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Abstract. For a special class of the Navier-Stokes equations on the two-dimensional
torus, we give a lower bound in the form G2/3 (where G is the Grashof number)
for the Hausdorff dimension of its global attractor which is optimal up to a
logarithmic term.

1. Preliminaries and Introduction

We continue our previous work [8, 9] on the 2D Navier-Stokes equations for a
viscous incompressible fluid with spatially periodic boundary conditions. In [9], we
get a lower bound for the Hausdorff dimension of the global attractor in the form
G1/3 by considering some unstable modes of the associated linear operator for the
Navier-Stokes equations. We commented there that one can improve the lower bound
by more careful examination. In this paper, following the same technique as in
[8, 9], we improve the lower bound to G2/3 by considering more unstable eigen-
modes. The idea is simple, since the dimension of unstable manifold around a
steady state gives a lower bound for the Hausdorff dimension of the global attractor,
so we only need to give an estimate for the number of unstable directions around this
steady state.

Navier-Stokes equations written in functional form are [4, 15, 16]:

du
— + Au + B(u,u) = f, (1)

u(0) = u0, (2)
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in a Hubert space H , where H consists of those u such that

C2u_j =

j Uj — 0, for each j ,

= (2π)2

where * j - x = j^ 4- J2

X2' ^j = fa] > *φ» 3 ' uj = Jιu] + hu}
Let P be the orthogonal projection onto H in (L2(J?))2 (where

[0, 2π]), then

Au = -PAu,

) = P[(v V)w].

Now as in [8, 9], for k = 3,0), we define

(3)

(4)

= [0, 2π] x

Λ/271

where k' = (fc2, — fcj), | fc | =

Let

fc|, k - x — klxl + k2x2.

0 or fcj = 0, 0} .

We see that Wk, W'k, k G 3K are eigenvectors of A with eigenvalues |/c|2; and
those Wk, W'k form an orthonormal basis in H.

It is easy to see for fc ̂  (0, 0), 7 = (α, /?),

Λ/27Γ7

1*1

(6)

(7)

As in [9], we consider a special class of the Navier-Stokes equations with external
forces /Q = λs2W(o s). A corresponding stationary solution is

(8)

where λ > 0 is a parameter.
As in [4, 5, 16], the nondimensional Grashof number is defined by

G = (9)

In this paper, we use row vector (u, v) to denote column vector
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In here, since the viscosity v — 1 and Xl = 1, so

G=\f0\ = s2X. (10)

An upper bound for the Hausdorff dimension of the global attractor X for the 2D
Navier-Stokes equations with periodic boundary conditions has been given (cf. [4, 5,
16]):

άιmH (X) < cG2/3(l + log G)1/3 , (11)

where c is a nondimensional constant.
We will show in this paper that the above upper bound is optimal up to

a logarithmic term. More specifically, for the special class of the Navier-Stokes
equations considered here, we will show the following:

dimH(X) > cG2/3 , (12)

where c is a constant independent of G.

Remark. As remarked in [9], the same result has been stated in [5], but there is a
mistake, because in there, the G which appears in (12) is different from the G in (11)
which is defined by (9). The relation between the upper bound and lower bound on the
dimension of the attractor for the Navier-Stokes equations (both 2 and 3 dimensions)
has been studied in [6]. We caution the reader about the differences in parameters and
the differences in G. In the two-dimensional case, lower bounds for global attractors
given in both [5] and [6] are based on the work of [3] which is concerned with the
Navier-Stokes equations on the domain [0,2π/α] x [0, 2π], where a > 0 is a small
perturbation parameter. Our result cannot be implied by the results in [3, 5, 6J. If
one transforms the results of [3, 5, 6] to the domain [0, 2π] x [0, 2π], then one can
see that the number of unstable modes given in this paper is in the order of square
of the number of unstable modes one gets in [3, 5, 6]; the reason is that [3, 5, 6]
only consider unstable modes in one space direction, whereas in the present paper
we investigate unstable modes in both space directions, see the Remark following
Theorem 1 below.

The Navier-Stokes equations linearized around UQ are

= 0, (13)

where
L(u0)w = Aw -f B(w, UQ) -f B(u0, w) . (14)

We consider the following eigenvalue problem:

L(uQ)V = -σV. (15)

We call the eigenvectors corresponding to eigenvalues with negative real part (so
Reσ > 0) unstable modes. It is well known [3, 16] that the number of unstable
modes gives a lower bound for the Hausdorff dimension of the global attractor. We
want to give an estimate of their numbers.

In Sect. 2, we reduce the eigenvalue problem for L(uQ) to an infinite system
(uncoupled) of three term recurrence relations and recall a property of three term
recurrence relations. In Sect. 3, we prove Theorem 1. Section 4 gives our main
results.
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2. Reduction of the Problem and Continued Fractions

The reduction of the problem is the same as in [8, 9]. We use a Fourier expansion,
writing the eigenvector in the form:

V = W + W , (16)

(17)

(18)

where W and W are even and odd parts of V respectively. We substitute V into (15),
and by Lemma 1 below, we get two identical equations for W and W respectively.
So we only need to consider the equation for W:

L(uQ)W = -σW . (19)

We recall from [8, 9]:

Lemma 1. For every k = (kλ , fc2) ̂  (0, 0) and I = (^ , 12) / (0, 0), we have:

-k' l(\k\2-\l\2) ( 1

As in [8, 9], we substitute W given by (17) into (19), using Lemma 1 with
(0, s), we get the following recurrence relations for ak:

2

l +(k2

for (fciΛ)^^. (20)

For each fixed k{ > 0, the above equation gives a three term recurrence relation among
a(kι,k2-s)> a(/ci,/c2)' a(/cι,/c2+s)* °̂ ̂ e comP^ex problem of solving (19) is reduced to
solving (20) for each fixed k{. It is easy to note that for k{ — 0, if Reσ > — 1, the
only solution of (20) is α(0 k ^ = 0, Mk2 > 0. We assume kγ > 0 in the rest of this
paper.

From (20), we get

Lemma 2 (cf. [8, 9]). For every fixed k{ > 0,

c(kλ ,fc2)
b(kι ,fc2)

 + b(k\ ,k2-s} ~ b(
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where

(22)

Because the eigenvector W belongs to the space H, we want to find nontrivial
solutions of (21) such that

W2)^° if l*2l-*°° (24)

If the above is true, then from (21), for all n > 0,

if oo.

So, such a W will be in H.
Now we let

_ _ 2V2π[t2 + (sn + r)2] [t2 + (sn + r)2 + σ]
71 ^t,5?T~r9r'y Λ y. Γ/2 I ^ oτ) 1 τ*^2 o2~|

/\C |_6 ~|~ ^o/ i/ ~| f ) o J

where t is a positive integer, n is an integer and r = 0,1, . . . , s — 1. And we let

C ι~ ( S T L (~ T j S

it, y o j O ί c π ^ i ,; / < 9 i / i \9 V f , o ι i ( i > )yt2 + (sn + r)2

From Lemma 2, for each fixed positive integer t and fixed r = 0,1, . . . , s — 1, we
get the following three term recurrence relations:

/ 7 p _ ι _ ^ _ P , — 0 r ? — 0 + 1 4-2 (21}n n n 1 n+1 — ' — ' ? -Λ-^-"> \^' '

By the trivial solution of (27) we mean the solution {en}, en = 0 for Vn. We want
to find nontrivial solutions of the above Eq. (27) such that

Λlimoen = 0, (28)

since they correspond to eigenvectors of (19).
In the following, by the nontrivial solutions of (27) we mean those nontrivial

solutions of (27) that also satisfy the condition (28). We have the following:

Theorem 1. For each integer pair ( t , r ) (where t > 0, r > 0) satisfies:

s2>t2 + r2, t2 + (-s -f- r)2 > s2 . (29)

For any λ > 0, there is a unique σ = σ(λ) > — (t2+r2) which increases monotonically
with λ, such that there is a unique nontrivial solution of'(27) (within a constant factor),
and

σ(λ) < O(X) if λ -> oc.

Moreover, if
t2 + r2 < s2/3 , (30)

σ(λ) = O(λ) if λ -> oo.

We will give the proof of Theorem 1 in the next section.
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Remark. If one transforms the results of [3, 5, 6] to the domain [0, 2π] x [0, 2π], then
one can see that in there, the unstable modes are corresponding to r = 0 here, so the
total number of unstable modes is at most 2s instead of the order of s1 we get here,
see Lemma 4 below.

Remark. Same result is true with the conditions (29) and (30) replaced by

s2 < t2 + r2, t2 + (-s + r)2 < s2 ,

and
t2 + (-s + r)2 < s 2/3,

respectively.

Now, we recall a result [11, 17, 7, 8] on three term recurrence relations which
is crucial for the proof of Theorem 1. For other property of continued fractions, we
refer to [7]. We consider the three term recurrence relations:

where dn, en are complex numbers and n = 0, ±1, ±2, ____ We have

Theorem 2 (cf. [11, 17, 7, 8]). Assume

R e d n > 0 , for Vn + 0, 1 , (32)

lim Re dn = oo . (33)
> oo

Then the following two conditions are equivalent:
(A) There exists a non-trivial solution {en} of (31) such that

lim en = 0. (34)

(B) The following equation is true.

1 ^V- (35)

-1 d_2 +
 A d2 +

Moreover, the solution which satisfies condition (A) is unique within a constant factor;
and property (A) implies

en ^ 0, for Vn.

3. The Proof of Theorem 1

The proof below is similar to the proofs given in [8, 9]. We only consider real σ. We
restrict σ,

σ > -t2 - r2.

Step 1. For fixed integer pair (t, r) (t > 1, r > 0), we first recall

- - 2V/27r(^ + (sn + r)2) [t2 + (sn + r)2 + σ]
~ C - '
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If (£, r) satisfies the conditions of Theorem 1, by the restriction on σ, we see that

d0 < 0, dn > 0, for Vn ^ 0 , (37)

lim dn = oo , (38)
|n|— »oo

hence the conditions of Theorem 2 are satisfied. Instead of solving (27), we only need
to solve (35). We rewrite (35) in the following form:

-do = - l— - + - l— - (39)

We define /(σ) be the left-hand side of (39) and g(σ) be the right-hand side of (39).
We want to find σ satisfies:

/(σ) = <7(0) . (40)

Step 2. By the definition of /,

so

lim /(σ) = oo , (42)
σ—»oo

/(-t2-r2)-0. (43)

Since dn > 0, Vn ^ 0, by the definition of g and a property of continued fraction,
we obtain:

9(σ) < -i— + -r ,

2V2π[t2 + (-s + r)2] [t2 + (-s + r)2 + σ]

λt [ί2 + (5 + r)2 - s2]
+ 2v/2π[t2 + (s + r)2] [ί2 + (s + r)2 + σ] '

hence
lim #(σ) = 0. (45)

σ—>oo

By the definition of g, it is trivial to see:

g(-t2 - r2) > 0. (46)

Now we compare (42), (43) with (45) and (46), by the intermediate theorem, we
obtain that for every λ > 0, there is a σ > — t2 — r2 satisfies (40).

Step 3. We show the σ obtained in Step 2 is unique. From (40), we get

2v

/2π(£2 4- r2) 1

+ ϊ , (47)
(t2 + r2 + σ)^ + 2^

(t1 + r2 + σ)~ld2 H
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so σ is unique, otherwise the left-hand side of (47) is a constant but the right-hand
side of (47) decreases monotonically with σ, hence, a contradiction.

Step 4. We show the unique σ = σ(λ) increases monotonically with λ > 0. From
(47), we have

2v/2π(£2 + r2) 1

t [S2 - (t2 + r2)

+ - - - - . (48)

From the above equation, we get our results; otherwise the right- hand side increases
monotonically with λ, which is a contradiction.

Step 5. Now we estimate the growth rate of σ(λ). From (40), by a property of
continued fraction, we have

- ̂  + - l—r < /(σ) < -L + 1 (49)

«-4 < + ξ
From the second inequality of (49),

2V2π(t2 + r2) [t2 + r2 + σ] Xt [t2 + (-s + r)2 - s2]

λί [s2 - (t2 +

λt
2v

/2π[ί2 + (s + r)2]

so, we obtain

(σ + s2)(σ + t2 + r2)

^ [s2 - (ί2 + r2)](λί)2

(2Λ/2π)2(ί2 + r2)

r 2)] " 2\/27r[ί2 + (-s + r)2] [ί2 + (-s + r)2 + σ]

[ί2 + (5 + r )2_52 ]

[ί2 + (s + r)2 + σ] '

f ί2 + (-s + r)2 - s2 ί2 + (s + r)2 - s2 ]

[ ί2 + (-s + r)2 ί2 + (s + r)2 ) ' ('(2Λ2π)(ί + r ) -s r 5 r )

so
σ(λ) < O(λ), if λ->oo. (51)

From the first inequality of (49), we get

(σ -f t2 + r2)[σ -f t2 + (-s -f r)2]

(2Λ/2π)2(t2 + r2) [t2 + (-s + r)2]
X (λί)2[s2 - (t2 + r2)] [ί2 + (-s -f r)2 - s2]

+ (σ -h t2 + r2)[σ + ί2 + (s 4- r)2]

(2Λ/27r)2(t2 4- r2) [t2 + (s + r)2]
X (Xt)2[s2 - (t2 + r2)] [t2 -f (s 4- r)2 - s2]

[σ +12 4- r2] [t2 + r2] [t2 + (-2s 4- r)2 - s2]
+ [σ + t2 + (-2s + r)2] [s2 - (t2 4- r2)] [t2 + (-2s + r)2]

+ [σ 4- *2 + (2s + r)2] [s2 - (t2 -f r2)] [t2 + (2s 4- r)2] > 1 ' (52)
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We denote I to be the sum of the first two terms of left-hand side of the above
inequality, and II to be the sum of the last two terms of the left-hand side of the
above inequality. Since

[t2 + r2] [t2 + (~2s + r)2 - s2]
< [s2 - (t2 + r2)] [t2 + (-25 + r)2]

[t2 + r2] [t2 + (2s + r)2 - s2]
+ [s2 - (t2 + r2)] [t2 + (25 + r)2]

< 2 * "tΓ. 9N , (53)

so, if t2 + r2 < s2/3, then by the above inequality (53), we obtain

IK 1. (54)

Hence, from (52) and (54), we imply

σ(X) > O(λ), if λ -> oo . (55)

Combining (51) and (55), we get

σ(λ) - O(λ), if λ -> oo . (56)

We have proved Theorem 1. D

4. Main Results

From Theorem 1, and considering both even and odd parts of V in (16), we easily
get

Theorem 3. For each integer pair (t, r) (where t > 0, r > 0) satisfies:

s 2>ί 2 + r2, t2 + (-s + r)2 > s2 . (57)

For any λ > 0, there is an eigenvalue —σ(λ) < (t2 -j- r2) of L(UQ) which decreases
monotonically with X; the corresponding eigenspace is at least two.

And
σ(λ) < O(λ) if X -> oc.

Moreover, i f t 2 -f r2 < s2/3, ί/zen

σ(λ) = O(λ) ι/ λ -> oo .

In the following, we require the integer pair (ί,r) satisfying the conditions of
Theorem 3. For each such pair, we denote λ(ί,r) to be the critical value of λ such
that

σ(λ(t,r)) = 0. (58)

So, if λ > λ(t, r), by Theorem 3, there are unstable modes corresponding to
-σ(λ) < 0.

Remark. It can be shown, when restricted to odd functions, the eigenvalue 0 is simple,
so global bifurcations occur [12]. These and other related issues will be pursued
elsewhere.
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We want to give an estimate for λ(ί, r). For simplicity below, we abbreviate λ(ί, r)
as λ0. Taking σ = 0 in (50), we obtain

Λ/2π(t2 t2 + (-s + r)2 - s2 t2 + (s + r)2 - s2 - 2 ~1/2

so

>

f- (-s + r)2

2π(t2 + r2)

t2 + (5 + r)2

- - (t2 + r2) *

By taking σ = 0, from (52) and (53), we get

(2v

/2τr)2(t2-f r2)2 f [t2 + (-s + r)2]2 [t2 + (s + r)2]2

(59)

(λ0t)
2[s2 - (t2 + r2)] 1 12 + (-5 + r)2 - s2

2(t2 + r2)

r)2 - s2

2 '

Hence if
r

2)

s2 - (t2 + r2)

<

r2)

< 1, then

r2)

(60)

1 -

2-ι2

2(ί2 + r2) Γ'/2

•r2)

[ί2 + (-5 + r)2]

ί2 + (-s + r)2 - s2

If ί2 + r2 < s2/4, then (61) implies

\/27rs J [ί2 + (-5 + r)2]2 [ίz + (s + r)z

^0 < ~ % ~ : : r^ ^ H~

(61)

)2-s2 ί2 + (s + r)2-s2

< V2πs

\

1

Λ I

(s - rY
t2

+ 1. (62)

So, if s2/t2 — (s — r}2/t2 < 1/2 and t > 6s (where <5 is a fixed positive small number),
we have

_ / A \
(63)

Also if t2 + r2 < 52/4 and t > <5s, from (59), we get

4π ί2 4- r2 4π
Λn ^> τ= -> —OS.

° Λ/3 ί " Λ/3

We just proved the following Lemma 3.
We define ,ί̂  as

ί, r are integers, r > 0

t2 + r2 < s2/4, s2 < ί2/2 + (-5 + r)2

t > δs

It is obvious that any (£, r) G .̂  satisfies the conditions of Theorem 3.
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Lemma 3. For any (t,r) G ,$*",

4ττ r- ί 4 \
-j=δs < λ(t, r) < Λ/6π 1 + TO s (64)
λ/3 \ ° /

We denote n(,̂ ) the total number of elements in ,̂ Γ. Now we take

λ =

and let the external force be

/o - λs2W(^β) - Λ/6π(l Hh 4/<52)s3 W^ . (65)

By (10), the Grashof number becomes

3. (66)

From Theorem 3 and Lemma 3, we see that for the choice of external force (65), the
numbers of unstable modes is at least 2n(J^"), so [3, 16].

άimH(X) > 2n(,^) . (67)

We want to show

Lemma 4.
> c2s

2, for s large,

where c2 is given by (76) below.

Proof. It is obvious that: (t, r) e n(.^) if and only if

A/2(2rs - r2) < t < W r2 , (68)

δs<t. (69)

Let r = cs, c is a nonnegative number, we have

.-r2)

(1/4+ c2 -4φ

[(c - 2)2

(70)

We want (70) to be positive, so c has to satisfy:

1/4-c2 > 0, 2c-c2 > 0,

(c-2)2- 15/4 >0,

solving them, we get

4-V15
0 < c <
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Let c0 =
4-

> 0, considering each integer r satisfies:

0 < r < c0s .

From (70), we see for such an integer r

where

— — r2 — v 2(2rs — r2) > CjS ,

_ 4c0 + 1/4

(71)

(72)

Now for each r satisfies (71), let's count the numbers of t which satisfy (68) and
(69).

If δs < y/2(2rs - r2), then from (72), the numbers of integers t that satisfy (68)
and (69) are at least

c,s. (73)

If δs > ^2(2rs — rs), the numbers of integers t that satisfy (68) and (69) are at
least

Λ / l / 4 - c g
= l—z 5, (74)

where we have chosen

(75)

From (71), (73), and (74), we get that

n(J^") > c0 min

which gives Lemma 4 with

Ί/4-cg'

c2 = c0 mm

From Lemma 4 and (66) and (67), we finally obtain

Theorem 4. For the choices of external forces given by (65), we have

dimH(X) > c3G
2/3,

where

C3 = 2c2 V"6π

(76)

D

(77)

-2/3

c2
(76) and c0 =

4-Λ/Ϊ5
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Remark. The above estimate gives a lower bound for the global attractor of the
Navier-Stokes equations on the 2D torus. For the three-dimensional situation, if we
define the nondimensional Grashof number by

G= !/l

then G2/3 also is a lower bound for the attractor of the 3D system. Moreover, one
can show a lower bound for the attractor in the form G.

Note added in proof. In my previous paper [9], I stated that the results of [9] give a positive answer
to a problem of Arnold [1,2]: Is it true that the minimum of the Hausdorff dimension of minimal
attractors of the Navier-Stokes equation (on, say, the two-dimensional torus) grows as the Reynolds
number increases? Recently, Arnold informed me that his problem means: whether it is true that the
dimension of any attracting set is growing with the Reynolds number. For instance, do there exist
stable periodic orbits for any Reynolds number or are they all unstable for sufficiently high Reynolds
number? Evidently, his problems are still open.
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