] , which will imply (2.10). This is done by controlling the "RG-map" Stn9

which relates the Φn, Snto Φn+U Sn+1:

aH(Φn,sn) = (ΦH+usH+1). (5)

9tn is constructed by solving a scaled version of the original equation (2.7, 2.8) for
a finite time. For this, it will be more convenient to work in the variable u relative to
the moving frame of the front, which under the scaling (1), (2) becomes

u = x - 2Lnt (6)

(c = 2 here) so that, if we define,

φfn{u, t) = φn{u + 2LMί, t), (7)

s / B ( M ) = sn(tt + 2L"t , t ) , (8)

we have

9L
2nt), (9)

L2nt). (10)

We will from now on drop the subscript /, and use the variables x and u to
distinguish the frame we are in. φn(w, t), sn(u, t) solve the equations

Ψn = δ Φn + 2Lndφn + 2Lndφnl — — I , (11)
\ J- i Sn/Tn /

θsB + L2"sB(l - 3rB

2) - rn(

- 3 r n £ 2 » 5 2 - L 2 " s π

3 , (12)

where rΛ(u) = r(L"(x - 2L't)) = r(L"u) and ? B(u) = ^ ^ .

The RG map (5) is now defined by constructing a solution to (11,12) on the
time interval [1, L 2 ] with initial data φn(u, 1) = φ{u\ sn(u, 1) = s(u) in a suitable
Banach space,

<Ma(φ,s)( ) = (φn(L ,L2),sn(L.,L2)). (13)

One then wants to show that 0ίn maps the space into another one so as to be able to
iterate (5).

Mn is studied by rewriting (11,12) as integral equations:

v,\)+ J" dτ\dvRτ

n{u, v)M(v, t - τ)
o

= (K-'φΛ , !))(«) + J^Λψn,sn)(u, t), (14)
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ί - 1

dτ\dvQl{u,v)N{v,t-τ)

where Rτ

n, Ql solve the linearised version of (11,12):

ψn = d2φn + 2L"(ί + qn)dφn ,

sn = d2sn + 2L"δsn + L2"sn(l - 3r2

n).

Explicitly, see (2.12), (2.13), (2.19),

Rl(u, v) = exp(/B(«) -/,(»)) (exp - τHn) («, υ),

Ql(u, v) = exp( - L"u + Lnv)(exp - τHn){u, υ),

where,

fn{u)=f(Lnu\ f(u) = -w-logr(u),

and
,. v ^ jn +

v = y - 2Ln,

ί = τ + 1 ,

Hn = -d2 + 3L2nr2

0(L" ) .

M, iV collect the nonlinear terms in (11, 12):

f + L-'dsJr. \
M = 2LrdφΛ qn ,

N = - rn(θφn) 2 - sπ(3φB)2 - 3rnL
2S2 - L2S2 - L2n

293

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Since the nonlinear terms involve sm dsn, φn, dφn, we shall solve Eqs. (14, 15) in
a Banach space 0$n defined by a weighted L00 norm on φ, s and their first derivative,
with n-dependent weights:

(28)= sup
ίe[l,L2]

sup |
ίe[l,L2]

with

9

CO

-f
0 0

g'

K,t o

i_
V>n,t

and where the weights are chosen to reflect the decay rates of φ, s:

+ \χ\rί~δ u<<
+ u)-2-δ{\ + Lnu)-ι{\ + 2Lnt)-γ

U _ Γ « ( l + < 5 ) 7 L

KM = u > 0 '

(29)

(30)

(31)

(32)
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with

ln(u) = L-<*-δ) + (1 + Ln\u\y* (33)

W " • « " ' - ϊ ~ + ur2-Se-L»u{Ln + 2 / - . f ) -

and

l , t , (35)

where w and x are related by (21), i.e. x is a function of w and t which makes the
weights ί-dependent. For a function g independent of ί, we define || g ||iw) as || g \\^t

above with t = 1, and similarly for \\gW^K We write hn, wn for /ιπ?1, wnΛ.

Remark. These complicated weights can be understood as follows: as we saw in
(2.17), φ contains two diffusive waves, one in the fixed frame, one carried by the
front; the first term in hn,t correspond to the wave in the fixed frame, which we
assume only to decay (in space) like an integrable power. The second term
corresponds to the wave carried by the front, which will decay faster (in time),
because the potential in (24) creates a barrier at the origin (of the front frame), so it
decays essentially like the solution of the heat equation in [0, GO']. This explains the
extra factor (1 + 2LMί)" 1 ~δ (the role of δ will be discussed later). However, to get
this factor, we need a slightly faster decay (in space) than in the first term, so we put
(1 + u)~2~δ. The factor (1 + Uu)'1 is only due to the change of variable (2.12)
leading to the potential equation (recall (2.5)). Finally, for later purposes, we choose
the coefficients so that hn,t(u) is continuous. Turning to (34), we expect from (2.20)
to have only a wave near the front. This is reflected in the second term of (34), where
again the factor e~L"u is related to the change of variables leading to (2.20). For the
first term, the linear analysis (2.20) would suggest a much faster decay. However, in
(2.9), s is coupled to φ by the nonlinear terms and the first part of (34) is produced
by this coupling. We will see that, when we take derivatives, φ, s are multiplied by
Z/1, at least for u (and τ) small. This is reflected by the factor multiplying hnit in (32),
and by the less refined factor in (35).

The theorem will be deduced from the

Proposition 1. There exists an n0 > 0 such that for all n7z.n0,

WniφtSit + v^L^UφtsW* (36)

Remark. The n0 depends on the δ in (31-35) {δ is small, in particular < £). It is
convenient to express the smallness of the initial data in terms of n0, that is, we start
the RG-iteration not at n = 0, but at n = n0. This is no loss of generality, since we
may scale the equations (2.7, 8) by φ(x, t) = φ(L~nox, L~2not) and s similarly. Then
the norm (2.9) will be bounded by the norm (28). The proposition then implies the
theorem (with more detailed estimates on the x-dependence), for the discrete times
L2n. For the remaining times the bounds below will give the result.

For the proposition, we need to control the linear and the nonlinear parts of
Mn. For the linear part, we have

Lemma 1. Let t e [1, L 2 ] . Then

WK-'φW^ S L 2 n δ Uφl i r , l i e r ^ l l ^ S L2nδ
 \\S\\V . (37)
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Moreover,

^ W r 1 ' ^ , (38)

. (39)

Remark. Note how the scaling in the RG produces the contraction lacking in the
Picard iteration. The L2nδ in (37) is a brute force estimate: actually it could be
replaced by Cn. This divergence arises for very short times.

For the nonlinear terms we need to use the contraction mapping principle. We
have

Lemma 2. Let

\\(φ,s)\\(n)^2L-n(1-5δ) . (40)

Then

\\{Jίn{φ, s), < Λ ( φ , s ) ) \ r ύ L ~ n δ \\(φ9 s ) \ \ M (41)

and the map $fn = {Jin, JfnY ^n ~~> ^n *5 a contraction in the ball (40):

|| jΓn(φ9 5) - jrH(φ'9 sf) ||(M) S θ || (φ, s) - (φ\ s') ||<">

for 0 < 1.

Thus, by (37) and Lemma 2, if we call (φ°, s°) the linear terms in (14,15), we can
solve these equations by the contraction mapping principle applied to a ball of
radius L~n{1~5δ) around (φ°, s°). Indeed, using (36) inductively and (37), one gets
II (φϊ, s°) \\(n) ^ L~nil ~5δ\ Then (41), (38) and (39) yield (36) i.e. the proposition, and
(36), (37) and (41) the Theorem (by redefining δ). Hence, we need only to prove
Lemmas 1 and 2.

In the course of the proofs, we shall write C or c to denote suitable constants
which may vary from place to place (even in the same formula) but do not depend
on L or n while C(L) depends on L but not on n. L will be fixed, but chosen large
enough so that we may repeatedly control constants by writing, e.g.,

C^Lδ . (42)

L-dependent constants are controlled by

C(L) ^ Lδn (43)

since n ^ n0. This explain the proliferation, in the proofs, of powers of Lδn. They are
also used to control factors like C(L)n. The logic in the choice of L and n0 is as
follows: given δ > 0, small we choose L large enough so that (42) holds for all the
L-independent constants entering the proofs and then we choose n0 so that (43)
holds when n^n0, for all L-dependent constants.

In the proofs, we shall need some properties of the "front" r, which follow from
an analysis of (2.4). One knows that r(u) ~ ue~u for u -» + oo while 1 — r(u) ~ e~cu

for u -> — GO. More precisely, we have for the function f(u) defined in (20),

|/(«) +w| ύλec\ (44)

\f'(u)+\\^ec* (45)
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for u ^ 0. Moreover, we can choose the origin of the coordinates so that λ in (44) is
as small as we wish. This possibility will be used later. Besides, we have

\f(u) + log(l

1 + tt

for u ^ 0. Finally, we have (see e.g. (45, 47))

r'(u)
\q(u)\ =

r(u)
<c .

(46)

(47)

(48)

3.2. Proof of Lemma 1. We start by proving (38). For this it is enough to show:

\$dυRϊ2~1(Lu',υ)hn(v)\ ^-L~(1~2δ)hn+ί(u') (49)

and

—

(50)

We use primes to denote variables on the scale n + 1 and unprimed ones for scale n.
Note that u' = x' - 2Ln + 1t\ so we have x = Lx' for u = Lu\ t = L2, i.e. t' = 1.

To prove (49, 50), we need some properties of Rl: we shall use the path space
representation,

(exp - τHn)(u, v) = $dμίltV(ω)e->ov»w»d', (51)

where dμτ

UiV is the Brownian bridge going in time τ from u to i>, so that

4πτ
and Vn( ) = L2nr2(Ln ). Thus the potential has a high and

sharp barrier around zero which is repulsive on the negative real axis. To get simple
estimates we introduce

εn = knL~nlogL , (52)

where k is chosen large so that Vn is essentially equal to 0 or to L2n outside the
interval /„ = [ — εΠ, + εn]. In Lemma 3 and later, we have bounds where the
quantity L~np enters. Here, p = Θ(k) can be taken large by choosing k in (52) large,
and the quantities bounded by L~np will turn out to be negligible. The bounds
based on the path space representation (51) will be stated in a series of lemmas,
whose proofs will be given in the Appendix.

Lemma 3. For 0 ^ τ ^ L2 — 1 and n ^ n0, we have

a) Let u ^ 0. // v ^ — εM, then

exp( - τiϊJίtt, v) S DL2εn(u, υ) + L'^e'7^u + V) , (53)
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where Dτ

a(u, v) is the Dirichlet kernel with barrier at a:

Dτ

a(u, v) = Hτ(u - v) - Hτ(u + v-2a) (54)

for u,v>a, with
u2

H\u) = -jϊL (55)

being the heat kernel. Moreover,

£f dvRT

n(u,v)( 1 +^ή=)sL-npe-c7r(l + Lnu)-X . (56)
- o o \ y/τj

b) Let u S 0. Ifv S - εw? then

Rτ

n{u, v) S -ζ=exp( - ( U ~ V "j" 2 L T ) ) + L-npe-7τ(M + lxlχ(x<0)) (57)
Vτ V 4τ /

and for all te [1,L2],

u)χ(τ ̂  L^))e'^x{x<0) . (58)

Remark, Except for (58), these bounds are intuitively obvious: in (53) correction to
the Dirichlet kernel comes from excursions to the high potential region, whence the
L~np. In (56) such excursions have to take place and in (57) the leading term comes
from the heat kernel, since by (21-23),

u - v + 2Lnτ = x - y . (59)

Using Lemma 3 for u = Lvί and τ = L2 — 1, we can prove (49). Consider first
u' ^ 0, and write the integral in (49) as:

JA>= ] dυ+ f dv. (60)
— εn — <X)

The second integral is trivial by (56), so consider the first one. Use (18, 53), and the
bounds

e'fniv)hn(v) S CL-n{1+δ)(l + υ)-2~δ (61)

for v ̂  — εn9 and

efn(LW) ̂  Cμ + £ » + l M ' ) - l (62)

for u' ̂  0, which follow from (31, 46, 44). We see then that all we have to show is

J dυDLXl (Lu\ v)(l + v)-2-δ ^ L~2+kl + u')~2~d . (63)

Indeed, the second term in (53) is trivial and, in (63), we write

L~2^ =L^L-{l-2δ)L-{l+δ\ L-{1~2δ) occurs in (49), L~{1 + δ) is used, with
L-na + δ) i n ( 6 1 ) ? t 0 o b t a i n t h e f a c t o r (j + 2Ln+1)-1"δ in hn + 1(uf) (for u' ̂  0) and
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L~2 is used to control constants, as in (42). Equation (63) follows from (54), the
definition of D: for u' ^ k log L, with k large, we use simply

and

L" 1 J dve-c\u'~ί\(l + v)-2~δ S C(l + Lu'Y2~δ (65)

with (1 + Lu')~2-δ S L-2(\ + w ' ) " 2 " 0 for such u'.
For u' S k log L, we use

„!„ Zdz

to get

D - ^ 1 (Lw', v) ^ - ^ ( M + εn) (67)

which gives (63).
For u' ^ 0, we use (60) in (49), insert (57) in the second integral and observe that,

for τ = L2 - 1, u = Lu\ (59) becomes: Lvΐ - υ + 2Ln(L2 - 1) = Lxr - y. Using the
second inequality in (64) on HLl"x (Lxr — y), the first term of the RHS of (57) gives
a bound on j~ε^dι;,RL2"~1(w, v)hn(v) of the form

- f dye-c\x'-τ\(l + | y | ) - 1 - δ < C L - 1 ( l + WIΓ1'3 (68)

which yields a contribution to the RHS of (49) for that part of the integral. The
second term in (57) gives another contribution to (49): we get exponential decay for
x' ^ 0 and, for x' ^ 0, we may use part of L~np to get the factor (1 + x')'1'3 in
K+ i(w'X since x' ^ 2Ln + 1 for u' ^ 0.

Finally, for jv>-εndυ, we use (58), where only the term with L~ϊ in the RHS
contributes, since t = L2, τ = L2 — 1. Moreover, for u = Lu' (of any sign),

hn,L2(u)Shn + ί ( u ' ) . (69)

n

We use, as in (43), the factor L~ 3 in (58) to bound constants, and to give L ~ ( 1 ~2δ) in
(49).

Now, we prove (50). Let us consider first uf ^ 0. We use the following formula,
valid for any continuous, piecewise differentiable function g with
Il0lloo + I l 0 ' l l o o < o o ,
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x\v'(Lnω(s))ds)g(v)
o /

- LnίdΌRUu9Ό)f(Lnv)g(v)

+ $dvRl(uiv)gf(v)dv. (70)

To prove (70), use the definition of i^(18), the path space formula (51) and the
identity, coming from the translation invariance of dμlίV:

^ S a ) d s = 0 (71)

which implies

(ίτv^^dsL3n] V'(Lnω(s))dA . (72)

Integration by parts of the d/dv gives the last two terms of (70).
Consider each term of (70), with g = φ, τ = L2 - 1 and u = Lu' ( ^ 0) so that

4- = L4- We shall use the fact that in (50), we have a factor L(n+1Hί+δ)ln + 1(uf)
du du
while all the terms of (70), except the last one, involve an integration with φ(v)
instead of its derivative.

For the first term in (70), we use (47), which yields

This, combined with (49), gives a contribution to the RHS of (50).
For the last two terms of (70), it is enough to prove that:

ΉLu',υ)(ί + L"\v\rhn(v) ^ CL'hn + 1(W) (74)

for vl ^ 0. Indeed, as in (73), \f(Lnv)\ ^ (1 + Ln\v\)~± and we can bound φ' in
n

terms of lnhn. We use (49) for the first term in /„. Then, we write L~* ^ L~nδln + 1.
The factor C in (74) and L~{1 ~2δ) in (50) can be controlled using L~nδ here and (43).
To prove (74), we follow the proof of (49) for u' ^ 0 and use, instead of (63),

f dvDL-2^{Lu\ v)(l + v)-2-\\ + Ln\v\y* S CL~*(l + uT2'3 , (75)

which is easy to prove, using (63) for v ^ 1 and bounding DL-2£^{Lu\ v) (1 + υ)~2~δ

b y C e ~ c u ' f o r v ^ L
For the second term in (70), it is enough to show:

f^LuΊ-f^v)kn(Lu\v,L2 - l)hn(υ) ^ C(L)LThn+ί(u')

(76)
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where the second inequality follows from (33, 43), and we used the notation

kn(u, % τ) = $dμl,Ό(ω)(β-Γonω(s))ιfaL3»j i κ'(L»(ω(s))|dΛ . (77)

The first inequality of (76) follows from parts a and b of the following lemma, for
τ = L2 - 1, and (61, 62).

Lemma 4. With the notation (77), we have, for 0 ^ τ ^ L2 — 1 and n ^ π 0 :

a) /or M ̂  0,

J ώ ^ t t , υ9 τ) ^ ^έ«(LX + L"(1+f)/M(W)χ(τ ^ i Γ ϊ ) ) , (78)

b) /or u ^ 0,

°fdve-f»(v)kn(u, v, τ) ^ L-nfe~7?{\ + L"^" 1 , (79)
— 00

c) for u ^ 0,
00

J ίfoexρ(/,,(u) -fn(v))kn{u, v, τ)ftΛtt-τ(t?)

( t ) ( t) g L~2)), (80)

d) for u ^ 0,

f dvexp(fH(u) -fn{v))kn{u, v, τ) ί L-""e~7,Mx(x<0) (81)
— oo

Now we prove (50) for uf ^ 0. We use a different formula for — (Rτ

ng)(u). Write
du

where we use the normalised expectation value

<G>Ϊ,, = (IdμUωT1 \dμl,υ{ω)G{ω) . (83)

Taking derivatives, we have, for g as in (70),

liu, υ)g{v) = Ln(f(Lnu) + 1)[dυRl{u, v)g(v)

3n^ vr{Lnω{s))ds)g{v)

- Ln$dv(f'(Lnv) + l)J?;(κ, v)g(v) + JώΛί(ιι, !?)ff'(ι;), (84)

where the second term comes from the application of (72) (to the normalised
expectation value, which obviously satisfies (71)) and the last two terms are

d
produced by the integration by parts of —. The term coming from

dv
_e-(u-v + 2Lnτ)2/4τ

du

is cancelled by a similar term produced by the integration by parts.
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Now we bound each of these terms for g = φ, u = Lu' ^ 0 and τ = L2 — 1. For
the first term, it is enough to use (49) and (45):

LH + 1\f(Ln+1u') + 1| g Ln+Ίn+1(uf) .

For the last two terms, as in (70), it is enough to use (49) and:

v)(l + Ln\v\Γ*hn(υ) ^ CL~hn+ί(u')

(86)

(87)

for u' rg 0. For this, we follow the proof of (49) for u' ^ 0, with the only change that,
instead of (68), we use

J dye~c\x'~ϊ\(l + l y l ) " 1 " * ^ + Ln\v\)~* g C L " ? ( 1 + \x'\)~ι~δ . (88)

This is easy to show: for \v\ ̂  1, use (68) and, for \v\ ̂  1, use the bound

e-
c\χ'-τ\(i + \y\)~1~δ S C(ί + I x ' l ) " 1 " * .

Note that in (58) we have a factor L~% (for τ = L2 - 1, t = L2\ so (87) holds
trivially, for that part of the integral, using (69). Finally, for the second term in (84),
we prove (76), using parts c and d of Lemma 4: in (80), we have only the first term in
the RHS, because τ = L2 — 1 (ί = L2\ and we use (69). In (81), we use, as before,
part of L~np to get the factor (1 + Ix ' l ) " 1 " 5 in K+ι{ur) (since xf S 2Ln+1 for
u' ^ 0). This completes the proof of (50) and, therefore, of (38). To prove the first
estimate in (37), it is enough to show:

and

du
$dvRτ

n(u,v)φ(v)

(89)

(90)

We follow the proof of (49, 50) (Lemmas 3 and 4 hold for all τ). To prove (89),
we use

J dvDL2εn(u,v){l
-En

instead of (63), and, instead of (68),

—-F J dye~c jτ (1 -

u)-2-δ (91)

(92)

where, see (21-23),

xτ = u + 2Ln(τ + 1) (93)

is the variable entering hHiX+1. When we use (58) (with t = τ + 1), we have to
consider the second term in the RHS, for small τ. However, previously, we used

L"3 only to control C(L) (see the remark following Eq. (69)). So, here, we use

/„ S 2, C{L)L* S L2 which is enough, given the factor Lnδ in the RHS of (89).
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To prove (90), we use

IdvRUu, υ)(ί + Ln\υ\yhn(v) S Lnδln(u)K,τ+Λu) (94)

for all M, instead of (74) and (87), which is proven like (74, 87), using

J dvDL2εn(u, υ)(ί + vy2-δ(l + L"|ϋ|)-ϊ S C(L)IΓ*(1 + u)'2'δ

for u ^ 0, instead of (75),

-±= J ^ i

for M ̂  0, instead of (88), and L~4 g /n(w). Finally, we use

\dυefM-fMkn{u^τ)hn{υ) ^ C(L)Ln(1+i)ln(u)K,τ+1(u) (95)

for all u, instead of (76); (95) follows from Lemma 4 (for t = τ + 1 in (80)) and
(61, 62).

Finally we shall prove (39) and the second estimate in (37), and, as before,
concentrate on (39). We shall take advantage of the factor 3 in (25), as opposed to
1 in (24). This factor means that the potential barrier, for u g 0, is higher, and, as
a consequence, we shall no longer have to deal with the front in the laboratory
frame (compare the first terms in (2.17) and (2.20)). To prove (39), it is enough to
show (remember that w is a multiple of w, see (35)):

μv)wn(v)\ύ\L-^-2δ>wn + 1(u') (96)

and,

( 9 7)

Instead of Lemma 3, we use

Lemma 5. For 0 < τ ^ L2 — 1 and n ^ n0, we have

d) for w^O, i/ i ;^ - εM,

έΓτi*"(iί, ϋ) ^ Dτ-2εn(u, v) + L " n ^ - ^ ( M + ι ; ) (98)

and

^=)SL-npe-7ue-Lnu . (99)

b)/or w^O, ϊ / t?^ - ε n ,

βί(tt, ϋ) g -^=exp( - cτL 2" - •

(100)
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and

f dvQKu, υ)wΛ,t-t(

303

~7τ

M

(101)

Moreover', the same bounds hold, with different constants, when 3 in (25) is replaced by
any α > 1.

Let us prove (96). For vί Ξ> 0, we can use part a of Lemma 5, exactly as we used
part a of Lemma 3 to prove (49), the only difference being that (61, 62) are replaced
by

eLnvwn(v) ^ cL-n{1+δ)(l + v)~2-

for υ ̂  — εΛJ which follows immediately from (34), and

e~Ln u

(102)

(103)

for u' ̂  0. The proof of (96) for u' ̂  0 is easy, given part b of Lemma 5: for
τ = L2 - 1, even the first term of (100) is small. We use wn%L2{Lu') ^ L1+δwn + ι(u')
instead of (69).

To prove (97), we use the following formula, valid for g as in (70) and any u:

^u(Qlg)(u) = ~ldvQl(u,v)g(v)

:\V{L'ω(s))ds)g{v)
o

\-$dvQl{u,v)g'(v)dv. (104)

This is proven like (70), by noticing that f(u) in R is replaced by — u here so that
the first and the third terms in (70) cancel each other. To bound the second term of
(104), just use (96), since w is a multiple of w. For the first term, observe that, by (48),
\V'\ ̂ cV, so that

3L3n J | V'(Lnω(s))\ds ^ (105)

Then, we use the last statement in Lemma 5, with α = f, and use the factor
L(n + i)(i+ί) i n ( 9 7 ) t 0 c o n t r o i Ln i n ( 1 0 5 ) A g a i n ? t h e p r o o f o f ( 3 7 ) i s a s i m p l e

modification of the proof of (39).

3.L Proof of Lemma 2. We need to show that

and

sup
ίe[l,L2]

sup

t-ί

dτ$dvRτ

n(u,v)M(v,t-τ)

dτ\dυQl{u,υ)N{υ,t-τ)

ιι(») (106)

(107)
2,ί
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for (φ, s) with

J. Bricmont and A. Kupiainen

(108)

(M, N are defined in (26, 27)).
The proof that the nonlinear terms define a contraction is similar.
To prove (106), we shall prove, for all t e [1, L 2 ] ,

ί - l

dτ\dvRτ

n{u,v)M{υ,t-τ) ικ») (109)

and

j - ' \ dτ\dvRτ

n{u,v)M{v,t-τ)
au o

Let us start with the proof of (109). We use the bound r " 1 <; c(l + eL"v) to get
from (34) that wπrn"

1 ^ L~\ and, from (108),

\Sn\

where we use throughout the proof Θ(δ) because we do not need to keep track of
the constants multiplying δ. We also have

1
1 + sn/rn

- 1

and

We also know from (48) that \qn\^c9 so, altogether,

|M(M-τ) | uLm*Hn{v)hntt-t

Then, (109) follows by inserting (111) in (109), using the bound

*'{ dx\dvK{u,v)ln{v)K,t-t{v)dv g L2nδL~hn^

(111)

(112)

and using L~* to control Lnθ(δ) and to give L~nδ in (109); (112) is proven by
combining

f dτ\dυRl{u, υ)hn,t-

which is proven like (89), and

*]" dτ\dυRl{u,υ){\
o

(113)

(114)
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which is proven like (94), the only difference being that, when we use (58), we have

Jo dτχ(τ ^ L 2 ) ^ L~2 for the second term of (58), so that the result has a bound

with L~ϊ, as in (87).
To prove (110), we would like to use (70, 84). However, we cannot use integra-

tion by parts as in (70, 84) because we have <3φ, ds in the nonlinear terms and the
norms (29, 30) give no control over the second derivatives of φ or s. We proceed as
follows: write, for u ^ 0,

K ^ υ) =
/4πτ

Taking derivatives, we have

d

du
J dτ$dvRl{u,υ)M(v9t —

ί - 1

0

o
ί - 1

dv

4πτ

(116)

where we use (72) for the normalised expectation value and then take absolute

values and use (111). Now, observe that — <e"ίo V(ω(s))dsγ i s positive by the FKG
dv

inequality [11, 14]: Kis decreasing so e~^v is increasing and the Wiener measure
satisfies FKG inequalities, so (e~Sov(ω(s))dsyτ

UtV increases if the "boundary condi-
tions" u or υ increases. Therefore, we may take out the absolute values in the last
term of (116) and then integrate by parts, so we get a formula like (70) with

—(ln(v)hn t-τ(v)) instead of g'; ln(v)hn t-τ(v) is continuous and piecewise C 1 and
dv

-(/„(!»)*,,,,-,(»)) (117)

for v φ 0 (see (31-33)). However, we get from the integration by parts another term

(previously, this term was cancelled by the third term in (116), but here we have
taken absolute values).
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Let us bound each term of (116), by the RHS of (110), first for u ̂  0: for the first
term, it is enough to use (47) (i.e. \fή(u)\ ̂  ln{u)) and (112). For the second term, use

(78, 79, 60, 61) and j ^ " 1 dτχ(τ ^ L~%) ̂  L~^ for the second term of (78). Then,
(110) follows for that term from

u). (118)

The third term in (116) is bounded like the first one, using the exponential decay in

or in in (53, 56) and the factor -^L in (56) to control . Then we

V τ V τ V τ V τ

are left with the integral \dτ —p, which is finite. For the terms produced by the

y τ

integration by parts, the one withfή(v) is controlled using (47), i.e. \fή(υ)\ ̂  ln(v) and

dτfdυRl(u9υ)l2(υ)hH,t-τ(v)dυ S L2nδL'^ln(u)hn,t(u), (119)

which is proven like (112), using, instead of (114),

J S LnδL~hnJ(u),

where the worst term comes from the first term in (58). To get (119), we used

L~% S L~^ln(u). Still, we have to control LnΘ{δ\ The term with — — - has

already been discussed, while, for the term with —(ln{v)hn t-τ(v)),we use (117) and
dv

(119).
We still have to prove (110) for u ̂  0. We proceed as in (116), using (82) instead

of (115). All the terms are bounded as before, except

l(u9 υ)ln(υ)hn,t-τ(v) S

Indeed, the factor can be controlled as before, using the exponential

decay in (57), which gives a bound like (112), while, in (58), we use the factor

L _ n j w j ^ | a n d μτ χ(τ g L~Ί) ^ cL~\ Then, we use (118) to get (110).

V v
The proof of (107) follows the same pattern. We want to show:

ί - l

and

f dτ\dυQl{u,υ)N{v,t-τ)

^ \ dτ\dυQl{u,v)N{υ,t-τ)

(120)

(121)
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Let us prove (120, 121) for each term in N, see (27). For — rn(dφn)
2, we use, see

(2.5),

-e^Γ1 (122)

and rnhn ^ cwn, hn ^ cL~n for v ^ — εn9 combined with (108), to get

rn(v)(dφn)
2(v, ί - τ) g LnΘ(δ)wn(v, t - τ)/Λ(t;) \\(φ, s)\\(n) (123)

for i; ̂  — επ. Then, we can prove (120), for w ̂  0, by using Lemma 5, a, (102) and

00 i «

ί dvDτ-2εn(u, v)(l + v)~2~δ(l + Z/Ίι;|)-4 ^ C(L)L"4(1 + u)~2~δ

so that we may use, as before, L~* to control LnΘ(δ\ Now, consider (120) for u ^ 0;
for the.integral over ι? ̂  — εn9 we use (123) and (101); again, the integral over
τ gives a small contribution. For v ^ — επ, rM is of order one and we have, using
(108),

(dψn)
2(v, t - τ) S L"(1+('( ί))ίι»>t-τ(»)/1,(»)||(φ, s)||(">. (124)

Now, use (100) to prove:

' j dτ l"dvQl{u,v)hn^MdvSL-n{2-i)h^{u) (125)
0 - oo

and

*{dτ IdυQl{u,υ){\ + Ln\v\yhn,t-T(v)dv ^ L-n(2+^δ)hn,t(u) (126)
0 - oo

These bounds are similar to (113, 114) but we use the factor e~
cτL2n in (100) and

J dτe-cτL2n^CL~2n (127)
o

to get L~2nm (125,126). Combining (124-126), we get a bound on the integral (120)
over v ^ — επ, for — rn(dφn)

2 and u rg 0, of the form

Then, (120) is proven for that term by observing that, for w^O,
L~nhna(u) ^ C(L)Lnδwna(u). The proof of (121) combines these bounds and the
proof of (110) (actually, it is easier, since we do not have ln(u) in (121)). The term
— sn(dφn)

2 in (27) can be treated in the same way, since sn is smaller than rn.
The final term to consider is — 3rnL

2ns2, since the term — L2nsl is smaller.
Following the same strategy as before, we use, instead of (123, 124), the bound:

2ns2(v ί τ) g L"*<'>(1 + Lnv)2rn(v)L2ns2

n(v, ί - τ) g L"*<'>(1 + Lnv)2(l + ^ ) - 2 w π , f _ τ ( t ; ) | | ( φ , s)||<»>, (128)

which follows from (108, 122) and wn ^ L~n. Because of the factor
(1 + Lnv)2(l -f eLnv)~2, we get an extra L~n when we integrate over v ^ 0, which
is used to control LnΘ{δ\ and we get L~2n from (127) when we integrate over
v ύ — εn; the integrals over — εn^v ^0 are controlled using (98), (101), and

f l ί
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Appendix

Proof of Lemma 3. To prove (3.53), we use the path space representation (3.51). For
each path ω, let tx be the time of the first visit to — 2εM, if ω visits — 2εn before time
τ and let t2 be the time of the first visit to — | ε Λ after tx (since v ^ - εM, t2 ^ τ if
ίi < τ). So, by conditioning,

- 2 β n , - 2 β n

where dμl^iω > b) denotes the measure on paths with ω(0) = a, ω(t) — b and
ω(s) > b for s < ί, defined by:

J f ( ω ) d μ U ω > b) = 2^F(ω)dμt

a>x(ω)\x=b .

For our F, the RHS is C0 0 in Λ: and this indeed defines an expectation. This
equation may be derived by the method of images from random walks. We will
have below positive F's estimated from above by constants, and the only thing we
need to know is the formula for F = 1,

(a - b) («-fe)2

μμUω>b) ^φe--*Γ- (2)

which is the probability density that t is the first time at which ω, starting from α,
reaches b.

Using Vn ^ 0, the second term in (1) is bounded by Dτ_2εn(w, v) and the formula
(3.54) follows from the method of images. In the first term, we use

]vn{ω{s))ds^L2n{t2-t1)-C (3)
o

which holds because, for s e [ ί 1 , ί 2 ] ) co(s) < — fε«> V(x) ^ 1 — Cβ~ c | x | , and
L2ne-cenLn ^ C / L 2 ^ Q^ for fc k r g e ^ (3 5 2 ) S o ? u s i n g (2)9 (3), the first term in (1)

can be bounded by

(tJ + jεn) 2

τ (U 4- 2f 1 (« + 2εM)2 o ε^ β~ 4(τ-ί 2)

Now we use the following three bounds. First,

(τ - Hψ1 = εn

which holds because v ^ — εn, τ — t2 ^ τ. Secondly,
00 Izl z 2

^ (5)

jds — e ^ e ^ C e ' ^ ^ (6)
o s
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which follows by shifting s by the location of the maximum of the exponent
\z\ L2n

j . We use (6) with z = εn9 and 5 = 4(ί2 - h), α = — . Thirdly,
42Vα

ί ^s~3/2e~^ = Ce~c~rτ (7)
o s

which follows also from a change of variable, s' = -=-. We use (7) with z = u + 2εn

z
and s = ί i .

Using (5, 6, 7), we get

(4) ^ £ e - ^ - e - > + " > ^ L--'e->+β> (8)

for k large in (3.52). This completes the proof of (3.53).
To prove (3.56), we use (3.46):

Rτn(u, v) g Ce-fn{v)(e~τHn)(u, v)(l + L' t t)" 1 (9)

and, by (3.44, 3.52),

— fn(v) g Lnι? + c ^ — enL
n + c = — fcnlogL + c (10)

for i; ^ — εn. Then we use Vn ^ 0, to bound

(u — v)2

e~τHn(u,v)^§dμlv(ω) = —, (11)

And, since w ̂  0, t; ^ - εB, we get (3.56) from (9, 10, 11).
To prove (3.57) we use again (3.51). Let ίx be the time of the first visit of ω to
ε ε

— - , if ω visits — - at all. We have

Rl(u, v) = exp(/n(u) -/„

+ ]dt1 jdμtι (ω
v

We use (3.44):

/.(«) -/»(») ^ - i"(« - ») + c = £"( |M| - |»|) + c (13)

for u, v less than zero; for the first term in (12), we have, as in (3),

J VH(ω(s))ds ^ τL2π - C (14)
o

because ω(s) < — -^. Using the equality in (11), the first term of (12) is bounded by

the first one in (3.57).
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For the second term in (12), we have

fKΛωWJds^t iL^-C (15)
0

and

$dμτ2ι (ω) ̂  C(τ - t^e-^Ά ^ -e~7τ

w , (16)
-T " ε»

which holds because ι> ̂  — επ. Using (2) and (15,16) we bound the second integral
in (12) by

-Ή'ΊΊ*! 3I2
0 Γ l

(17)

which, using (6) with z = M + -̂ , α = L2" is less than

(18)

since M ̂  0. Combining this with (13), and remembering that υ ̂  — εn, i.e.

Lny + L π - <; - L " - , the second term of (12) is bounded by

L~npe-~7zM (19)

which is the second term of (3.57) for x > 0. For x < 0, we have, see (3.21-3.23)
(u + ε /2)2

\u\ = 2(τ + 1)L" + |x| and the factor - — + ί iL 2 " in (17) reaches its min-
imum at tx = τ, where

L_iλ+ τ £ a. έ L.M_^+ cwL (20)

which then gives (3.57).
Finally, we prove (3.58). Let tx be the time of the first visit of ω to zero. The LHS

of (3.58) is bounded by

™(j,

+ J i i ; e - ^ w ( 1 + L " " ί ^ ^ Jf dμ; ,(ω)χ(ω < 0)e-$lK(co(s))ds j ?

\ Vτ / /

where the second term collects walks that do not visit zero, in which case v has to be
negative. We used:
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for v ^ — εn (see (3.61)), in the first term and

for - εn ^ v ^ 0 in the second term.
We shall bound each term of (21) by

C(L)L'n{1+δ)(L-n^+δ) + l3ln{u)χ{τ ^ L~n/2))e-^xlχ(x<0) (22)

and, to get (3.58), use

L-nil+δ)e-tκ]x]xix<0) S C(L)hntt(u)

for u < 0, which holds since x ^ 2tLn for x > 0, u < 0, and then, use (3.43).
For the first term of (21), we write

ί K = ί K + I Vn (23)
0 0 tι

and we have, by (3.53),

\dμi:^{ω)e-& v» ^ DXS&J$> υ) + L~npe~c7r . (24)

Besides, from the explicit formula (3.54), one gets

0 0 / | | ; | \ / 6 \

f dvDτS£ (0, v) 1 + - ^ ^ C min — 7 = 2 = , 1 (25)

and, after integration over ι;, the second term in (24) is smaller. Also, we shall prove
below that

(26)

Let us consider τ ^ — - . Using (24-26), we bound the first integral in (21) by

(27)

Consider first |w| g L"n. Then we bound the minimum in (27) by 1, the integral

is bounded by e cvΐ, using (7), and this is all we need in (22), since here x > 0,

τ ^ 4ZΓ 2" ^ ZΓ^ and ln{u) ^ c for \u\ ̂  L~". So, let \u\ ̂  L"n, and bound the
p

minimum in (27) by " . Then, change variables:
Jτ - U

_
u-
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Note, that now \ύ\ ̂  1. We get the integral

= - (28)
f σ J o s ' y/σ — s

which we want to bound, see (21, 22), for x ^ 0, by

and by

(1 + Iδl)1 '4 " " " " |S

3n

for σ ^ ^ (29)

—
f o r σ ί g — . (30)

We divide the integral in (28) into |s - 1| g £ and |s - 1| ^ i For the first part,
a Gaussian integral around s = 1 gives

5 / 4 Λ ί ϊ ϊ ί r 2 ( ΐ

J & V I 7 -gclMl^e-'"' (31)
3/4 y/σ — s

and, if σ ^ | , τ ^ L2 implies that |S| ^ C(L)L2\ so that (1 + cL~n^P) S C(L\

while

o 6l2/ \ V

where we use s + - ^ 2 + - f o r | s — 1 | ^ - and we use the factor expί — — I to

control 3/2 or ^ Γ (since \ύ\ ̂  1).
S

Using (31, 32), we get that (28) is bounded by

3»
2L"2" 3π

which is always less than (30) since \ύ\ ^ 1. And, for σ ^ ~p^p? we have \u\ ^ cL 2 ,

4|M| _I _15
since τ ^ - — means σ ^ 8. So, |u| 4 ^ L 8 and, inserting this in (33), gives (29),

Li

for δ small.

For x ^ 0, we have |w| ^ 2(τ + 1)LM, τ ^ L 2 - 1, so that σ ^ 1 - —^. Since σ is
JLJ

bounded away from one, we can improve the bound in (31, 32) into ce~^^1+τ2\

But —j ^ |x| for x < 0, so we get the exponential decay needed in (22).
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For τ ^ — - , we get from (24-26) and from L n V

 Γ ^ y/τ ^ L an upper

bound on the first integral in (21) of the form:

C(L)
o r i \Vτ -

} dtί^e-^-^L2nmin(-7^=, lY) . (33)

The first term can be analyzed as we did with (27) and the second term is always

bounded by e-
Ln{u{ e~cLnlu{ and is bounded by cznJJe~Ln^ e'cLn^ for τ ^ LT.

These bounds are less than (29, 30).
For the second integral in (21), we introduce 1 = χ(v > ύ) + χ(v ^ u) and, for

v > u, we let ^ be the time of the first visit to v. Then, we can bound that integral by

J dvχ(v > u)e-Ln

+ c j di?χ(i? g w)e-LM|t;1( 1 + L - , ! ϋ ^ i y ; ( 3 4 )

The second term is bounded by

cmin l,—r

V V

which gives a contribution to (22) since, for \u\ ̂  εn, ln(u) ^ (1 4- L"|w|)~4 ^ £ - β.
For the first term in (34), we use:

{U~vf tlA ift < 4 | f l " p |

and argue as for the first integral in (21).
So, we are left with the proof of (26). The proof of (35) is similar. Consider first

t 1 ^ ~ . Using (3.44) we have rξ(u) ^l-cλ^l/2 for u < 0, so
Ln

J Vn(ω(s))ds ^ ^ ^ Ln\u\ + c^L2" (36)

which, combined with (2), gives (26) for that case.
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For tx ^ ——, we write

where

J Vn(ω(s))ds ^ Llntλ - λ\ Wn(ω(s))ds ,

\Wn(ω(s))\ ^L2ne-cLn\

(37)

(38)

and, as in (3.44), the origin of the coordinates is chosen so that λ is small enough. So
to prove (26), we have to show (see (2))

/oλ f'1 Wn(ω(t))ds\ <r c (ΊQ\

where the expectation value and the probability P below refer to the measure
dμi\0{ω < 0). We bound the LHS of (39) by

eλ(m+l)p

m>0

J Wn(ω(s))dse [m,m + 1] . (40)

Define tk(ω) = for k ̂  1. By (38), ft Wn(ω(s))ds

1 }; so, we can bound (40) by

£ eλ(m+1) Σ P(tk(ω) ^ amkL~2n),

where α is such that ocΣkke~c{kί) ^ l We shall prove that

P(tk(ω) ^ ocmkL-2n) ^ Ce~camk

for m large. This then proves (39) for λ small enough.
Write

Jdμfoiω < 0) = f <fe Jdμ f l2i ω < - — )dμs κ_ (ω < 0),

— k
i.e. ίx - 5 is the time of the first visit of ω to — - . Clearly,

jLi

χ(tk(ω) ^ amkL~2n) ^ χ(s(ω) ^ amkL'2").

So that to prove (41) we will show (see (2))

(41)

(42)

VΛax-- )dμsjL (ω < 0) ̂  O Γ " - " ^ (43)

where the LHS is

ί l

c ί



Stability of Moving Fronts in Ginzburg-Landau Equation 315

Consider (43) for u ^ -, otherwise tx ^ — - ^ — ^ ^ —^ for m large, and (43) i
LJ LJ LJ JU

trivial. Now use tt - s = ί t ( 1 - — ), — ^ 1 + —, 1 + — ^ 2, to get
\ ί/ 1 s/ί ί ί

is

1 -

(45)

which, for tt ^ — - and s ^ αm/cL 2", i.e. for — ϊ; — , is, for m large, bigger

than

•"
s 2 w2

7 Γ T W ^ ~Λ 1- cocmk . (46)

Now consider separately the integral in (44) over s so that t1 — s^ηt1 and
k

h — s S ηtx, where η is small, say less than xg. For tx — s ^ f/ίi we use u + —

/ 2/Λ
^ \u\ I since u ^ — — I and (46) to bound that integral by

V L J

where the last integral is of order one by (7). So we get a contribution to (43). For
2k

— s ^ ηt1, with η small, we have for u ^ -, ^ \\u\, and

u+ τ»
ίx - s) ίχ - s)

since 5 ^ t u —- ^ —-y ^ cαm/c, where the second inequality comes from ίx ^ —-,

s ^ ocmkL~2n. So we may bound the integral (44) over tx — s ^ηtu by

k

fw+^)2 h ......
(47)

but, going back to (42) and using (2), we see that the last integral is proportional to

(48)
tψ tψ

(we apply (42) to a Wiener measure with a diffusion constant whose value is twice
the original one); (48) inserted in (47) gives (43).
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Proof of Lemma 4. To prove (3.78) consider first u ̂  2εM and let tγ be the time of the
first visit to εn. We write

kn(u, v, τ) ̂  cLn ]d
o

L3-μμlιV(ω)χ(ω > εn))\V'{Lnω{s))\ds , (49)

where we use (3.105) and F ^ 0.
We can see that (24, 25) hold with 0 replaced by εn and Fby ^ F s o that the first

term of (49) gives a bound on §-Endvkn(u, v, τ) of the form

where we used also (2). This integral is itself bounded by
nδ

/ X c\u-εn\

which gives a contribution to the RHS of (3.78): for τ ̂  L2, we use

— F ^ , C , e^^TΓ and |w - β j " 1 ^ ^n'«(w) for u ̂  2εM.

T τ I" - εM|
For the second term in (49), we have

c_

since ω ̂  εn. To obtain the factor e~L%i in (3.78), let x = x(ω) be the point closest to
zero which is visited by ω. Then we have

]\V'(Lnω(s))\ds ^ L-npe~cLnχ ,
o

c

and we get a decay e~v^"~x| from the Wiener measure, for the paths going in time
less than τ from u to x. Finally, for u ̂  2εw, we use (3.105) and (24, 25) with
0 replaced by u and V replaced by \ F, to get

\dvkn{u,v,τ)^cl

which again gives a contribution to (3.78) (ln(u) ^ ((c(L)n)~1/4 for u £Ξ 2εM, so we

— n g
take 1 as an upper bound for τ ̂  L 2 and —j= otherwise).

'τ
The proof of (3.79) is similar to the one of (3.56), using (3.105). The proof of (3.80)

follows the one of (3.58). To bound L3n J^l V'(Lnω(s))\ds9 we use L2n\ V'(Lnω{s))\
^ Wn(ω(s)) for ω(s) < 0, where Wn occurs in (37, 38). Indeed, the only property of
Wn that we used was (38), which holds for V. Then, we use

L3n] I V'{Lnω{s))\ds S L'c^e^o wn(ω(s))ds e\\\ vn(ω(s))ds 9

0
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where tx is the first time that ω visits 0, as in (21), and we use (3.105) for s ^ tγ. Then

we can repeat the proof of (3.58) and use c(λ)Ln ^ LM(1 +ϊ) to obtain (3.80).

The proof of (3.81) follows the one of (3.57): consider (12); when ω < - y ,

we have

and we can get the exponential decay as in the proof of (3.78). On the other hand,

the second term in (12) led to the second term in (3.57) which, after integration over

v contributes to the RHS of (3.81).

Proof of Lemma 5. Part a is proven just like in Lemma 3, with the only change that

fn(u) is replaced by — Lnu.

The proof of (3.100) is similar to the one of (3.57), but for ω < — - , we have of

course

3]vn(ω(s))ds^3τL2n-c
o

instead of (14). So we can take c in (3.100) equal to 2 or to α — 1, if 3 in (3.25) is

replaced by α.

Finally, for (3.101) we can follow the proof of (3.58).
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