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Abstract: We construct quantum group-valued canonical connections on quantum

homogeneous spaces, including a (/-deformed Dirac monopole on the quantum

sphere of Podles with quantum differential structure coming from the 3D calculus

of Woronowicz on SUq(2). The construction is presented within the setting of a

general theory of quantum principal bundles with quantum group (Hopf algebra) fibre,

associated quantum vector bundles and connection one-forms. Both the base space

(spacetime) and the total space are non-commutative algebras (quantum spaces).
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1. Introduction

Non-commutative geometry is based on the simple idea that in place of working with

the points on a space or manifold M we may work equivalently with the algebra C(M)
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of functions on M. In this algebraic form we need not suppose that the algebra is
commutative. A non-commutative algebra B when viewed as if it is the functions on
some (non-existing) space is called a quantum space. The process of quantization in
physics precisely turns the commutative algebra of observables of a classical system
into a non-commutative one, hence the terminology.

Well-established in this programme are notions of integration, differential envelop-
ing algebras (roughly speaking, differential forms), cohomology classes and Chern
characters [4, 2, 7, 14]. Not only vector bundles but also GL(n) frame bundles can
be understood in this context [3]. This line of development can also be expected to
have important applications in physics, see [6, 5] and also [10]. An important theme
in these works is the use of non-commutative geometry to formulate some kind of
generalization of gauge theory.

In contrast to this existing approach to non-commutative geometry, we would
like to take here some steps towards developing a gauge theory in which a more
fundamental role is played by quantum groups, appearing as the fibre of a quantum
principal bundle and playing the role of structure group in the group of gauge
transformations. Here quantum groups (Hopf algebras) are commonly accepted as
the natural analogue in non-commutative geometry of a group. Moreover, nowadays
a rich supply of true quantum groups (neither commutative nor dual to a commutative
one) are known [9, 28, 12, 21]. Hence it seems an appropriate time to develop such a
formalism. Most of the formalism needed is in fact relatively straightforward (and not
incompatible with existing ideas in non-commutative geometry) and from this point
of view perhaps the most significant part of the paper is the rich class of examples that
we also provide. These examples are modelled on the principal bundles and canonical
connections associated to suitable homogeneous spaces. We present the examples and
some aspects of the formal setting in which they should be viewed.

We would like to mention at least two physical motivations for developing such a
quantum-group gauge theory. The first is a formal interest in developing g-deformed
versions of many constructions in physics. The introduction of such a parameter q
may then be useful for example to regularise infinities that arise in the corresponding
quantum field theory, which could appear now as poles in the (/-plane [18]. After
renormalizing (using identities from ^-analysis) one could set q = 1. One may
envisage other applications also in which q has a more physical meaning. The most
popular quantum groups as in [9, 12] should be understood precisely as such q-
deformations rather than arising literally from a process of physical quantization. The
differential structure on quantum groups and certain quantum spaces are also well-
understood from this deformation point of view and we shall need to make use of
this when constructing examples.

The second and more standard motivation arises from the general indication that the
small-scale structure of space time is not well-modelled by usual continuum geometry.
At the Planck scale one may reasonably expect that our notion of geometry has to
be modified to include quantum effects also. Non-commutative geometry clearly has
the potential to do this, and this is surely one of the long-term motivations behind
some of the serious attempts to develop it, such as [5]. It was also the motivation
behind the introduction of the class of Hopf algebras in [21]. These (unlike the more
familiar quantum groups) are genuinely the quantum algebras of observables of certain
quantum systems. It is hoped that some of these various constructions can ultimately
be combined with the quantum group gauge theory developed here.

An outline of the paper is as follows. In order to provide the context for our
principal bundles we shall have to introduce a significant amount of formalism. Our
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preliminary Sect. 2 begins by recalling the standard approach to quantum differential
calculus. Given an algebra B (such as the quantum base space of the bundle) one can
take as exterior algebra the universal differential envelope ΩB as in [4, 14]. One can
also construct other differential calculi as quotients of it. The one-forms are denoted

ΓB
The axioms and properties of Hopf algebras are recalled in Sect. 3 which then

proceeds to give the most elementary version of the theory: the version in a local
coordinate system valid for the case of trivial bundles. Gauge fields, curvature forms,
sections, covariant derivatives and gauge transformation properties are defined in an
obvious way that closely resembles formulae familiar to physicists for ordinary gauge
fields. This section is also preliminary and serves to introduce several standard notions
that will play an important role in the later sections, such as coactions, comodule
algebras and the convolution product *. It also provides the local picture to which
we feel any reasonable theory of principal and associated bundles should reduce in
the trivial case.

An unusual feature encountered here even at the level of trivial bundles, is that the
group of gauge transformations (which remains an ordinary group) does not consist
only of algebra maps from A (the quantum group) to B (the base quantum space) as
one might naively expect, but needs to be enlarged as soon as B is non-commutative.

In Sect. 4 we pass to the more abstract setting needed to handle non-trivial bundles.
By definition these are algebras P (the total quantum space) on which A coacts
with fixed-point subalgebra B. In addition, we need some condition corresponding to
freeness of the action and an exactness condition to replace smoothness and dimension
arguments in the classical situation. We do this in terms of a map ~ generating the
fundamental vector fields on P induced by the coaction A. One can also formulate the
"local triviality" of the situation in terms of the patching together of a collection of
trivial bundles related to each other by gauge transformations. Other "purely quantum"
possibilities also open up once the algebras are non-commutative.

In this abstract setting one works with a connection as a splitting of the tangent
or cotangent space (in our case it is convenient to use the latter). A main (if tedious)
task in any textbook on differential geometry is to relate this abstract definition of a
connection to another definition as a connection one-form on P, and to show in the
trivial case that this in turn implies the usual local picture of gauge fields relative
to a choice of trivialization. This is the main result of Sect. 4. The general theory
is further continued for associated vector bundle in Appendix A. Although relatively
straightforward, there are a number of subtleties arising from the non-commutativity
of the algebras and our propositions clarify and justify the various choices that are
needed.

Since many readers may not be familiar with the necessary background in quantum
differential calculi, we begin in Sect. 4 with the most accessible case of the universal
differential envelope ΩP. We then come in the second half of the section to the non-
universal calculi. We do not wish to claim that our formulation is the last word on this
topic, but it is one that is general enough to include our current range of examples. It
not only provides some kind of setting for the examples, but also provides for their
local description via the propositions in this section and in Appendix A.

Finally we are in a position in Sect. 5 to construct our examples of quantum
principal bundles and connections on them, based on quantum homogeneous spaces
and their canonical connections. By quantum homogeneous space we mean a pair
of quantum groups P —> A (where the Hopf algebra surjection corresponds to the
inclusion of the structure group as a subgroup in the classical case) subject to certain
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conditions. For a connection one needs in the classical case that the subgroup is
reductive - the analogue of this for our purposes is that we need to split the surjection
by an Ad-covariant algebra map i : A -̂> P, at least locally.

The simplest non-trivial case is then examined in detail, with A = k(Sl) and
P = SOq(3). Here the base is the quantum sphere of Podles [23] and the bundle
is a quantum monopole bundle. The canonical connection is studied, and with the
correct quantum-differential calculus (not the universal one) it recovers the standard
[/(l)-Dirac monopole in the limit q —> 1. The differential calculus chosen for this
example is inherited from the 3D one on SUq(2) introduced in [29]. It demonstrates
the usefulness of the various conditions and results of the general theory of Sect. 4,
and also connects ultimately with a local description as in Sect. 3.

Finally, because our formulae for abstract Hopf algebras may be a little unfamiliar,
we collect together in Appendix B the various formulae in the case when A is a matrix
quantum group. Here the convolution product * corresponds to matrix multiplication.

Throughout the paper our algebras are assumed unital algebras over a field k of
characteristic not 2. It is hoped that our algebraic formulation may be useful in purely
algebraic work also, such as the introduction of new invariants of algebras and Hopf
algebras based on gauge theory. In the other direction, the algebraic setting may
be useful even in the classical case in the form of finite models of gauge theory -
comparable to finite lattice models of gauge theory but preserving much more of the
geometrical picture in an exact form. For example, the space of gauge fields relative
to a given one could be some finite-dimensional space which could then be integrated
over. For infinite systems of course one needs to work with operator algebras. Here
we would like to note that all our constructions are fully compatible with * -algebra
structures placed on the algebras, and hence suitable for such a treatment. We will,
however, have enough to do in the present paper at a purely algebraic level.

2. Preliminaries about Universal Differential Calculus

Here we recall some standard facts about differential calculus on an algebra. We refer
to [4, 14] for further details.

The general notion is that of a Z2- graded differential algebra, meaning an algebra
Ξ equipped with Z2 -grading (denoted by <9) and a linear operation d : Ξ — » Ξ of
degree 1, obeying the graded Leibniz rule and such that d2 — 0. We will say that
(Γ, d) is a first order differential calculus over an algebra A if d : A — > Γ is a linear
map obeying the Leibniz rule, Γ is a bimodule over A and every element of Γ is of
the form Σ cιkdbk, where ak, bk <G A. To every first order differential calculus (Γ, d)

k

over A one can associate a Z2 -graded differential algebra (Ω(A),d) in the following
way. Firstly, one defines Ω°(A) = A and

for n > 0, as a set spanned by all elements:

(α0,α l 5 . . . , αn) = α0 0A da{ ®A ®A dan (1)

for any a^a^ . . . , αn G A. One can then introduce the natural Z2-grading,
oo

3ωn = n(mod2) and define Ω(A) = 0 Ωn(A). The product of (α0, . . . , αn)
n=l
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e Ωn(A) and (αn+1, . . . , αn+m) G Ωm~l(A) is given by

(α0, . . . , αn)(αn+1, . . . , αm+n)

1)^ • • • » αn-l^αn-iαn-ϊ+l;αn-H-2> • • • » an+m) > (2)

and d is extended to the whole of Ω(A) by:

d(aQ,a^ . . . , αn) = (l,^,^, . . . , αn) ,

d( l ,α 0 ,α l 5 . . . , αn) = 0.

is therefore a free tensor algebra modulo relation (2). In some cases however
one can consider ideals In C Ωn(A) and define the exterior algebra of A associated
to ΓA by taking quotients Ωn(A)/In. Ideals In have to be compatible with the action
of the differential d. In what follows we do not stress the difference between Ω(A)
and suitable quotients of it.

It is known that every first order differential calculus on an algebra A can be
obtained as the quotient of a universal differential calculus (A2,d). Here A2 = ker
(where : A ® A — »• A is the multiplication map in A) and d : A — > A2 is defined by

da = 1 <g> a - a 0 1 . (3)

This map d clearly obeys the Leibniz rule provided A2 has the A-bimodule structure
given by

XX &
k

XX ® C) c = XX

for any Σ ak ® ^k £ A2, c £ A. Furthermore, it is easy to see that every element of
k

A2 can be represented in the form ]P cikdbk. ^
n tms wav (^2> )̂ ^s in(leed a first order

fc
differential calculus over A as stated. The Z2-graded differential algebra defined by
(A2, d) will be denoted by (ΩA, d} and called the differential envelope of A (cf. [14]).
We have the following universality principle:

Proposition 2.1 ([14, 8]). Let (Ξ, δ) be any differential algebra with unity, and A any
algebra with unity. Any 0-degree homomorphism a : A —» Ξ can be lifted to a unique
0-degree homomorphism θ : ΩA —-> Ξ such that Θ\A = a and θ o d — δ o α.

By the natural identification A (g>A A = A one can easily prove by induction (see
[4]) that

ΩnA = {0 e A 0^ - - ®k A = A0n+1 : Vi e {1, . . . , n}, -.ρ = 0} ,

where
- = id ®fc id ®fe 0^ ®k " 0fc id

(multiplication acting in the i,i + 1th place). Hence ΩnA C A®^n+1. Notice that
the description of ΩnA is purely algebraic (i.e. it depends only on the properties of
the multiplication in A). In particular, this means that if B is a subalgebra of A with
j : B <-̂  A the inclusion map, then j can be extended as an inclusion j : ΩB c-̂  ΩA.
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Proposition 2.1 allows one to reconstruct any differential algebra Ω(A) as

Ωn(A) = ΩnA/Nn ,

where Nn C ΩnA are yl-bimodules, n = 1,2, . . . . If B c A then we will take
the differential structure Ω(B) as defined by the 5-bimodules TVg = Nn ΓΊ J?nE.
This assumption implies that the inclusion j : B -̂» A extends to an inclusion
j : Ω(B) < -̂» (A), commuting with d.

3. Gauge Fields on Trivial Quantum Vector Bundles

In this second preliminary section we present the construction of trivial quantum
vector bundles and gauge fields on them. This also serves to introduce the basic facts
and constructions for Hopf algebras (quantum groups) which will be needed later. The
role of the structure group is played by the quantum group or Hopf algebra and the
roles of the base and fibre are played by algebras which can also be non-commutative
(i.e. quantum spaces). In fact the definitions presented here are a special case of a
general theory of quantum vector bundles which will be described later. Here we
would like to emphasise instead the definition of quantum vector bundles from the
point of view of gauge transformations. This gives a self-contained picture in which
all fields live on the base. This point of view is closely related to physics and has
proven to be very fruitful. Moreover, it provides the basic local theory to which our
general abstract theory must reduce in the trivial case.

Let us recall that a Hopf algebra is an associative algebra A with unit equipped
with a compatible coalgebra structure. This consists of algebra maps Λ : A — * A 0 A
(the comultiplication), ε : A — » k (the counit) and a linear map S : A — > A (the
antipode) obeying the following axioms

2. (ε 0 id)Δ = (id 0 έ)Δ = id,
3. '(S 0 id)Δ - -(id 0 S)Δ = η o ε.

Here denotes multiplication in A and η : k —> A is the unit map, i.e. η(X) = λl^,
Vλ G k. We adopt Sweedler's sigma notation [26], namely Δ(ά) — Σα(1) ®

 α(2)> f°r

any a G A.
If A is a Hopf algebra then we say that a vector space V is a left A-comodule if

there exists a map ρL : V — » A 0 V (a left coaction of A on V) such that

(Δ 0 id)ρL = (id 0 ρL)ρL, (ε 0 id)ρL = id .

If V is an algebra and ρL is an algebra map, i.e.

ρL(ab) = ρL(a)ρL(b) , ρL(lv) = 1Λ 0 1 v ,

then we will say that V is a left A-comodule algebra. We will sometimes use the

explicit notation ρL(v) = ̂  v^ 0 v^ for any v £ V.
Similarly we say that a vector space V is a right A-comodule if there exists a

linear map ρR : V — » V 0 A (a right coaction of A on V) such that

(ρR 0 id)ρR = (id 0 Δ)ρR , (id 0 ε)ρR = id .

If V is an algebra and ρR is an algebra map then we say that V is a π'gΛf A-comodule
algebra.
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Given a bialgebra A there is an opposite bialgebra Aop consisting of A with the
opposite product. If A is a Hopf algebra with bijective antipode then S~l makes Aop

also into a Hopf algebra. When we come to the abstract theory of associated vector
bundles we will need both A-comodule algebras and Aop~ comodule algebras in order
to make a quotient tensor product algebra by the coaction (a cotensor product).

To complete our preliminary remarks on Hopf algebras we recall the convolution
product of linear maps on a Hopf algebra (or coalgebra) A. Let B be an algebra and
fl,f2:A-*Bbe two linear maps. The convolution product of fl and /2 (denoted
by g = Λ*/ 2 ) is the linear map g : A -> B given by g(a) = E/ι(α(i))/2(α(2))
for any α G A. The convolution product is associative and makes the set Lin^A, B)
into an algebra. Note that if B has a unit ηB (viewed as a map) then / * (ηB o ε) =
(ηB o ε)*/ = /, so that ηB o ε is the identity in the convolution algebra Lin(^4, B).
We say that a linear map / : A —» B is convolution invertible if there exists a map
f~l : A -> B such that f'1 */ = /*/ - 1 = ηB o ε. Similarly if F is a left A-

comodule and /> : A -> J3, /2 : V -» 5, then ( f l * f 2 ) ( v ) = Σ/iC^Λ^) for

any i; G TΛ Finally if Γ is any bimodule of B and /j : A —» 5, /2 : V" —» Γ we

define ( f l * f 2 ) ( υ ) = £/ι(v(ϊ))/2(v(5)).
Now we are in a position to introduce the notion of a trivial (left) quantum vector

bundle.

Definition 3.1. Let (A, Δ, ε, 5) be a Hopf algebra. We say that E(B, V, A) is a frivi'α/
(7e/ίJ quantum vector bundle with base 5, fibre V and structure group A if:

1. B is an algebra with unity;
2. (V, QL) is a left A-comodule algebra;
3. E = V®B.

Let us note that E is a left A-comodule algebra. The coaction ΔL : E —» A 0 £" is
given by Z\L = £>L 0 id and the multiplication (v^ ® 6j) (% Θ 62)

 = v±v2 ® b^b2 is
the tensor product one.

A quantum gauge transformation of our trivial vector bundle £"(jB, V, ^4) is then a
convolution invertible map 7 : A -+ £ such that 7(1) = 1. We say that σ : V —> B is
a section of E1 if it transforms under the action of gauge transformation 7 according

to the law σ \-^-> σΊ — 7*σ. A acts on V according to the left coaction ρL. The set
of sections of E will be denoted by Γ(E). If Ω(B) is a differential algebra over B
then we also consider n-form sections Γn(E), the set of maps V —» Ωn(B).

To make these definitions more transparent let us consider their classical limit
(see e.g. [13]). Let U be an open set on the base, G a Lie group, and suppose
the vector space Cn forms a representation of G. We can think of G concretely as
a matrix group contained in GL(n) and define, A = C°°(G), V = C°°(Cn) and
B = C°°(U). In a suitable algebraic context, A becomes a Hopf algebra and the
algebra of functions on the trivial vector bundle E = C00^71 x U) becomes V ®B.
A section on the bundle Cn x U is a vector valued function s : U —» Cn and a
gauge transformation is a matrix valued function g : U —> G. Sections and gauge
transformations give rise to algebra maps σ : C°°(Cn) = V —> 5 = C°°(U) and
7 : C°°(G) = A —» £? = C°°(U) respectively, induced by pull-back. Moreover the
gauge transformation # acting pointwise induces a transformation of sections s ι-> s5',
which in components reads:
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for all x G U. This in turn gives rise to the transformation of σ, namely as

This explains our definition of quantum gauge transformations and sections of
quantum vector bundles.

The next step in the construction of quantum group gauge theory consists of the
definition of a covariant exterior derivative. To this end let us assume that (ΓB , d) is
a first order differential calculus over B and Ω(B) is the differential algebra induced
by it. We say that a linear map V : Γ(E) — > Γl(E) is a covariant exterior derivative
on the trivial quantum vector bundle E if for any quantum gauge transformation 7
on E, there exists a map V7 : Γ(E) -> Γl(E) such that for any section σ G Γ(E\

V7σ7=7*(Vσ). (6)

In other words, V : Γ(E) — > Γl(E) is a covariant exterior derivative on E if V
transforms under a gauge transformation 7 according to the rule:

V ĥ + V7 = 7*V7~1* . (7)

Just as in the classical case we have the following:

Proposition 3.2. Let E(B, V, A) be a trivial quantum bundle. If a map β : A — » ΓB

transforms by the quantum gauge transformation 7 of E as

β Λ /37 = 7*/3*7-
1+7*d(7-1) (8)

then the map V : Γ(E) -> Γ1^) given by

V = d + β * (9)

is a covariant exterior derivative on E.

Proof. We have to check that the linear operation V given by Eq. (9) transforms
according to the rule (6). For any section σ G Γ(E) we have

+ 7*d(7-1)) *7*σ

= 7* (Vσ) .

Hence V transforms as a covariant derivative and the result follows. D

A map β : A — >• ΓB as in Proposition 3.2 is called a connection one-form on £" or
simply a connection on E (or quantum group gauge field). The transformation rule
for connections implies the following:

Proposition 3.3. Let ^,^r : A -^ B be two gauge transformations on a trivial
quantum vector bundle E(B, V, A) and let β : A —> ΓB be a connection on E. Then

(βΊ)Ί' = /37/*7 . (10)
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Proof. The proof is based on direct use of the rule (8), namely

(βΊ)Ί = y */37 * (77)"1 + y *d(7/~1)
= y * 7 * β * -γ-1 * y-1 + y * 7 * d(7-1) * 7/-1 + 7'

C " ) + 7 * "

= /57/*7 . D

To any connection β on a trivial quantum vector bundle E(B,V,A) one can
associate its curvature F : A — > Ω2(B) defined as

F = dβ + β*β. (11)

Proposition 3.4. Lei £"(#, F, ^4) &e α ίπ'v/α/ quantum vector bundle. Let β : A-^ ΓB

be a connection one-form on E and F : A — > Ω2(B) its curvature. Then we have:

1 . For any section σ G Γ(E)

(12)

2. F6>r α/zj quantum gauge transformation 7 of E

F7 = 7*F*7" 1 . (13)

3. The Bianchi identity

(14)

Proof. 1. We have

V2σ =

2. The transformation law for curvature follows immediately from the definition (11).
3. We compute:

= F*β-β*F. D

As we can see, all the results obtained here are very similar to the classical ones
except that the usual product of functions is replaced by the convolution product.
In fact the convolution product appears also in the classical construction where it
corresponds to group multiplication or the action of the group - but now instead of
considering groups and representation spaces we consider algebras of functions on
them. The main difference between classical and quantum vector bundles lies in the
fact that if E is a noncommutative algebra and A is a quantum group, they cannot be
interpreted as algebras of functions on an actual vector bundle and its structure group
respectively.

In the construction above we have restricted ourselves to the consideration of left
quantum vector bundles and structures related to them. But there is well established
symmetry between left and right constructions. To conclude this section we summarize
a version of the above results based on right quantum vector bundles.
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Definition 3.5. Let (A, Δ, ε, S) be a Hopf algebra. We say that E(B, V, A) is a trivial
(right) quantum vector bundle with base B, fibre V and structure quantum group A
if:

1. B is an algebra with unity;
2. (V, ρR) is a right Aop-comodule algebra;

Then we have the following. The induced right coaction ΔR : E —> E ® A of A
on E1 is given by:

/^β = id <g) £β .

The gauge transformation of sections:

σ^ = σ*7. (15)

The gauge transformation of covariant derivatives:

V7σ7 = (Vσ) * 7 .

The gauge transformation of connection 1-forms /?:

Hence the covariant derivative acts on sections σ G Γ(E), as:

Vσ = d σ - σ * β , (16)

and on the linear maps ρ G Γn(E)\

Vρ = dρ-(-l)nρ*β. (17)

Some properties of the curvature 2-form F = dβ + β*β are:

and the Bianchi identity:

Some of the relations above need more explanation. Although they look a little bit
unusual, one can show that in fact the right-covariant construction provides the correct
classical limit (as we will see in the next section). There are two facts which play
a crucial role in this identification. First of all let us state the following elementary
lemma:

Lemma 3.6. Let A be a Hopf algebra and let (V, ρR) be a right Aop-comodule
algebra. Then V is the left A-comodule algebra (V, ρL) with coaction given by

QL =τ(id

where r is the usual twist map.
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Proof. This is an elementary exercise from the definitions above and the fact that for
any Hopf algebra the antipode S : A —> A is an antialgebra and anticoalgebra map.
D

Classically, a connection 1-form β is a Lie algebra-valued 1-form on the base.
Here the Lie algebra is that of the classical gauge group G. We can view it as a
subset of its universal enveloping Hopf algebra, and on this subset the antipode acts
by — 1. In our dual picture it means that in the classical limit we have β o S = —β,
where S is the antipode on A. Thus if we convert our right Aop- comodule algebra to
a left A-comodule algebra by means of the above lemma (as is usually done) the "-"
sign in (16) will be absorbed. This is why no "-" sign appears in the usual classical
formulae for covariant derivatives. For general Hopf algebras the action of S is more
complicated and this cancellation is not possible. Secondly, in the classical case the
exterior algebra is graded-commutative so that β in Eq. (17) can be written on the
left of ρ, cancelling the factor depending on its degree. Again, this is not possible
for a general quantum differential calculus. We note that the (— l)n is in any case
an artifact of our writing d and V acting from the left when, in our right-handed
conventions, they act more simply from the right.

4. Quantum Principal Bundles and Connections on Them

In this section we give a general theory of quantum principal bundles. We first work
in the universal differential envelope, and come to the case of a general differential
calculus in the second subsection.

We begin with a brief outline of the classical theory of connections and fibre
bundles, following [15] and emphasising the aspects that we shall generalise to the
quantum case. Let M be a smooth manifold and G a Lie group. A principal bundle
over M consists of a smooth manifold P and a smooth action of G on P such that
G acts freely on P from the right, i.e. P x G 3 (u, a) \-^ ua = Rau e P is an action
and

P x G —» P x P, (u,ά)\-^ (u, ua) (18)

is an inclusion (freeness). Moreover, M = P/G and the canonical projection
7Γ : P —> M is a smooth map. We denote the principal bundle by P(M, G) or simply
by P. Locally P = M x G. This means that if U C M is an open set covered by one
chart, then there exists a map φv : π~l(U) —» G such that φu(ua) = φu(u)a and
such that the map π~l(U) —* U x G, defined by u ι—>• (ττ(^), φ(u)) is an isomorphism.

For each u G P let TUP be the tangent space of P at u and Gu the subspace of
TUP consisting of vectors tangent to the fibre through u. A connection 77 in P is an
assignment of a subspace Qu of TUP to each u G P such that

TUP = GU®QU (19)

and Qua = (Ra)*Qu for any u e P and a 6 G. We call Gu the vertical subspace
and Qu the horizontal subspace of TUP. Given a connection Π in P we define a
1-form α; on P with values in the Lie algebra g of G in the following way. Any ξ G g

induces a fundamental vector field ξ on P. Its value on a 1-form d/ is

/(wexpφ, (20)
o
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i.e. it is the differential of the right action of G. Now for each X £ TUP we define

ω(X) to be the unique ξ G g such that ξ is equal to the vertical component of X.
Clearly ω(X) = 0 if and only if X e Qu.

Equivalently the connection 1-form ω is a ^-valued 1-form on P such that ω(ξ) = ξ
for any ξ e g and (Ra)*ω = adCα"1)^, i.e. oXCRJ^A") = adία^MX) for any
a e G and any vector field X. Here ad denotes the adjoint representation of G in g.
Given a connection 1-form the corresponding projection is recovered by 77 = ~ω.

4.1. The Case of Universal Differential Calculus

We now come to the quantum (non-commutative) case. The first ingredient is an
algebra P analogous to the functions on the total space of the principal bundle.
We require this to be a comodule algebra for a Hopf algebra A with right coaction
ΔR : P — > P 0 A. We assume that the action is free in the sense that the induced
map P 0 P - * P ( g ) ^ 4 i s a surjection. This is just the straightforward dualization of
(18) and is quite standard, see for example [25]. We take the invariant subalgebra
B = PA = {u G P ΔR(u) = u ® 1} for the algebra analogous to the functions on
the base manifold. This is a subalgebra for if u, υ G B then

ΔR(uv) = AR(u)AR(v) = (u® l)(v 01) = (uυ) <g> 1 .

Hence uv e B. There is a natural inclusion j : B ^ P which corresponds to the
canonical projection π in the classical case.

Next, in place of working with tangent bundles etc., we work with forms. These
serve also to specify the differential structure on P as recalled in Sect. 2. For now we
develop the theory only with the differential structure given by the universal envelope
ΩP. The necessary modifications for a general differential calculus will be given later.
In the case of the universal envelope our right coaction ΔR automatically extends
to ΩP as a right A-comodule ΔR : ΩP — > ΩP ® A. One says that the differential
calculus is covariant (cf. [27]). Explicitly, the coaction is given here by:

AR(uQdUl - - - duj = Σ updu™ - - an™ ® ufuf - - u® , (21)

where i£0, . . . , un G P and where we use an explicit notation for ΔR on P.
Also automatically, the inclusion j : B -̂> P extends to an inclusion j : ΩB c-»

ΩP. We will be especially interested in ΓP the space of 1 -forms on P. The natural
P-subbimodule here is

^hor = PJ(ΓB)P £ ΓP , (22)

where ΓB is the space of 1 -forms on B. Here we think of Γhor as analogous to the
space of horizontal forms coming in the classical case by pull-back from the base.
We say that a one-form α e ΓP is horizontal if α G Phor. Obviously any β G ΓB is
by definition horizontal when viewed in Phor via the canonical inclusion j.

Finally, we need the notion of a map ~ generating the fundamental vector fields
for our coaction ΔR. This appears in our dual formulation as a left P-module map

~ = (. <8) id) o (id 0 ΔR)\p2 : ΓP -> P (g) A . (23)

Recall that by definition in the universal case ΓP is the set P2 C P 0 P, where P2

is the kernel of the product map. In explicit terms we have

~(u dv) = uv(l} 0 v(2) -uv®\. (24)
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Because A coacts on P from the right, A* acts on P from the left. The action of
ξ G .A* is given by evaluation against the output of the coaction. Hence the left

P-module map ξ — (id ® £)°~ Γp -* P should be thought of as the "fundamental
vector field" generated by the "infinitesimal" element ξ - lε(0 Compare (20). It is
also easy to see from these definitions that

ker~DΓ h o r . (25)

This is because

- ~(uj(b)dυ)

where the first equality uses the Leibniz rule in Γp and second that P is a comodule
algebra.

We are now ready to present the construction of quantum fibre bundles and
connections on them.

Definition 4.1. We say that P = P(B, A) is a quantum principal bundle with
universal differential calculus, structure quantum group A and base B if:

1. A is a Hopf algebra.
2. (P, ΔR) is a right A-comodule algebra.
3. B = PA = {u G P : ΛRu = u ® 1}.
4. ( ® id) (id ® ZiΛ) : P ( g ) P - * P ( 8 ) A i s a surjection (freeness condition).
5. ker~ = Phor (exactness condition for the differential envelope).

The last condition here needs some explanation. In the classical case smoothness
and dimension considerations combine with freeness of the action to ensure that the
quotient is a manifold and the fibre through a point u is a copy of our Lie group
G. At the differential level the Lie algebra g of G is included in the vertical part of
TUP by the map ~ that generates fundamental vector fields. Dimension arguments
then imply that this map is an isomorphism of g with the vertical part of each TUP.
In our algebraic formulation we need to impose some kind of condition to replace
this complex of ideas arising from the smoothness and dimension considerations. The
one stated in the definition appears the most convenient for our formulation below.
Other approaches are surely possible also. Roughly speaking, in place of dimension
arguments we suppose directly that the image of the fundamental vector fields through
each point spans all the vertical vectors through the point. Put another way in terms
of forms, we suppose that the horizontal forms span all of the annihilator of the left-
invariant vector fields. In dual form this leads to Condition 5 in the definition. We
call it exactness because it states that the image of j fills out the kernel of ~. It is
stated here for the case of the universal differential envelope on P.

We note also that this exactness condition is a kind of differential version of the
idea of a Galois extension in algebra. Given Conditions 1-3 as above it is easy to
see that the canonical map ( ® id) (id <S> ΔR) : P <8> P — » P ® A descends to a
map P (g>£ P — > P ® A and B c P is called a Galois extension if the map at
this level is an isomorphism, see e.g. [25]. Surjectivity corresponds to our freeness
condition and injectivity is sufficient to prove exactness in our sense. This is because
~ is the canonical map restricted to P 2 c P 0 P. Hence an element of its kernel is
also in the kernel of the canonical map and hence, in the Galois case, in the kernel
of the projection P 0 P — » P ®B P. But the kernel of the restriction of this map
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to P2 can be identified with Pj(B2)P = Γhor. On the other hand our geometrical
condition is weaker and moreover, in a form that is suitable for generalisation later
to non-universal differential calculi.

Example 42. Let A be a Hopf algebra and P an A-comodule algebra with invariant
subalgebra B. Suppose that there exists a convolution invertible map Φ : A — » P
such that

ΔRoΦ = (Φ®id)oΔ, Φ(1A)=1P (26)

(so Φ is an intertwiner for the right coaction). Then P is a quantum principal bundle.
We call P(B, A, Φ) a trivial bundle with trivialization Φ.

Proof. An elementary fact in the situation of the example is that the map

B&A-+P, b®a^ j(b)Φ(ά) (27)

is an isomorphism of linear spaces. Explicitly the inverse is given by

Using that Φ is an intertwiner and the properties of comodule algebras etc. as in
Sect. 3 we observe that

ΔRΦ~ l (a) = Φ~ l (α(2)) <g> 5α(1) , (28)

after which it is clear that the image of our inverse map lies in B 0 A. It is then easy
to verify that it provides the necessary inversion.

From this it follows that the freeness and exactness Conditions 4 and 5 in
Definition 4.1 are automatically satisfied in this case. For the first condition assume
that ]Γ uk ® ak G P 0 A. Define an element ρ G P ® P by

Then

( ® id)(id ® ΔR)(ρ) = ukΦ~l(ak

(l))Φ(ak

(2)) <8> of3) =

The last equality follows from the intertwiner property (26). Hence the coaction is
free.

For the exactness condition we have to show that ker~ = Pdj(B)P, where d is the
universal differential as recalled in Sect. 2 and we work with Γp as the subspace P2

of P 0 P. Now any element ρ e ker~ can be written as ρ = ̂  uidvl for uί,vi e P.
i

But since Φ establishes an isomorphism between P and B 0 A we can write each
υi — Σj(bi)Φ(ak) say. Applying ~ to ρ in this form we deduce that

k

0 = g = ^(Uij(bk)Φ(ak

(l}) 0 ak

i(2} - Uij(bk)Φ(ak) 0 1) ,
i,k

where we used that Φ is an intertwiner. Applying the map (Φ~l ®Φ)oΔ to the second
factor we obtain

1 ® D .
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Finally we multiply the first two factors to conclude that

Hence using the Leibniz rule we have

ρ =

ι,k

and hence manifestly lies in Pdj(B)P as required. D

Next in our dual formulation we define a connection 77 on a quantum principal
bundle P as an assignment of a left P-submodule Γver C Γp such that:

1 Γ — Γ (Φι Γ1. i p — ιhor φ i ver,

2. projection Π : ΓP -^ ΓVQr is right invariant, i.e.

4ΛJ7 = OT®id)4 Λ . (29)

An element α G Γver is called a vertical form. If there exists a connection in P then
any one-form a G Pp can be uniquely written as a sum of horizontal and vertical
forms.

We show now that every connection has a connection form. Notice first that the
space P (8) ker ε has a natural left P-module structure. Moreover there is a natural
right coaction of A on P <8> kerε built up as follows. A coacts on P by ΔR and A
coacts on itself by the right adjoint coaction

Adβ : A —> A (8) A, Adβ(α) = ^ α(2) 0 (^α^^α^ . (30)

It is easy to see that this restricts to a coaction AάR on kerε also. Hence we may
define the right coaction ΔR : P (8) kerε —> P (8) kerε 0 ^4 by

zAβ(n 0 α) = ̂  u(1) (8) α(2) (8) w(5)(Sα(1))α(3). (31)

We will need the following

Lemma 4.3. The map ~ intertwines right coactions on ΓP and P 0 kerε,

(32)

. It is immediate from the form (24) that the image of ~ lies in P 0 kerε. For

any Σuk®vk^Γp we

(ϊ) ,

(2) (2) /ς (2) x (2)
fc υfe (l)^Vk (2))Vk (4)

?) (^7> <9i?ι ,, (2)vk
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On the other hand

ϊ) <>,. (2)7. (2)
(1) ̂  % υfc (2) '

as required. D

The freeness and exactness conditions imply that the following sequence:

is exact. The existence of the connection 77 in P is now equivalent to the existence of
a map σ : P0kerε —» PP splitting the sequence (33), i.e. ~oσ — id. Due to the fact
that 77 is a right-invariant left P-module map, the map σ has to be a right-invariant
left P-module map. The projection 77 is recovered as

77 = σ o ~ . (34)

Now we define a map ω : A —> Pp by

α (α) = σ(l 0(α — ε(α))). (35)

We call this map the connection form of the connection 77.

Proposition 4.4. Let P be a quantum principal bundle and 77 a connection on it. Then
the connection form ω : A —> PP has the following properties:

1.
2. ~ω(α) = 1 ® α - 1 ® lε(α) /or α// α G
3. Z^ o α; = (ω 0 id) o Ad^,

where AdΛ w ί/z^ π^Aί adjoint coaction. Conversely, if ω is any linear map ω : A — »
PP obeying Conditions 1-3, ί/ze« ί/z^r^ w'α unique connection 77,

77 = o ( i d ® u ; ) o ~ (36)

such that ω is its connection l-form.

Proof. Given 77 we define ω(ά) = σ(l 0 (α — ε(α))) as explained above. Then
properties 1 and 2 follow immediately from the definition of ω.

Next we have to show that ω is AdΛ-covariant. We have

ΔR(ω(a)) = ΔRσ(l <g> (α -

= (σ 0 id)ΔR(l 0 (α - ε(α)))

(α(2) - ε(α(2))) 0

From this it follows at once that ω obeys the equivariance Condition 3.
In the converse direction suppose that we are given a map ω obeying Conditions 1-

3 and define σ : P(g)kerε — > PP by σ(u^a) = uω(ά) for ̂  e P and α e kerε. Then
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~ o σ(u 0 α) = u~(ω(a)) — u 0 α by the first condition on ω. Hence ~ o σ — id and
Π = <jo~ is a splitting ΓP = Γhoτ 0 jΓver as required for a connection. Explicitly,

Π(u dv) = σ o ~(u dv) = 7^ σ(uv^ 0 (?/2) — ε(v^)))

' = o (id 0 ω) o'

which is the form stated. Note that one can easily see directly that Π defined via (36)
is a projection and ker Π D Γhor, but its description in terms of a splitting as here is
made possible by the exactness condition as explained above.

One can also see that σ as defined is equivariant if ω obeys Condition 3. From
this it follows that Π is also. For a direct proof, if ω intertwines ΔR and AdΛ, then

ΔRΠ(udv} = (

= ̂ (ϊ)? A r?V ω(V

0 u()ι;(5) = (77 0 id) o z

as required. We use that ΔR is a comodule algebra, the intertwiner property of ω, the
antipode axioms and finally that ΔR is a comodule algebra again. D

Condition 2 in the proposition is analogous to the classical condition that ω behaves
like the Maurer-Cartan form when evaluated on fundamental vector fields. Condition 3
is analogous to its usual Ad-equivariance property. The proposition tells us how we
can manufacture connections from connection one-forms.

Example 4.5. Let P(B,A,Φ) be the trivial quantum principal bundle in Example
4.2. There is a natural connection 77triv given by the connection 1-form cjtriv(α) =

)' For this connection we have

Γver = PdΦ(A) = {u dΦ(a) : u e P, a G A}

and the splitting Γp = Γhor 0 Γver is according to the Leibniz rule in Γp,

ud(j(b)Φ(a)) = u(dj(b))Φ(ά) + uj(b)dΦ(a) G Pj(ΓB)P Θ PdΦ(A) .

Proof. Firstly we compute

~u;triv(α) = ^~(Φ~V(i))dΦ(α(2)))

= ^Φ~1(α(ι))Φ(α(2))
(ϊ) Θ Φ(a(2)f

} - ε(a)l 0 1

= 1 0α - ε(o)l 0 1 ,

using right-invariance of the co-ordinate chart Φ.
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Secondly we show that the map ωtήv(a) is an intertwiner between the adjoint
coaction and the right coaction ΔR of A on P. Using (28) we have

ΔRωtήv(a) = ΔR Γ Φ " 1 ' (α 1 )dΦ(α 2 )) - Φ~l(a2)dΦ(a <8> (5α 1)αRtήv = R ( 1 ) ( 2 ) - ( 2 ) ( ( 1 ) ( 4 )

as required. Obviously α;triv(l) = 0.
Hence by Proposition 4.4 we conclude that we have a connection 7Itriv with ωtήv

as its connection form. To compute Γver we have

Πtήv(udΦ(a)) =

(a3) = udΦ(a) ,

so that PdΦ(A) C image /7triv. Next, applying 77triv to a general element of ΓP we
have

- J7trιv uj(bi)dΦ(ai) =

The element ^u(dj(bi))Φ(ai) here is manifestly horizontal and hence annihilated by
77triv. This shows that PdΦ(A) = image 77triv. D

Thus every trivial bundle has a canonical trivial connection. More generally we
have the following construction that gives the relationship between a connection 1-
form ω as above and a connection 1-form β as defined in the previous section.

Proposition 4.6. Let β : A — > ΓB be a linear map such that /?(!) = 0. Then the map

ω(a) =

is a connection I -form in the trivial principal bundle P(B, A, Φ) with trivialization Φ.

Proof. Note that the last part of (37) coincides with the connection 1-form u;triv defined
in Example 4.5. We have now

ΔRω(a) =

+ Φ~l(a(2))dΦ(a(3})

= ((&~l * (j o β) * Φ + cjtriv) (8) id) Adβ(α) .

Hence ω is an intertwiner between ΔR and AάR. Applying the map ~ to ω we see that
the first part of the sum (37) is annihilated (because it is horizontal). From Example
4.5 we know that ~ωtήv(a) — 1 0 α — ε(α)l 0 1 for any α G A, hence the same is true
for ω. Hence by Proposition 4.4 we can define connection Π. D

We note that in the case of a trivial bundle with connection and connection form
ω as in the last proposition, one still has PΦ(ΓA) == Γveτ. The isomorphism means
that every form in ΓA can be lifted to a form in Γp. The explicit formula is

udΦ(a) h^ Π(udΦ(a)) =

This follows from the same techniques as in the proof above.
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These connections also provide covariant derivatives on horizontal pseudotensorial
forms on P defined as the differential followed by horizontal projection. Moreover,
these can be understood as sections of associated vector bundles etc. as in the classical
theory. Details are given in the Appendix A and justify further our present formalism.

Next we come to the important notion of gauge transformation of principal bundles.
Let P(B, A, Φ) be a trivial quantum principal bundle with trivialization Φ : A — > P
and let 7 : A — > B be a convolution invertible linear map such that 7(1) = 1. We say
that the map

ΦΊ(a) = J^ j(7(α(1)))Φ(α(2)) = (0' ° 7) * *)(α) (38)

is a gauge transformation of Φ.

Proposition 4.7. If P(B, A,Φ) is a trivial quantum principal bundle as in Example
4.2 with trivialization Φ, then P(B, A, Φ7) is also a trivial quantum principal bundle
with trivialization ΦΊ defined by (38).

Proof. Note that since 7 is a convolution invertible map, ΦΊ is also convolution
invertible. Moreover, Φ7(l) = 1. We need only to check that ΦΊ is an intertwiner.
We have

ΔRΦΊ(a) = (3)

In the second equality we have used the intertwiner property of Φ and the fact that
j o 7(0) is in the invariant part of P. Hence ΦΊ is a trivialization of P. D

The proposition gives the interpretation of gauge transformation as a change of
local coordinates in P. It is clear that every trivialization of P can be obtained
by a gauge transformation of a given trivialization Φ. Next we see that a gauge
transformation induces a corresponding transformation of a connection 1-form β on
our trivial quantum vector bundle. We have the following:

Proposition 4.8. Let P, β and ω be as in Proposition 4.6. Let 7 : A — » B be a gauge
transformation. The transformation β \-^ βΊ ,

β^ = 7"1 * β * 7 + 7"1 * d7 (39)

for fixed Φ induces a transformation ω \— > ωΊ which can be understood as a gauge
transformation Φ — > ΦΊ for fixed β,

Conversely, for fixed ω the change of trivialization Φ by a gauge transformation 7

induces the transformation β \— > βΊ , where

(40)
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Proof. This follows by direct computation. The first statement is

Φ + Φ~l*dΦ

* j(β)* j(Ύ)*Φ + Φ~l *j(Ύ~l)*(dj(Ύ))*Φ + Φ~l *dΦ

Note that thanks to Proposition 4.6, ωΊ is a connection 1-form.
To prove the converse we have

ω = (Φ^)-1 * j(β') * Φ7 + (ΦT1 * dΦ7

= Φ"1 * j(7~! */?' *7)*Φ + Φ"1 *j'(7~1)*d(j'(7)*Φ)

= Φ~l *J(Ί~I * /?' * 7) * Φ + Φ~l * OX7"1) * Φ'(7» * & + ̂ -1 *

Comparing with Proposition 4.6 this means that /?7 necessarily obeys

1 *c?7)*Φ = Φ"1

which is equivalent to β' = 7*/3*7~1 + 7*c/7-1 by conjugating by Φ in the
convolution algebra. Thus the effect of a gauge-transformation does not take us out of
the class of connections of the form of Proposition 4.6 and the required transformation
of β is uniquely determined. D

In the same way the gauge transformations of quantum associated vector bundles
and their sections are induced by a change of trivialization Φ. These details are
included for completeness in Appendix A and tie up the present formulation precisely
with the elementary local picture in Sect. 3.

Finally, now that we understand properly the notion of trivial bundles and their
gauge transformation properties we are in a position to introduce the notion of a
locally trivial quantum bundle as a collection of trivial bundles pasted together via
gauge transformations. This is exactly in analogy with the usual definition of local
trivializations of principal bundles except, of course, that we must work algebraically
as in sheaf theory, and that by gauge transforms we mean the convolution by
convolution-invertible maps as in Proposition 4.7. Thus, the most naive formulation
of a locally -trivial principal bundle consists of the following data.

1. An index set / = {i,j,ij . . .} to be thought of as labelling the members
of an "open cover", with analogous properties. There should be a partial ordering
(corresponding to inclusion) and a product (corresponding to intersection) with
U' < M Indexed by this, we consider a collection of algebras Pi with maps P — » Pi

and Pi — > P. for i > j (the restriction maps) and the equalizer

We mean here the usual picture in sheaf theory (see for example [1, Sect. 2.2]) so
that if ui G Pi are given such that their restrictions to each Pτ coincide then they
are themselves the restriction of some u e P. The algebras Pτ are each ^4-comodule
algebras (and the restriction maps are intertwiners), and Bτ — P/4 are such that

2. There are trivializations Φτ : A — > Pτ making Bi C Pi trivial bundles.
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3. There are convolution-invertible maps 7^ : A —> £?• such that

Σ % * ΊJk = 7lfc, Φt = Σ Ύ.J * *j .
where the maps are composed with the relevant restriction maps such that the results
are maps A —» B^k and A —» P- respectively.

This is the most naive definition based on the transformation properties studied above.
Note that in algebraic geometry, the ring of functions on the open set consisting of the
space minus a number of points is achieved by inverting the points, i.e. by localization,
and in this case the corresponding restriction maps are inclusions. While adequate to
cover our examples in Sect. 5, it should be noted that this is not the only possible
formulation. Also, the index set could have properties somewhat weaker than those of
a classical open cover. It is expected that a rather bigger repertoire of non-commutative
examples will be needed before the most suitable direction for a complete formulation
can be determined.

4.2. The Case of General Quantum Differential Calculi

The theory above has been developed for simplicity in the case of the universal
differential envelope on P. This made contact with the local picture of connections
defined by one-forms on the base and gauge transformations as in Sect. 3. Now we
give the further refinements needed for the non-universal case. We have to suppose
differential structures on both P and A and suitable compatibility conditions between
them. This refinement is needed to make contact with examples that truly deform the
usual commutative differential calculus, such as our monopole example of Sect. 5.

We begin with a few words about the general theory of bicovariant differential
calculi on quantum groups [29]. A bicovariant differential calculus on a quantum
group A is a differential calculus (ΓA, d) such that ΓA is a left and right A-comodule
and d is a comodule map, i.e.

where ΔR and ΔL are right and left coactions of A on ΓA. If ΓA is a left (right)
Λ-comodule only and d is a comodule map then (ΓA,d) is called a left-covariant
(right-covariant) differential calculus on A. The universal differential calculus on A
is an example of a bicovariant differential calculus. The coactions of A on A2 are
given by

Δ1^ = (id ® id ® •) ° (id ® T <g> id) o(Δ®Δ),

Δ^ = ( (g) id (g) id) o (id ® r ® id) o(Δ®Δ).

Every bicovariant differential calculus on A can be obtained from the universal one
by taking a quotient ΓA = A2/NA, where NA is a sub-bimodule of A2 such that

Δ%NA C NA ® A Δ^NA c A ® NA .

Equally-well one can take a right ideal MA C ker ε such that

AάRMA C MA ® A, (41)

and define NA = κ(A ® MA), where the map K : A 0 A —» A 0 A, given by

κ(a 0 α') = N ^ α5α[j) 0 α[2) (42)
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is a linear isomorphism. If the ideal does not obey (41) then the resulting calculus
is only left-covariant. We will always assume that the differential structure on our
quantum group A is bicovariant.

Next we come to the differential structure on the quantum principal bundle P. As
explained in Sect. 2 it is sufficient to give the first order differential structure Γp as
a quotient of the universal one, ΓP — P2/NP, where 7VP is a sub-bimodule of P2.
We will always take Γp to be of this form.

For our first compatibility between these structures we need to suppose that the
right coaction of A on P for our quantum principal bundle extends to a right coaction
of A on Γp in a natural way. Recall that this was automatic in the universal case. A
sufficient condition for the same formula (21) to project down to the non-universal
case is clearly

ΔRNP c Np 0 A.

Likewise we need that our map ~ generating the fundamental vector fields in (23)
projects down to the non-universal case. It is easy to see that the relevant condition
is

C/Vp) cP®MA.

In this case we have a well-defined map ~N : Γp —> P 0 kerε/MA given by

~Np(Q) = (id®KA)o16u), (43)

where πN : P2 —»• Γp and πA : kerε —> kerε/MA are the canonical projections and

for ρ G Γp we can take any representative ρσ G π^1 (ρ). Note that the image of ~
in (23) is automatically in kerε and we are relying on this now to project down to
kerε/MA. This time the corresponding vector field Γp —> P is obtained by evaluation
against an element of the dual of this.

Definition 4.9. We say that P — P(B,A,NP,MA) is a quantum principal bundle
with structure quantum group A and base B, and quantum differential calculi defined
by 7VP, MA if:

1. A is a Hopf algebra.
2. (P, ΔR) is a right A-comodule algebra.
3. B = PA = {u G P : ΔRu = u 0 1}.
4. ( 0 id) (id 0 ΔR) : P ( g ) P ^ P ( 8 ) . A i s a surjection (freeness condition).
5. ΔRNP c Np 0 A (right covariance of differential structure).
6. ~C/Vp) C P (8) MA (fundamental vector fields compatibility condition).
7. ker^ = Phor (exactness condition).

Now we can define the notions of horizontal 1-forms, connections and connection
1-forms precisely as in the universal case. Thus a connection is an equivariant splitting
of ΓP. This time the freeness condition ensures in particular that

Im^p =P(g>kerε/MA.

Observe next that Ad^kerε C kerε 0 A. Since MA is Adβ-invariant (Eq. (41)) we
have a right-adjoint coaction of A on kerε/MΛ by

= y] τrA(α(2)) 0 (Sfα(1))α(3), (44)
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where α G kerε. Using the same methods as in Lemma 4.3 we prove that ~Np is an
intertwiner. Finally, we have the exact sequence

0 -» Γhor -ί-+ ΓP 5̂ P(g)kerε/MA -> 0 (45)

of left P-module maps. This sequence splits whenever there is a connection on ΓP.
If we denote the splitting (section) by σ^ , then we can define a connection 1-form
by

ω(ά) = σNp(l®πA(a- ε(α))) . (46)

Now we can generalize Proposition 4.4.

Proposition 4.10. Let P(B^A^NP^MA) be a quantum principal bundle and Π a
connection on it. Then its connection l-form ω : A — > Γp has the following properties:

2. ~ Npω(a) = 1 Cg) ττA(α — ε(α)) for all a G A,
3. ΔR o ω = (ω <g) id) o Adβ,

where Adβ is the right adjoint coaction. Conversely ίfω is any linear map ω : A —> Γp

obeying Conditions 1-3 then there is a unique connection Π,

Π = o(id®ω)o~Np (47)

such that ω is its connection one-form.

Proof. The proof for the most part follows just the same steps as the proof of
Proposition 4.4 but at the quotient level. The map ω is extracted from the splitting
defined by the connection and is Adβ-covariant because σNp is right invariant. In
the converse direction suppose that we are given a map ω obeying Conditions 1-3.
Condition 1 means that ω projects to a map kerε/MA — » Γp so that Π as stated is
well-defined. Likewise σNp : P 0 ker ε/MA — > ΓP is well-defined by σN (u®ά) —

uω(a) for u G P and α G ker ε/MA. Then ~N o σN (u®a) — u~N (cj(α)) = u ® α
by the second condition on ω. The remaining steps are likewise similar. D

Example 4.11. Let P(B,A,Φ) be as in Example 4.2. If in addition the differential
structures are such that ΔRNP C Np ® A and

then the remaining conditions in Definition 4.9 are automatically satisfied. We call
this the trivial principal bundle with trivialization Φ and general quantum differential
calculus.

Proof. The freeness condition is already proven in Example 4.2 and applies just
as well here. For the exactness condition we also know that ker~ = P(duj(B)P
(exactness in the universal calculus) from the proof there. Take ρ G kef^ and choose

a representative ρu G π^-1 (ρ). From the definition of ~N this means that ~(QU) G

P (g) MA. By our stronger version of the fundamental vector fields compatibility
condition as stated, we know that there exists ρ'υ G Np with ~ρ^ = ~ρv.
Hence by the exactness condition in the universal differential envelope, we conclude
ρv - ρ'y G P(duj(B)P. Since ρ - πNp(ρv - ^) we see that ρ G P(dj(B)P = Γhor

as required. D

The slightly stronger form of the fundamental vector fields compatibility condition
(equality rather than merely an inclusion) certainly holds for usual trivial bundles with



614 T. Brzeziήski, S. Majid

commutative differential calculi, as well as for the trivial bundles (and also some non-
trivial ones) constructed for general differential calculi in the next section, i.e. in all
known examples. Hence it is natural to require it here for trivial bundles with general
calculi. Clearly other formulations are also possible. If we use this formulation then
we can also prove the existence of trivial connections on trivial bundles. These can
be constructed as follows. Let {el G kerε} be such that {πA(e1)} form a basis of
kerε/MA and for any α G A write ττA(a — ε(α)) = Σ ci(a)πA(e'1) say, with c^α) G k.

Then
ω(a) =

is a connection with corresponding splitting according to the Leibniz rule (as for the
trivial connection in Example 4.5) at least on the elements corresponding to the basis,

Π(uj(b)Φ(eί)) = uj(b)dΦ(eί), (id - Π)(uj(b)Φ(ei)) = u(dj(b))Φ(ei) .

We see here a significant complication caused by working with general quantum-
differential calculi: unless Φ is required to obey further conditions the different choices
of bases {e1} need not give the same connection ω. For example, a sufficient condition
for uniqueness of the connection defined in this way is to assume that

Vα G MΛ, Φ~l(ai) ® Φ(α 2 ) G NP , (48)

in which case all choices of basis give ω(ά) = ^Φ~l(a^)dΦ(a(Ί}). This condition is
in turn implied in the commutative case by the condition that Φ is an algebra map. On
the other hand for a quantum principal bundle we have already seen in Sect. 3 that one
cannot assume that Φ is an algebra map because this is not closed under convolution,
hence such a notion of trivial bundle could not be gauge transformed. Likewise, the
above slightly weaker condition (48) is not closed under gauge transformation (i.e. if
7 and Φ obey it then ΦΊ need not).

This is also the reason that we limit ourselves in Sect. 3 and Appendix A to the
universal differential calculi. In fact, the general constructions in Sect. 3 are self-
contained and can be verified for any algebras and differential calculi so long as we
need only a local picture. For this picture to come by association to a geometrical
theory of principal bundles we have to live with a certain amount of non-uniqueness
or else impose further conditions. Likewise, the notion of patching together trivial
bundles as outlined at the end of Sect. 4.1 can be refined according to further
conditions on Φ and 7. In the examples to follow, based on homogeneous spaces,
there is a natural such condition (see Proposition 5.7 below). On the other hand we
feel that the right direction for a general formulation should be preceded by still
further examples than these. We will not attempt this here.

5. Examples

In this section we come to the main task of the paper, which is to construct concrete
examples of non-trivial quantum bundles and connections on them. This justifies the
formalism developed in the last section and in Appendix A. We begin with a general
development of quantum homogeneous spaces, both with universal and non-universal
calculi. This includes the trivial frame bundle of S'3 in a non-commutative setting
based on the quantum double Hopf algebra. We then give the full details of the
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simplest non-trivial case of our construction where the homogeneous space is a q-
deformed S2 = 5Ό(3)/f/(l) and the canonical connection on the associated bundle
is a g-deformed Dirac monopole. This application is perhaps the main result of the
paper and demonstrates in detail the various assumptions and propositions above and
their smooth classical limit to the usual geometry as q —> 1.

5.7. Bundles on Quantum Homogeneous Spaces

We begin with the simplest example of all, namely with trivial base and connection
given by the Maurer-Cartan form. This provides a useful warm-up for quantum
homogeneous spaces as well as an instructive look at the content of our various
axioms. We consider for our quantum principal bundle the base B — k, total space
P = A and the trivialization Φ given by the identity map. Recall here that every Hopf
algebra coacts on itself by the right regular coaction provided by the coproduct Δ.
We suppose also that the differential structure on P is taken to be the same as that
on A.

Example 5.1. Let P = A be a Hopf algebra equipped with the bicovariant differential
calculus defined by an ideal MP = MA in kerε. Let ΔR = Δ be the right regular
coaction. Then P(fc, A, MA) is a trivial quantum principal bundle in the sense of
Example 4.11 with trivialization Φ — id. The bundle is equipped with a trivial
connection 77 = id with Γver = ΓP and corresponding connection 1-form

ω : A — > Γp, ω(a) = ^^(Sa(l^da^ . (49)

This is the Maurer-Cartan form on the Hopf algebra A.

Proof. That this obeys Conditions 1-4 in Definition 4.9 is elementary. For Condition 3
we have only to note that because the coproduct has a counit ε, it follows that
if Δ(b) = 6 0 1 then b = ε(b)l. Hence Condition 3 holds with B = k. The
freeness Condition 4 follows because A has an antipode 5 so that ( 0 id) (id 0 Δ)
(Σ aSb^ 0 6(2)) = Σ α ® b. This is the content of the linear isomorphism K in
(42). Equivalently, the existence of the antipode 5 is precisely the requirement that
Φ = id is convolution-invertible as needed in Example 4.2. Its is clearly also an
intertwiner and hence a trivialization, from which both freeness and exactness follow
from Example 4.2 in the universal case. In the non-universal case we note that the
covariance Condition 5, Δ(NA) C NA 0 A, is just the condition that the differential
calculus defined with ideal MA and corresponding sub-bimodule NA is left-covariant,
as explained in Sect. 4.2. Finally, the equality ~(NA) = A 0 MA follows using again
the linear isomorphism K : A ® A — » A 0 A In this case the exactness condition
follows from Example 4.11.

Since jΓhor = 0 there is a natural (trivial) connection 77 in P, given by Π(ρ) = ρ
for any ρ G Γp = ΓA. From Proposition 4.10 we know that it has a connection
1-form, which one can compute as shown. To also see directly that ω is covariant
under the adjoint coaction Adβ, we have

ΔRω(a) = ̂ (ΔSa(l))(d 0 id)Z\(α(2)) = ̂  Sa(2}da(3} 0 (5α(1))α(4)

= (ω 0 id)Adβ(α)

for any α G A. Condition 2 in Proposition 4.10 holds from properties of the map
K in (42). It is related to the Adβ-invariance of MA arising from the assumption
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that the differential calculus is bicovariant. Condition 1 is also easy. From another
point of view, the trivialization Φ in this case obeys the condition (48) sufficient
to define a basis-independent trivial connection Φ~l(a(^)dΦ(a(2)), which is ω. These
considerations are of course unnecessary for the universal differential calculus where
MA = {O}. a

Thus the various points of view in the theory of Sect. 4 manifestly tie up in this
example. Next let us assume that P is a quantum group such that there is an Hopf
algebra projection π : P —> A. (This corresponds in the classical case to an inclusion
of groups G C P say). The right regular coaction of P on itself pushes out by π to
a coaction ΔR = (id®π)oΔ:P^P®A and we define the associated quantum
homogeneous space as:

B = PA = {& G P : 5^6(i) ®π(6(2)) = 6® l} .

In the classical situation there is a principal bundle over the underlying classical
homogeneous space. A theorem of Chevalley ensures that the bundle is locally trivial
in the usual sense. Later we will give a criterion for patching in the quantum case,
but for now we concentrate on the global properties expressed in Definitions 4.1 and
4.9. A useful sufficient condition for a bundle is

Lemma 5.2. Let π : P —> A be a Hopf algebra map and a surjection between two
Hopf algebras A, P. Let AR be the induced coaction by pushout of Δ and B = PA.
If π is such that

kerπ C -(kerπ|β 0 P),

then P(B, A, π) is a quantum principal bundle in the sense of Definition 4.1 with the
universal differential calculus. We say that π obeying this assumption is exact.

Proof. Since π is a surjection, fteeness of the induced coaction AR follows at once
from freeness of the right coaction in the preceding example. We use that P is a
Hopf algebra. In the universal case it remains to prove the exactness Condition 5
in Definition 4.1. This needs some condition on π and a convenient one for our
applications is as stated. Note that π = ε when restricted to the fixed subalgebra
j(B) C P. Assuming the condition, let ρ G P2. From the linear isomorphism
ft:P(g)P-^P(S)Pin (42) applied to the Hopf algebra P we can write
ρ = Σ κ(wk®uk) for uk G ker ε and wk G P with the latter set linearly independent.
Then ~Q — (id 0 TT) o κ~lρ = ^wk 0 π(uk), and hence if ρ G ker~ we conclude
that π(uk) = 0. For each of these, we can write from our assumption on π that

uk = γ^bk

lv
k

i, where bk

i G kerε|β and vk

i G P. Then

ρ = Σwk(Suk

(l}duk

(2}) = ^wk(Svk

i(l})(Sbk

i(l))d(b-vk ιk

i(2)

using the Leibniz rule in Γp. The first term vanishes by our assumption and the
second term lies in Γhor. Hence ker" = Phor as required. D

Next we come to the construction of connections. We recall for classical homo-
geneous spaces that in the compact semisimple case there is a canonical connection
on the bundle. It is defined by an ad-invariant splitting of the Lie algebra p — m Θ g
(provided by the Killing form). See [15]. Such a splitting can be viewed as induc-
ing a coalgebra (but not usually algebra) map U(p) — > U(g) covering the inclusion
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U(p) D U(g) (the map sets m to zero). In our dual quantum group formulation then
this means an algebra but not usually coalgebra map i : A —> P which is Ad-covariant
in a suitable sense and which obeys π o i = id. We assume this data now for our
quantum homogeneous space.

Proposition 5.3. Let P(B, A, π) be quantum principal bundle over a homogeneous
space and with universal differential structure. If there is an algebra map i : A — > P
such that π o i = id, ε(i(a)) = ε(α) for any a £ A, and

(id 0 π)AάRί = (i 0 id) AάR ,

then

w α connection I -form. We call the corresponding Π from Proposition 4.4 the canonical
connection on the quantum homogeneous space.

Proof. We have to check that ω obeys the assumptions of Proposition 4.4. First we
prove that ω is Adβ-covariant,

ΛRω(a) = Si(a)(2)di(a)(2)a(3)

where in the second equality we used the fact that ί is an intertwiner of (id® ττ)Adβ

on P and Adβ on A as in the hypothesis.
Next we apply the map ~ to ω to obtain

0 ττ(i(α)(3)) -

= 10 π(i(α)) - ε(α) 0 1 = 1 0 α - ε(α) 0 1 .

We now apply Proposition 4.4 to conclude the result. D
7Γ

Corollary 5.4. Let P~^ Abe a Hopf algebra projection, i.e. suppose that i is a Hopf
τ

algebra map and covered by π. This is an example of a quantum homogeneous space
with universal differential calculus as in the preceding proposition. The bundle is trivial
with trivialization given by i itself. The canonical connection ω above then coincides
with the flat connection in Example 4.5.

Proof. Because i is assumed to be a Hopf algebra map, and π o i = id, it is immediate
that it is an intertwiner for ΔR on A and P, and therefore defines a trivial bundle
P(B, A, i) from Example 4.2. One can also go through Lemma 5.2 which is satisfied
in this trivial case. The map i is also covariant for ΔL and hence Ad-invariant in
the way required in Proposition 5.3. Hence we can apply that proposition to obtain a
connection. We note that Hopf algebra projections of the type that we have assumed
here are familiar in the theory of Hopf algebras [24, 16], where it is known that P
here is necessarily isomorphic to a semidirect product, B x A = P. This is built on
the linear space B 0 A with cross relations according to the action

α > b — y i(a^)bi(Sa^)

and gives the explicit structure of the trivial bundle in this case. D
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This corollary provides an important source of (trivial) quantum bundles.

Example 5.5. Let A be a finite-dimensional quasitriangular Hopf algebra in the sense
of [9]. This means that it is equipped with an element 3& G A ® A obeying some
axioms. Let P = D(A) be the quantum double of A as a Hopf algebra built on the
linear space A* ® A [9]. It is known that there is a Hopf algebra projection [20]

D(A) ~ A, π(φ 0 α) = (Sφ ® id)(^)α, i(a) = 1 ® α .

Hence P — D(A) is a trivial quantum principal bundle with structure quantum group
A. It was also shown in [20] that we can identify the base B = PA as the algebra

B = A*, b-_c = fr2

c3 < •%, & 3 ® 5c1){^, 6 1 0 c 2 ) , V6, c e A* ,

where the right-hand side expresses the product of B in terms of that of A*.
The corresponding element of P is j ( b ) = Σfyi) < ^(1)' &(2) > ®^?(2)> where

/V00/. We use here the conventions in which D(A) has the tensor product comulti-
plication and a certain double-semidirect product algebra structure. The structure of
B here is that of the braided group of function algebra type associated to the dual
quantum group A* [17]. Note that A here is of enveloping algebra type (a quasitri-
angular Hopf algebra) being regarded perversely as "functions" on some dual group.
With this description of B the map θ : B x A = D(A) is [16, Prop. 4.1] (where A is
denoted H) is,

θ(b 0 α) - &(

for j as stated and as (b ® α)(l ® α') = 6 ® αα' for the product in D(A). D

The base of this bundle then is the algebra B introduced in [17] in another context.
It is (in a certain sense) a braided-commutative Hopf algebra living in the braided
category of ^-modules. We do not discuss it further except to note that the example
of B when A = Uq(sl2) is computed in [17] and called BSLq(2). Just as SUq(2)
is some kind of quantum 3-sphere, BSLq(2) equipped with a suitable * -algebra
structure (which exists) can be called a braided 3 -sphere [17]. This is the base for
this case of the construction. Since A = Uq(sl2) is being regarded as of function
algebra type, the "underlying" structure group in this case should be thought of as
some kind of deformation of a dual of sl2. Of course, the algebras and Hopf algebras
here are not finite-dimensional so appropriate care has to be taken to work with the
correct generators.

The simplest case of the preceding construction is when A = kG is the group
algebra of a finite group G. This is quasitriangular with & — 1 0 1. In this case
D(G) = k(G)^ xi kG. Here B = k(G) so that the base is classical, namely the

discrete group G. The fiber on the other hand has structure group kG = k(G) in the
case where G is Abelian. Here G is the character group of G and forms the classical

structure group of our bundle. When G is non-Abelian there is no such group G.
Instead, we can continue to do gauge theory with the non-commutative algebra kG in
place of functions on G. This is a typical application of non-commutative geometry
to groups.

We can also dualize the above construction to obtain a different bundle. This
time we begin with a finite-dimensional quasitriangular Hopf algebra (H, $£) with
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3% G H (8> H. D(H)* is the dual Hopf algebra of Drinfeld's double. It has as algebra
structure the tensor product algebra H®H*, but a doubly-twisted coalgebra structure.
This works out [16, Appendix] as

Δ(h ®a) = Σ h(2) ® GS/6(i))a(i)/6(3) ® eb <g> α(2){/6

(2), ft(1)),

ε(h (8) α) = ε(h)ε(ά),

where {e6} is a basis of # and {/6} a dual basis.

Example 5.6. Let ff be a finite-dimensional quasitriangular Hopf algebra and A — H*
its dual. Let P = D(H)* as described. Then

P Λ A, π(h (8) α) = ε(ft)α,

is a Hopf algebra projection as in the above corollary and hence defines a quantum
principal bundle on a quantum homogeneous space. The base B can be identified as
B = H (as an algebra). The map j is then j(6) = b ® 1.

P/Ό0/. This is obtained by dualizing the preceding example in an elementary way.
The maps π, i in the preceding example dualise to the maps i, π respectively now.
The base B also has a braided-coalgebra structure (making it a braided group) though
this need not concern us now. D

Some examples of this dual quantum double have been studied in [22] as C*-
algebras, so many of the details here for an operator-algebraic treatment are already
known. The double in the case when H = Uq(sl2) or more precisely, A = SLq(2)
(with a suitable * -structure) is called the quantum Lorentz group. Moreover, because
H here is a factorizable quantum group one can show that Uq(sl2) = BSLq(2) as
algebras [16, Cor. 2.3] (for generic q φ 1). Thus we see that the quantum Lorentz
group is a trivial bundle with SL (2) fiber and a base which is again our braided-^3.
It seems reasonable to view this trivial bundle

P(BSLq(2),SLq(2»^SLq(2)
τ

with appropriate * -structures as a kind of frame bundle for our braided-S6. The
flat connection ω in this case should be thought of as the quantum spin-connection
corresponding to its parallelization.

Finally, in the case when H = kG9 the fiber is the classical (albeit, discrete) group

G and the base is G in the Abelian case, viewed as a non-commutative space in the
non-Abelian case.

This completes our construction at the level of universal differential calculus and
some examples. The ones constructed via the corollary have trivial bundles and hence
flat (and other) connections on them. Next, we come to the corresponding refinements
for the non-universal case.

Proposition 5.7. For (P, A, π) as in Lemma 5.2 we suppose further that P is equipped
with a left-covariant differential structure generated by a right-ideal MP, and A with
a bicovariant one with ideal MA. If

1. (id <8> π) AάR(MP) C MP 0 A,
2. MA = ττ(Mp),

then P(B, A, π, Mp, MA) is a quantum principal bundle in the sense of Definition 4.9.
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Proof. We have to prove Conditions 5-7 in Definition 4.9. The last of these builds on
the exactness already proven in the universal case. First we prove covariance under
A. Thus our first condition implies that for any v G MP we have

NP

where (id®π)AdR(v) = Σv(2)®π((Sv^)Vφ) in an explicit notation. Consequently
for any u G P we have

2^ u(l}Sυ(2) 0 υ(3) 0 τr(i6(2)(Sfv(1))ι;(4)) G NP 0 A

Let Q = Σ κ(uk ® vk) € NP> where uk eP and υk G MP. Then

0 π ( ί x f c

2 ( S r ? ; f c

1 ) ) G NP

as required for the covariance Condition 5 in Definition 4.9. Meanwhile, our second
condition for MA combined with the observation κ~l(Np) = P 0 MP and ~ =
(id (8) Tr)/^"1 gives the Condition 6 in Definition 4.9 for the projection of ~ down to
a map ~Np . Finally, we need the exactness Condition 7 with respect to this map. We

write any representative ρv e P2 of ρ G ker~Np in the same way as in the proof of

Lemma 5.2 and this time have Σ wk®πAπ(uk) = 0 and hence π(uk) G MA. Here πA

is the canonical projection to kerε/M^ for the kernel of the counit of A. Then from
our second condition on Mp we know there exist u'k G MP with π(uk — ufk) = 0.
Moreover, ρf

v — Σ κ(wk 0 (uk ~ u'k)) nas the same image ρ in ΓP but now lies in
ker~. Hence by Lemma 5.2 we conclude that ρ G Γhor. D

Proposition 5.8. Let P(B,A,π,Mp,MA) be a quantum principal bundle over the
homogeneous space B equipped with a differential structure as in Proposition 57. If
there is an algebra map i : A — > P obeying the hypothesis of Proposition 5.3 and in
addition

i(MA) C Mp ,

then
ω(ά) —

defines a connection l-form. We call the corresponding connection Π from Proposi-
tion 4.10 the canonical connection.

Proof. Now we show that the map ω satisfies the hypothesis of Proposition 4.10.
First, ω(l) = 0 because i is an algebra map. Let us denote by πNp : P2 — > Γp the
canonical surjection. Then for any α G kerε^ we have

ω(ά) = Sί(a\l}dί(a\2) = τrNp(Si(a\^(l 0 z(α)(2) - ί(a\2) 0 1))

(51)

If α G MA then i(ά) G MP, and κ(l 0 z(α)) G 7VP. Therefore α (α) = 0 for any
α G MA. Similarly to the proof of Proposition 5.3 we can show that

~Np o ω(a) = 1 0 τrA(α - ε(α)) .
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Finally the map ω is Adβ-covariant by the same argument as in the proof of
Proposition 5.3. Applying Proposition 4.10 we obtain the assertion. D

It is obvious from this that if ί is a Hopf algebra map then the bundle is trivial with
trivialization Φ = ί and the canonical connection is then the trivial one associated
to this (here Φ is a Hopf algebra map and obeys the condition (48) so that there is
a unique trivial connection). Rather more useful for us in the next section is a kind
of "local" form of Proposition 5.8 as follows. We suppose for this that P(B, A, π)
is a locally trivial quantum principal bundle over the homogeneous space B in the
sense that we are given one or more trivial bundles Pk(Bk, A, πk) of the type above
and inclusions P — > Pk etc. as at the end of Sect. 4.1, which we suppose now to be
compatible with the πk in the obvious sense.

Proposition 5.9. Let P(B, A, π) be a locally trivial bundle with trivial bundles
Pk(Bk,A, Πk) as explained. Let {ω1} denote a basis of left-invariant differential forms
for ΓP and assume that ΓPk = Pk{ω1} is a basis for the differential structure on
each Pk(Bk,A,Πk). In this situation, if for one of these Pk(Bk,A,Πk) there exists
an Adβ covariant map i : A <— > Pk such that πk o i = id on Pk then the map
ω(α) = Σ Si(a)(l^di(ά)(2} is globally defined on P and defines a connection Π.

Proof. We have to show the map ω is defined globally. The rest of the proposition
is deduced from Proposition 5.8. We represent ω(a) in the basis of the left-invariant
one-forms {ω1}. Let χl G Pk be such that [29]

for any u E Pk. Using this representation we find

ω(ά) = y^(5i(a)(1))z(a)(2)

ί(i(a))cjί. (52)

Because χτ(i(a)) are defined for each α, and ωl G Γp, the map ω is defined globally
as having values in P. D

5.2. Dirac Monopole Bundle and its Canonical Connection

We now come to the explicit construction of a non-trivial bundle by the general
methods introduced above. This is a g-deformed analog of the usual Dirac U(V)
connection on S2 obtained as the canonical connection in Proposition 5.8 with
P = SOq(3) and a suitable differential calculus. The base in this case is a ^-sphere
in the sense of [23] and our construction has a smooth limit as q —> 1 to the usual
Dirac monopole and its connection (with the usual classical differential calculus).
This serves as an important check on our constructions, as well as providing a
novel Hopf-algebraic derivation of this important configuration. We first construct
the bundle for any suitable calculus (including the universal calculus as in Sect. 4.1)
and then specialize to the 3D calculus of Woronowicz [29] for the computation of the
connection.

For the standard construction of a monopole one works with S2 as the homoge-
neous space Spin(3)/Spin(2) = SU(2)/U(l). The canonical connection on this is the
monopole of charge one. One can also take S2 = SO(3)/U(l), where the previous
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U(l) is a double cover of the new U(l) and we arrive at a monopole of charge two.
We will construct the quantum version of the second case, but will discuss both as
far as possible. We begin by developing the classical theory in the algebraic setting
above. Of course, we work with the functions on SU(2) and SΌ(3) rather than points
themselves. Generating the functions on the former are the matrix co-ordinate func-

/a β\
tions , where a(X) = Xl

l etc. for a matrix X e SU(2). They obey the
\Ί ° J

relations of commutativity and aδ — β^ = 1.
Next there is a canonical inclusion of U(l) in SU(2) along the diagonal. In

algebraic terms this is given by a projection

i i
where A = k[Z2,Z 2] is the algebra of functions on f/(l). The matrix comulti-
plication on SU(2) is AOL — α <S> α + /? ® 7, etc. and this induces a coaction of

k [ Z 2 , Z ~ 2 } v i a

*•'-?
This extends to products as an algebra homomoφhism (a comodule algebra) as
required for the general theory. For example α/3 ι-» α/2 ® 1, cry ι-> cry ® Z, etc.
From this it follows that the algebra of functions on the sphere is then the fixed-point
subalgebra B of 5/7(2) with generators

B =

and b_b+ = b3(b3 ~ 1).
Note that these algebras are * -algebras. The relations α* = δ, β* = —7 imply

that b± — — 6T while 6* = 63. Writing 6± — ±(x ± zy) and z = 63 - | it is easy

to see that the algebra B describes a sphere of radius | in the usual Cartesian co-
ordinates. Next, assuming that 63 -φ 0, every remaining element of SU(2) can be
written uniquely in the form

/IT
V°3

which gives one co-ordinate chart of SU(2). The corresponding fibre co-ordinate
function that returns the C/(l) group co-ordinate elθ is
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There is another co-ordinate chart that works when 1 — 63 ^ 0,

α β

7 δ

The corresponding fibre co-ordinate function is

elφ 0

0 e-*<

These can be used to give trivial bundles over the relevant patches. Over C there is
no problem with the square roots here. On the other hand they will be problematic in
the general algebraic case and for this reason we pass now to the charge two setting
with 50(3).

To work with SO(3) we note that because the relations of SU(2) are either
homogeneous or change degree by 2, there is an automorphism of the algebra of

functions given by I ) H^ I ). The fixed point subalgebra under
\7 <V \~Ί -v)

this automorphism is (the algebra of functions on) 50(3) and consists precisely of
expressions of even degree, i.e. is generated by (1, α/?, cry, . . . ) as a subalgebra of the
functions on SU(2). The same applies in the quantum case below. For the structure
group one has to work with a different but isomorphic U(l) to the one above. In
our function algebra language one has to work with A = k [ Z , Z ~ l ] as a sub-Hopf
algebra of the one above. Clearly the fixed subalgebra B in SO(3) by this sub-Hopf
algebra is just the same as the fixed subalgebra above. This is because the generators
of the latter are already of even degree.

With this description of the function algebra of SO(3) the corresponding co-
ordinate chart for b3 ^ 1 comes out now as

and for 1 - 6 0 as

The first gives a trivialization of the bundle P0 = SO(3)[δ~la,a~lδ] over BQ =
and the second of the bundle Pl = SO(3)[^β over Bl =

B[(l — b3)~l], in both cases with structure Hopf algebra k [ Z , Z ~ 1 ] . Note that we
are restricting to functions in open sets b3 ^ 0, etc. by means of localization. Finally,
there is a bundle P01 over B01 obtained by making both localizations simultaneously.
One may check that these are all trivial bundles (so P0 = B0k[Z,Z~l], etc.) and
that the maps are intertwiners for ΔR and the right regular coaction of fc[Z, Z"1] on
itself. Finally, they paste-together correctly because the ratio

- Φ0(Z)Φl(ZΓl = - b_ = -((63 -

lies in £?01 as it should.
For the canonical connection on this bundle, we look for an Ad^-covariant algebra

map i : k [ Z , Z ~ l ] — > SO (3) to use in Proposition 5.8. Since the Adβ action of
k[Z, Z~l] on itself is trivial, i(Z) must be a (id 0 ττ)AάR -in variant element of the
function algebra 50(3). Computing this gives that it must be a combination of α, δ.
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We arrange π o i = id if we take i(Z) = δ la. Note that this does not exist globally,
indeed it coincides with the co-ordinate chart Φ0. But from Proposition 5.9 we know
that the resulting connection ω is globally defined provided the differential structures
on PQ and P are generated by the same ideal Mp c kerε. For now we proceed
locally, concentrating on this co-ordinate chart. A further complication caused by this
is that PQ is only a formal Hopf algebra (the comultiplication Δ(δ~la) is a formal
power-series). Again, this does not affect the answer.

Proposition 5.10. Applying Proposition 5.8 to the bundle P0 over B0, the map i, and
the classical differential calculus, we find that the canonical connection

exists globally and equals the Dirac U(l) monopole connection of charge two,

b+db_ — b_db+

ω(Z) =

), βϋ(Z) =

= 2ι
(xdy — ydx)

b+db_ — b_c

(xdy - ydx)

Proof. The formal proof that the ideals MP etc. defining the usual commutative
calculus obey the relevant conditions will follow immediately from Proposition 5.13
(by setting q = 1) so we do not give this separately here. It is however, quite
instructive to compute ω from Proposition 5.8 and see that it gives (a new algebraic
derivation of) the usual form. Namely, in our algebraic formalism the canonical
connection from Proposition 5.8 at least in the stated patch is

= (S(

= '(S <8> id)

'(2)

a® da-

= '(S ® d)Δi(Z)

) c/7 (a ® α + β ® 7)

7 (
(δ 0 dδ + 7 0 dβ)

= δda - βd-f - adδ + Ίdβ = 2(δda - βd-γ) ,

where we noted that the algebra and calculus are commutative and 6a — β^ = 1. The
computation is done in the algebra of function on SU(2). The result evidently exists
globally in this form and can then be cast in the two forms stated. The Cartesian
coordinates x,y,z were given above. Note that the two trivializations are connected

Ύ I 777 —0

by a gauge transformation e2^ — — -—-, where ψ is the azimuthal angle.
X — 11J b

The charge one computation is similar but slightly more complicated because of the
square-roots. D
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Now we consider the quantum case. We begin with the quantum group SU (2). It
has homogeneous non-commutation relations:

aβ = qβa, cry = q^®-, Oίδ — 6a + (q —

βΊ = Ίβ, βδ = qδβ, jδ

and a determinant relation aδ — qβ^y = 1. The * -structure is α* = δ, β* = —qj.
Of course, these are no longer functions but abstract elements of the algebra with
analogous properties. We define SOq(3) in the same way as the even elements of this.
For π and the resulting coactions we have ΔR as above (unchanged). For generators
6_ι_, 63 of B we take the same expressions as above (unchanged) in terms of α, /?, 7, 6.
Their commutation relations inherited from SUq(2) are now non-trivial

b3b_ - (1 - q~2)b_ + q~2b_b3, b3b+ = 6+(l - q2) + q\b3 ,

b2 = 63 + q~lb_b+, q~2b_b+ = q\b_ + (q~l - q)(b3 - 1) ,

and the * -algebra structure is 6 .̂ = —q^lb-^ and 6* = 63. This 5 is a case of the

quantum sphere S2 of Podles [23].
The expressions for Φi are unchanged (but note now that the order matters). We

proceed for the SO (3) case and localize by adjoining the same generators as before.

Proposition 5.11. Let P = SO (3), B = S2 as above. The localizations P0 —

S0q(3)[δ-la,a-lδ] over BQ = S2

q(b~l], and Pl = SOq(3)[Ίβ~l,βΊ-
1] over

Bl = S2[(l — b3)~l] are trivial quantum principal bundles (with universal differential
calculus and trivializations Φ^ and paste together in the double localization given by
a trivial bundle P01 over BQl. We call P over B with these localizations the quantum
monopole bundle. It is a quantum principal bundle in the sense of Definition 4.1.

Proof. First we construct the nontrivial bundle P(B,A,π) using the theory in
Sect. 5.1. Since freeness is automatic because π is a surjection, we have only to
show the exactness condition. To do this we use Lemma 5.2 where we have seen that
it suffices to show that kerπ C -(kerπ|5 0 P). The only generators for which this is
non-trivial may be written as follows

7 z= b+a-q~2(b3 - 1)7.

Multiplying on the right by the generators gives the corresponding relations for
elements of SOq(3). From this it is clear that every u e kerπ may be expressed

as u — ̂  &Λ> where bτ £ kerττ|β and vi £ P, hence kerπ C -(kerπ|β <8) P). Using

Lemma 5.2 we deduce that we have a quantum principal bundle (so far with the
universal calculus). Moreover, we show that the each of the patches shown are trivial
bundles and glue together by gauge transformations. Firstly, the coaction ΔR extends
to the localizations as an algebra homomorphism, and from this it is clear that Φi are
intertwiners. Since k[Z, Z~l] is free they extend as algebra maps and are therefore
necessarily convolution invertible. Hence each of the bundles is trivial from Example
4.2. Note that this implies that every element of Pi can be written uniquely in the
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form BfilZ, Z~l] via the maps Φ^ This comes out explicitly for P0 as

α2 = b3Φ0(Z), aΊ = qb+Φ0(Z),

7

2 = qb+b^b+Φ0(Z), βδ = q-lb_Φ0(Z~l),0

2 - 2 - - 1β* = g-363-
162_Φ0(Z-1), δ2 = (1 - <Γ2 + q-\)Φ0(Z-1).

From the commutation relations

Φ0(Z)b_ = (q4b_ + q\\ - q2))Φ0(Z) ,

Φ0(Z)b+ = (q\ + q\l - q2))Φ0(Z) ,

and linear independence arguments one can verify that all elements of P0 can similarly
be obtained in a unique way. For Pλ D Bλ one has

α2 = q2b2_(l - b3Γ
lΦι(Z), aΊ = -6_Φ1(Z),

72 = q-\l - 63)Φ1(Z) , βδ = -b+Φ{(Z-1),

β2 = q-\\ - 63)Φ1(Z~1), δ2 = 6+(l - b3Γ\Φι(Z-1) ,

and Φt commutes with 63, 6±.
By a similar argument the double localization P01 is a trivial quantum bundle over

the double localization Bol. There are two trivializations of P01, one is related to Φ0

while the second to Φλ. They are both intertwiners and convolution invertible. To give
the unique decomposition explicitly it suffices to show that 7/6?" 1 and β^~l can be
represented in terms of elements of BQl and map Φ0 or equivalently that δ~la and

Ql and map Φλ.a~lδ can be represented in terms of BQl and map Φλ. This comes out as,

7/T1 = -

and

= q-2b+b~lb+(l - b

Finally, these two trivializations of P01 are equivalent via the gauge transformation

Ίol(Z) = Φ0(Z)Φl(ZΓί

(see Proposition 4.7), because

7ol(Z) = -<Γ V6- = -12b^b2_(b, - I)'1 e Bol .

J01(Z~1) = q-2b+bϊlb+(l - 63)-' e Bol . D

Thus we have a quantum principal bundle (with universal calculus) and a local
trivialization for it. Next, the argument that the Ad^-covariant function i must be a
combination of α, 6 etc. goes through unchanged and so we can consider i(Z) = δ~la
as before. In principle we can proceed formally with the corresponding canonical
connection ω as above, but note that because the universal differential calculus has
no commutation relations between functions and forms on P, there is no way to
cancel inverses arising in ω from ό"1 as was the case in Proposition 5.10. One can
proceed in the universal case only on the basis of formal power-series.
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Now we come to the details for a non-universal differential calculus, where we
will be able to compute the canonical ω from Proposition 5.9 in closed form.

We take for Γp the left-covariant differential calculus on SOq(3) inherited from
the left-covariant 3D differential calculus on SUq(2) in [28]. As q —> 1 this tends to
the usual commutative differential calculus in which forms and functions commute.
For convenience we work in SUq(2) and afterwards restrict to the relevant subalgebra.
The relevant ideal Mp G SUq(2) for generic q is generated by six elements

δ + q2a-(\ + q\ -γ2, /?7,

β2, (α-l)7, (α-l)/J .

We choose the basis of the space of the left-invariant 1-forms on P to be

ω° = πNpκ(l <g> /?), ωl = πNpκ(l ® (a - 1)), ω2 = -q~lπNpκ(l <g> 7).

Explicitly

ω* = δdβ-q-lβdδ,

(53)

We have the following commutation relations between ωl, i = 0,1,2 and the
generators of SUq(2),

ωQa = q~laωQ, ωQβ = qβω° ,

ωla = q~2aω\ ω1 β = q2βωl ,

The remaining relations can be obtained by the replacement α —> 7, / ? — > £ . The
relation between exterior differential d and basic one-forms ω1 is given by

da = aωl - qβω2, dβ = aω° - q2βωl , (55)

and similarly with α replaced by 7 and β replaced by δ. Restricted to SOq(3) and
projected down to £7(1) this gives the ideal MA generated by

Obviously this ideal is AάR-invariant, hence the resulting calculus is bicovariant as
required. The commutation relation in ΓA reads

ZdZ = q4dZZ. (56)

One has to check that the 3D calculus fulfills in this way the various requirements in
Proposition 5.7 so that we have a quantum homogeneous bundle in the sense of the
general theory developed in earlier sections.

Proposition 5.12. Let P = SOq(3) and A = k[Z,Z~l] with projection π be the
data as above for the quantum monopole bundle but equipped now with MP and the
induced MA for the 3D differential calculus. Then P(B, A,π, Mp, MA) is a quantum
principal bundle on B = S2 in the sense of Proposition 5.7.



628 T. Brzeziήski, S. Majid

Proof. By the direct computation one easily finds that (id®ττ)Adβ(Mp) C MP

Explicitly

(id <g> TT) AάR(δ + g2α - (1 + g2)) = (5 + q2a - (1+ g2)) 0 1 ,

(id®π)Adβ(72) = 7 2 ®Z 2 ,

(id (g) TT) AάR(β2) = β2 (g) Z~2 ,

(id O π) Adβ((α - 1)7) = (α - 1)7

(id (g) π) AdΛ((α - l)/3) = (α -

Moreover MA — π(MP) by definition. Hence the hypothesis of Proposition 5.7 is
satisfied and the assertion follows. D

Proposition 5.13. The map

\-^
ω(a) = > Si(a\l}di(a)l } a ( 2 )

is a connection l-form on the quantum monopole bundle for the 3D calculus in
Proposition 5.12. In terms of one forms ω1 it can be written explicitly as

ω(f(Z)) = [2]a-2Da-*f(Z) z=lω
{ , (57)

x —
where we used the standard notation [n]x — - , f ( Z ) represents a general

element of A understood as a Laurent series in variable Z, and Dx is the Jackson s
derivative labelled by x, i.e.

Proof. We show that i(MA) C MP. From Proposition 5.8 we then deduce that ω is
a connection l-form. First we notice that <52 -f g4α2 — (1 + g4) G Mp. Next, applying
i to the generator of MA we find

i(Z~l + g4^ - (1 + g4)) = a~lδ + g4^-1^ - (1 + g4)

- (1 -f g4) - βι(q-loΓl6 + g5^"^) G MP .

According to Proposition 5.8, ω is a connection l-form and hence there is a map
σNp : P 0 kerε/MA -> Γp such that

Using the definition of the ideal MA it is easy to compute

πA(/(Z) - /(I)) = I>,-4/(Z) |z=1τrΛ(^ - 1) . (60)

Hence
- Dq-*f(Z) \z=lω(Z) . (61)
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Now it remains to compute ω(Z) explicitly. First we notice that

629

This follows from the fact that

0 ~ 6 4 qoί - (1 + q2) ~ δa 4 q2a2 - (1 4 q2)a ~ 1 + g2α2 - (1 4 <?2)α ,

and that
a2 .δ~la = δ~lδa2 - q

The symbol ~ means that we identify two elements of ker εp if they differ by an
element in Mp, and we used that

aδ — 1 4 qβj ~ I ~ δa .

On the other hand we know that ω is given by (51). For α = Z we find

ω(Z) = πNpκ(l <g) i(Z - 1)) = πNpκ(l Θ (<T ̂  - 1))

= [2]q-2ω
l = [2]q-2(6d(x - q~l βdΊ) .

Hence finally,
ω(f(Z)) = [ 2 ] q - 2 D q - 4 f ( Z ) \z=lω

l

as stated. D
We observe that ω admits the following local representation (compare Proposi-

tion 5.10)

Z) 4 Φ~l(Z)dΦQ(Z), /30(Z) - qb~l(q2b+db_

-q~2b_db+ -Xdb3)

Φ~\Z)βl(Z)Φl(Z} 4- Φf1(Z)dΦ1(Z),

q~b_

where λ = g — ς"1.
This completes our treatment of the charge two monopole. To conclude we

discuss the situation for the connection 1-form corresponding to the charge one
monopole as discussed in the classical situation. Firstly, there is no problem to
construct the bundle P(J9, A, π, MP, MA) with P = 5ί/σ(2), A = t/(l), 5 = S?, π,

_! I
Mp as before and MA generated b y Z 2 + q2Z2 — (1 + g2). We have already
done the relevant computations. On the other hand, to define local trivializations of
P(B, A, π, Mp, MA) and eventually the map i one has to formally adjoin the square

roots Vδ~~la, \/a~lδ to P. Assuming this, one can define the map i : A — > P0 by

and argue that i C Mp. We have

- « + g2^ - (i + g2) - dn(βΊTa G MP ,
n=l
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where cn and dn are coefficients. For this reason the computation of the charge one
monopole is formal.

Proceeding formally we next apply Proposition 5.9 and deduce that there is
a canonical connection in the bundle P(B,A,π,MP,MA). We can compute its
connection 1-form explicitly, using the same methods as before. First we notice
that

Hence from the definition of the connection 1-form we deduce that

Finally we notice that

so that
i i

( ry 2 \ /1 fζ-^. ' ( f~7 2 1 "\ \
(jj\£j I — 7Γ !γ Aί I 1 Qy Z I /^ / /

=z 7Γτγ /"v(l Qy (CK — L)) :== C(̂

Therefore
j_ j_

, ω 1 . (63)

Comparing this result with (57) we see that the quantum integer [2]g_2 has a natural
interpretation as the q-monopole charge. Note also that the power appearing in the
expression for i corresponds to the winding number in the classical situation, which is
the topological interpretation of the monopole charge. A corresponding picture in the
quantum case, as well as the construction of higher monopole charges, are interesting
directions for further work.

In addition, it is hoped to give some concrete applications of this construc-
tion along the lines sketched in the introduction. For example we note that non-
trivial superselection sectors for quantum mechanics on S^ have recently been de-
tected in [11], and it would be interesting to try to relate them to our quan-
tum monopole bundle. Moreover, our constructions are not tied to this exam-
ple and with suitable projections and inclusions can be used for other quan-
tum groups and their canonical connections just as well. For example, a natural
next goal would be the construction of a g-deformed instanton based on these
techniques. The first problems for this are quantum-group theoretical (one needs
the analogous quantum groups and their inclusions), and will be attempted else-
where.
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A. Appendix: Quantum Associated Vector Bundles

In this appendix we develop the non-commutative analogue of the following classical
theory. This is needed to tie our theory in Sect. 4.1 to the local picture in Sect. 3.

Let P(M, G) be a usual principal bundle and let V be a vector space and ρ a
representation of G on V. Any V- valued form φ on P such that

(R*aφ)(X) = φ((RJ*X) = Q(a~l)φ(x) (64)

is called a pseudotensorial form on P. A pseudotensorial form φ on P is said to be
tensorial if it vanishes on horizontal vectors (it corresponds to the section of a bundle
associated to P). If φ is a tensorial form then we can define covariant derivative on
φby

Dφ = dφo(id- oc j ) ,

.e.
DχΦ =

where ω is a connection 1-form, X is a vector field and i denotes interior product
(evaluation).

For any principal bundle P(M, G) and vector space V on which G acts, we
can define the associated vector bundle E(M, V, G) with fibre V. Let ρ be the
representation of G on V and define the equivalence relation ~ on P x V given
by (u, v) ~ (ua, ρ(a~l)v). The total space E of the bundle E(M, V, G) associated to
P is the quotient of P x V by the relation ~. In local coordinates:

E ^ (M x G) XG V ^ M x (G X G V) = M x V .

We now develop the quantum picture, working for simplicity in the case of
universal differential calculus. Let P(B, A) be a quantum principal bundle as
defined in Definition 4.1 and let 77 be a connection in the principal bundle
P. We define horizontal n-forms on P to be elements of the set ^nPhor =
Pj(ΓB)Pj(ΓB)P - - Pj(ΓB)P (n times). The space of all horizontal forms will be
denoted by ί2hor. We say that a form α G ΩP is strongly horizontal if a G j(ΩB)P.
We write βPshor = j(ΩB)P. Note that ί?Pshor C ΩPhor.

Proposition A.I. If the bundle P(B, A) has a connection Π, then the map

h^du^ . . . dun) = uQ(iά - 77)0^ )( id - Π)(du2) . . . (id - Π)(dun) , (65)

where u^ . . . , un G P, is a linear projection of ΩP onto ΩPhoτ. Moreover,

ΔRh = (ft 0 iά)ΔR . (66)

Proof. It is easy to see that the map h is well-defined as stated. It is a projection
because every (id — 77) is a projection and h(ΩnP) = ΏnPhor as (id - 77)(ΓP) =
Pj(ΓB)P. Finally Eq. (66) can be checked directly as

ΛRh(uQduλ . . . duj = ΔR(uQ(iά - Π)(duλ) ... (id - Π)(duJ)

= ΔR(u0)ΔR((iά - IΓKduj) . . . ΔR((iά -

- - - (id -

(2) . . (2)
γ ' an

= (ft (8) iά)ΔR(uQdul - - - dun) .
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Here the third equality uses covariance of the universal envelope ΩP and invariance
of the connection Π (see (21) and (29)). D

Let (V, ρR) be a right ^4op-comodule algebra, and let φ : V — > ΩP be a linear
map. We say that φ is a pseudotensorial form on P if

ΔRφ = (ψ® Ίά)ρR . (67)

A map φ : V — >• ί2P is called a tensorial form on P (strongly tensorial form on P) if
it is pseudotensorial and for any v £ V, <^(v) is horizontal (resp. strongly horizontal)
(compare Eq. (64)).

Lemma A.2. Lei 0 : F — » βP &e α tensorial form on a quantum principal bundle
P(B,A) with connection Π. Then dφ : V —> ΩP is pseudotensorial.

Proof. To prove the lemma we need only note that

ΔR(dφ) = (d® iά)ΔRφ = (d <g) iά)(φ <8> id)ρR = (d<£ 0 id)^β . D

The map
D = hd (68)

is called the exterior covariant derivative in P. Here I? sends tensorial forms into
tensorial forms (since the projection Π is right invariant).

We can now define the notion of a quantum vector bundle associated to a quantum
principal bundle P(B, A).

Definition A.3. Let P(B, A) be a quantum principal bundle and let V be a right Aop

comodule algebra with coaction ρR : V — > V ® A The space P 0 V is naturally
endowed with a right Acomodule structure ΔE : P ®V -^ P ®V ® A given by

ΔE(u ®υ)

for any u E P and v E V. We say that the space

E = (P® V)A = {u 0 v G P (8) F : Z\£(^ 0 u) =

is a quantum vector bundle associated to P over £? with structure group A and
standard fibre V. We denote it by E = £(£, V, A).
Lemma A.4. I. E is a subalgebra of P 0 V.
2. B is a subalgebra of E.

Proof. To prove the first assertion let us take ul®vl,u2®v2£E. Then we have

ΔE(ulu2 0 υ{v2) = ̂ u[ l )u 2

} 0 v^

> «f')

Hence (^j <g)'ϊ;1) (^Θ^) ^ ^» an<i E is a subalgebra of P®V as stated. To prove the
second statement of the lemma let us observe that there is a map jE : B <-* P ® V
defined by jE(b) — b 0 lv for any b E B and j^(6) G £" since

) = 6 (8> 1 (8) 1 = J ( 6 ) (8) 1 .
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This proves the lemma. D

Let E(B, V, A) be a quantum vector bundle associated to P(B, A). We say that a
map s : E — > B is a cross-section of E if:

iά. (69)

Proposition A.5. Let φ : V — > P be a pseudotensorial 0-form on P such that
φ(lv) = 1P. Then the map s : E —> B given by

s = (idP®φ)\E (70)

is a cross-section of E.

Proof. First we show that s takes its values in B. Take u 0 v G E, where u G P,
v G V. By the definition of E,

ΛE(u

Hence

ΔRs(u 0 υ) = Z^( (idF

= ( 0 i

Thus s(x) G B for any x e E. Next we show that 5 is a cross-section of E. We have

^ o jE(b) = s(j(b) 01)- j(b)φ(l) = j(b) = b

for any b G B. The last equality is a consequence of the fact that the inclusion j is
just the identity on B. D

Let us assume now that we have a trivial bundle P(B,A,Φ) as defined in
Example 4.2 and moreover that our Hopf algebra A has bijective antipode. Then
the map Φ : A c-> P induces naturally a map ΦE : V c-^ E, given by

ΦE(V) =

for any v G TΛ This map obviously takes its values in P 0 F. We want to show that
ΦE(v) e £? for any v E V. We have

but since Φ is an intertwiner of ΔR and Δ, we obtainR

\^Λ. ^/c „. v,, ^/\ φ (t;) — \ ^cf>(Q~lr>W \ ̂  tW ^ t.Q-ln{2) ^'>/2)

^) 0 v(!) 0 1 - ΦE(v) 0 1 .

Hence ΦE(v) G £^ for any i; G V. Notice also that ΦE(lv) = 1E because of the
second of Eqs. (26).

Moreover, using an analogous proof to that in Example 4.2 we see that the map

θ : B 0 V -> E , 0(6®?;) = jE(b)ΦE(υ) (71)
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is an isomorphism of vector spaces. Explicitly, the required inverse map is

θ

where the second form follows since u 0 v lies in E = (P ® V)A. Accordingly, we
call E in this case a trivial associated vector bundle and Φs its trivialization.

Proposition A.6. Let E(B, V, A) be the trivial vector bundle associated to a trivial
quantum principal bundle P(B,A,Φ) as explained. If s : E -» B is a cross-section
of E then the map φ : V — >• P

φ(v) = ]Γ j o s o ΦE(υ&)Φ(v&) (73)

is a tensor ial 0-form on P.

Proof. We need to show that φ : V — > P defined by (73) is an intertwiner between
the coaction ΔR and the corepresentation ρR : V — >• V (S) A. Using (26) we obtain

( ))(W ). D

We now look at the description of quantum bundles in local coordinates. For this
we restrict ourselves from now on to trivial bundles. We would like to show how
the general theory developed above reduces to the theory described in Sect. 3 (where
the bundles considered were all trivial). The gauge transformations encountered there
will appear now as transformations of the local description.

Proposition A.7. Let P(B, A, Φ) be a trivial quantum principal bundle. Let (V, QR}
be a right Aop-comodule algebra and let σ : V — > ΩB be any linear map. Then the
map φ : V — > ΩP given by

φ(v) = γ^(j o σ)(v(l})Φ(v&) (74)

is a pseudotensorial form on P. Conversely, if φ : V — -» ΩP is a strongly tensor ial
form on P then

σ(v) =

defines a linear map σ : V — > ΩB which reproduces φ according to (74).

Proof. To prove the first assertion we have to check that φ as defined is an intertwiner.
We have

)d)) ® v(2} = (φ® id)ρR .

Conversely, we need to prove that σ(v) G ΩB for any v e V. But σ(v) is strongly
horizontal since φ(υ) is strongly horizontal, i.e., σ(v) G j(ΩB}P. Moreover,
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Therefore σ(v) is invariant, and since ΩB contains any invariant subset of j(ΩB)P,
we conclude that σ(v) E ΩB. Finally, using the fact that j is the identity on ΩB we
obtain

]Γ j o σ(υCl))Φ(v&) = Σ φ(υCl))Φ~ l (υ(5)

(1))Φ(υ(5)

(2)) = φ(v) . D

Composing Proposition A. 6 with Proposition A.7 we obtain:

Corollary A.8. Let E(B, V, A) be the trivial quantum vector bundle associated to a
trivial quantum principal bundle P(B, A,Φ). Then any map σ : V — > B such that
σ(\y) = 1B induces a cross-section s : E —> B. Conversely any cross-section s of E
induces a map σ : V — » B.

Proof. This follows from the above, but a direct proof is also instructive. Namely,
we consider the trivialization ΦE : V — » E and use the isomorphism θ in (71). It is
evident that θ~l(jE(b)) = 601. Let σ : V — » B be any map such that σ(lv) = \B

and let s = -(id 0 σ) o 0"1. Obviously s : E — >• B. Moreover

Thus s is a section on E. Conversely if s is any section of E then we define σ = soΦE.
D

Now we consider gauge transformations as defined by a change in trivialization.
Such a gauge transformation 7 also changes the coordinates in the quantum vector
bundle E(B, V, A) associated to P, inducing a transformation of sections of E, where
the latter are identified with maps σ : V — > B by Corollary A. 8.

Proposition A.9. Let P(B, A, Φ) be a trivial quantum principal bundle and (V, ρR)
a right Aop- comodule algebra. Let σ : V —> B be a map defining a tensorial 0-
form φ by Proposition A.7, and let 7 : A — > B be a gauge transformation. Then
the transformation σ ι— » σ7 = σ * 7 for a fixed trivialization Φ induces a gauge
transformation φ ι— » φΊ . This can also be understood as a transformation of Φ with
fixed σ,

Conversely if φ is a fixed tensorial 0-form on P and the map σ : V —* B is obtained
from φ by Proposition A. 7, then a gauge transformation of the trivialization Φ H^ Φ^
induces a transformation of the local description

7"1 -1a i— > σ r = σ * 7

Proof. This is by direct computation using the fact that j is an algebra map. The first
statement is

φΊ = j(σ7) * Φ — j(σ * 7) * Φ — j(σ) * ΦΊ .

For the converse let us observe that (Φ7)"1 = Φ~l *j(7~1). Then

7)" = φ * Φ" * j(7~1) = (J * 7-

because j is the identity map on B. D

The first part of the proposition represents the active point of view on gauge
transformations of principal bundles, while the second represents the passive point of
view. From the latter point of view, gauge transformations are automorphisms of the
bundle P.
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Let us note that the transformation law for a map σ (from the active point of
view), is exactly the same as that given in Eq. (15) in Sect. 3.

Let us finally compute an explicit formula for the covariant derivative in the case
of trivial bundles (to compare it with (16) and (17)). Thanks to Proposition A.7 we
know the form of any strongly tensorial form on P. We can define a linear operator
V in the space of maps σ : V —> ΩB by means of

Dφ = j(Vσ)*Φ, (75)

where φ is a strongly tensorial form and σ is a map decomposing φ according to (74).
We have:

Lemma A.10. Let P(B, A, Φ) be a trivial quantum principal bundle with differential
structure given by ΩP. Let ω given by (37) define a connection in P. Then for any
σ : V -» ΩnB we have

Vσ = dσ-(-l)nσ*β. (76)

Proof. Using the definition of the covariant derivative D in Eq. (68) we compute

D(j(σ) * Φ) = h(j(dσ) * Φ + (- l)n j ( σ ) * dΦ)

= j(dσ) * Φ + (-l)nj(σ) * dΦ - (-l)nj(σ) * Π(dΦ)

= j(dσ) * Φ + (-l)nj(σ) * dΦ - (- l)nj(σ) * β * Φ - (-l)nj(σ) * dΦ

= j(dσ-(-lTσ*β)*Φ

as required. D

Thus we have obtained from the abstract theory the local picture quoted at the end
of Sect. 3, at least for the universal calculus.

B. Appendix: Quantum Matrix Case of the Local Picture

Here we collect some results concerning trivial quantum vector bundles in the case
when the structure quantum group is of matrix type. Let A be such a quantum group
generated by the matrix t = ( t l j ) f j = l obeying some commutation relations (see [12]).
There is a natural comultiplication in A given by matrix multiplication (we assume
summation over repeated indices), namely Δtlj = tl

k ®tk ̂ . The counit is εtlj = <5^.
For example, we can begin with the matrix bialgebra A(R) defined by the solution
R of Yang-Baxter equation:

Here R G Enά(kn ® kn) and Rn = R®I, etc., where k is our field (such as k — C).
The commutation relations of A(R) are given by the equation

and in nice cases lead to Hopf algebras A after quotienting A(R) by suitable
"determinant-type" relations.

We can also obtain examples of suitable fibres from the same matrix R by setting
V = Z(R), the Zamolodchikov algebra generated by the set v — (vl)™=l, obeying the
relations and left
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where λ E fc* is a parameter. One can easily check that Z(R) is indeed a left A(K)-
comodule algebra with coaction ρL. It was explicitly done in [19, Sect. 6.3.2] in these
conventions. We suppose this quotients also to a coaction of A.

If B is any algebra with unit we define the trivial left quantum vector bundle
E(B, Z(R), A) as in Sect. 3 and we keep the formalism of that section. Adopting the
shorthand

we have the following formulae:

VV - F.σ* ,

dFl

3+β\Fk

3 -Fi

kβ
k

j=0.

This describes a matrix example of our quantum-group gauge theory in the left-handed
conventions that appeared in the main part of Sect. 3.

Now consider V = Z(R), where Z(R) is an algebra generated by the set
w = (wJ[Lι modulo the following relations and right Λ(JR)-coaction:

W1W2R = \W2Wl, QRWΪ = Wj (g) tj

 i ,

where, as previously, λ G fc*. One can easily check that Z(K) is a right A(R)op-
comodule algebra with ρR as stated. We suppose it quotients also to a coaction of A.

If B is any algebra with unit then E(B, Z(R), A) is a trivial right quantum vector
bundle. Adopting the shorthand

σi = σ(wi), (σ7χ = σΊ(wi) ,

we now have the following formulae:

Fi

ί =

s = -°i**,.

This describes a matrix example of our quantum-group gauge theory in the right-
handed conventions that appeared at the end of Sect. 3.
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