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Abstract: Let q be a complex number such that \q\ = 1 and g 4 φ l . Integrable
("well-behaved") operator representations of the *-algebra SLς(2,lR) in Hubert
space are defined and completely classified up to unitary equivalence. In order to
do this, the relation xy — qyx = 7(1 — q),η G IR, for self-adjoint operators x and
y is studied in detail. Integrable representations for this relation are defined and
classified.

0. Introduction

The study of non-compact quantum groups or more generally of non-compact quan-
tum spaces at the Hubert space level leads to new features and difficulties which
do not occur in the compact case. The main source of these problems is the fact
that the generators of the "ring of functions on the non-compact quantum space" do
not have (enough) representations by bounded operators in general. On the technical
level, we are concerned with (finitely many) unbounded operators which satisfy the
commutation relations from the definition of the quantum space. The first problem
that arises is to select the "well-behaved" representations for this set of relations.
Following the terminology commonly used in representation theory of Lie algebras
and of general *-algebras (see e.g. [J, SI]), we call these representations "inte-
grable." In general, there is no canonical way to define integrability for a given
set of commutation relations. The main purpose of this paper is to define and to
classify integrable representations for the real quantum vector space JR^ (i.e. for
the relation xy = qyx), for the real quantum hyperboloid Xqn (i.e. for the relation
xy — qyx = 7(1 - g ) , 7 € R/{0}) and for the real form SLq(2,IR) of the quan-
tum group SLq(2), where x = x*9 y — y* and \q\ = 1, q4ή=l. Our main aim was
to investigate SLq(2,ΊR), but it turned out immediately that this requires a very
detailed treatment of both R^ and XqiΊ. Knowing the irreducible integrable repre-
sentations could be a starting point for studying some "analysis" on the quantum
group SLq(2,lR). The problem of defining integrability for certain operator rela-
tions was touched in [D] and in [Wl]. It was studied in [OS1, OS2 and S2]. If the
relations are "nice," it may happen that for irreducible integrable representations all
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operators are bounded (like in case of classical matrix groups where they correspond
to the group elements) or only one operator is not bounded, cf. [OS1, OS2]. This
is not true for R 2 , X q ) 7 or SLq(2, R), where apart from the trivial one-dimensional
representations always (at least) two unbounded operators occur.

This paper is organized as follows. In Sects. 2, 3 and 4 we study integrable repre-
sentations of R 2 , Xqn and SLq(2,Έί), respectively. After giving precise definitions
of integrable representations and discussing some motivation, we describe the inte-
grable representations in terms of two models. In cases of Xqa and SLq(2,ΊR) we
also define partial integrability by allowing one operator to be closed and symmetric
rather than self-adjoint. As a result of our classification all irreducible integrable rep-
resentations of R 2 , Xqπ and SLq(2,W) are listed in Corollaries 2.10, 3.8 and 4.11,
respectively. The representation of SXq(2,R) occurring in the paper [FT] of L.D.
Faddeev and L.A. Takhtajan fits into this list. Our classification depends essentially
on the self-adjointness of certain operators. The corresponding technical results are
contained in the Appendix.

1. Preliminaries

In this paper, q denotes a complex number such that \q\ = 1 and g 4 φ l . We
write q — e~ιφ with \φ\ < π and we set qo = ez¥ and φn = φ — πn for n G TL.
Throughout, the letters P and Q denote the position operator and the momen-
tum operator, respectively, from quantum mechanics. That is, Q is the multipli-
cation operator by the variable x and P is the differential operator i ^ acting
on the Hubert space £ 2 (R). Recall that FPF~ι = -Q and FQF~ι = P, where
(Ff)(x) = (2π)~ι f f(t)e~ιtxdt is the Fourier transform of a function /. The opera-
tors eaP and e@Q with α, β G R play a crucial role in what follows. The following
lemma gives a precise description of the domain V(eaP). We state it only in case
a > 0.

Lemma 1.1. (i) Suppose that f(z) is a holomorphic function on the strip Ia :=
{z: 0 < Imz < a} such that

sup J\fy(x)\2dx < oo , (1.1)
0<y<a

where fy(x) := f(x 4- iy).
Then the limits f :=\imyιofy and g := \imy^afy exist in L 2(R), / G V(eaP)

and g = eaPf. We shall write f(x -f id) := g(x), so that (eaPf)(x) — f(x + id).
Moreover, we have a.e. on R,

f(x) = lim f(x + in~2) and f(x + id) = lim f(x + i(a — n~2)) . (1.2)
n—ί-oo n—> oo

(ii) For each f G T>(eaP) there exists a unique function f(z) on Ia as in (i) such
that f = \imyi0fy in L 2(R).

Proof We restrict ourselves to the case a = 2.
(i): The function f\(x) = f(x + ϊ) satisfies the assumptions of the classical Paley-
Wiener theorem (cf. [K], p. 174), so that F~ιfλ eV(e^). Hence fx eV(ep)Π
V(e~p). Setting / = e~pf\ and g = e p / i , we have e2Pf = g. The functions
f(z-hi) and (2π)- 1 ^e~itz{F~x fx)(t)dt are both holomorphic for \Jmz\ < 1 and
they are equal on the real axis, so they coincide on the whole strip {z: \lmz\ < 1}
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This yields fy = Fe^-^F'1 fx = e{y~x)Pf\ for y e (0,2). From F~x fλ e
and the dominated convergence theorem we obtain

11/-All = l|e-pΛ-e<"-1)PΛ|| = IKe^-e^-^F-Vill-Oasi/iO,

and similarly ||# —/ y | | —> 0 as y | 2. Set ζn(x) = f(x + in~2) and ηn(x) =
f(x + i(2 - n~2)). Since Σn | | ζ n + 1 - ζ n | | < oo and Σn \\ηn+\ - ηn\\ < oo because
of (1.1), a routine argument from measure theory shows that ζn —> / and ηn ~* g
a.e. on IR.
(ii): Since / e V(e2P)Jx := ep f e £>(ep) Π P ( e ~ p ) and hence F~ιfx e V(e^).
The assertion follows by a similar reasoning using the converse direction of the
Paley-Wiener theorem. •

Corollary 1.2. (i) / / α e R , / G V(eaP), ε > 0 and ωG(C, ί/ien #(x) :=

e- e ( x + w ) 2/(a:) G ̂ (e^^5) and (epp)(x) = e" e ( a ; + a ; + i a ) /(a: + iα).
(ii) // α,/?GR and f eV(eaPeβQ)ΠV(eaP), then feV(e^eaP) and
eaPeβQ j __ eiθLβeβQeotP^

Proof, (i) is clear. We verify (ii) for a > 0. If /(#) is the function for
/ G £>(eαP) as in Lemma 1.1, then obviously e@zf(z) is the corresponding function
for eβQf e V(eaP). Formula (1.2) implies that eaPeβQf = ea^e0QeaPf. •

Let us adopt a few notational conventions. If A is an operator on a Hubert
space Q and B is an operator on L2(ΊR), we write BA for the operator B 0 A on
L2(IR) ® 5 If no confusion can arise, an operator and its closure are denoted by
the same symbol. If a is a self-adjoint operator, we write a > 0 (resp. a < 0) if
α^O (resp. α^O) and kerα = {0}. A family {α ;̂ i G /} of unbounded operators
on a Hubert space W is called irreducible if a decomposition α̂  = bι θ Q for all
i G / with respect to an orthogonal direct sum Ή = Ήi 0 7̂ 2 is only possible in
the trivial cases H\ = {0} or Hi = {0}. Symmetric operators are always meant to
be densely defined. As usual, a unitary self-adjoint operator is called a symmetry.
Throughout, we let

/ I 0 λ , /0 1

denote the Pauli matrices acting as operators on Hubert spaces of the form
H = Hi θ 7ί\. We write s(a) for the sign o f α e R .

In what follows, T will denote a fixed dense linear subspace of L 2(R) such
that T C V(eaQ) Π V(eaP) and ^* is invariant under the operators e a Q , e α F , e* ίQ,
eιtp and e~ε(^ for ce, t G R and ε > 0. Note that the invariance under the unitary
groups t —> e ϊ t ( 5 and ί —> e z t p implies that T is a core for all operators eaQ and eaP,
a G R (cf. [S2], Lemma 7.2). For instance, one may take T = Lin{e~ε:c +rγx; ε > ρ,
7 G C} for some constant ρ > 0.

2. Integrable Operator Representations of the Real Quantum Plane R^

Recall that R^ is the free *-algebra with unit element which is generated by two
hermitian elements a and b satisfying the relation

ab = qba .
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Throughout this section, let {α, b} denote a pair of self-adjoint operators a and
b acting on the same Hubert space H.

2.A. We repeat the following definition and two propositions from [S2]. Note that
some terminology in this paper is different from the one used in [S2].

Definition 2.1. Suppose that α^O or α^O. Then the pair {α, b} is called an inte-
2grable representation o/R 2 if Ho = ker a is reducing for b, i.e. we have b = b\ θ 60

and a = a\ θ 0 on H — H§ 0 Ho and if there exists a k G Έ such that

(αip* bx = e ^ ^ f t i l α i l " for allteWL.

In this case we write {α, 6} G C2k(g)-

Proposition 2.2. Suppose that a > 0 or a < 0 and that ker 6 = {0}. Consider the
following conditions:

(i) {a, b} is an integrable representation o / R 2 .

(ii) {a,b} is unitarily equivalent to some pair {a := εeQ, b := eψ2kPw} on
L 2(R) 0 /C, where ε G {1,-1}, fc G Z β ί̂/ w is a symmetry on some Hilbert
space K.

(iii) There is an integer k such that

\af\b\is = eiφikts\b\is\af, t,s G R . (2.1)

Then (i) <-» (ii). ijf /« addition b > 0 or b < 0, ί/zew <z// ί/zrβe conditions are equiv-
alent.

Proposition 2.3. Suppose that a > 0 or α < 0. Lei {α, 6} be an integrable rep-
resentation of R^. Then there exists a dense linear subspace V of H such that
aV = P , bV C D, X) w α core /or α απrf * and abφ = ^6α^ /or ^ G P .

Suppose that α > 0 or a < 0 and let n, m G IN. If g 2 n m Φ ± 1 and if {α, 6}

is an integrable representation of R 2 , then {c, d} is an integrable representation of

2.5. Our next aim is to derive a definition of integrability in the general case. In
order to get some motivation, let us assume for a moment that we have already such
that a definition and let {o, b} be an integrable representation of R 2 . In view of the
above remark, it might be reasonable that {α2, b} is also an integrable representation
of R22. Since a2 > 0, we know already what the latter means. By Definition 2.1,
there exists a k G Έ such that

(aψb = ei2φ~2nk)tb(a2γ\ t G R ,

so that
\a\ιs b = e{-φ-^kH \a\is = eφkS b \a\is , s G R . (2.2)

If k is even, this means that {|α|, 6} is an integrable representation of R 2 . If A; is
odd, then (2.2) says that {|α|, 6} is an integrable representation of R?_ς. Set ε :=
(—l)fc. Further, by Proposition 2.3, we have \a\ bψ = εqb \a\ ψ for ψ in a common
core X> for |α| and b and |α|Γ> = V. If we require that the operator relation abψ =

is also valid for ψ EΊ)9 it follows from abψ = ua\a\bφ = wαεgfe|α|ψ
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and qbaφ = qbua\a\φ that uqbη = ε buaη for η G \a\T> — V. Since V is a core for
b, this yields uab C εbua.

We put the outcome of the preceding discussion into the following

Definition 2.4. A pair {α, 6} 0/ self-adjoint operators a and b on a Hubert space
is called an integrable representation of Έ?q if there is an ε G {1, — 1} such that:

(D.I) {|α|,&} is an integrable representation ofΈ?εq and
(D.2) uab C εbua.

If {\a\,b} € C2fc(g), we sftα// write {α, b} G e2fc(<?) for ε = 1 α«d {α, 6} G
/or ε = - 1 .

Clearly, if α^O or α^O, then Definition 2.4 is equivalent to the above Def-
inition 2.1. (Indeed, if α > 0 or a < 0 then ua = I or ua = —/, so (D.2) yields

ε = 1 if 6 + 0.)

Lemma 2.5. The following three conditions are equivalent:

(i) {α2,6} is an integrable representation of^?q2.

(ii) {|α|,6} is an integrable representation ofψ}εqfor ε = 1 or ε = — 1.

(iii) {|α|, |6|} w α« integrable representation of IR^ ^or ε = 1 or ε = — 1 α«ί/

Proo/ Without loss of generality we assume that kerα = {0}. As already noted
above, (i) and (ii) are both equivalent to (2.2) for some k G Z. Thus (i) <-> (ii).
Suppose (ii) is valid. From (2.2) we get

| α | " | 6 | | α Γ i β = e^ β | 6 | , s e R , (2.3)

which in turn means that {|α|, |6|} is an integrable representation of Έ?εq with

ε = (— l)k. Further, applying first (2.2) and then (2.3), we get

|α | < β w 6 |6 | = \a\isb = e * f c β 6 | α | " - ub(eφkS\b\\a\is)

= ub\a\is\b\,

so that \a\ιsUb = Ub\a\ιs for s G IR. Consequently, ub\a\ C |α|ub and (iii) is proved.
Conversely, assume condition (iii). Then we have (2.3) for some k G 7L. Combined
with i6b|α| Q |α|^b, this obviously leads to (2.2) and so to (ii). •

Lemma 2.6. uab C εbua if and only if ua\b\ C |6|uα αnί/ iiαtib = εubua.

Proof We can assume that ker a = ker b = {0}. Then wα and ut are self-adjoint uni-
taries. Suppose that uab C εbua. Hence itα6wα = ε6 and ua\b\ua = \b\ which gives
ua\b\ = |6|wα. From u α i ^ = iiα& C ε6nα = εub\b\ua = εubUa\b\ and ker |6| = {0}
we conclude the uaub = εubua. The opposite direction follows similarly. •

Lemmas 2.5 and 2.6 allow to formulate several equivalent versions of Definition
2.4. We mention one sample stated as

Corollary 2.7. {α, b} is an integrable representation of Έ?q if and only if we have
ua\b\ C \b\ua, ub\a\ C \a\ub, uaub = εubua and {\a\, \b\} is an integrable represen-
tation ofΈ?εq for ε = 1 or for ε = — 1.
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One disadvantage of the above Definition 2.4 is that it is not symmetric with
respect to a and b. We now remove this defect.

Corollary 2.8. Consider the following assertions:

(i) {α,b} is an integrable representation ofΈ?q.

(ii) {6, a} is an integrable representation of R?.

(iii) {a~ι,b} is an integrable representation o/R?.

(iv) {a~ι,b~1} is an integrable representation o/R^.

We have (i) *-> (ii). If ker a = {0}, then (i) <-> (iii). If ker a = ker 6 = {0}, then
(i) ^ (iv).

Proof By Corollary 2.7, it suffices to check that the last condition occurring therein
is invariant under the above operations. Hence it is enough to verify Corollary 2.7 in
the case where a > 0 and b > 0. But in this case these assertions follow immediately
from formula (2.1) in Proposition 2.2. •

2.C. In the subsection we describe the structure of the integrable representation up
to unitary equivalence by means of the following two models. For this let /C be a
Hubert space and k an integer.

(ΛΊi): Let w and v be commuting symmetries on K. Define self-adjoint operators
α and 5 on the Hubert space H := L2(ΊR) <g> K by ά = eQw and b = eφ2kPv.
(M-\): Define self-adjoint operators α and 6 on W := L2(IR) ® (/C Θ /C) by the
operator matrices α = e® ® σo and b = eφ2k+ιP <

Clearly, the couple {α, 6} of (ΛΊi) belongs to C2k(θ), while the couple of (M-\)
C ( )is in

Theorem 2.9. Suppose that {α, b] is an integrable representation of ΊR^ such that
ker a = ker b = {0}. Let ε e {1,-1} be as in Definition 2.4. Then the pair {α, b}
is unitarily equivalent to a pair {α, 6} described in the model (M£).

Proof Let H+ :— ker (ua — I) and H- := ker (τzα + I). First suppose that ε = 1.
Since ker a = {0}, 7ΐ = 7ΐ+ 0 7Y_. From Corollary 2.7 and Lemma 2.6 we conclude
that H+ and H- reduce the self-adjoint operator 6, i.e. b — b\ Θ 62. It is clear that
a = a+ Θ α_ with α + > 0 and α_ < 0. Applying now Proposition 2.2 to the pairs
{α+,6i} and {α_,62}? we obtain a pair {α,δ} as in (Mi).

Suppose now that e = — 1. Then wα and i^ are self-adjoint unitaries satisfy-
ing the canonical anticommutation relation uaUb + ^ί,wα = 0. Hence we have an
orthogonal decomposition H = Hi Θ Hi such that ua and uι act as the Pauli ma-
trices σo and σ\9 respectively. By general properties of the polar decomposition,
ker(ua =F -0 and ker(w& =p /) are the subspaces of H, where a resp. fe are positive
and negative, respectively. Let P±(a) and P±(b) denote the orthogonal projections on
ker(ϊzα =]= /) resp. ker(ιib =f /). By ua — σo, we have a — α+ 0 α_ with α + > 0 and
α_ < 0. Since W6|α|ΐ/& = \a\ because of Corollary 2.7, we get α_ = — o+. From
uαfeϋα = —6 by Lemma 2.6, P±(a)b C bPψ(a), so that 6 and |6| can be written as
matrices
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which in turn yields c* = c > 0. By the last condition in Corollary 2.7, {|α|, |6|} is an
integrable representation of R/Lr Therefore, {a+,c} is an integrable representation

of IR2^ on the Hubert space Ή\. Now Proposition 2.2 says that {a+,c} is unitarily

equivalent to some pair {e®,eψ2k+λP}. (Note that ε — 1 and w = 1, since α + > 0

and c >0.) Hence {α, 6} is unitarily equivalent to {α,δ} in (ΛΊ_i). •

We state some consequences of Theorem 2.9.

Corollary 2.10. Each irreducible integrable representation {α, b} of IR2 is unitarily
equivalent to one of the following list:

(l)£u£2jk: a = ε,eQ, b = ε 2 e ^ p on H = L 2 (R): εuε2 € {1, - 1 } , keZ.

(II)fc : a = eQ 0 σ0, 6 = e ^ ^ 0 σi on W = L 2(R) 0 C 2 : fcGl

(IΠ)α 0 : α = α, 6 = 0 on H = C: α G R.

(IΠ)o,α : a = 0, ^ α o n W = C : α 6 ] R .

Corollary 2.11. £eί {α, 6} Z?e an integrable representation of Ί$ίq such that
ker a = kerb = {0}. Then there exists a linear subspace V C P(α) Π X>fZ?j o/ 7Y

that:

(i) α̂ > = V,bV = V, \a\uV = V and \b\uV = V for teTSL
(ii) V is a core for α, α" 1 , 6 and b~ι.

(iii) α6^ = qbaψ for ψ £D.

Proof The domain V := J 7 0 /C for (Λ4i) resp. V := J7 ® (K, ® JC) for (Λί_i) has
the desired properties. •

Corollary 2.12. i/* {α, 6} w α« integrable representation of 1R2

ker α = {0}, ί/*e« ί/zβ operator (qob + 7 ) α - 1 w symmetric for any real 7.

Proof Since it suffices to prove this in case where 7 = 0 and ker b = {0}, we can
assume that {α, b} is as in (M±\). But then the assertion is clear, since the operators

PQ a n c ι ίq0e
φ2k+ιPe~® are symmetric by Proposition A.I, (v). •

3. Integrable Operator Representations of the Real Quantum Hyperboloid Xq,Ί

Throughout this section 7 is a real non-zero number. By the real quantum hyper-
boloid we mean the free *-algebra Xq,Ί with unit element 1 which is generated by
two hermitian elements x and y satisfying the relation

xy - qyx = 7(1 - q)l.

3.A. In this subsection we want to define x-integrable and integrable representations
of Xq^Ί. We begin with some simple algebraic manipulations.

Suppose that x and y are hermitian elements of a *-algebra ΊZ with unit. Let
a be a non-zero complex number such that a = άq and put a := a(yx — 7). The
algebraic relations

(xy - qyx - 7(1 - q))x = 0
and

xa = qax (3.2)
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in ΊZ are obviously equivalent. Thus if x is invertible in ΊZ, then (3.1) is equivalent
to (3.2) when we set y — (a~ιa -f /y)x~ι. Moreover, we have

a* -a = aq(xy - qyx - 7(1 - q)),

hence a is a hermitian element of ΊZ if and only if (3.1)is valid. That is, on a formal
algebraic level we have reduced the real quantum hyperboloid to R^.

Definition 3.1. Suppose that x is a self-adjoint operator and y is a closed symmetric
operator on a Hubert space Ίi. Let a £ (C, ceφO, be such that a = άq. We shall
say that the couple {x,y} is an x-integrable representation of Xqπ if there exists
a self-adjoint operator a on Ίi such that {x, a} is an integrable representation of
R^, kerx = {0} and y is the closure of the operator (α~~1α + 7)x~~1.

Definition 3.2. A pair {#, y} of self adjoint operators x and y is called an inte-
grable representation of Xq,Ί if {%, y} is an x-integrable representation of Xqπ

and {y, x} is a y-integrable representation of Xqπ.

Remarks. (1) Clearly the preceding definitions do not depend on the number a.
(2) Let r be the *-isomorphism of Xqπ onto Xqn defined by τ(x) = y and
r(y) = x. By the preceding definitions, r maps x-integrable representations of Xqn

into y-integrable representations of Xqπ and vice versa, so r preserves the integra-
bility. Also the scaling isomorphism x —> j~lx, y —> y of Xq,Ί onto Xq,\ preserves
this notion. Therefore, in order to classify the integrable representations of Xq^Ί we
could assume without loss of generality that φ > 0 and 7 = 1.
(3) The reason for allowing only symmetric operators y rather than self-adjoint
operators in the above Definition 3.1 will be seen later in Subsect. 3.C: The operators
y appearing in our models are not self-adjoint in general.

We shall provide some motivation for our definitions. First note that our assumption
kerx = {0} seems to be justified by the following very simple

Lemma 3.3. Let x and y be a symmetric operators on a Hubert space and let
η £ T>xy := {η £ Ί?(xy) Π V(yx): xyη - qyxη = 7(1 - q)η}. If xη = 0 or if yη =
0, then η = 0.

Proof Suppose that xη = 0. Putting ζ := (7(1 — q))~ιyη, we have xζ = η and so
0 = (xη,ζ) — (η,xζ) = (v,v)i that is, η — 0. The proof in case where yη — 0 is
similar. •

Next we give some arguments justifying the definition of x-integrability in case

First let us assume that x and y are elements of an algebra ΊZ such that x is
invertible in ΊZ and (3.1) is satisfied. A straightforward induction argument shows
that

f(x)V - y f(qx) = 7(1 - q)(Dqf)(x) (3.3)

for any polynomial/, where Dqf denotes the so-called ^-derivative

Suppose now that x and y are self-adjoint operators such that x > 0. In order to
define integrability for (3.1), it might be natural to require (3.3) for some suitable
"nice" functions / such as f(x) = xιt,t £ R. (This idea has been used already for
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R^ in [SI].) Putting f(x) = xu, ίe lR, into (3.3), we obtain formally

Inteφreting (qx)ιt as eψ2ktxτt for k <E E and multiplying by x from the right,
we get

xityx - yxeφihtxiι = 7(1 - eφ2kt)xu ,
and hence

xu(a(yx - 7)) = eφikta(yx - η)xiι, t e R . (3.4)

Restricted to the domain VXjy from Lemma 3.3 the operator a := a(yx — 7) is
obviously symmetric. Assume now that the closure a of a\Dx^ is a self-adjoint
operator. Then, by (3.4),

x i t a = e<P2ktaxit , ί 6 R .

Since x > 0, this means that {x, α} is an integrable representation of R^. A similar
reasoning with f(x) replaced by f(x2) can be used in order to justify our definition
also in the general case.

3.B. Similarly as in case of R^, we study the x-integrable representations of Xq,Ί

in terms of two models.
Suppose A is a self-adjoint operator on a Hubert space Ho with ker^4 = {0}.

Let K, be a Hubert space and let fc € Z.

(Mi): Suppose that w and v are commuting symmetries on /C. Let x and y be the
operators on the Hubert space H = L2(R) (8) /C Θ Wo defined by

£ = e9iί; Θ A" 1 and g = (qoeφ2kPυ 4- η)e~Qw Θ 7 ^ - 1 . (3.5)

(Λί^!) : W e d e f i n e operators x and y on the Hubert space H = L 2(R) 0 ( / C θ / C ) θ
Wo by

£ = e Q (g) σi θ A and § = (q0e
φ2k+]Pe~Q 0 σoσi + 7 e ~ g Θ σi) θ 7A""1 .

(3.6)

In both cases, x is a self-adjoint operator and y is closed and symmetric (cf. Propo-
sition A.I, (v)). Note that y is not self-adjoint in general, see Proposition A.4.

Proposition 3.4. The pair {x1 y} as defined in (M\) or in (Mx_x) is an x-integrable
representation of Xqn. Conversely, each x-integrable representation {x,y} is uni-
tarily equivalent to a pair {x, y} of one of the above models (M\) or (Mx_x).

Proof To verify the first assertion, set a = qζ and let a = eψ2kPw 0 0 for (Mx) and
a — eψ2kP ® σ0 θ 0 for (M^x), In both cases {x, a) is an integrable representation
of R^ and y = (qoa + η)x~λ, so that {x, y} is an x-integrable representation of
Xq,Ί by Definition 3.1.

The second assertion follows in a straightforward manner from Definition 2.1
and Theorem 2.9. In case of (M-\) the above form of x and y is obtained after a
unitary transformation w, where u denotes the 2 x 2 matrix (urs) with un = ui 2 =

Corollary 3.5. Let {x, y} be an x-integrable representation of Xqπ. Then there is
a domain V C T>(x)ΠT>(y) which is invariant under x , x - 1 and y and a core for
these operators such that xyη — qyxη — 7(1 — q)η for η £ V.
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Proof SQtV = J7^>JCφVoo for (Mx) and V = T 0 (/C Θ /C) Θ £>oo for
where P ^ := p | eZV(An). That D is a core for # follows from Proposition A.I,
(i). •

Since the above domain V is obviously contained in the domain VX}V from
Lemma 3.3, it follows that the operator a in Definition 3.1 is the closure of
a(yx — j)\Ί)Xiy. In particular, this shows that a is uniquely determined by {#, y}.

Corollary 3.6. For arbitrary ε\,ε2 G {1,—l},fc G Z and a E R|{0}, eαc/z couple
{x, y} of the following list is an irreducible x-integrable representation of Xqn.
Any irreducible x-integrable representation of Xqπ is unίtarily equivalent to one of
this list:

(ι)εuε2,k '- x = ^ieQ,y = ex(ε2qoeφ2kP +Ί)e~Q on H = L 2(R).

(IΙ)fc : x = e 0 <7i, 2/ — qoeφ2k+ι e~^ 0 <Jo<τi + ^e~^ 0 σi o«

(IH)α a; = α, 2/ = 7a""1 on H = <E.

3.C. Now we classify the integrable representations of X i j 7 up to unitary equiva-
lence. The cases where the operator y in our models is self-adjoint are characterized
by Proposition A.4. We rewrite our models (M±λ) in these cases.

(Mi): Let Ίi and x be as in (Mx) and define

yk : = ((- l)^ o e^ 2 f c P 5(7) + 7) e~ gw Θ 7 ^ ~ ! for fc G {0,5(<p)} .

(Λί_i): Let 7ί and ^ be as in (M*Lλ) and set

0 v

where y± := (±qoe^-s^)π)P + 7) e~ g .

Theorem 3.7. (i) 4̂« x-integrable representation {x,y} of XQiΊ is integrable if and
only if the operator y is self-adjoint.
(ii) The couples {x,y} of (Mi) and (M-\) are integrable representations of Xqrf.
Conversely\ each integrable representation of Xqn is unitarily equivalent to one of
these couples {£, y}.

Proof (i). For an integrable representation {x, y} both operators are self-adjoint
by Definition 3.2, so the only if part is trivial. To prove the converse, suppose
that {#, y} is x-integrable and y is self-adjoint. By Proposition 3.4, we can assume
that {#, y} is of the form {£, y} as in (Λίf) or in (Aί^j). For simplicity, we set
7Y0 = {0}. We treat only the case of (Mx_λ), but the proof for (Mx) is similar. As

itin the proof of Proposition 3.4, let a = eψ2k+ιP <g) σ0. Clearly, the unitary group \a
acts on vectors / 0 (ζ, 77) € L2(R) <g) (/C Θ /C) as a translation of / by tψ2k+\ - Hence
we have \a\τtyψ = e tv?2fc+1y|α| ι t<0,ί G 1R, for ^ in the domain of $ and so for ψ in
the domain of its closure which is also denoted by y according to our convention
from Sect. 1. Since y is self-adjoint, the preceding means that {|α|,y} G C2k(—q)>
Since ua = σo and uay C —yua, we have shown that {α,§} is an integrable rep-
resentation of R 2 . By Corollary 2.7, {y,α} is an integrable representation of R?.
Further, Proposition A.I, (iv), shows that ker# = {0}. Next we show that x is
the closure of the operator (CLΦ + *i)y~λ. In order to prove this, we first apply the
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unitary transformation of the Hubert space induced by the inverse Fourier transform.
Then x and y are given by the matrices

0 e~p\ A „ ( 0 T+
0-P Π ) a n ( l V = I rp ft

where T± := (±q0e
φ2k+'Q + η)ep on L2(fl) 0 K. Let X> := j * 7 0 (/C Θ /C). Since

T-t-G?7 CB)/C) is a core for e~p by Proposition A.I, (iii), yV is a core for x. For
vectors ψ e D w e obviously have that xy^ = (̂ o« + 7 ) ^ by Corollary 1.2, hence
x|gfX> = (qoa + 7)y" 1 |yD. Since x|yl} is essentially self-adjoint and (go& + Ί)y~l is
symmetric by Corollary 2.12, the latter implies that x is the closure of (qoa + 7)#~1

Putting the preceding together, we have proved that {y, x} is g-integrable represen-
tation of Xqπ,i.e. the couple {x, §} is integrable.
(ii): By (i) and Proposition 3.4, it suffices to determine all pairs {x, y} in our models
(ΛΊf) and (Mx_x) for which the operator y is self-adjoint. By Proposition A.4, the
latter is true if and only if we are in (M\) resp. in (M-\). •

Corollary 3.8. Apart from the one dimensional representations (IΠ)α there are
up to unitary equivalence precisely 5 irreducible integrable representations of
XqίΊ. In case 7 > 0, φ>0 these are the representations (I)1?1 0> (I)i,i,o> Wi,-i,n
(I)_i _i j α«rf (Π)o y?Όm Corollary 3.6.

4. Integrable Operator Representations of the *-Algebra SLq(29 IR)

Recall that SLq(2) is the free algebra with unit element 1 generated by four elements
α, 6, c, d satisfying the following seven relations:

ab = qba, ac — qca, bά — qάb^ cd = qdc, bc — cb, (4.1)

ad-qbc = l, (4.2)

ad — da = (q — q~ι)bc . (4.3)

In fact, Eqs. (4.1) and (4.3) define the matrix algebra Mq(2) and (4.2) says that
the quantum determinant is equal to one, cf. [FRT] or [M]. It is clear that we obtain
an equivalent set of relations if (4.3) is replaced by

da-q'ιbc = t (4.4)
or by

ad - q2da = (1 - q2)i , (4.5)
or by

da - q~2ad = (1 - q~2)t . (4.6)

(We shall not need the Hopf algebra structure of SLq{2) in what follows.)
Let 1Z be an algebra with unit. If α, 6, c, and d are elements of ΊZ satisfying the

conditions (4.1)—(4.3), then the quadruple {α, 6, c, d} is called a representation of
SLq(2) in U.

Since \q\ = 1, there in a unique involution on the algebra SLq(2) such that α, 6, c
and d are hermitian elements. Endowed with this involution, the algebra SLq(2)
becomes a *-algebra which will be denoted by SLq(2, R).

4.A. The following simple algebraic facts are the key for our integrability definitions
given below.
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Proposition 4.1. Let ΊZ be an algebra with unit and let α, b, c, d be elements ofΊZ.

(i) Suppose that a is invertible in ΊZ. Then {a, b, c, d} is a representation ofSLq(2)
in ΊZ if and only if

ab = qba, ac = qca, be = cb (4.7)

and
d = (q-ιbc+l)a-1 . (4.8)

(ii) If d is invertible in ΊZ, then {α, 6, c, d} is a representation of SLq(2) in ΊZ if
and only if

db = q~ιbd, dc = q-ιcd, be = cb (4.9)
and

a = (qbc+l)d-1 . (4.10)

(iii) Suppose that {α, 6, c, d} is a representation of SLq(2) in ΊZ. If b (resp. c) is
invertible in ΊZ, then

z := b~ιc (resp. w := c~1b) permutes with a, b, c and d .

(iv) If b and c are invertible in ΊZ, and z = b~ιc, then (4.7) is equivalent to the
three relations

ab = qba, az = za, bz — zb . (4.11)

Proof. All assertions follow immediately by straightforward algebraic manipulations.
As a sample, we verify that (4.7) and (4.8) imply the relation cd = qdc. Indeed, from
(4.7) and (4.8) we obtain

cd = c(q~ιbc + \)a'λ = (q~ιbc + \)ca~λ = (q~lbc + l)qa~ιc = qdc. •

The assertions (i) and (ii) of Proposition 4.1 show that on a formal algebraic
level Eqs. (4.1)-(4.3) defining SX?(2, R) are equivalent to Eqs. (4.7)-(4.8) and
also to (4.9)-(4.10). Our integrability definitions for SXq(2, R) are built on this
simple observation. Some justification for the assumption ker a = {0} in Definition
4.3 below is given by

Lemma 4.2. Let a, b, c, d symmetric operators on a Hilbert space. Let ψ G V(ad) Π
X>(α) Π V(bc) Π V(cb) be a vector such that adψ - qbcφ = φ and bcφ = cbφ. If
aφ = 0 or if dφ = 0, then φ = 0.

Proof. We have 0 = (dφ,aφ) = (adφ,φ) = q(bcφ,φ) + (φ,φ). Since (bcφ,φ) —
{φ, cbφ) = (φ, bcφ) is real and q is not real, φ = 0. •

Definition 4.3. Let a, b, c be self-adjoint operators and let d be a closed symmetric
operator on a Hilbert space Ίi. We shall say that the quadruple {α, 6, c, d} is an
a-integrable representation of SLq(2, R) if ker a = {0} and if the following three
conditions are fulfilled:

(D.I) There is an integer n eZ such that {a, b) G Cn(q) and {a, c} G Cn(q) .
(D.2) The self adjoint operators b and c strongly commute (i.e. the spectral projec-

tions of b and c commute).
(D.3) d is the closure of the operator (q~ιbc+ l)a~ι .

Note that (D.I) and (D.2) imply that the operator (q~ιbc+ \)a~λ is symmetric by
Corollary 2.12.
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Definition 4.4. A quadruple {α, b, c, d} of self-adjoint operators on a Hubert space
is called an integrable representation of SLς(2,1R) if {α, 6, c, d} is an a-integrable
representation of SX ς(2,R) and {<i, 6, c, α} is a d-integrable representation of
SLq(2,W)-

The following slight reformulation of Definition 4.3 is often useful. The proof
is straightforward and will be omitted.

Lemma 4.5. Suppose that a, b, c are self-adjoint operators with ker α = {0} and d
is a closed symmetric operator on a Hubert space H. The quadruple {α, 6, c, d} is
an a-integrable representation of SLq(2,ΈL) if and only if there exist an integer n
and a decomposition a = a\ 0 &i 0 &3, b = 0 0 62 Θ 63, c = c\ 0 0 Θ C3, d = di 0
d2 θ d3 wzϊ/z ker 63 = ker c3 = {0} with respect to a direct sum H = H\ Θ H2 ® H3
such that:

(i) d\ = α^

(ii) d2 = a" 1 and {a2,62} € Cn(g) .

(iii) {a.3,63} G Cn(g) a«d ίAerβ exists a self-adjoint operator z^ on H3 which com-
mutes strongly with a^ and 63 such that C3 and d^ are the closure ofb^z^ and
of (q~ιb2Ci + l)a^1, respectively.

4.B. Next we study two models of a-integrable representations of SLq(2, R). They
are closely related to the models occurring in the preceding two sections.
Let K and Ho be Hubert spaces and let fcGl Suppose that A is a self-adjoint
operator on Ho such that ker A = {0} and that B and C are strongly commuting
self-adjoint operators on /C.

(Mi): Suppose w is a symmetry on /C which commutes with B and C. Set H :=
L 2(R) (8) /C 0 Ή o and define

α = e^w 0 A ,

c = e^ 2 f c PC 0 0 ,

J = (qe2φ2kPBC + l)e~Qw 0

S e t W - L2(ΊR) 0 (X: 0 /C) 0 Wo and

0 0 ,

(8) 5 C σ 0 + e~Q 0 σ0) 0 A" 1 .

First note that in both models α, 6, c are well-defined self-adjoint operators and
d is closed and symmetric (by Proposition A.I, (v)). Further, it is clear that the
quadruple {α, 5, c, d} is an α-integrable representation of SLq(2, R).

Theorem 4.6. Zeί {α, 6, c, d} Z?e α« a-integrable representation of SLq(2, R) α«d let
n be the integer occurring in Definition 4.3. Then {a,b,c,d} is unitarily equivalent
to a quadruple {α, δ, c, J} o/ίAe αZ>ove mode/ fΛI^Λ w/*ere ε = (— l) n . For (M\)
the self-adjoint operators B and C can be chosen such that the spectrum of B is
contained in the set {—1,0,1} and that the operator C | ker B is a symmetry on
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the reducing subspace ker B for C. In case of (M.a_x) we can have that B is an
orthoprojection and that C | ker B — I and B | ker C = I.

Proof First we apply Lemma 4.5. Let a = a\ φ 02 θ 03, 6 = 0 θ 62 θ 63, c = c\ φ
0 © C3, d = d\ φ d2 θ <i3 on W = Wi θ Hi θ W3 be the decomposition occurring
therein.

Set Ho := ker ci θ ker 62. Since {oi,ci} and {02,62} are integrable represen-
tations of R 2 , Ήo reduces the self-adjoint operator o. Let A := a \ Ho. Since
kero = {0}, A is invertible on WQ Since d\ = a^1 and cfe = 0JΓ1, Wo reduces
d as well and d\Ho = A~ι. By construction, b\Ho = c\Ho = 0. Thus we have
obtained the desired form of the operators o, 6, c, d on the space Tio

Now we treat the space HQ-. For notational simplicity, let us assume that
H = HQ~. By the preceding paragraph this implies that kerci = {0} and ker 62 =
{0} in the above decomposition. Also, we have ker63 = {0} by Lemma 4.5.
Thus Theorem 2.9 applies to the pairs {αi,ci}, {02,62} a n d {03,63}. Since these
three pairs belong to the same class Cn(q), we obtain the same model (M")
and the same integer k for all three pairs. We treat the case of (M±). Let
K>j,Wj and Vj,j = 1,2,3, denote the corresponding Hubert spaces and symmetries,
respectively. Put w := w\ φ W2 θ ^3 and υ := 0 φ 2̂ θ ^3 on /C := JC\ φ /C2 θ /C.
Then the operators α and b = 0 0 62 θ 63 have the required structure by Theorem
2.9. Let z3 be the self-adjoint operator from Lemma 4.5. By condition (iii) therein,
Z3 commutes strongly with 03 and 63 and hence with I03I and | ί>31. Since, |α-31 = e®
and |fo31 = eψ2kP on H3 = L 2(R) <g>/C3, there exist a self-adjoint operator Z3 on
/C3 such that £3 = / (8) Z3 (cf. [S2], Lemma 5.3), that is, z^ = Z 3 according to our
notational convention. Using once again that z^ commutes strongly with a3 and
63, we conclude that z3 commutes with u>3 and v3, so c3 := 2:3̂ 3 is a well-defined
self-adjoint operator on /C3. Setting c := v\ φ 0 φ c3, the operator c has the desired
form. The above formulae for d follows from the construction and from Lemma
4.5, so our proof is complete in case (ΛΊ?).

We sketch the necessary modifications of the proof in case (ΛΊ^) . Then the
pairs {αi,ci}, {α2, b2} are {03,63} are as in model (ΛΊ_i) of Sect. 2. Since |63 | =

eΨ2k+\P o n τ^3? the same reasoning as in case (Λ4^) shows that there is a self-adjoint
operator Z3 on (/C3 φ /C3) such that 2:3 = / 0 Z 3. Since wα3 = σo and w^ = σi, it
follows from ΐxα323 C Z3Ua3 and 1x632:3 C 2:316̂  that there is a self-adjoint operator
Z on /C3 such that Z3 is diagonal on /C3 φ AC3 with Z in the main diagonal. To
complete the proof, we set B := 0 θ / θ /, C := / θ 0 θ Z on K := /Ci θ /C2 θ /C3.
•

From Theorem 4.6 we easily obtain some important corollaries.

Corollary 4.7. iΐαc/j irreducible a-integrable representation of SLq(2,W) is unitarily
equivalent to a representation of the following list with a 6 R/{0},
λ € IR,fc G Έ and εuε2 € {-1,1} :

i , 2 , c = λ6 ,

d = ελ(q\e2ψ2kP + l )e~ g on H = L2(R) .

on 7< =
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(Π)λ > A. : α - e Q ( 8 ) σ 0 , b = eφik+λP <g> σu c = \b,

d = (q\elφ2k^p + l)e~Q ® σ0 on H = L 2 ( R ) <g> <C2 .

ί / ^ α " 1 on W = L 2 R (g) <C2 .

(ΠI)α : α - α, 6 = c = 0, d = αΓ 1 on Ή = <C

quadruple {α, 6, c, d} of this list defines an irreducible a-ίntegrable repre-
sentation of SLq(2, R) and different values of parameters give inequivalent repre-
sentations.

Corollary 4.8. Let {a,b,c,d} be an a-ίntegrable representation of SLq{2, R) on a
Hubert space Ή. Then there is a dense linear subspace V C V(a) Π Ί)(b) Π Ί)(c) Π
V(d) ofH such that

(i) aV = V, bVC £>, cVCV, dVCV and \a\ιiV = £> /or £ e R.
(iϊ) The operator relations (4.1)-(4.5) are pointwise satisfied on V.

(iii) V is a core for α, α" 1 ,6, c and d.

If ker6 = {0} or (resp. and) kerc = {0}, we may have also that bT> — V and
\b\ιXV = V or (resp. and) cD = V and \c\[iV = P , ί e l R .

Corollary 4.9. 7f {α, 6, c, d} w an a-ίntegrable representation of SLq(21 R), then
{α, d} w αw a-ίntegrable representation of Xqix.

4.C. Now we characterize the integrable representations of SLq(2, R).

Theorem 4.10. (i) 4̂« a-integrable representation {α, 6, c, c/} of SLq(2, ΊK) is inte-
grable if and only if the operator d is self-adjoint.
(u) The quadruple {α, 5, c, J} of the model (Mγ) is integrable if and only if BC > 0
and k = 0. Z7*e quadruple {a,b,c,d} of(M°Lλ) is integrable if and only if BC < 0
and k = 0 if φ > 0 resp. £ = 1 if φ < 0.
(in) Each integrable representation of SLq(2,]R) is unitarily equivalent to one of
the quadruples described by (ii).

Proof, (i) The only if part is trivial by Definition 4.4. Suppose that {a, b, c, d} is
an α-integrable representation of SLq(2, R) for which the operator d is self-adjoint.
By Theorem 4.6 we can assume that the quadruple {α, 6, c, d} is as in one of our
models (M%λ). We have to show that {d, b, c, α} is a d-integrable representation of
5L^(2, R). We only sketch the proof in case of (Ma_λ). First note that ker d = {0}
by Proposition A.I, (iv). To check that {d,b} is an integrable representation of R^,
we argue similarly as in the proof of Theorem 3.7. Obviously, ker b is reducing
for d, so we can restrict ourselves to the case where kerfr = {0}, i.e. ker B = {0}
and Wo - {0}. We have 16)" = e

i t ^ + i^ (e i t t o 8l B l θ e ^ i ^ ) on L 2(R) ® (/C θ £) ,
hence \b\ud = etφ2k+ιd\b\u for t G R. Since obviously ubd C-dub, {d,b} is an
integrable representation of R? by Corollary 2.7. The same reasoning works for the
pair {d, c}. Finally, we have to verify that α is the closure of (qbc+ l)d~ι. For
this we first note that {α, 6c} is obviously an integrable representation of R2^ and
d is defined as the closure of (qbc+ l)a~ι. Therefore, by Definition 3.1, {a,d} is
an α-integrable representation of Xq2?1. Since d is self-adjoint, {a,d} is integrable
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by Theorem 3.7 and a is the closure of (qbc+ l)d~ι. This completes the proof

of(i).
(ii) follows by combining (i) with Proposition A.4 and (iii) follows from (ii) and

Theorem 4.6. •

Corollary 4.11. We retain the notation from Corollary 4.7. Then any irreducible
integrable representation o/SXg(2,R) is unitarily equivalent to one of the following
list:

© λ ^ ε ^ o : λ G (0,+oo],εi,e 2 G {-1,1}.

(II)λ,β(*) : A G [~oo,0).

(Ill), : α G R | { 0 } .

Each of these representations is an irreducible integrable representation of
SLq(2, R).

Corollary 4.12. If {α, 6, c, d} is an integrable representation of SLq(2,lR)9 then

{α, 6},{α, c},{6, d},{c, d} are integrable representations ofΈ?q, {α, d} an inte-

grable representation of Xqi^ and {d,a} is an integrable representation of Xqiλ.

In their study of the quantum Liouville model on the lattice, L.D. Faddeev
and L.A. Takhtajan constructed a representation of SLq(2, R), cf. [FT]. We briefly
discuss this in the following

p

Example 4.13. Set q = eι. For λ G (0, +oo), we define operators a := e~
and d : = e " i / l + λe 2 Ge-τ on H = L 2(R).

The representation from [FT] corresponds to the case λ = 1.
The following assertions can be verified by arguing in a similar way as in the

proofs of Propositions 1.3 and 1.4: The operators a \ T and d \ T are essentially
self-adjoint. By a slight abuse of notation, we denote their closures again by α«and
d, respectively. For ψ G J-",aφ = \/l + λe2(2+* e P i 0 and d^ = \/l -f- \e2Q~τe~Pfψ.
Further, ker α = {0} and aT is a core for d.

From these facts we easily conclude that {α, b} G Cofeh {α, c} G CoO?) and d —
(qbc+ \)a~ι, i.e. {a,b,c,d} is an integrable representation of SLq(2, R). Clearly,
{α, 6, c, d} is unitarily equivalent to the representation (I)λ j 1 0 from Corollary 4.11.

5. Concluding Remarks

(1) Suppose {x, y} is a couple of the class Ck(q), k G TL. Then the operator |x| + \y\
is essentially self-adjoint if and only if k G {—1,0,1,25(99)}. (This follows at once
from Proposition A.5 if we take {x, y} as in (ΛΊi) resp. (M-\) and apply some
unitary transformation eilQ ,7 G R.) Further, for the classification of integrable rep-
resentations of Xqπ and SLq(2, R) only the classes Ck(q) with k = —1,0, l,2s(<^)
are needed. For these and other reasons it seems to be sufficient to take only these
classes Ck(q) as integrable representations of R^. Since x2 + y2 is essentially self-
adjoint if and only if k — 0 for \φ\ < | and k — s(φ) for \ < \φ\ < π, it might
be even justified to consider only the class Ck(q) with k = 0 resp. k — s(φ) as
integrable representations of R^.

(2) Let A denote one of the *-algebras R^, Xqn or SLq(2, R), and consider an
integrable, x-integrable or α-integrable representation of A. Then, by Corollaries
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2.11, 3.5 resp. 4.8, the commutation relations defining A are pointwise satisfied for
all vectors of a suitable invariant core V for the corresponding operators a,b;x,y
resp. α, t>, c, d. Hence such a representation gives really a *-representation, say ρ, of
the *-algebra A on the domain V in the sense of unbounded representation theory
(see e.g. [SI], Sect 8.1). This justifies to speak about integrable, x-integrable or
α-integrable representations of the *-algebras A of the previous sections. In case of
an integrable representation of A, ρ* is a self-adjoint representation of A, but the
converse is not true. This suggests the following

Problem. Characterize the self-adjoint representations of the *-algebra A which cor-
respond to integrable representations of A.

(3) Knowing the irreducible integrable representations of 1R ,̂ Xqπ resp. SLq(2,1R),
the C*-algebra generated by the corresponding operators can be studied. For this
the affiliation notion of [Wl] plays a crucial role.

6. Appendix: Some Operator-Theoretic Results

Suppose that A is a self-adjoint operator on a Hubert space Q, Let En denote the
spectral projection of A corresponding to the interval (—n, n). We study operators
(ωeaQ A + 7 ) e p on the Hubert space H = L 2(R) 0 Q, where α, 7 G R, ω e C ,
α φO. We denote the closure of (ωeaQ A -f η)ep by T or again by the symbol
(ωea®A + 7 ) e p according to our convention from Sect. 1. Sometimes the operator
Q is denoted by the variable x.

^Proposition A.I. Put ?yε?n := e ε^x ι> Enηfor ηeH, ε > 0 and n e N . Suppose that
Vo is a core for A and set V := T 0 Vo. Then:

(i) V is a core for T.

(ii) For 7/GX>(T*), we have η£}n G X>(T*) Π V(ep(ώeaQA + 7)) Λ/W/ T*ηε^n =
ep(ώea(^A + 7)r/ε,n, ε G (0, ε0), n G N.

(iii) ΓD w α core for e~p.

(iv) ker Γ* = {0}.

(v) T is symmetric if and only if ώeaι = ω.

Proof (i). By taking the closure in the graph norm of A, we can assume that
χ>0 = V(A). Upon writing A as a direct sum of bounded self-adjoint operators it
follows that it suffices to prove the assertion in case where A is bounded. Further, it
is sufficient to show that V{{T \ £>)*) C D(T*), since then (T | £>)** = T**. Suppose

that η G V((T \ V)*). Then there is a ζ G H such that (Te~εχ2ψ,η} = (e~εχ2ψ,ζ)
for ψ e J7 ®G and for small ε > 0. Since (ωe°ίXA + 7)e" ε ( ; r" f^ is a bounded op-
erator, the latter and Corollary 1.2, (i), yield

(epφ1(ωeaxAJr^f)e~ε^x~'ί>) η) — (ψ,e~~εx ζ) (6.1)

for ψ G T 0 ^ . Since JΓ is a core for e p , (6.1) is valid for all φ G V{ep) (
ίEProceeding in reversed order, we get (e~ε(:E~~^ Tψ,η) = (e~είE ^ , ζ ) for ^ G X>(T).

Letting ε | 0, we conclude that η G X>(T*).
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(ii). For φ G V(T) and η G V(T*), we have

by Corollary 1.2. This yields (ώeaQA + 7)77^ G V(ep\ ηε,n G V(T*) and T*ηεjn =

(iii). First note that TV = T{T <g> Vo) C £>(e~p) and e~pTφ = (ωe'^e^A +
for ^ £ £>• Suppose that η G V((e~p \ TV)*), i.e there is a ζ G H such that
(e~pTφ1η) = (Tφ,ζ), φeV. By closing up in the graph norm of A we

can assume that VQ = V(A). Replacing φ by e~εx Enψ, the preceding yields

{φ,{ώe^e^A^Ί)e-εχ2Enη) = {Tφ,ζε,n} for φ G P(T), so that T*ς, n = (ώeαi

eaQA + Ί)e-εχ2Enη. On the other hand, by (ii) and Corollary 1.2, T*Cε,n =

(α)eαieαQylH-7)ePCε,n.

A simple operator-theoretic argument shows that the operator ώe^e^A + 7 has

trivial kernel. Therefore, the preceding gives epζε^n — e~εx Enη. Letting ε j 0 and

n —> 00, we obtain ePC = 77, i.e. 77 G V(e~p).
(iv). Let 77 G kerT*. Then we have ηε,n G kerT*, so ep{ώe°ίQA + 7)77^ = 0 by
(ii) and hence 77^ = 0 for all ε > 0 and n G N . Consequently, 77 = 0.
(v) follows at once from Corollary 1.2 and (i). •

Proposition A.2. Suppose that A > 0 ow Q. Let α,/?i,/?2 G 1R <z«rf s e Z be such
that β\ + /52 = α + 2πs, αφO α«<i /?i φ n π ybr j = 1,2 and for all n G Έ. Define
closed operators TjJ = 1,2, on H by Tj = (e

aQ+β*iA+ l ) e p . Let 3 denote the
set of real numbers y m := a~ι((2m + l)π + β\),m G Z.

(ii) If 3n[0,l] = φ9 then T?=T2.

Proof First let us show that it suffices to prove the assertions (i) and (ii) in
the scalar case Q = (C. Since we can express A as an orthogonal direct sum of
bounded self-adjoint operators with simple spectra, it is enough to verify (i) and
(ii) for such operators. But then Q is a separable Hubert space and we can write
A as a direct integral of operators λ I\ over the measurable field σ(A) 3 λ —>
H\ := L 2(R) of Hubert spaces. Let ξ = f (λ) be a cyclic vector for A Set Γ i ; λ :=
(e«Q+/Vλ + i ) e P. Obviously, {^n,m(λ) := x n e- a ; 2 λ m ξ(λ); n,m G N o } is a count-
able family of measurable vector fields such that a.e. {ψn,m(λ)} is dense in P(Tj j Λ)
with respect to the graph norm. From this we conclude that λ —> Tj^χ is a measur-
able field of closed operators and Tj is the direct integral of this field (cf. [SI],
12.1). Using standard properties of direct integrals of closed operators (see chapter
12 of [SI] for details), it follows that it suffices to prove the assertions for the
operators Tj^χ, j = 1,2. For the rest of this proof we assume that Q = (C. We set
δ := log A and hf(z) := e

az+δ±β^ + l,z G <C. Then, by definition, Tj = h+(x)ep,
where h^(x) is the multiplication operator by the function h+(x) on H = L 2(R).

We prove (i). Put /,- := h~{x)~lf for / G L 2(R). Note that /^ G L2(IR), since

each function h^(x) has positive infimum on R because βj^nπ for n £ Έ.

Since obviously (Tjf,gj) = {epf,g) = {f,epg) for f eV(Tj) and geV(ep\
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we conclude that g G V(T*) and Tfgj = epg. Assume to the contrary that T* =
T2. Then we have (Tι*fug2} = (T2fug2} = (fuT*g2} and hence (epf,g2} =
(h+(x)-ιep^g) = (fuepg) for all /,p G V(ep\ Therefore, Λ G V(ep). Setting
f(x) = e~x , it follows from Lemma 1.1 that f\(x) = h^(x)~ιe~x has a holo-
morphic extension to the strip I\ = {z: 0 <Imz < I}. But the set of zeros
zm — —δa~ι + iym of hγ(z) intersects I\, since 3 Π (0,1)4=0 by assumption. We
arrived at a contradiction, so (i) is proven.

Now we prove (ii). Take η G V(T*) and set ηε(x) — e~~ε^x~%Λ> r\{x) for ε > 0.

Proposition A.I, (ii), says that ryε G V(T*)ΠV(ephj(x)) and T ^ = ephj(x)ηε.

(Note that J5n = I and so ηε^n — Vε if n > eδ.) By Lemma 1.1, the function

(hjηε)(x) of T>(ep) has a holomorphic extension, say (hjηε)(z), to the strip /i.

Our assumptions 3 Π [0,1] = 0 and /3i + ft — <̂  + 2πs imply that | hj(z) \ ^g on

ϊi for some constant ρ > 0. Thus 7/e(z) := (hjηε)(z)hj(z)~ι, z G /i, defines a holo-

morphic function on I\ for which

sup J\ηε(x + iy)\2dxSQ~2 sup /|(/i~^)(x -f iy)\2dx .
0<y<l 0<y<l

The latter is finite by Lemma 1.1, since hjη£ G V(ep). Formula (1.2) shows that
ηe(z) has the boundary values ηε(x) on 1R, so ηε G T>{ep) by Lemma 1.1. Applying
(1.2) once more, we get

T;Vε = ep(h~ηε) = hj(x + i)(6P77ε)(^) . (6.2)

In order to complete our proof, take vectors η1 G T>(T*) and ry2 G D(T2*). We have

T*ηΐ=e-εχ2T*ηJ and fef (a:) = / i 2 ( x + i). Using these facts and applying (6.2)
twice, we get

(e-e*Ttf,r£) = (T^lvl) = (eP(h-η\Wε)
= (h-ηlepη2

£) = (ηl h~(x + i)epη2

£)

Letting ε j O w e obtain (T?η\η2) = (η\T*η2). This shows that T* = Γ2** = T2.

m
Corollary A.3. Retain the assumptions and the notation from Proposition A.2 and
assume that β\ = β2, so that T\ —T2—\T. Then the operator T is self-adjoint if
and only if s is even and \a\ < 2π.

Proof If s is odd and |α | > 2τr, then 3 Π (0,1)4=0. If s is even and |α | < 2τr, then
3 Π [0,1] = 0. Note that the cases a = ± 2π are excluded by assumption. •

Remarks. (1) The operator Γ from Corollary A.3 acts as Tip = eτ((-l)s

e

aQA
p

+ l)e"2" for ψ ^ ^ Often this form of T is more convenient. In particular we see
that T ̂  0 if and only if s is even.
(2) S.L. Woronowicz fW2] has determined even the deficiency indices of the op-
erator T for Q — (C. He showed that for odd s both deficiency indices of T are
finite and their difference is one, so T has no self-adjoint extension in L2(JR). If s
is even, the deficiency indices of T are equal and finite.
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Proposition A.4. (i) The operator y defined by formula (3.5) is self adjoint if and
only ifw = (-l)ks(-y) Ί and k G {0, s(φ)}.
(ii) The operator y in formula (3.6) is self adjoint if and only if k = 0 and φ > 0
or if k = — 1 and φ < 0.

Proof Without loss of generality we assume that HQ = {0}.
(i). First we study the self-adjointness of the (closed symmetric) operator S\ :=
(q0e

φ2kP\+ \)e~Q on L2(WL) 0 Q, where A G R , λφO. A unitary transformation
by the inverse Fourier transform yields F~ιSχF = (q0e

φ2kQλ + l ) e p , so Corollary
A.3 applies with A = /, a = ψ2k — ψ ~ 2kπ and β = ^,s = k if λ > 0 resp. β =
f + π,5 = A + 1 if Λ < 0. Note that αφO and β + nπ for n £ Z, because qφ 1.
Since |^ | < π and y?φθ by assumption, Corollary A.3 shows that S\ is self-adjoint
if and only if k = 0 for λ > 0 or if k = s(φ) for Λ < 0.
To Prove the assertion of (i), note that η~xv y is the direct sum of two operators S\
with λ = 7" 1 , Q — \QX(W - /) and λ = — j ~ ι , Q = ker(w + /). By the preceding
discussion, both operators are self-adjoint if and only if we are in the above two
cases.
(ii). Putting Sε := (εqoeφ2k+ιP 4- Ύ)e~Q for e = ± 1 , the operators y and j)* are given
by the matrices

-! θj mά y = U 0
Therefore, y is self-adjoint iff 5* = S-\. Upon scaling, we can assume that 7 = 1 .
Then F~ιSεF = (εg0e^2fe+lQ + l ) e p and we are in the situation of Proposition A.2
with A = I, a = φ2k+ι = ψ ~ (2k + l)π, A = f ,/32 = f + π, 5 = fc + 1. Using
once more that \φ\ < π and </?φ0, one easily verifies that 3 ^ ( 0 , 1 ) = φ in the
two cases k = 0, φ > 0 and k = — 1, <£> < 0 and that 3 Π [0,1] Φ0 otherwise. By
Proposition A.2 these are the only cases where S* = 5_i or equivalently where j>
is self-adjoint. •

The next proposition can be derived by using similar arguments.

Proposition A.5. Suppose that ker A = {0} and let n e Έ. Then the (closed sym-
metric) operator (qe2ψnP A + l)e~^ is self-adjoint if and only if A > 0 and n — 0

0 α«J n = s(φ).
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