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Abstract. Simple examples are known where eigenfunctions decay faster than the
usual upper bounds would lead one to believe. We develop aspects of the perturba-
tion theory of the decay rate of eigenfunctions as measured by radial exponential
weights. We show that generically (in a Baire category sense) eigenfunction decay
rates are governed by the lowest threshold.

1. Introduction

There is now an enormous literature on exponential decay of eigenfunctions in the
ΛΓ-body problem. The best known upper bonds are due to Agmon [Al]. If if is
the generalized ΛΓ-body Schrόdinger operator (see Sect. II for details), and
E < Σ0(H) = inf σess(H\ these bounds state that any L2 solution of Hφ = Eφ
satisfies

\φ(x)\ ^cγe~γpAx\ a l l y < l , (1.1)

where ρA(x) is the distance to the origin in the "Agmon metric" [Al]. If φ(x) is the
unique ground state with eigenvalue E < Σ0(H\ it is known [CS] that

\φ(x)\^cye-ypAx\ a l l y > l , (1.2)

with cy > 0, but for other eigenfunctions lower bounds are harder to come by. We
mention here some results of [FH1, 2] in this direction: Define

oίψ = sup{α ^ 0: exp(oc\x\)φeL2} .

Then otψ + E is a threshold or + oo. (The possibility + oo can be eliminated with
certain assumptions about the potential which we will not make here.) The set

of thresholds is a closed countable set to be defined later. Suffice it to say for
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the present that min &~(H) = Σ0(H). We also have the statement (for E < Σ0(H)\

l i m r ^ l n ί J \φ(rω)\2dσ{ω) X = - ocφ , (1.3)

which combines upper and lower bounds. Here σ is Lebesgue measure on Sn~ί.
The relationship of the Agmon distance to aψ is as follows: if we look for the

direction of minimal decay given by the Agmon distance, we find

min

Thus, if the particular threshold singled out by φ is Σ0(H) in the sense that
oίφ + E = Σ0(H\ we have minωeSn-i p^(rω) = α^r. The Agmon distance thus gives
more information than the upper bound inherent in (1.3) about the behavior of the
eigenfunction if the eigenfunction picks out the "right" threshold (namely Σ0(H)).
However, this need not be the case (see [FH 3 O 2 ] for examples), and when the
"wrong" threshold is chosen, the Agmon distance may have no relevance to the
decay of the eigenfunction. (Of course, the upper bound is always correct but may
be very far off from the true behavior.)

Since abnormally rapid decay does indeed occur, two natural problems suggest
themselves:

(1) Understand the nature of this decay when it does happen. In particular, find
a relation between the decay rate in various directions and spectral data. Aside
from (1.3) which only gives information about the rate of decay in the direction
of weakest decay, not much is known. (However, see [FH1] for a conjecture
and [Dl, D2] for some attempts to understand this problem.)

(2) Show that generically (in some sense), the Agmon distance gives the correct
decay rate.

In this paper we solve a simplified version of problem (2). We show that
generically all eigenfunctions with eigenvalues below Σ0(H) pick the "right" thre-
shold, i.e., aφ + E = Σ0(H). (We will be precise about the word generic in Sect. 3.)

There are two basically different results which need to be proved in our
approach. The first, which we accomplish in Sect. 2, is a stability result which in its
simplest form says that if Eo < Σ0(H) is an eigenvalue with corresponding eigen-
functions φj9 each of which has "normal" decay (so that oc2,. + Eo = Σ0(H)), then
for small We CQ°(RΛ) the eigenfunctions of H + Wwiίh eigenvalues near Eo will all
have normal decay. (Actually a more general stability result is proved where W is
allowed to be a (generalized) iV-body potential.)

The second result is more perturbation-theoretic and says that if the eigenfunc-
tion φ decays abnormally fast, then we can find an arbitrarily small WeCo°(Rn)
which turns φ into a normally decaying eigenfunction. Thus even though φ may be
analytic in W (as a vector in L2), its decay rate can change discontinuously. Our
approach to this problem necessitates looking at all orders of perturbation theory.
We do this in Sect. 3.

The main results of this paper are summarized in Theorems 2.6, 3.6, and 3.7.
There is also a new approach to lower bounds for positive solutions presented in
Theorem 3.8. While our method does not reproduce the lower bounds of [CS], the
new technique may be of interest. In addition, a new proof of the main result of
[FH1] is given in an appendix.
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The present paper is similar in structure to [AHS] which develops perturbation
theory for embedded eigenvalues. As the reader will see, an eigenvalue with
abnormally decaying eigenfunctions is actually an embedded eigenvalue of a cer-
tain non-self-adjoint operator and thus the similarity is natural. Indeed, at least in
this author's mind, [AHS] was originally conceived as a necessary prerequisite for
the present work. In addition to the similarity in structure of the papers, the present
paper relies heavily on estimates proved in [AHS]. These estimates originate in
[FH1].

The author thanks S. Agmon for useful conversations.

2. Stability of Normal Exponential Decay

Throughout this paper,

H = -A + V, V(x) = f

where the vt are real and πf is an orthogonal projection with range X{ a Rn. This
type of operator was first introduced by Agmon in [A]. Let A x = AXii the Laplace
operator associated to Xt. We assume

(i) Vi( — At + I ) " 1 is compact on L2(Xi);
(ii) (-Ai + ί)~1xrWυi(xi){ -At + I ) " 1 is compact on L2(X;) (2.1)

Let S£ be the family of subspaces X of the form

X = Xh + Xi2 + + Xu .

We also include {0} and Rw in £?. For XeS£ we define Hx = - Ax + VXi where
Vx(x) = £ X f czX Vi(πiX). By convention H{0} = 0 on if. We define &\H) = {λ: λ is
an eigenvalue of Hx for some X + R"}. Thus by definition, Oe^(H).

If φ is an eigenfunction of H with eigenvalue λ0 < Σ0(H) = inf 3Γ{H\ then we
say that ψ has normal decay if ocφ + λ0 = Σ0(H) and abnormal decay otherwise.

We will perturb H by adding a real-valued function W{x) = YJi=1wi{πix\
where the w/s satisfy the same assumptions (2.1) as the t>f's.

We first state a result which essentially says that the number of linearly
independent eigenfunctions of H with eigenvalue near λoeR which decay at least as
fast as e~ar(oc2 + λoφ^~(H)) cannot increase under a small perturbation W. The
size of W is measured by the norm

\W\γ = \\W(-A + 1 Γ 1 ! ! + \\(-A + l)-1x VW(-A + 1 ) " 1 ! ! .

Theorem 2.1. Suppose α > 0 and oc2 + λoφ^~(H). Then there ίs an open interval
J containing λ0 and a δ > 0 so that iflWlx < δ, then

X dim{^Gker(H + W- λ): α^ ^ α} ^ dim{^eker(tf - λ0): θίφ ^ α} .
λeJ

It turns out that this theorem can be thought of as a result about the perturba-
tion of the point spectrum of a certain non-self-adjoint operator. With pa(x) =
exp(α<x», <x> = J\x\2 + 1, define

Ha = H + Vlnpα D + Z) Vlnpα - |Vlnpα |2,
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where D is the gradient operator. Note that Ha is the closure of pjϊp'1 | Co°(R").

Theorem 2.2. Suppose α > 0 and a2 + λoφ^~(H). Then there is an open interval
J containing λ0 and a δ > 0 so that if\W\1 < δ, then

X dim ker(tfα + W - λ) ̂  dim ker(tfα - λ0) .
λeJ

Deduction of Theorem 2.1 from Theorem 2.2. It clearly suffices to prove (i) and (ii)
below:

(i) There is a δ > 0 so that if λ0 + a2φ^~(H\ then \λ - λ0| + | W\ί < δ implies
λ + oc2φ3T(H+ tfO, and

(ii) If λ + a2φ3Γ(H\ then dim ker(#α - λ) = dim{^eker(iϊ - λ): ocψ ̂  α}.

To prove (i) note that if XzS£ and X φ RM, then λ0 + ot,2φ$~(Hx)vσp(Hx).
According to Theorem 2.5 in [AHS], if \λ — ̂ ol + l ^ l i is small enough,
λ + α2 φσp((H + W)x). Hence, if | λ - λ0 \ + \ W\γ is small enough
λ + a2φ3r(H + W). To prove (ii) we show that if λ + a2φ&'{H\ then
ker(iία — λ) = pα(ker(H — λ) n {ψ: ocψ ^ α}). Thus, suppose fekQr(Ha — λ). Then
let φ = p~xf Formally we have 0 = {paHp'1 - λ)f= pa(H - λ)p^f so that
φekQτ(H — λ) and ρaφeL2, and thus α^ ^ α. This is easily made into a proof.
Suppose φeCo°(RM). Then we easily see that

0 = (p-'tff - λ)paφj) = ((H - λ)Paφ, p" 1 /)

But p~x9(Δ) a 9(Δ) so that

(paφ,(H-λ)φ) = 0

for all ψeC0°°(R"). Thus φekev(H - λ).
liφe ker(# - A) and aψ ̂  α, then since by [FH1], αj + λ e F{H) u {oo }, while

α2 + λφ£Γ{H) we have α^ > α. In particular,/= paφeL2. It follows easily that
paφe@{Δ) and i ί α / = A/ Hence ^ = p.-^with/ekeriff . - λ). D

We now embark on a proof of Theorem 2.2: From Theorem 3.1 of [AHS] we
r μ - A 0 | + | F F | 1 < 5 1 ,

k || <x>*p«Cff +W-λ)φ\\Z || Paφ || - || X P α 0 || , (2.2a)

with some compact operator K independent of Wand λ and for all φ e CQ°(RW). Let
χR be the characteristic function of {x: \x\ < R}. Then for large enough R,

\\K(l-χR)\\ K1-

so that

\\Kp*Φ\\ύ\{\\p*Φ\\+c\\φ\\),

and thus (2.2a) implies

k'\\(x^pα{H+W-λ)φ\\ ^ | | p α 0 | | - c | | φ | | . (2.2b)

It follows easily from (2.2a) that

k\\(xyHHα+W-λ)f\\ ^ ||/1| - \\Kfl fe@{Δ). (2.3)
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It is important to note that (2.2b) is claimed to hold only for φ e Co°(R"). While
(2.2b) has a meaning for φe@(H) = @(Δ), where both right and left sides may be
infinite, it is often incorrect even though it makes sense. Indeed, in Proposition 3.5
it is shown that under certain assumptions (2.2b) cannot hold for all φe@(H).

Let P o be the orthogonal projection onto the subspace of all φeker(H — λ0)
with cίφ ^ α. As in the proof of Theorem 2.1, otψ > α. It follows from (2.3) that P o

has finite rank for otherwise we could argue that for an orthonormal sequence
{/m: m = 1,2,. . . } of eigenfunctions of Ha we had || Kfm || ^ || fm ||. (Note that we
have not assumed that λoφ$~(H) so that as far as we know there is nothing to
prevent ker(iί — λ0) from being infinite dimensional.) It follows that Pα = p^Pop^1

is a bounded finite rank projection onto ker(#α — Ao)
We claim that for some δ > 0 and fc>0we have

k\\ <x>>(Ha + W-λ)(ί - Pa)f\\ ^ ||(1 - P α )/ | | (2.4)

for sΛlfe^(A) and \λ — λo\ + | W\λ < δ. Suppose not. Then there is a sequence

fns3(Δ) with PJn = 0 and λn->λ0, \Wn\x^0 so that | | / J | = 1 while

\\(x)*(Ha+ Wn-λn)fn\\-»0. We can assume t h a t / M A / It follows that for

0 = lim(φ, (Hβ + Wn - K)Q = ((Hί - λo)φj),

which implies (Ha — λo)f= 0. We also have 0 = Pafn -+ Pα/so that p^fis ortho-
gonal to Range P o but also in Range P o . Hence/= 0. From (2.3) it now follows that
0 ^ 1 , and thus for some δ > 0 (2.4) holds for some k>0rf\λ-λo\ + \W\1<δ.
Now suppose

dim ker(#α + W - λ) > dim ker(#α -λo) =
λeJ

χ + W- λj\ λjβJJ = 1,. . . , L + 1, a n d / = ^=i βjfjwithPJ= °
We an assume that the pa

 ίfj = φj, j = 1,. . . , L + 1 are orthonormal, and that
φ = p ^ / h a s norm 1. Then

+ W- λo)f\\^\\f\\ ,

and

W-λo)f\\ ^ X \β,\ \λ0 - λj\
J

and thus

where \J\ = length of J. We can use (2.2b) with φ = φjy λ = λj9 and α replaced by
a slightly larger number β to conclude that || pβ φj \\ g c \\ φj \\ = c so that

sup II <*>*/} || = sup || <x>- PxPi'pβφj \\ ^ c'
7 j

Thus
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which is a contradiction if | J | is small enough. D

We now discuss the meaning of Theorem 2.1 further. It is easy to see that
Σ0(H + W) is continuous in the variable W. In addition, Σ0(H) is always an
isolated point of $~{H). This follows from a theorem of Perry [P] which says that
under our assumptions eigenvalues can only accumulate at thresholds from below.
Thus if we let

we have

Σ1{H)>Σ0(H)

We have allowed for the possibility that ^~(H) n (Σ0(H% oo) is empty in which case
ΣX(H) = H-oo.

Suppose now that λ0 is an eigenvalue of H with λ0 < Σ0(H). The question
which we want to address is how shall we choose α2 + λ0 in order to get informa-
tion from Theorem 2.1? If α2 + λ0 < Σ0(H) no information is provided. This is
because for |A-λ o l + l^ l i small we will have α2 + λ < Σ0(H + W). But
α2, + λ ^ Σ0(H + W) for all ιAeker(# +W-λ). The most obvious choice to
take is

Σ0{H)<a2 + λ<Σ1{H).

We shall do this but we must point out that even though we always have
ΣX{H + W) - Σ0(H 4- W) > 0, there are potentials V where this difference may be
arbitrarily small for arbitrarily small W.

In such a situation it is impossible to have α2 + λ between Σ0(H + W) and
Σλ(H+ W) for all small W.

There are two special conditions which produce a situation where it is possible
to have | Wn\1 -> 0 while Σ^H + Wn) - Σ0(H + Wn) -+ 0. In order to discuss them
we make two definitions. In the following X < Ymeans I c Fand I Φ F , and
σp(A) is the set of eigenvalues of A.

Definition 2.3. We say that v is critical for subsystems if there is an l e i f with
0 < X < Rn such that Σ0(H) = ΣO(HX)φ σp(Hx) and given ε > 0 there is a Wand an
eigenvalue λ(W) of(H + W)x such that \ W\x < ε and \λ{W) - Σ0((H + W)x)\ < ε.

Clearly, if Fis critical for subsystems an eigenvalue is just about to emerge from
the bottom of the essential spectrum of one of the Hx with 0 < X < Rn and
σlΉ*) = σess(Hx). This situation has been studied for certain kinds of potentials
[KSl,2;Ka;S2].

Another condition which may cause Σ^H + W) — Σ0(H + W) to become
arbitrarily small for small W is degeneracy.

Definition 2.4. We say that Σ0(H) is degenerate (in &~(H)) if there are two subspaces
X1,X2e£; with Xί φ X2 and both < Rn such that Σ0(H) is an eigenvalue of both
HXί and HX2.

In this case clearly a small perturbation Wean split Σo into Σo and Σ± which
will be arbitrarily close.

Proposition 2.5. Suppose Σ0(H) is not degenerate in ^{H) and V is not critical for
subsystems. Then there are positive numbers δι and δ2 so that if\W\1 < δl9 then

- W)-ΣQ{H+ W)>δ2.
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Proof. Suppose Σ0(H) < 0. Then Σ0(H)eσp(HXo) for exactly one Xo < R". Con-
sider the set

: 0 < X < R\Σ0(H) = ΣO(HX)} .

o, then since Σ0(H) e f(Hx) there must be a Ye & with Y < X such that
Σ0(H)eσp(Hγ). It follows from the nondegeneracy condition that XoφJ?o and
that Σo(H)eσάisc(HXo). Suppose XeJ£0. Then again, by the nondegeneracy
condition we cannot have Σ0(H)eσp(Hx). Since Fis not critical for subsystems
there is a neighborhood Nx of Σ0(H) and a positive number δx so that
Nx n σp({H + W)x) = 0 if | W\x < δx. If X is in

{XeJ?\{X0}: 0 < X < R", Σ0(i/) < Γ0(i/x)} ,

clearly the same is true. Similarly, if X = {0}. Finally, for small PF there is
a neighborhood JVZo of Z0(H) so that NXo n σp((H + W)Xo) = {inϊσ((H + W)Xo)}
and by continuity, for small W, Σ0(H + W) = inϊσ((H + W)Xo). Hence if
Σo(H)<0 we have shown that for small W, Σ^H + W) - Σ0{H + W) is
bounded away from zero.

Suppose Σ0(H) = 0. This situation is easier to deal with. By the nondegeneracy
condition (note that 0 is an eigenvalue of H^\ if 0 < X < Rn and Xeif, Then
Σ0(H) = 0φσp(Hx). Because Fis not critical for subsystems, there is a neighbor-
hood Nx of 0 and a positive number δx so that Nx n σp((H + W)x) = 0 if
I W\x < δx. Thus for small | W\u Σ0{H + W) = 0 and Σ^H + W) is bounded
away from zero. D

Returning to our main line of development, we note that if Σ0(H) is non-
degenerate in &~(H) and Fis not critical for subsystems we can choose α > 0 so that
Σ0(H + W) < a2 + λ < Σt{H + W) for | W\λ + \λ - λo\ small. We then learn
from Theorem 2.1 that the number of abnormally decaying eigenfunctions with
eigenvalue near λ0 cannot increase. In particular, if all eigenfunctions of H at
λ0 have normal decay, the same is true for the eigenfunctions of H + W at λ if
I W\χ + \λ — λo\ is sufficiently small. This is summarized in Theorem 2.6 below.

If we have degeneracy or criticality there can be at least two thresholds Σo and
Σι emerging from a point as Wis turned on, and an eigenfunction with eigenvalue
initially at λθ9 and with a2, + λ0 = Σ0(H) has a choice of which threshold to pick to
control its decay rate, a choice from among at least two thresholds emerging from
the same point. We cannot prove that the eigenfunction always picks ΣOi and in
fact we believe that it does not. What we can prove is stated in the next theorem.

Theorem 2.6. Suppose Vis not critical for subsystems, that Σ0(H) is nondegenerate
in ̂ ~(H), and that λ0 < Σ0(H). Then there is a δ > 0 and an open interval J contain-
ing λ0 so that if\W\1 < δ, then

+ W- λ)\ ocj, + λ > Σ0(H + W)}
λeJ

^ dim{φekeτ(H - λ0): oc2, + λ0> Σ0(H)} .

Proof We choose α > 0 so that Σ0(H) < α2 + λ0 < Σί(H). We can choose δ and
\J\ small enough so that Σ0(H + W) < a1 + λ < Σ^H + W) if λeJ and
|»Πi<<5. Then dim{^Gker(H + W- λ): α^ ̂  α} = dim{φekQΐ(H + W- λ):
ot2, + λ > Σ0(H + W)}9 and the result follows from Theorem 2.1. D
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Remark. If we restrict W to a subclass so that Σ^H + W) - Σ0(H + W)^c>0
for Win this subclass and | W\ί small, clearly the conclusion of the theorem holds
even if V does not satisfy the assumptions of Proposition 2.5. This happens, for
example, if W( - A + I ) " 1 is compact for then ^{H + W) =

3. Perturbation Theory

In this section we will consider an eigenfunction φ0 of H with eigenvalue
λ0 < Σ0(H). Under the assumption that φ0 has abnormal decay, we will show that
an arbitrarily small perturbation ^eCo°(R") can be added to H to turn φ0 into
a normally decaying eigenfunction. This result, along with the stability result of
Sect. 2, will be enough to show that generically all eigenfunctions with eigenvalue
below Σ0(H) have normal decay.

A byproduct of our methods is a new approach to lower bounds for positive
eigenfunctions. At present, due to the use of radial weights, this approach cannot
reproduce the results of Carmona and Simon [CS], but it may be of interest
nevertheless.

In this section we will always assume (2.1), but we will sometimes also need the
following:

For each i, (y}εVi(y)( — At + I ) " 1 is bounded for some s > 0 . (3.1)

Consider the situation where a non-degenerate isolated eigenvalue of H has
a corresponding eigenfunction with abnormal decay. We then add a small per-
turbation to H to obtain H + tW with corresponding eigenfunction φ(t). Our
objective is to choose W so that φ(t) has normal decay for all small | ί | > 0.
The next result shows we need only make sure that some derivative
0<fc)(O) = dkφ(t)/dtk\t=0 has normal decay.

Proposition 3.1. Suppose W(x) = YJf==1 Wifax) satisfies (2.1), and that for t in an
open interval I containing 0,

(H + tW-λ(t))φ(t) = 0, (3.2)

where we assume </>(•) and λ(') are C°° functions on L Suppose β0 > 0 is chosen so

that βo + λ(0)φ^(H) and OLΦ{O) > βo but for some k ^ 1, oty»>(0) < βo Then there is

an open interval J containing 0 with J c / such that for all ί e J\{0},

<*φ(t) < βθ

Proof Differentiating (3.2) m + 1 times gives

(H - λo)φ{m + 1)(0) = (m + l)μ ( 1 )(0) - W)φim)(0)

where λ0 = λ(0). Let / = min{/c ^ 0: α^) ( 0 ) < /?0}. Using (3.3), it follows by induc-
tion and the methods of [FH1] or the Appendix, that for 0 ^ k ^ /, we have
αψ(k)(0) > βθ

Suppose the proposition is false. Then there is a sequence tj -> 0 (tj Φ 0) with
(xφitj) > β0. This follows from the proof of Theorem 2.1 which shows that for small

Ul/ A
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Given any/eC°°(/), let

F o r / a n d geC™(I) we will make use of the easy proved formula

(t) =f(t)9ιdt) + Σ fw(t)9U~kΨ) 7^4ττ (3-4)
J~K)[

We take/(ί) = H + tW - λ{t), and g(t) = φ{t)9 and find (using (fg\n(t) = 0),

We denote the right side of (3.5) divided by tι by/,(ί) and write Γιφ{l- 1}(t) = φι(t).
We thus have

(H + tW-λ{t))φι(t)=fι(t).

We know that φι(tj) = φj satisfies α^. > β0 and thus use of φj in (2.2b) is easily
justified. We find

K II <ϊ>*PβJι(ts) II ^ II P/io^Kίy) II - c Wφtitj) II . (3.6)

But lim^o*MO = </>(0(0)/'! and λU](t)/tj+ί ->λu+1)(O)/(j + 1)! This shows that
and the left side of (3.6) are uniformly bounded so that

lim sup \\pβ0φι(tj)\\ < oo .

As a consequence, || pβoφ
{l)(0) \\ < oo, and thus ocφw{0) ^ β0, a contradiction. D

CoroDary 3.2. Suppose λ0 < Σ0(H) is a non-degenerate eigenvalue ofH = — A + V9

where V satisfies (2.1). Suppose W is a real function in Co°(Rn), and that φ(t) is
a smooth normalized eigenfunction of H + tW for small \t\ with (H — λo)φ(0) = 0,
whose existence is guaranteed by standard perturbation theory. Suppose
aφ(0) > y/Σ0(H) — λ0 but for some k > 0, α^) ( 0 ) = s/Σ0(H) — λ0. Then for all small

m>o,
αφ(t) = JΣ0(H) - λ(t),

where (H + tW - λ(t)) φ(t) = 0.

Proof Just choose β0 > 0 with Σ0(H) < β2

0 + Ao < £ i ( # ) in Proposition 3.1. D

Note that it follows from (3.3) and the Appendix that α^) ( 0 ) ^ ,JΣO(H) - λ0 for
all fc. We now allow ourselves to contemplate the possibility that no matter what
real WeCt?(Rn) we choose, we obtain α^) ( 0 ) > y/Σ0(H) - λ0. The proof of the
following proposition is somewhat involved.

Proposition 3.3. Suppose H = — A + V, where Vsatisfies (2.1) and that λ0 < Σ0(H)
is a non-degenerate eigenvalue of H with eigenfunction φ0 satisfying
ocφo > y/Σ0(H)-λ0. Suppose that for each real ^ G C O ° ( R Π ) we have

- λ0, all k^>l .
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Let Q be a real function in C o ° ( R " ) so that λ o φ σ { H + Q). Then for every β > 0
satisfying

β2 + λ0<Σ1(H),

there is a constant k(β) > 0 so that for all φe^(J^%

I <x>*PP(H + Q-λo)ψ\\*\\ pβφ II . (3.7)

We remark that the significance of this result is that (3.7) holds for all ψ
We will see that under a mild additional assumption on the potentials, namely (3.1),
this cannot be.

Proof We assume that || φ0 || = 1 and define P o as the projection P o / = (Φo>/)Φo
Since many W's in Co°(Rn) will appear in the proof we put a subscript on φ(t) and
λ(t) so that

(H + t W - λ w ( t ) ) φ w ( t ) = 09 φw(0) = φ o , λ w ( 0 ) = λ o ,

where Wis a real function in Co°(R"), and t is in some small W-dependent interval
containing zero. We remind the reader that λ$}(0) = (φθ9 Wφ0).

The main part of the proof consists of accumulating large numbers of functions
/in the range oϊ H + Po — λ0 so that inequalities similar to (3.7) hold for φ = Gf
G = (H + Po — λo)~1. Namely we would like to prove

for such ψ. For this purpose, let

Ranm = span{(H + Po - λo)φ&)(0): Wis real and in C0°°(R
M)} .

For any set S a L2(R"), let

S = SKJ { / G L 2 ( R M ) : for any ball B contered at 0

there is a sequence fjθS with || pβ(fj — χBf) || -> 0
for all β with β2 + λ0 <

where χB is the indicator function of B.
Starting with 90 = {μφ0: μeC}, let

We claim there is an increasing sequence of Borel sets {Λj} such that for m ^ 1,
J w = L2(Λm). (By defintion, L2(A) = {feL2(Rn)\f= 0 a.e. on Ac}) In fact, we will
show that for m ^ 1,

9m+ι = closure span{/G/ii + ^ 2 : / G L ° ° ( R M ) , hx and h2eL2(Λm)} . (3.8)

Let us compute 3X. Specializing (3.3) to m = 0 we see that

®± = {(W+ μ)φ0: WeCS>(R% μeC} .

Setting N = {x: φo(x) = 0}, we easily find §)γ = L2(NC), and thus we can take
Ax = Nc. If we knew that meas(AΓ) = 0, It would immediately follow that
Q)m = L2(Rn) for all m ^ 1, but meas(./V) = 0 is not known at present unless strong
assumptions are made about the interactions vt.

Given that (3.8) holds for some m, it easily follows that @m+i = L2(Am+ί) for
some Am+1 3 Am. We give the proof. Suppose h is orthogonal to £#m+ί. Then
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clearly heL2(Ac

m) and (hJGh,) = 0 for a l l /eL^R") and all hx eL2(Λm). Let {e3) be
a countable dense set in L2(Λm) and define

Bm = U {*'- (Gβj)(x) Φ 0} .
3

It follows that h = 0 a.e. on £ m so that we can conclude (^ m +1) 1 c L2((Am u #m) c).
Looking at (3.8) again we see that ^ m + 1 c L2(Am u Em) so # m + 1 = L2(^4m+ x) with
Λn + i = AmuBm.

We now assume what we will call our working induction hypothesis: for some
/ ̂  1, (3.8) holds for all m with 1 ̂  m < I and §m = L2(Am) for m = 1, 2 , . . . , / .

Lemma 3.4. Gΐι?en owr working induction hypothesis,

(i) 0r(O)eJm+1ι/m</.
(ii) Lβί

/ΪΓI,. .,wm+ί = Σ (Mπd) ~ Wπ{1)) G{μπ{2) - Wn{2))G . . .

where μ5 = (ψ 0, ^/ Φo) Then for 1 ̂  m ̂  /,

^ m + Ran M + 1 = s p a n ί Λ r , , . . . , ^ ^ : ^ e ^ ί R 1 1 ) } + # m . (3.9)

(iii) For each β>0 satisfying Σ0(H) < β2 + λ0 < Σ^H), there is a k(β) < oo
(independent of m and I) such that for 1 ̂  m rg /,

(3.10)

Proo/ According to our definition of Ranm, 0$°(O) e G Ranm, so that if 1 ^ m ̂  /,

ΦP(O)eG Ranm c G ^ m c= G ^ w = GL2(Am) .

But if 1 ^ m < /, we see from (3.8) that GL2(Am) c S f f l + 1 . Since </>$}(0) = φQe@u

(i) follows.
From (i) and (3.3) it follows that if m ̂  /,

(H + Po - λo)φ^1\0) = (m

where ge$m, and thus iterating

where heQ)m. By "polarization"

= fw,w,..,w

m+lW's

| / iF i iF, . . . , fF : WKreal and in C$>(Rn)\ = s p a n { / ^ . ^ m + 1 : ^ G C O ° ° ( R W ) } .span|

m+lίΓ's

This proves (ii).
According to Corollary 3.2 of [AHS] there is a fc(β) < oo such that if β > 0

satisfies Γ0(ίΓ) < /?2 + λ0 < ΣX(H\ we have

(3.11)
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for all φeCg>(R"). Let

% = {feL2(Rn): pyfeL2(Rn) for all y satisfying y2 + λ0 < Σ^H)} .

We write/} -^-> # if/} e ^ p for all j and || py(/} - g) \\ -> 0 for all y < y/Σ^H) - λ0.

Suppose/e^ t and 5 is a ball centered at 0. Then there is a sequence/}eQ)γ with

fj—-• χBf. If φj = G/}, it follows that ψjE@p so that we can substitute φ = φj in

(3.11) (this requires a limiting argument) to find

M/OIIP^^/ill̂ llP/î ll
Taking j -> oo and using Fatou's lemma we learn

Now we take B f Rw and get

for all / e ® ! = L2(Ax). Replacing / by p^ix}-*/ we obtain (3.10) for m = 1.
Suppose 1 < M < / and that (3.10) is true for all m satisfying 1 ^ m < M. If
fe§M = L2(ΛM) a n d / = 0 outside a ball, then by definition there exist gi^^M-i

and /ι7 e R a n M so that g^ + /ι >f. As in the proof of Proposition 3.1, it follows

from the hypothesis of the proposition and (3.3) that hje@p and GhjE^p. Thus
gjeS>p, and from the boundedness of pyGp~i(x}~it\L2iAM_lh it follows that
Gg3sSp. Thus ψj = G(gj + * j ) e 0 p and

/ f < > ( + Λ) -

Taking j ^ co we obtain

fc(/DllP/.<χ>*/ll ̂  WpβGfW,

and as before this easily extends to all/eL 2(,4M). Hence (iii) of the lemma is
proved. D

We now continue with our main line of development. It follows from our
working induction hypothesis that if 1 5* m ^ /,

§m = closureίspanίΛG/2G / w - i G / m φ 0 : / i , . . ,/meZ/°(R")} + # w - i ) .

(3.12)

In particular,

φ = (μ2- W2)G(μ, - W3)G • G(μ z + 1 - Wι + 1)φoe^ .

From (iii) of the lemma φe@p. Suppose/x eLco(Aι) and B is a ball centered at 0.
We choose a sequence WlJeC§>{Rn) such that || Wlfj - ufγ | | p ->0 for all
p e [ l , oo). We want to show the ^-convergence of (μi, j— Wltj)Gψ, where
fJLi,j= (Φ09 Wltjφ0). For this it is convenient to note that from (iii) of the lemma it
follows that (H + ϊ)ρyGp~ι (xy~*\L2{Aι) is bounded. The easy proof will be omit-
ted. Thus by Sobolev's inequality pyG\j/eLq{Rn) for some q > 2. Hence the conver-
gence follows by Holder's inequality. Similarly we conclude that the other
permutations infwujW2,...,wi + i converge in Θp so that
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is in J>i+i. If we add to/i a function in L°°(Aι) we are adding a function in §){ to φ'
so we can assume that /i above is an arbitrary L00 function. Given a function
^ e Γ f i ί - ! ) and a sequence W2JeC§)(Rn) with || <x>" M (^ 2 > i - / 2 ) | | p - » 0 for all
p e (1, oo) we use an analysis similar to the one just used to show the convergence
of ργχBfι Gfw2ιJt..., wv We conclude that

is in J ^ + i . Again we can replace f2 by an arbitrary L°° function by adding
a function in 2fι to φ". Continuing in this way we find that J> / + 1 contains the span
of all functions of the form

where/7 e L°° (RM) and /* e ̂ /. We can calculate the right side of (3.8) with m = / and
find that it is given by (3.12) with m = / + 1. From what we have just shown
%+i=> (right side of (3.12) with m = / + 1). But a glance at the definitions shows
@ι+i cannot be any larger and hence (3.8) holds with m = /. We have thus shown
that (3.8) holds for all m ̂  1 for an increasing sequence of Borel sets {Am}. Taking
into account (iii) of the lemma one easily finds that if A — (J^ = 1 >4 m ,

We would thus like to show L2(A) = L2(Rn). This follows from the following
argument: let P be an arbitrary polynomial. It follows that ϊoτ f, g e L°°(Rn\

fP(G)gφ0eL2(A).

But by the functional calculus we can find a sequence

Pm(G) ±> e-
t{H+Po) (for fixed t > 0 ) .

T h u s / e - ί ( H + P o ) # o =fe~tHgφo + ctfφ0eL2(A). It follows that

fe-tHgφ0eL2(A)

for all/, 0eL°°(RM). Since e~tH is "positivity improving" for t > 0 [RS], it follows
that L2(A) = L2(Rn).

Finally we need the bound for (H + Q — λo)~γ rather than (H + Po — λo)"1

= G. This follows (with a different k(β)) from the resolvent equation. Proposition
3.3 is proved. D

We now proceed to show that (3.7) cannot hold for all φ e @(H\ at least if we
make a mild additional assumption.

Proposition 3.5. Suppose H= - A + V, where V satisfies (2.1) and (3.1), λ0 < Σ0(H),
and β > 0 with ΣΌ(H) < β2 + λ0 < Σ^H). Suppose, in addition, that Q is a real
function in C0°°(R

M) such that λoφσ(H + Q). Then (3.7) cannot hold for allφe@(H).

Proof Let GQ = (H + Q- λo)~\ and pick α0 > 0 with αg + λ0 < Σ0(H). We will
use the fact that

\\ POOGQPΪO1 W < ° ° >
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which follows from the usual analyticity arguments (see [CT] for example) once it
is known that λ0 is not in the essential spectrum of Hao (see [DHSV]). Assume that
(3.7) holds for all ψ e ®(ΊΆ\ Then

\\pβQPβ\xy-^\\ <cx)

Consider the operator

where α(z) = (β — ao)z + α 0 . Matrix elements of F(z) between vectors in CQ are
analytic for z in a neighborhood of the strip {z: 0 ̂  Rez ^ 1} and bounded in the
strip. Hence we can use the three lines lemma (maximum principle) to conclude that

s u p { | | F ( ί ) | | : ί e [ 0 , l ] } < o o .

Choose ε in (0, / Γ 1 JΣO{H) - λ0) small enough so that <y>βUj(;y)( - Δt + I ) " 1 is
bounded for all i. We choose α0 so that α(ε)2 + λ0 = Σ0(H). We will obtain
a contradiction to the statement that F(ε) is bounded.

The boundedness of F(ε) is equivalent to

C || <X>V«(β)(H + 2 ~ W II ̂  II Pa(e)Ψ II (3.13)

for all φ e 9{H\ where c = \\ F(ε) ||. Let us assume that Σ0(H) < 0. We will indicate
the proof for the easier case Σ0(H) = 0 later. It is easily seen that we can find
XeJ?\{Rn} so that Σ0(H)eσdisc(Hx) and thus Hx has an exponentially decaying
eigenfunction φx with eigenvalue Σ0(H). We assume | | φ x | | = l. Let
Φ — Pa(ε)Φχ®UχL- Then according to (3.13),

c || <x>^ (H + Q + B - Σ0(H))φx ® u ^ || ^ || ̂  || , (3.14)

where

B = α(ε) I — -D + D — ) + α(ε)2/<x>2 ,

and D = V. We choose ux±e Co(BR{a)(a)), where J5Λ(Λ)(α) cz X1 is a ball of radius
R(a) centered at a. By a scaling argument we can choose uχy so that

II Λx±ux± II ^ const/.R(α)2 ,

The point α will be chosen to tend toward infinity along a fixed line emanating from
the origin while we will choose R(a) = δ\ a |, where δ > 0 but small. The direction of
the fixed line and δ will be chosen presently. The closed set

XiΦX

is a proper subset of Z 1 because each XL n JQ1 appearing is a vector space of
dimension strictly less than dim XL. (Otherwise X1 n Xj- = XL and Xt cz X) We
choose a to lie in Xλ\S so that πta Φ 0 for all i with Xf φ X. We choose (5 e (0,1) so
that B2R(a)(a) <= XL\S for α in the chosen direction. We will use the notation
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x = (y, z)9 where yeX and zeXL. We can choose δ small enough so that for some
d > 0, if Xi$X, \y\ ̂  δ\z\9 and zeBR{a)(a)9 then

Let Xx be the characteristic function of the set

{x = {y,z): \y\ > δ\z\, zeBR(a)(a)} ,

and χ2 be the characteristic function of

{x = (y,z):\y\£δ\z\9zeBRia)(a)}.

We know that ey<y>φx{y)eL2(X) for some y > 0. Let F^(x) = Σ * , <= W π ί χ ) W e

estimate

+ const-1| (xyl2{V- Vx)(-Δ + I ) " 1 1 | . (3.15)

The first term on the right is bounded by e~μ<a} for some μ > 0 because if χi(x) > 0,

<x>f ^~y < y > ^ const e~μ<a}. In the second term we write V — Vx = Σ x .
in the i th term we estimate for χ2(x) > 0,

<χ>§ = <χ> - ! <χ> ε ^ <Z> " ! const <7uiX>e

^ const <α>~

Thus the second term on the right of (3.15) is bounded by const <α>" f . Summariz-
ing, we have for large a,

= II 0 ^ 7 ^x1 Φx ® uxλ II •+" const

+ const <α>- ! . (3.16)

The second term on the right of (3.16) can be estimated as follows:

+ \\φx®(z-Dz)ux.\\)

S const- <α>- ( 1 -* ) ,

since

||z Dzuχi. || ^ (\a\ 4- R(a))\\Dzux± \\ ^ (\a\ + R(α)) const/R(α) ̂  const.

An easy estimate of the first term on the right side of (3.16) then gives

|| <x>^ (H + Q + B - Σ0(H))φx ® ux, \\

S const-{<α>*Mχχiiχχ || + < α > - + < α > - ( 1 - ^ }

^ const-{<α>~- + < α > - ( 1 " ^ } .

But for large a, this contradicts (3.14).
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If Σ0(H) = 0 a simpler argument works. We replace φχ®ux± with
ueCo(BR{a)(a)\ where BR(a)(a) is an open ball in Rπ. The vector a is chosen to lie
outside oϊ [j.Xj-. The rest of the proof is essentially the same. D

We summarize what we have learned so far.

Theorem 3.6. Suppose λ0 < Σ0(H) is a non-degenerate eigenvalue of H (where
H = — A + V and V satisfies (2.1) and (3.1)). Suppose the corresponding eigenfunc-
tion φ0 has abnormal decay so that a^0 + λ0 > Σ0(H). Then there exists a real
function WeCoφJ1) so that the following holds. Let φ{t) be a smooth family of
normalized eigenfunctions ofH + tWwith φ(0) = φ0. Then there is a T > 0 so that
φ(t) has normal decay for 0 < | ί | < T.

As we mentioned in the Introduction, λ0 in Theorem 3.6 is an embedded
eigenvalue of the operator Ha if Σ0(H) < α2 + λ0 < Σ^H). It follows from The-
orem 3.6 itself that λ0 e σess(Ha) for otherwise the eigenvalue would persist for small
t. More precisely, a small change in the argument used to prove Proposition 3.5
shows that if α2 + λ0 > Σ0(H% and there is an Xe 5£ such that Σ0(H)eσdisc(Hx)
and dim X^ > 1, then λ0 is in the interior of σ(Hα). (For ΛΓ-particle operators with
particles moving in Rv with v ^ 2, the essential spectrum of Ha is found explicitly in
[DHSV].) If no such X exists, for example, if n = 1, then this type of argument will
not work. However, it is probably the case that λ0 is in the interior of the point
spectrum of H*(!). It would be interesting if a perturbation theory could be
developed directly for Ha from which Theorem 3.6 would follow.

We now state a result which says that in some sense, normal decay is generic.
For that purpose let Stx be the set of all real functions PΓwith | W\x < oo. It is easy
to see that βtγ is a Banach space. Let (% be the closure of the real CQD(RΛ) functions
in the I |i norm. The reader can show without difficulty that a real function We &
if and only if both W(-A + I ) " 1 and ( - A + I ) " 1 [X D, W] ( - A + I ) " 1 are
compact operators.

We agree to call an eigenvalue λ0 normal if the corresponding eigenfunctions all
decay normally, and abnormal otherwise.

Theorem 3.7. Suppose H = - A + F, where V satisfies (2.1) and (3.1). Then the set
of all We & such that the interval ( — oo, Σ0(H)) contains only normal eigenvalues of
H 4- W is a dense Gδ.

Proof When Theorem 2.6 is referred to in the proof, we mean both Theorem 2.6
and the remark following. Let A c ( - oo, Σ0(H)) be compact and define

®A = {We&: all eigenvalues of H + Win A are normal} .

Suppose We ΘΛ. Then there is an open ball ί / c J centered at the origin so that if
We U, then H + W + W has only normal eigenvalues in A. This follows from
Theorem 2.6 and a compactness argument. Thus ΘΛ is open.

We now show that ΘΛ is dense in St. Given We Λ\ΘΛ we will find a sequence
@ with I Wm\x -•() so that W+ WmeΘA. To find Wm first choose Wm real

and in CO°°(RΠ) such that | Wm - W\x < ^ - , and let W^ = Wm- W. We now add

a real function PF2 in Co°(Rn) with | ^ 2 | 1 < — so that all eigenvalues of
3m

H + W + Wm + Wm in A are non-degenerate. Lemma 5.5 in [AHS] is helpful here.
The function W + Wi + W* is real and in Co°(RM), and thus we can make use of
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Theorem 3.6 where the potential Fis replaced by V + W + W^ + W^. Suppose

H + W + Wm + W% has L abnormal eigenvalues in A. Pick one of these eigen-

values and find a real C§ perturbation with | \ί norm less than ——— which turns
(3mL)

this eigenvalue into a normal one. This can be done because of Theorem 3.6.
Choose the perturbation small enough so that no eigenvalues enter A. By Theorem
2.6 a small enough perturbation will not increase the number of abnormal eigen-
values in A so we can proceed one by one to change abnormal to normal
eigenvalues. This process adds at most L perturbations with | | x norm each less

than - — - so in total a perturbation W*eCg with \W*\<-——. Thus
(3mL) (3m)

Wm=W' + W>+ Wl has I Wm\x < - .
m

We have shown that &Λ is a dense open subset of 38. Choose compact intervals
Λm c ( - oo, Σ0(H)) so that Λm f ( - oo, Σ0(H)). Then

G = n &Λm
m = l

is a Gδ, and We G if and only if H -f W has no abnormal eigenvalues in ( — oo,
Σ0(H)). G is dense by the Baire category theorem. D

In Theorem 3.7 we have restricted consideration to the discrete spectrum
because in [AHS, Theorems 5.11, 5.1 Γ] it is shown that under mild additional
assumptions, generically there are no embedded non-threshold eigenvalues.

We end this section with a discussion of how our methods relate to lower
bounds for positive solutions to the Schrόdinger equation. First we note that there
is an alternative proof of Proposition 3.5 using lower bounds for positive solutions.
It goes as follows:

Given the hypotheses we can choose Q e CQ (RW) SO that λ0 < inf σ(H + Q) and
(3.7) still holds for all ψ e 9{H). Just use the resolvent equation. But if/e C Q 0 , / ^ 0,
and / φ 0, then φ = (H + Q — λo)~1f is a positive function satisfying
(H — λo)φ = 0 outside a compact set. According to (3.7), p^ψeL2 for some α > 0
with α2 + λ0 > Σ0(H). If certain additional assumptions are made about the ίVs,
this contradicts the lower bounds of [CS].

Perhaps more interesting is that Proposition 3.5 can be used to obtain lower
bounds of a sort for positive solutions.

Theorem 3.8. Suppose H = — A + V, where V satisfies (2.1) and (3.1). Assume, in
addition, VeK^00, the Kato class described in [AS]. Suppose λ0 < Σ0(H) and that
ψoe@(A) satisfies ( - A + V — λo)φo = 0 in ΩR = {x: \x\ > R} with φo(x) > 0 in
ΩR. Then

<40 + λ0 = Σ0(H),

so that

- λ0 .

Proof. We can assume λ0 <inϊσ(H). For if this is not true just add a real
Qe Co°°(Rπ) so that λ0 < inf σ{H + Q). We still have ( - A + V + Q - λo)ιl/o = 0
outside a ball.
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We now assume that contrary to the statement of the theorem,
<4o + λo > Σ0(H). Suppose feCo°°(RM) ,/real and define φ by

(H-λo)φ=f.

According to [AS], φ and φ0 are continuous for large | x | and thus by a result of
Agmon [A2, Theorem 2.7] for large | x \ we have

Thus for some α > 0 with α2 + λ0 > Σ0(H) we have paφeL2 for every φ of the
form (H — λo)~xf with feC^(Rn). Using the kind of approximation argument
already used in the proof of Lemma 3.4, it follows that for all ^

But by Proposition 3.5 this is impossible. D

Appendix

We will need an estimate of the form

k\\(xyp(H+W-λ)φ\\ Z\\pφ\\-\\Kpφ\\9 (A.1)

with p = p(α, 7, ί, μl9μ2) given by

p(x) = (<x>/(l + μi<x>))f (l + yμ2<^))^^α<x> »

where μie[0, 1], μ 2e(0,1], α ̂  0, and X is compact. Let SSί be the set of all
real-valued measurable functions Won Rn with | W\± < oo. The estimate (A.I) and
the conditions for its validity below represent a slight generalization of Theorem
3.1 of [AHS].

Theorem A.l. Suppose H = — A + V, where V satisfies (2.1). Fix t and α0 non-
negative and suppose λ0 + 0% φ &~(H). Then there exist positive contants ε, δ, fc, and
a compact operator K so that ifWe£Sl91 W\λ + \λ — λo\ + |α — α o | < ε, 0 ^ y ^ ^,
μ! G [0,1], and μ2 e(0,1], then (A.I) holds for all φ e Co°°(RM)? w/ierβ s = 1 if a 0 = 0
and 5 = i if a0 > 0.

Proo/ The proof in [AHS] suffices with minor variations. The fact that α( ^ 0) is
not fixed above, whereas it is in [AHS, Theorem 3.1] causes no difficulty. For the
reader's convenience we present some estimates involving the function F given by
F = In p, which are necessary for the proof, and refer the reader to [AHS],

(lχl \ -l

Define g and G by

VF = xg, G = (x V ) 2 ^ - ( x V) |V J P| 2 .

Then if t9 α, γ are bounded we have

χ g 0 g (α + y X x ) ' 1 + ί<*>~ 2 ,

α). D
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Theorem A.2. Suppose H = - Δ + V and V satisfies (2.1). Suppose φe9(H)

and

(H-λo)φ=f.

Assume <x> ί l e α i < x > /eL 2 (R")/or some tt ^ 1 and αx ^ 0. Then

4 + λ0e3Γ{H)κj[a\ + λ0, oo] . (A.2)

Suppose in addition that α? + λ0 φ$~(H). Then ifθί1 =0we have <x> r i" V eL 2(R"),
while ifa1>0 and aψ^au we have

Proof. We will use (A.I) in the form

kf || (x>sp(H - λo)φ || >\\pφ\\-c\\φ\\9 (A3)

which follows from (A.I) as (2.2b) was shown to follow from (2.2a). We will also
make use of (A3) for φe9{H)c\$)(ρ) instead of just </>eCo°(R"). This follows
by a simple approximation agrument. We allow the left side of (A. 3) to be
infinite.

Suppose that contrary to the statement of the theorem, (A.2) is incorrect. Then
(xφ < «! and oίψ + λoφ^~(H). We apply Theorem A.I with α 0 = aφ. If ocψ = 0 we
choose α = α0 = oiψ = 0, y = 0, and μ1 > 0. Taking μ1 j 0, in (A.3) (with 5 = 1), we
find ( x y ψ e l 2 for all ί. A similar argument with t = 0, α = 0, 0 < γ < α l 5 s = 1,
taking μ2 JO, shows that ey<x>φeL2 for some γ > 0 which contradicts α^ = 0.
Otherwise α^ > 0 so we take α0 = oty, 0 < α < α^, but α^ < α + y < α x. We set
s = i and ί = 0. We allow μ2 JO which gives eia + γ)<x>ψeL2, again a contradiction.
This establishes (A.2).

To establish the remainder of the theorem we first suppose αx = 0. Then let
α 0 = α = y = 0, s = 1, μi > 0. Using (A.3) with φ = φ and allowing μ1 j 0 we
find that (xyφeL2 whenever <x> ί + 1 /eL 2 . If aλ > 0 (and α ^ ^ α j let
α0 = oίi, 0 < α < αi, α + y = αx, μi > 0, 5 = \. We can achieve this with | α — α01
and y > 0 as small as we please. Substituting φ = φ in (A.3) and taking μ 2 i 0 ,
μx JO, we obtain (x)*e«ί<x>φeL2 whenever < x > ί + V 1 < x > / e L 2 . D
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