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Abstract: We give a Lie superalgebraic interpretation of the biHamiltonian struc-
ture of known supersymmetric KdV equations. We show that the loop algebra of
a Lie superalgebra carries a natural Poisson pencil, and we subsequently deduce
the biHamiltonian structure of the supersymmetric KdV hierarchies by applying to
loop superalgebras an appropriate reduction technique. This construction can be
regarded as a superextension of the Drinfeld-Sokolov method for building a KdV-
type hierarchy from a simple Lie algebra.

1. Introduction

The possibility of superextensions of the integrable evolution equations has been
considered in the literature in the last ten years. In particular, the construction of
super Korteweg-de Vries hierarchies has been extensively discussed (an exhaustive
bibliography can be found in [IK]).

Here, we are interested only in supersymmetric theories (from now on denoted
by sKdV), which are invariant under space supersymmetries; so, we will confine our
attention to the hierarchies introduced in [MR, Mat, LM], and we will not con-
sider the superequations proposed in [Kup,GO].

Recently, the biHamiltonian structures and the recursion operators for the
known sKdV hierarchies have been determined. This remarkable result, due to
[OP] and, independently, to [FMR], has been obtained by applying ^-matrix
theory to the algebra of super pseudo-differential operators in a suitable super-
derivation. In this framework, it is essential that each one of the proposed sKdV
hierarchies admits a Lax formulation.

In this paper, we are discussing the biHamiltonian structure of sKdV hierar-
chies from a different point of view, which is based on the theory of simple Lie
superalgebras. The differences and the existing relations between the jR-matrix
approach and the Lie algebraic approach are better understood if they are prelimi-
narily discussed in the framework of classical integrable systems.

For definiteness, let us consider the ordinary KdV equation qt = — qxxx 4- 6qqx,
where the range of the space variable x is assumed to be the one-dimensional
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torus R/Z (or, alternatively, the real line R). The associated Lax formulation,
depending on the Lax operator

L:=d2

x-q (1.1)

can be interpreted as selecting an affine subspace in the algebra of pseudo-differen-
tial operators Σk< + oowfc(x)δί, where dx := d/dx. This algebra possesses a natural
^-matrix, namely the difference between the projections on the purely differential
and the purely integrational parts. So, starting from the general biHamiltonian
structure existing in any associative algebra endowed with an jR-matrix [Sem], the
biHamiltonian structure of the KdV hierarchy can be obtained by simply reducing
the general structure to the Lax submanifold formed by differential operators of the
form — q(x) + d*. An analogous technique has been applied in [OP] for the
construction of the biHamiltonian structure of the known sKdV hierarchies; this
result rests on suitable supersymmetric extensions of the Lax operator and on the
choice of an appropriate algebra of super pseudo-differential operators.

As it is known, the biHamiltonian structure of the classical KdV can also be
obtained by a Lie algebraic approach. Indeed, let us consider the Lie algebra
g := s/(2), and the associated loop algebra ,̂ formed by the smooth functions
V\ R/Z -> g. We can regard ^ as a biHamiltonian manifold, endowed with the
so-called Zakharov-Shabat biHamiltonian structure; this structure consists of
a pair P, Q of compatible Poisson tensors, whose expressions at any point Fe^ are
given by the operators

Py:=dx + lV9 l QV:=IA9 1 (1-2)

acting on ,̂ where A is a fixed element of g. In this framework, the KdV
biHamiltonian structure is recovered by setting A:=(% §) and by appropriately
reducing P and Q to the submanifold (Fe^| V= (° J)} [CMP].

The choice of A and of the reduction submanifold can be interpreted from a Lie
algebraic viewpoint. Its relation with the Lax formalism is illustrated by the remark
that, for λe<C, the equation

ΨX+VΨ + λAΨ = 0 , (1.3)

with Fin the reduction submanifold and A as above, implies Ψ = (-^J, where ψ is
a solution of the eigenvalue problem Lψ = λψ for the Lax operator (1.1). Also,
Eq. (1.3) allows an interpretation of the Zakharov-Shabat biHamiltonian struc-
ture; in fact, if this equation is coupled with an evolution equation

ψt+UΨ = Q (1.4)

with ί/e^, the compatibility condition between (1.3) and (1.4) is

Vt = PvU + λQvU . (1.5)

Summarizing, for the KdV case both an operator and a Lie algebraic approach
are possible. As it is known, both techniques can be extended to integrable systems
associated to Lax problems of any order n in 'dx, giving rise to the biHamiltonian
structures for the GeΓfand-Dikii hierarchies. It may be worthwhile to remark that
the Lie algebraic approach also works for different Lax problems, e.g. the one
encompassing the AKNS hierarchy [New].
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As for the Lie algebraic approach, a systematic treatment has been developed in
[DS], allowing one to associate to any simple Lie algebra a biHamiltonian
hierarchy of KdV-type. This result is fundamental, since it enlightens the deep
connection between Lie algebras and integrable Hamiltonian systems and also
allows a systematic construction and classification of the Lax pairs for KdV-type
equations.

A central point in the Drinfeld-Sokolov theory is that, for any simple Lie
algebra #, the associated loop algebra ^ can be viewed as an infinite-dimensional
biHamiltonian manifold with the structure (1.2), depending on a distinguished
element A of g. If A is chosen according to a well defined algebraic criterion, and
a suitable reduction is applied, one obtains a KdV-type thoery; the reduction
depends on the choice of a second distinguished element B of g. A recent reformula-
tion of this Lie algebraic approach, making transparent its geometrical meaning,
has been developed in [CMP,CP].

Obviously enough, it is of great interest to extend the Drinfeld-Sokolov theory
to the framework of supermathematics. Interesting results in this direction were
obtained in [IK], where a Lie algebraic interpretation was given for the Lax
operator of the so-called N = 1 sKdV of Mathieu [Mat].

In this paper, we will discuss the superextension of the other relevant aspect
of the Drinfeld-Sokolov theory, namely the biHamiltonian structure of loop
algebras and its geometrical reduction; some results concerning Lax pairs, which
are strictly connected with the content of the present paper, will be discussed
elsewhere [MP],

We will work on loop algebras associated to simple Lie superalgebras and will
equip them with a suitable superextension of the Zakharov-Shabat structure (1.2).
We will adapt to this framework the Drinfeld-Sokolov criterion for choosing the
distinguished elements A and B mentioned above, and we will apply to loop
superalgebras the natural generalization of the reduction technique introduced in
[CMP].

The paper is organized as follows, Section 2 contains an essential summary of
definitions and properties of supermanifolds to be used in the rest of the paper,
along with a review of some sKdV hierarchies, known in the literature, that will be
reinterpreted from the superalgebraic viewpoint; this section is concluded by the
statement of the reduction theorem for biHamiltonian manifolds to be applied in
the subsequent sections. In Sect. 3 we discuss the superextension of the Drinfeld-
Sokolov construction and the related criterion for choosing two distinguished
elements A,B in a Lie superalgebra. The reduction of the Zakharov-Shabat
biHamiltonian structure is performed in Sect. 4,5 respectively for the Lie super-
algebras A (I,1) and osp(2,2). In both cases, a sKdV hierarchy in two superfields is
obtained as a natural outcome of the biHamiltonian reduction technique. As for
y4(l, 1), the hierarchy introduced in [MR] and the corresponding biHamiltonian
structure constructed in [OP] are recovered. In the case of osp(2,2), by applying
the superextension of the Drinfeld-Sokolov criterion we get a two superfields
theory, corresponding, up to a diffeomorphism, to the N = 2, α = 4 superextension
of [LM]. A different choice of the distinguished elements in osp(2,2) is also
considered in Sect. 5, so as to compare our criterion with alternative possibilities;
in this way, another biHamiltonian structure is obtained, involving four superfields
and giving rise by a subsequent reduction to the above mentioned N = 2 theory.
Section 6 is devoted to some comments on future developments, concerning in
particular the relation between Lie superalgebras and Lax pairs.
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2. Preliminaries about Supermanifolds and sKdV Equations.
A biHamiltonian Reduction Theorem

2.1. Some Supermathematics. We begin by considering a real or complex super-
algebra, i.e. a Z2-graded algebra

Λ = Λ0®Λl. (2.1)

A is assumed to be associative, with unit and commutative in the graded sense:

ab = (- l)deg(α)deg(%α (2.2)

for a,bGAQ u Λίt The whole Λ, or its even part A0 (which is a commutative
algebra) will be the "set of scalars" on which to found all linear algebra, superanaly-
sis and supergeometry.1 Our standard reference for linear algebra over A is [Lei].
Among the existing approaches to superanalysis and supermanifolds, we have kept
in mind, in particular, the setting proposed in [JP, VV].

In the sequel, we will be concerned with Λ0-modules and/or Λ-supermodules
[Lei]. If Σ is a yi0-module, we will denote by Σ* the dual yl0-module, consisting of
/Lo-linear functional from Σ to A0; similarly, if E = E0 © Eί is a /1-supermodule,
E* will be the dual supermodule, consisting of /L-linear functionals from E to Λ.

In the language of modules, a flat (p,q)~dίmensίonal super space (p,geN) is
defined to be a /d0-module which is isomorphic (within the category of Λ0-modules)
to the product module (A0)

p x (Λ^. If E = E0 © E1 is a free Λ-supermodule, with
a basis formed by p even and q odd vectors, both its even part £0 and its odd part
El9 when considered as Λ0-

modules, are flat superspaces, of dimensions (p9q) and
(q, p) respectively. Flat superspaces are the starting point for superanalysis, and the
local models for supermanifolds.

If Ίf is a supermanifold, it is possible to define different types of tangent
spaces at any point i eiΓ: the even tangent space Tυi^ and its odd complement
7V5Γ, which are both Λ0-modules; their direct sum Tυy 0 TjΓ, which is a A-
supermodule.

In this paper, the tangent space at v will always mean the even one Tvi^\ for our
purposes, it is not necessary to consider odd tangent vectors, so we exclude them
from our general setting; the cotangent space at υ, denoted by Γ*ιΓ, is defined to be
the dual /I0-module. If i^ = Σ, where Σ is a flat superspace, we have two natural
identifications Tvi^ w Σ, Γ*^ « Σ*.

As far as we are concerned with even tangent vectors and covectors, the
definition of Poisson tensor is the same as the classical one. More precisely, let P be
a (super) differentiable map which associates to any υei^ a skew-symmetric
Λo-linear operator Pυ: T*i/~ -> Tυy\ for any pair/ / of (super) differentiable
vi0-valued functions on iΓ, let us define the bracket {/ /} := <d/Pd/>. We say that
P is a Poisson tensor if the associated bracket satisfies the Jacobi identity. The
so-called "odd Poisson tensors," which would require a different definition [LMV],
will not be considered here.

1 In setting up superanalysis, it is customary to assume that A carries a norm; since we are
interested mainly in formal, i.e. algebraic aspects of superintegrable systems, we will not explicitly
mention this fact in the sequel
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Two Poisson tensors P and Q on if are said to be compatible if the linear
combination Pλ := P + λQ is itself a Poisson tensor for each AeR (or <C) [Mag]. In
this case, the one-parameter family (Pλ) is said to be a Poisson pencil and if is said
to be a biHamiltonian supermanifold.

Moreover, if Q is invertible, we can define an (even) tensor N = P°β~1;
it is straightforward to prove that N has vanishing Nijenhuis torsion, provided that
the latter be defined just as in the classical case [Nij]. As it is known in the classical
framework, N plays the role of a recursion operator, defining a hierarchy of
biHamiltonian evolution equations. More precisely, if KQ is a vector field preserv-
ing both P and β, a sequence Kn (n = 0,1,2,. . .) of commuting vector fields, all of
them preserving P and Q, is defined recursively from K0 via the relation
Kn + 1 = NKn. For a discussion of the Nijenhuis torsion in the framework of
supermanifolds, see [LMV], where it is shown that this notion is not well defined in
the odd case.

2.2. A Survey of the sKdV Theories. It is assumed that the above framework can
be extended, at least in a formal sense, to infinite-dimensional supermanifolds (here
and in the sequel, we will never aim to mathematical rigour in dealing with
functional superspaces, which provide the local models for infinite-dimensional
supermanifolds).

In the infinite-dimensional framework, it is natural to define a flat superspace to
be a Λ0-module which is isomorphic to a product ^(I9AQ) x ^(J,Λ^\ where /, J
are two sets and ^(I9A0)9 ^(J,Aι) are conveniently chosen /I0-modules of func-
tions from / to Aθ9 J to Λ± respectively.

We now illustrate the (formal) biHamiltonian supermanifolds corresponding to
some of the popular sKdV hierarchies; this will also be useful to standardize some
notations.

Let us consider a real superalgebra L = L0 0 Ll9 and set A = L or, alter-
natively, define A to be the complexification of L (this means that
Ak = {a + ίb\a,bELk} for k = 0,1). From now on, K will denote the (1, ̂ -dimen-
sional superspace L0 x L1? or the (1,1) supercylinder SO x L l 5 i.e. the product of the
"even torus" S0 := L0/Έi times the "odd L^line" Lx. A typical point of K will be
denoted by (x, Θ).

The phase space for the N = 1 sKdV hierarchy of Mathieu [Mat] is the infinite-
dimensional supermanifold Jί \= ^(K,A^\ whose points are odd superfields
on K, i.e. (super) differentiable functions φ: K^Al9 (x,θ) \-+φ(x,θ). The sKdV
hierarchy of Manin and Radul [MR] lives in the supermanifold
Ji = ^r(K9A0)x^r(K9Ai)9 whose points are pairs (α, φ)9 where a is an even
and φ is an odd superfield on K. The same supermanifold can also be assumed as
the phase space for another hierarchy, the so-called N = 2, α = 4 sKdV of Mathieu
and Laberge [LM]. (In the case K = L0 x L1? it is assumed that all superfields
satisfy appropriate limiting conditions at infinity in the x variable).

In dealing with the cotangent bundles of the supermanifolds corresponding to
the hierarchies of Mathieu, Manin-Radul and Laberge-Mathieu, we assume that
the dual module ^*(K9Ai) is identified with ^(K, A0) via the /to-bilinear map <,>
given by

>> := $dxdθδφ(x,θ)φ(x,θ), (2.3)
K
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for each δφ^^(K9A^9 φe^(K9Aι)9 the integral being understood in the
Berezin sense [Ber, VV, Lei, Ino]. Similarly, we assume ^*(K9AQ) « ^(K9Aι);
the dual module of ^(K,AQ)x^(K,Ai) is identified with the set of pairs
(δa,δφ)E^(K,Ai)x^r(K,A0\ using the straighforward generalization of the
bilinear form (2.3).

Hereafter, we have written down in Table 1 the Poisson pencils (P + λQ) for
each of the three sKdV theories, together with the first vector fields K0> ̂ ι> K2 , . . .
of the associated hierarchies. The explicit expressions given in the table contain the
well known superderivative D := θd/dx + d/dθ [SS], fulfilling the identity D2 = dx.
Here and in the sequel, we frequently denote the D-derivatives with primes, and the
dx derivatives with subscripts x, e.g. α'":= D3α, φxx:= dxφ, etc.

Table 1.

Mathieu theory

Phase space: Jί =
Poisson pencil at a point φeJt\

Pφ + λQφ:

(PΦ + λQφ)δφ = ( - D5 + 3φD2 + φ'D + 2φx)δφ + λ(D2(D3 -

First vector fields in the hierarchy:

K0(φ) = φx

K2(φ) = dx(φxxxx - 5φxφ'x - 5φφ'xx - 5φ'φxx

Manin-Radul theory

Phase space: Jί = ^(K,A0) x &(K9Aι)

Poisson pencil at a point m = (

where the operators Pαα, Paφ, etc. are given by:

Paa := D7 - 3φD4 + 4αD3 + (2α' - 3φx)D2 + 2αxD - 3αφ + Iφφ' + a'" - φx

Paφ := D6 - 2φD3 + 4aD2 - φxD + 2ax + φD~l(φD )

Pφa := D6 + 2φD3 + (4α - 2φ')D2 + </>x/) + 2ax - φ'" + φ'D~1(φ )

Pφφ:=4φD2 + 2φx

First vector fields in the hierarchy:

Ko(m) = Γ*
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Table 1 (continued)

Laberge-Mathieu theory

Phase space: Jί = &(KtΛ0) x

Poisson pencil at a point m —

, Λ0) -» TmJt w &(K, Λ0) x

Paφ\δa +

where:

Paa = £>3 - φ, Paφ = - 8αD2 + 4a' D -

Pφa

First vector fields in the hierarchy:

/ a

Pφa = - 8flD2 + 4α'D - 40X, Pφφ = 4D5 - l2φD2 - 4φ'D - :

Ko(m) =

φ - 8α2

4α'" -

αxx 4- 16α3 + 3φα' - 6ίzφ'

φxx - 3φφ' + 48α2ψ - 12a'ax - 24aa'"

We wish to emphasize the following facts:

i) The formulation adopted here for the Leberge-Mathieu biHamiltonian struc-
ture seems to be different from the usual one [LM, OP], where the phase space
is taken to be a space of A0-valued functions Φ(x, Θ9 θ

f) of one commuting
variable x and two anticommuting variables θ, θ'. Indeed, if we consider the (1,2)
superspace or supercylinder K' —KxL^ a (super) differentiate function
Φ: K' -> ΛQ, (x, θ, θ') h^ Φ(x, θ, θ') can be uniquely represented as

Φ(x, θ, θ') = - 2ia(x, θ) - φ(χ, θ)θf , (2.4)

where α, φ are respectively an even and an odd superfield on K. The Poisson
pencil and the vector fields of the Laberge-Mathieu hierarchy, as written in
[OP], acquire the expression given in Table 1 under the diίfeomorphism
&(K'9 ΛO) -* P(K9 Λ0) x F(K9 A 0, Φ H> (α, 0).

ii) The Mathieu sKdV theory can be viewed as a reduction of both the
Manin-Radul and the Laberge-Mathieu theories to the submanifold
^o •= {(φ)eJt\a = 0}. Indeed, for the Manin-Radul theory the first vector
field K0 is tangent to Jf^ and this submanifold is invariant for the recursion
operator N = PoQ~[, which implies that Kί9K2, . . . are also tangent to J?0.
In the Laberge-Mathieu case, the first vector field K0 is again tangent
to JΪQ and the submanifold is invariant for the squared operator N2. So,
the even order vector fields K2, K4, . . . are also tangent. In both cases, restric-
tion of the tangent vector fields to the submanifold Jί§ gives the Mathieu
hierarchy.
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Also, the biHamiltonian structure of the Mathieu theory can be viewed as
a restriction of either the Manin-Radul or the Laberge-Mathieu structures. The
details of the reduction for the Manin-Radul biHamiltonian structure can be found
in [OP], who show that the Poisson tensors P and Q of Manin-Radul can be
separately restricted to the submanifold a = 0, giving rise to the Poisson tensors of
the Mathieu theory (Oevel and Popowicz use the term "Dirac reduction" to
indicate the restriction). More precisely, let us denote respectively with Q[M\ P[M]

and QiMR\pWRi the Poisson tensors of the hierarchies of Mathieu and
Manin-Radul. If m = ($) is a point of the submanifold Jί0, and δφe^(K,Ao), the
equation

φ m δφ

in the unknown superfields φ^^(K,A^) and δae^(K,A0\ has a unique solution,
with φ given by φ = P^δφ. Similarly, if we admit formal invertibility for the
superdifferential operator (D3 — φ\ the equation

δφ

implies φ = Q^δφ. As regards the Poisson tensors piLM\QίLMi of the Laberge-
Mathieu theory, only the first one P[LM] can be restricted as above. Nevertheless, in
this case we can invoke the so-called restriction of the Poisson pencil; this amounts
to considering the equation

(2.7)ΦJ \δφj
which is uniquely solved with respect to φ, δa for each λ, with φ given by
φ = ( - 4p*p - λ2Q[

φ

M])δφ.

2.3. A BiHamiltonian Reduction Theorem. The results we are presenting in this
paper depend on the following reduction theorem.

Proposition 2.1. Let y be a supermanifold, equipped with a Poisson pencil
(Pλ) = (P + λQ). Define a distribution 2 on if setting

@v:=Pv(kπQv) (2.8)

for v€i^, and choose a symplectic leaf ^ of the Poisson tensor Q. The following
statements hold:

i) The distribution $ on ̂  defined by

£s:=Tsyn@s (2.9)

for each s e £ f , is integrable.
ii) Assume the quotient space J{ := &*/δ to be a supermanifold, denote byπ:£f-*Jl

the natural projection and by Tπ: T£f -» TJt the tangent map. Then Jt carries
a Poisson pencil, again denoted with (Pλ) = (P + λQ), such that, for mEJ^,δme
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where: s is any point of ̂  such that π(s) — m and δveTfi^ is any covector such
that δv\@s = 0, δv \ Ts£f = δm o Tsπ (these conditions about δv imply that

, so that the right-hand side of (2.10) is well defined). 0

Proposition 2. 1 is a restatement, at the level of supermanifolds, of a reduction
theorem for ordinary biHamiltonian manifolds [CMP], based on a general Hamil-
tonian reduction theorem formulated in [MaR]. The proof given in [CMP] is also
formally valid in our super framework, if TV and the Poisson tensors P, Q are
intended as in Subsect. 2.1 (i.e., if we exclude from our considerations odd vector
fields, odd Poisson tensors, etc.).

As we will show in the sequel, if the manifold V of Prop. 2.1 is chosen to be the
loop algebra of an appropriately chosen simple Lie superalgebra, with a superex-
tension of the Zakharov-Shabat biHamiltonian structure, the application of the
above reduction technique produces on the quotient space the biHamiltonian
structure of known sKdV hierarchies.

3. The BiHamiltonian Structure of Loop Superalgebras

3.1. Lie and Loop Superalgebras. By a Lie superalgebra over A9 we mean a Λ-
supermodule g = g0® 9ι with elements U, V, W. . . , equipped with a /l-bilinear
map [,]:0x0->0, which is consistent with the grading (deg([l/, F]) =
deg((7) + deg(F)) and satisfies, in the graded sense, the requirement of skew-
symmetry and the Jacobi identity. Let g be a Lie superalgebra over Λ9 and let us
assume that:

i) as a Λ-supermodule, g is free and finite-dimensional;
ii) g admits a nondegenerate, even, graded symmetric, ad-invariant bilinear form,

i.e. a nondegenerate Λ-bilinear map <,>^: gxg^.Λ such that

deg«I7, Vyg) = deg(£7) + deg(F), < U, V}g = ( - l

. (3.1)

In the applications we will discuss, g will be a Lie superalgebra of matrices with
entries in Λ, with the superbracket [17, F] := UV- ( - i)***Wd*K(v) VU; the ad_
invariant bilinear form will be the Berezin supertrace of the matrix product.

Independently of this concrete realization, which will be illustrated in the
sequel, we now associate to g a conveniently defined loop superalgebra. To this
purpose, let us consider the (1, l)-dimensional superspace or supercylinder K de-
fined in Subsect. 2.2, and let us introduce a space ^ = ^(K9 g) of (super) diίferenti-
able functions from K to g (again denoted typically by (7, V, W. . .). ̂  is a Lie
superalgebra over A; its even (resp. odd) part ^0 (resp. ^i) is formed by the
functions on K with values in g0 (resp. g±\ and the superbracket is defined
pointwisely, i.e.,

[[/, F](x, θ) := [ί/(x, θ\ V(x, ffβ (3.2)

for 17, Ve<£, (x, θ)eK. A nondegenerate, graded symmetric, ad-invariant bilinear
form < , ><?: 0 x ̂  -> Λ is denned by setting

<L7, V^ := Jdxdθ<l/(x,θ), F(x,θ)>9 . (3.3)



276 C. Morosi and L. Pizzocchero

This bilinear form will be employed to identify the dual supermodule ^* with
<3 itself. Since

deg«C7, F>^) = deg(l/) + deg(K) + 1 (3.4)

we can assume ( 0̂)* ~ ̂ i and (^i)* « ̂ 0 (as Λ0-modules).
Let us now consider the infinite-dimensional supermanifold ̂  := ̂  A typical

element of ̂  will be denoted by V\ an element of ̂ 0 will be typically denoted by
δV, when regarded as a linear functional on ̂ . A pair of compatible, even Poisson
tensors P, Q are defined on ̂  by setting, for each Vei^9

(3.5)

(3-6)

where A is a fixed element of #! (to be identified with a constant function on the
supercylinder K) and D := θdx + δβ.

The Poisson tensors (3.5), (3.6) define a supersymmetric Zakharov-Shabat
biHamiltonian structure, extending to the case of loop superalgebras the biHamil-
tonian structure (1.2). The biHamiltonian manifold ̂  = ̂  can be taken as the
basis for application of the biHamiltonian reduction technique described in Prop.
2.1. As we will show in the sequel, this reduction allows us to recover the
biHamiltonian structures of the sKdV theories (and, hopefully, of the superexten-
sions of other integrable equations).

The symplectic leaf ίf appearing in Prop. 2.1 can be specified by requiring that
it passes through a fixed element B of g^ (again identified with a constant function
on K). So the whole construction depends on the choice of g and the distinguished
elements A, B; any triplet (g, A, B\ where g is a Lie superalgebra with the properties
i), ii) assumed at the beginning of this subsection, and A9Begl9 will be called
a Drinfeld-Sokolov triplet.

The choice of the Drinfeld-Sokolov triplets corresponding to the sKdV equa-
tions will be discussed in the next subsections; the requirement that the elements
A9B of g be odd (which is necessary in this framework) will be essential in this
discussion.

3.2. How to choose g. Grassmann Envelopes of Simple Lie Superalgebras. A stan-
dard technique to build a Lie superalgebra over A (with A complex) consists in
taking the Grassmann envelope [Ber] over A of a complex Lie superalgebra.

Let γ = y0 Θ y\ be a Lie superalgebra over (C, i.e. a complex Z2-graded vector
space with a Lie superbracket. We recall that the Grassmann envelope of γ over
A is the tensor product g := A (x) y. This is a free supermodule over A,2 and it is

c
a Lie superalgebra over A with the superbracket

[a (8) 17, b (g) F] := ( - l)de^)deg<&)(αfc) ® [17, F] (3.7)

for a, be A, L/, Key. Assume we are given a (C-bilinear, graded symmetric, ad-
invariant form <,>y: y x y -> (C and let us further suppose that <,>r is consistent

2 An element Uegis even iff it can be written as a finite sum U = Σai® ί̂> with citeA, Utey and
deg(αf) + deg(L/f) = 0 for each ί; similarly, odd elements are defined by the condition
deg(β,) + deg(t/,.) = 1
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with the grading, i.e. <Γ7, F>y = 0 for I7ey0, Feyi We define its envelope
Or gxg-+A setting

<α (x) U9b ® K>, := ( - l)deg(Weg(6)(fli>)<t7, F>y . (3.8)

This is a bilinear map with the properties listed in item ii) of Subsect. 3.1.
Let us consider, for example, the case y = gl(p, q). We recall that, for any pair

(p, q) of positive integers, the set gl(p, q) of all (p + q) x (p -f q) complex matrices is
a Lie superalgebra with the superbracket given by

[[/, F] := UV - ( - I)dββ<l7>dβ8^> VΌ (3.9)

a (P + #) x (P + <?) matrix 17 is declared to be even (resp. odd) if it can be written in
block form as

ίx °\ ( /° w\\U = I resp. 17 = , (3.10)
V o r; V \z vj)

where X is a p x p block, 7 is q x <?, fiΓ is p x g and Zisqxp. A graded symmetric,
ad-invariant, consistent bilinear form on y = gl(p, q) is the bilinear map

(3.11)

where Str is the Berezin supertrace, i.e.

ΓTr(^Γ) - Tr(7), for U even

(0 for 17 odd

The Grassmann envelope of gl(p,q) can be identified with the set gl(p,q,A) of
(P + #)x (P + #) matrices with entries in A Any such matrix 17 can be written in
block form as

(X W\
U = ( (3.13)

\Z Y)

with X a pxp block, etc., and it is even (resp. odd) if and only if the blocks X
and Γ have even (resp. odd) entries, while W and Z have odd (resp. even)
entries.

The Lie superbracket in g l ( p 9 q 9 A ) can be expressed just as in (3.9), and the
envelope of the bilinear form (3.11) is again the supertrace of the matrix product,
where, for Uegl(p,q,A)9

(Tr(X)-Ύΐ(Y) if 17 is even
Str(l/):=< . (3.14)

(Tr(X) + Tr(7) if U is odd

In the applications presented in the rest of the paper, the Lie superalgebras g over
A which we are going to employ are Grassmann envelopes of simple, complex Lie
superalgebras; such simple superalgebras are either subalgebras y c gl(p9 q) or
quotients y = y/C, where γ is a subalgebra of gl(p9 q) and C is the center of y.
Furthermore, they carry an ad-invariant form <,>y which is either the supertrace of
the matrix product or the projection of this bilinear map on the quotient space y/C.
Obviously enough, the Grassmann envelope of a subalgebra of gl(p9 q) can be
identified with a subalgebra of gl(p9q9A).
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In dealing with the loop superalgebra associated to a subalgebra of g/(p, q, A), it
is necessary to remember the standard rule for applying the superderivation D to
a matrix- valued function on K [Cor]:

/ DX DW\
DU:=( (3.15)

\-DZ -DYJ

if U is represented as in (3.13).

3.3. How to Choose A and B. Generators and Root Systems of Lie Super algebras.
We assume here the standard terminology of the theory of Lie superalgebras over
C (Cartan subalgebras, roots, etc.) [Kac, Cor]. We simply recall that, if y is
a complex Lie superalgebra, any root α of y is said to be even (resp. odd) if it
possesses a nonzero even (resp. odd) root vector.

Let now r be a positive integer, τ a subset of / := {1, . . . , r}, and let j/ = (a^ be
an r x r matrix (Cartan matrix), satisfying the (m)-condition stated in [Kac, 1977, p.
49]. Let y be the contragradient Lie superalgebra over C corresponding to the pair
(j/,τ); y possesses a set of generators HhEhFi (ze/) such that

[H, Hj] = 0, [#„ Ej] = atjEj [#„ Fj] = - a^, [£,, Fj] = δ^Hj ,

deg/f j = 0 for ie/, deg£t = degFj = 0 for i φ τ ,

deg£t = degFi = 1 for ίeτ . (3.16)

We assume that y is finite-dimensional; in this case, it is simple, or simple modulo
its center [Kac]. The linear span ί) of Hly. . . ,Hr is a Cartan subalgebra of y, and
any root α of y can be written as a linear combination α = ΣίeiW&ί' where
m l 5 . . . , mr are integer coefficients and α1? . . . , ocr are the simple roots, which satisfy

<αί,H/> = αjί (Ue/). (3.17)

If the simple roots are linearly independent, α is as above and α' = Σie/
mίαi ^s

another root, we say that α rg α' if mt ^ m for each ie/.
We now discuss a criterion for picking up in y two distinguished elements A, B.

It is natural to try to reproduce in this framework the Drinfeld-Sokolov scheme for
building a KdV theory from a simple Lie algebra. As it is known, such a scheme
suggests to take

B:=Σ£*> (3 18)
i

A := a root vector corresponding to the lowest root. (3.19)

At the level of Lie superalgebras, there is the problem of combining the above
presciptions with the basic requirement that A and B be odd. Obviously enough,
the most natural way to obtain an odd B consists in setting

B:= ΣEi (3.20)
ίeτ

As for A, one is faced with the problem that the lowest root could fail to be odd (see,
for example, the application discussed in Sect. 5). For dealing with this situation,
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we propose an adaptation of the Drinfeld-Sokolov prescription, which consists in
setting

A := a root vector corresponding to a minimal odd root (3.21)

(i.e., an odd root α such that, for every odd root α', a' ^ α implies α' = α). If the
simple roots are not linearly independent, we take A to be a root vector of
a conveniently defined (odd) lowest root (see Sect. 4).

Once the distinguished pair (A,B) has been chosen in y, the construction of
a Drinfeld-Sokolov triplet is straightforward. First of all, we factor out from γ its
center C, which may be nonzero (see Sect. 4); the quotient Lie superalgebra
γ := γ/C is simple, and possesses a nondegenerate ad-invariant form, unique up to
a factor [Kac]. We consider in γ the pair of distinguished elements A (mod. C),
B (mod. C), again denoted by A and B for simplicity. Finally, we take the Grass-
mann envelope g := Λ ® y, and we pick up in g the distinguished elements 1 (g) A,
1®5, once again denoted by A and B. The Drinfeld-Sokolov triplet (g, A, B)
defined in this way can be taken as a starting point for the application of the
biHamiltonian reduction scheme of Prop. 2.1; applications of this procedure will
be illustrated in the next sections.

4. BiHamiltonian Reduction on A(\,\)

Let us consider the Lie superalgebra

This superalgebra can be identified with the contragradient Lie superalgebra
/ 0 1 0\

associated to the Cartan matrix si: = I -1 0 1 1 and the index set
\ 0 -1 O/

τ := {1,2,3}, the generators HhEhFt being given by

/ I 0 0 0\

0 0 0 0

0 0 1 0

\0 0 0 O/

/O 0 1 0\

0 0 0 0

0 0 0 0

\0 0 0 O/

/O 0 0 0\

0 0 0 0

1 0 0 0

\0 0 0 O/

/o
0

0

\o

/o
0

0

\o
/o
0

0

\o

0

1

0

0

—

0

0

0

0

0

0

1

0

0

0

1

0

—

0'

0

0

o,
0

0

0

0

0

1

0

0

\
,

/
o\
0

0

o/

\

o l

°J
o/

/o

H
3
:=

0

0

\o

/o

E
3
:=

0

0

\o

|
 F
.

I, .3- =

0

0

\o

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

°\
0

0

I/

0

1

0

0

°\\
I0

o/
(4.2
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The Dynkin diagram corresponding to the pair (X,τ) is ® — ® — ®. The
linear span ί) of ff1,f/2,H3 consists of the diagonal matrices with zero supertrace.
The relevant informations about the set of nonzero roots of s/(2,2) are contained in
the diagram3

α2

O

α2

α2

α2

O

α3

(4.3)

O O

— <*! — α2 — α3

where:

i) α l 5 α2, α3 denote the simple roots, fulfilling (3.17);
ii) even roots are denoted by white circles O and odd roots by black circles

A root vector for the lowest root — oq — α2 — α3 is the odd matrix

/ O 0 0

A:=
0 0 0 0

0 0 0 0

\1 0 0 0,

If we define B to be the sum of the generators Eh we find

/O 0 1 0 N

0

0

\0

(4.4)

B:= (4.5)

The center of s/(2, 2) consists of the scalar multiples of the identity matrix J4. The
quotient Lie superalgebra s/(2,2)/<C/4 is usually denoted by ^4(1,1). The bilinear
form 17, V ι-> Str(£/F) is degenerate on s/(2,2), but it projects onto a nondegenerate

3 This diagram gives a redundant representation of the root system, due to the fact that the simple
roots are not linearly independent: α3 = — αr This is an exceptional feature of the sl(r, r) series
[Cor], requiring an ad hoc definition of the lowest root. Following [FSS], we take the odd root
— oί1 — α2 — α3 = — α2 as the lowest root



BiHamiltonian Structure of Supersymmetric KdV Hierarchies 281

bilinear form on A (1,1). The Grassmann envelopes A (x) s/(2,2), and A (x) A(l, 1)
(Γ C

can be identified with

sl(2,2,Λ) := { Str(F) - 0}, A(19 1,Λ) : = (4.6)

Computations in A(l, I, A] are greatly simplified if we pick up a canonical repres-
entative V in each equivalence class mod. AI4. A simple rule for defining the
canonical representative is the following: V is the unique matrix in the equivalence
class such that F44 = 0 (equivalently, any other diagonal entry of V could be set
equal to zero). In this way we obtain an identification

A(l,l,A)π { V e g l ( 2 9 2 , A ) \ S t r ( V ) = 0, K44 = 0}

and, under this identification, the superbracket in A(l, I, A) is given by

α/4

(4.7)

(4.8)

with aeA uniquely fixed by the condition [17, F]44 — O.4 In the representation
(4.7), which will be used from now on, the even and odd parts of A(l, 1,/t) are
given by

Uegl(2,2,Λ)\U =

Vegl(2,2,Λ)\V =

IP μ
σ ψ

h k

\l m

α β

y π

u + z f

d 0

p $
r s

- ρ-ψ δ

χ 0

(4.9)

(4.10)

where Latin letters h,kj, . . . denote even elements of A, while Greek letters
α, j8, . . . stand for odd elements of A.

We now consider the loop superalgebra ^ = lF(K9A(l, 1, A}\ and we apply the
biHamiltonian reduction theorem to the supermanifold ^l5 equipped with the
Poisson pencil P -f- λQ defined by (3.5), (3.6), and with A as in (4.4).

We omit most of the computations, which are lengthy but straightforward.
The symplectic leaf of Q passing through B (with B as in (4.5)) is the sub-
manifold

(4.11)
/°σ

/

\ f c

0

<A
- 1

k

1

0

- Ψ

I

°\
1

0

o/

We recall that aI4 = diag(α, α, — α, — a) if α is odd
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with h,kJe^(K,Λ0) and σ9ψ9χe#r(K9A1). We have to consider the distributions
9 = P(kerβ) and δ = 9 n T£f. For S as in (4.11), we have

(4.12)

0 0\

0 0

-ψ 0

* o/

where the matrix elements σ9\j/9 . . . are parametrized by four arbitrary superfields

σ = ψd - yl + ξ + d' + ψy' + yx ,

Ψ = y> χ = yk + dψ - ξ-df ,

h = kd + χη - dl - ησ + kγ' - ξ' ,

k = d-ηψ-η'9 ί= -d + ηψ-η'-y'. (4.13)

Integration of the distribution S leads to the result that the quotient space
j{ = yfg can be identified with ^(K9ΛΌ) x 3F(K.,A^ Modulo this identification,
the canonical projection is π: £f -> <M> S i— >π(S) = φ, where

-
4

!/, Λ ι / ! / , A 2 !/, T Λ 1,,,,-(k — l)ψ (ψ) (kx — lx) ψ
2 4 2 2

φ = — σ + χ — kψ +

(4.14)

(4.15)

A section of the bundle &* -̂  JK, which can be employed for computing the reduced
Poisson pencil on Jt, is the map

(4.16)

The final result is that the reduced Poisson pencil on the quotient space M is just
the Poisson pencil of the Manin-Radul sKdV theory, given in Table 1.

For completeness, we remark that the same result is obtained if one applies the
biHamiltonian reduction to the (non-simple) Lie superalgebra gl(292,Λ), with
A and B given again by (4.4) and (4.5).

5. BiHamiltonian Reduction on osp(2,2)

Let us denote by osρ(2,2) the orthogonal-symplectic Lie superalgebra defined as in
[Kac, 1977, p. 30]. This is a subalgebra of gl(29 2); it is simple and can be identified
with the contragradient Lie superalgebra associated to the Cartan matrix
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.si :— (° o) and the set τ := {1,2}. The generators are [IK]:

283

/ I 0 0

0 - 1 0

0 0 1

\0 0 0

0 0 0 0\

0 0 0 1

1 0 0 0

0 0 0 O/

0 0 1

0 0 0

0 0 0

0 - 1 0

°\
0

0

- i /

•>

°\
0

0 '

o/

/ - 1 0 0 0

, H2.=
0 1 0 0

0 0 1 0

\ 0 0 0 - 1

/ O 0 0 1

E2: =
0 0 0 0

0 1 0 0 '

\0 0 0 0

/ 0 0 0 0\

17 .
0 0 1 0

0 0 0 0 '

\ - 1 0 0 O/

(5.1)

ram corresponding to (j/, τ) is ® — (x), and the set of nonzero
roots can be represented as

α2

O
α2

α2

(5.2)

O

in terms of the simple roots α 1 ?α 2. In contrast with the case of Sect. 4, the lowest
root — a1 — α2 is now even; so, we choose in substitution a minimal odd root,
according to the adaptation of the Drinfeld-Sokolov criterion proposed in Sub-
sect. 3.3. In the sequel, we consider in detail the choice — α2, corresponding to the
root vector

A =

/ O 0

0 0

0 0

\1 0

0 0\

1 0

0 0

0 O/

(5.3)

(the choice of the minimal root —
prescriptions of Subsect. 3.3, we put

gives a similar result). Following the

/ O 0 0 1\

0 0 0 1

1 1 0 0

\0 0 0 O/

(5.4)
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The nondegenerate, ad-invariant bilinear form on osp(2,2) required for our
construction is provided by the supertrace of the matrix product.

We now consider the Grassmann envelope osp(2,2, A) := A (x) osp(2,2). A gen-
eric even element in gl(2,2, A), can be written as c

U =

IP
0

σ

\P

0 μ

-p p
-v q

μ s

v \ / «

— σ

r
K- °

' ~ /
-«/ \ - d

0 b

-α d

c β

-b ε

c\

f

7

-β/

(5.5)

where, as usually, elements of Λ0 (resp. Λ^ are denoted by Latin (resp. Greek)
letters. We now introduce the loop algebra ^ = ^(K, osρ(2,2,yl)), and we apply
Prop. 2.1 to its odd part ^1? viewed as a biHamiltonian supermanifold with the
Poisson pencil P -f λQ defined by (3.5), (3.6), A being as in (5.3). The symplectic leaf
£f of the Poisson tensor Q passing through B is

(5.6)

). At any point S of the symplectic leaf,

1

\

a

0

/

-d

0

— α

1

0

0

d

α

ε

ι\
/

0

-«/.
with d,fE^(K,A0) and oί.
the distribution $s = Ps(kerβs) n Ts£f is parametrized by two superfields pe
&(K9ΛQ)9 pe^KtΛi), and it is given by

q I e _/! I 0 —
0

2p/
I /

0

0

0

0

P'

P + P'

— 2ps

o y
2pf

0

-p-p'L

(5.7)

with/,ε as in (5.6). The quotient manifold Jΐ :=£?!& can be identified with
^(K.Λ^x^K.Λ^ and the natural projection is π:^->^, Sh-»π(S) = (φ),
where

(5.8)

A section of the bundle Sf %* Jt \s the map

m =

0 0

0 0

1 1

-2α 0

0

2α

0

- α' - i</

ι\
1

0

> o/

(5.9)

The reduction of the Poisson tensors P, Q gives rise to the biHamiltonian structure
of the Laberge-Mathieu theory (see Table 1).
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It may be of interest to consider the biHamiltonian reduction of the Poisson
pencil corresponding to an alternative choice of A, namely

A =

/ O 0 1 0\

0 0 - 1 0

0 0 0 0

\1 -1 0 O/

(5.10)

the matrix B being the same as in (5.4). The new pair (A, B) is known to be related to
the Lax formulation for the N = 1 Mathieu theory [IK]. If we apply the biHamil-
tonian reduction technique to osp(2,29A) with this choice of A and B, we find that
the symplectic leaf Sf is parametrized by six superfields, and the quotient manifold
Jt = yfS by four superfields v9 α, σ, φ, with v9 ae^(K, A0) and σ, φE^K.A^. The
reduced Poisson pencil on Jί is given in Table 2.

Table 2.

Poisson

(Pm +

where:

P
•* vv

p
-1 va

"Four superfields" the

pencil at a point m =

Pm + Aβm: 7>

-» TmΛ

(
δv\ /Pvv

δσ \ Pσv

\ *~ I
<5α Γ 1 Pav

δφl \PΦV

= 0, Pυσ:= -4(l-ί

= - 2ϋϋ' + 2(1 - v2)D

ory

h
<M e :̂
α

W

ΛT«^(K,/l1)x^(K,ylo)xJF(K,ylι)x^(li:,Λo)

I T « # (X>Λo)x^ (Ji:,^1)xJ(Γ(K,ylo)x^ (K,^ι)

ft, ft, ftΛ /^\ /O 0 0 -8 \

ftσ Pσ« /W 1 1 5σ 1 1 0 0 0 4D
+ /1

Pa, Paa Paφ 1 U« 1 1 0 0 V' + 2σ - ID2

PΦ« PΦ, Pφφl \δφ/ \8 4D -2D2 0 /

^2)

, P»Φ := - 16a - 4(τ£> + 4uO2

/&\

Iδσ

\δa

\δφ/

Pφv

Pφσ

Pώa

= - Pvσ, Pσσ := - 4w' + 4(1 - ϋ2)I>

= 2vσ' + 2vvx - 2σvD + 2v2D2, Pσφ := 8φϋ + 8αZ) -

= ~ Pva, Paa '= ~ 2σv' + 2wx - 2σvD + 2v2D2 ,

= — φ + 4aσ -h φv2 — 2va' + σσf -f 2aυf — vσx -f σvx — vv'" — vvxD — vv'D2 —

= -4φσ- 4vφ' + 2φvD - 4aD2 - 2σD3 + 2ί;D4

= 16a + 4σ; + 4u» - 4σD + 4vD2

= - 8φι; + 8a' + 4t/" + (8a + 4ι;JD + 4υ'D2 + 4vD*

= 4φσ -f 2ϋφ' -h 2ψr7 - 4ax - 2σ'" - 2vxx -f (2<^ι? + 2σx)D

+ (4Vχ -4a- 2σ')D2 + 2σD3 - 2yD4

4D5
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It is found by inspection that the Poisson pencil of Table 2 can be restricted to
the submanifold υ = σ = 0; the restricted biHamiltonian structure is again the one
of the Laberge-Mathieu theory of Table 1. Clearly, this alternative way to obtain
the sKdV of Laberge-Mathieu is less direct than the previous one, based on the
choice (5.3), (5.4) for A and B.

In conclusion, even though the biHamiltonian reduction of loop algebras can
be performed in principle for alternative choices of A and B, the choice correspond-
ing to our adaptation of the Drinfeld-Sokolov criterion seems to give the sKdV
theories in the more straightforward fashion. Of course, this remark does not
exclude the possibility that different pairs A and B can be employed to obtain from
loop superalgebras the biHamiltonian structures of different superintegrable sys-
tems. This possibility has a counterpart in the classical framework: for example, it is
known [New] that the reduction of the loop algebra of s/(2) gives the KdV theory if
the Drinfeld-Sokolov criterion is applied for choosing the distinguished elements
in the Lie algebra, whereas an alternative choice gives the AKNS theory.

6. Concluding Remarks

In the previous sections, our attention has been centered on the superextension of
one relevant aspect of the Drinfeld-Sokolov theory; the other aspect of this theory,
i.e. the relation between Lie superalgebras and the Lax formalism, has not been
analyzed. We think it can be useful to conclude the paper with a few informal
remarks on this subject, already considered in [IK].

From the geometrical viewpoint adopted in this paper, the Lax operator for
a supersymmetric hierarchy is a supplementary output of the biHamiltonian
reduction of loop superalgebras.

Indeed, assume we are given a Lie superalgebra #, the corresponding loop
superalgebra and a biHamiltonian hierarchy on the quotient space Jί — £f/$. Let
us pick up a section m\-+Sm of the bundle ̂  -̂  Jί, and realize the Lie superalgebra
g in terms of (p + q) x (p -f q) matrices with entries in A. Viewing Sm as a matrix-
valued function on K, we define for each meJίa matrix superdifferential operator

JSfw:

Ψ := DΨ + (Sm + λA)Ψ , (6.1)

depending on the parameter A, and acting on column vectors formed by p -h q
superfields; the matrix A is as in (3.6). The Lax operator for the hierarchy can be
obtained from the above matrix operator by means of a suitable procedure.

For example, in the case discussed in Sect. 4, Eqs. (4.4) and (4.16) imply that, at
any point m = (J) of M\

o\ M

W

0 0

•/Ί
+

0

0

\a + λ

0 0 1

- 1 0 0

0 φ Qj

(6.2)

It is easily checked that the equation <£mψ = 0 implies
1̂ 3 = — D3ψ and

( - D4 + φD - a)ψ = λφ .

= D2ψ, φ2 =

(6.3)
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Equation (6.3) is the eigenvalue problem for the well known Lax operator of the
Manin-Radul theory.

By applying this technique to g = osp(2,29Λ) we have obtained the Lax
operator for the Laberge-Mathieu theory. The details of this construction will be
reported in a forthcoming paper [MP], where the superalgebraic interpretation of
the Lax formalism for the supersymmetric KdV theories will be systematically
discussed.
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