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Abstract. In this paper we show that the leading singularities of certain potentials
can be determined from the leading singularities of the backscattering (as well as
other determined sets of scattering data). The potentials in question are conormal
with respect to smooth surfaces of arbitrary dimension; the restrictions on their
orders allow for unbounded potentials in all dimension greater than or equal to
three.

0. Introduction

Let q(x) be a real-valued, compactly supported potential on R", n ̂  3, and
a(λ, 0, ω), λ € R, 0, ω e Sn~l, the scattering amplitude of q(x). The nonlinear
transform q(x)™>a(λ, 0, ω) is overdetermined and there has been much interest in
the inverse problem of determining q(x) from a(λ, 0, ω) and the restrictions of a to
subsets of R x S"'1 x Sn'\ e.g., [BC, ER, HN, No, N]. In this paper we will be
interested in formally determined (w-dimensional) sets of scattering data; moreover,
we will work in the time domain, i.e., with the scattering kernel,

α(s, 0, ω) = cn\eisλλ~ a(λ, 0, ω)dλ .

The class of g's considered will be those conormal to a smooth submanifold S c R"
of arbitrary codimension k. The inverse problem solved consists in determining
S and the symbol of q(x) from the leading singularities of the scattering data. The
strongest singularity of the full scattering kernel α(s, 0, ω) is of course the peak
scattering; we show that for the class of potentials considered here, α(s, 0, ω) is,
away from the contribution of the tangential rays, a sum of the peak scattering and
â  (weaker) lagrangian distribution associated with a reflected lagrangian
A _ c= T*(JSixSn~1 xS"1"1). It is the restriction of this reflected component of
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α(s, 0, ω) to various n-dimensional submanifolds of Ί^xSn~1xSn~1 which we
show determines S and the symbol of q at S.

A particularly interesting case of our results is that of q(x) having a Heaviside-
type singularity across a smooth hypersurface; the location and size of the jump can
then be determined from α|B, where IB is the backscattering data,

IB = {(s,θ,ω): θ = - ω} .

More precisely, we prove the following; a more detailed statement, as well as the
extension to other, possibly time-dependent sets of scattering data, can be found in
Sect. 4.

Theorem 0.1. Let S a IRM be smooth ofcodimension k and q(x) conormal of order μ to
S, with

μ < — max ( - L k — 1 I , n > 5 and
\ n J ~

(k \
μ< — m a x l - , f c — 1 I, n = 3, 4 .

Then S and the principal symbol of q(x) are determined by the singularities of the
backscattering α|B.

_ 'Λ

The restriction that the order of q(x) be less than -- k or — /c/2, respec-
n

tively, insures that the scattering kernel is defined ([P]); the restriction μ < 1 — k is
needed so that the operator D ~ 1 Mq considered in the proof is slightly smoothing.

Working in the frequency domain (i.e., with a(λ, θ, ω)), Prosser [Pr] gave
a formal procedure to determine q(x) from backscattering under a small norm
assumption. In Eskin and Ralston [ER], the map from complex q to the backscat-
tering was shown to be generically a local homeomorphism with respect to certain
norms. Note that in the theorem, although q(x) belongs to a rather special class,
there is no smallness assumption. Only the leading singularities of q(x) are de-
termined by α|B, but only the leading singularities of α | B are needed to do this.
(After the completion of this paper, J. Ralston brought to our attention the related
paper of Paivarinta and Somersalo [PaS], which treats the question of recovering
the singularities of the potential from the scattering amplitude as a function of all
its variables. Their results are from the point of view of the Born approximation,
rather than the time-domain approach taken here.)

The method of proof we use is to construct an approximate solution to the
direct problem

ί(D + q(x))u(x, ί) = 0 on RM + 1

It follows from the Lax-Phillips approach to scattering theory [LP, MU2] that
α(s, θ, ω) can be expressed in terms of u(x, ί), cf. (3.34). It is crucial for our approach
to incorporate the parameter ω as one of the independent variables. We construct
an approximate solution u ~ u0 + M I ? with UQ — δ(t — x ω). Away from the tan-
gential rays, w x is a sum of the product-type lagrangian distributions; for t > 0, it is



Recovering Singularities of a Potential 55 1

a sum of two lagrangian distributions, from which we find that, away from a small
bad set,

where A + , A- a Γ*(lRx S""1 x S""1) are the peak and reflected lagrangians,
respectively. From this, the solution of the inverse problem follows easily. In Sect. 1
we recall and establish some basic results concerning classical and product-type
conormal and lagrangian distributions. The action of operators such as D ~ 1 on
such classes is considered in Sect. 2 under various geometric assumptions. The first
two terms of an approximate solution to the direct problem are constructed in
Sect. 3; the analysis of the higher terms seems to be considerably more intricate and
may only be possible under a strict convexity assumption on S; we hope to return
to this point in the future. Finally, in Sect. 4, the approximate solution to the direct
problem is used to solve the inverse problem.

Much of this work was completed while the first author was on leave at the
University of Washington; he would like to thank that institution for its hospitality
and support.

1. Spaces of Lagrangian Distributions

In this section we recall the spaces of conormal distributions and distributions
associated with either a single lagrangian or two cleanly intersecting lagrangian
manifolds.

Let X be an n-dimensional smooth manifold, and A c Γ* X\Q a conic lagran-
gian manifold. The Hόrmander space Im(A) of lagrangian distributions on X asso-
ciated with A consists [Ho] of all locally finite sums of distributions of the form

u(χ)= J eίφ(x>θ]a(x,θ)dθ,
R*

where φ(x9 θ) is a nondegenerate phase function parametrizing A and

α e Sm+^(X x R*\0) = {a e C°°(^ x (

(Here we use the standard notation <#> = (1 + |0|2)*.) For u e Im(Λ\ the wave-
front set WF(u) c Λ.

Now let S c= X be a smooth submanifold of codimension fe. Then the conormal
bundle of S,

N*S = {(x, ξ) e Γ**\0: x e 5, ξ 1 TXS} ,

is a lagrangian submanifold of Γ* X \0; the space of distributions on X conormal to
S is by definition

(AT*S) . (1.1)
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If ft e CCO(X, R*) is a defining function for S9 with rank (dh) = k at S, then
u(x) e Iμ(S) =>

u(χ) = J eίh(x}'θa(x, Θ)dθ9 a E Sμ(X x (Rfe\0)) . (1.2)
Rfc

For example, if δs is a smooth density on S, then <5S e J°(S), while a distribution on
^Γ\S having a Heaviside-type singularity at S belongs to I~k(S). One easily sees
that

/*(S) c Lfoc(*) if μ < - fc Λ - 1 V (1.3)

Now, let Λθ9 A! cz Γ*Jf\0 be a cleanly intersecting pair of lagrangians in the
sense of [MU1]. Thus, Σ = A0 n Λί is smooth and

Associated to the pair (Aθ9 Aλ) is a class of lagrangian distributions, Ip'l(A0, A^\
indexed by p9 I e R, which satisfy WF(ύ) ^ AO^J A1 [MU1, GulJ]. Microlocally,
away from Σ,

I* 1(Λ09 A,) cz I^A^A,) and I* \Λ09 A,) c I^ΛJ . (1.4)

If F2 c Y1 c X are smooth submanifolds with
codimx(Y2) = dι + J25 then AT* 7X and AT* Y2 intersect cleanly in codimension d2.
The space of distributions on X conormal to the pair (Yl9 Y2 ) of orders μ, μ' is

Iμ μ'(Yl9 " L ^ " -

If one introduces local coordinates (x l9 . . . , xn) on X such that

r = {*! = - = *dl = o} = {*' = 0}
and

72 = (Xl = . = Xdι+d2 = 0} = {x> = 0,x" = 0} ,

then u(x) e Iμ μ'(Yl9 Y2) iff it can be written locally as

u(χ)= J ^f *f+'" « f f)fl(x;ξ';r)^ /dί / / (1-5)
Rd l + d 2

with α(x; f 7 ; f ") belongs to the product-type symbol class

Sμ>μ'(X x (Rdl\0) x Rd2) - {α e C°°: |δ;δ^3|^(x, ξ)\

£c^κ(ξ\ξ''yμ-to<ξ"yμ'-w}. (1.6)
We will need the following series of lemmas concerning multiplication of

conormal distributions.
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Lemma 1.1. // 7, Z c X are submanifolds with 7 φ Z, then

I μ ( Y ) I μ ' ( Z ) c : I μ > μ ' ( Y , Y n Z) + Iμ' μ(Z9 7nZ). (1.7)

Ifu E I μ ( Y ) satisfies: supp(w) c 7, then

11 IP' 17\ r— j μ > μ ' ( v v^ 7\ π δ\u 1 \Δι) ^ i \ι <) I (\ ΔI ) . v-*-•*/

Proof. If 7n Z = 0, there is nothing to prove, since Iμ>μ'(Y, 7n Z) => /^(7) and
/"'•"(Z, 7n Z) => /"'(Z). If 7n Z Φ 0, let x°e 7n Z and introduce local coordin-
ates (x', x", x/ ; /) e R^xIR^xlR^^-^2 near x° such that a) x° = 0, b)
γ= {χf = 0} and c) Z - {x" - 0}. If u(x) e Iμ(Y\ u has the local oscillatory
representation

u(χ) = J eix"ξ'a(x; ξ f ) d ξ ' , a e Sμ(X x (Rdl\0)) ,

and ι (x) e Iμf(Z) has the representation

v(x) = j eίx"'ξ"b(x; ξ"}dξ", b E S"'(jr x(Rda\0)),
IR"2

so that

(uv)(x) = J ^'^'^'"^^'^"^(x; ξ f ) b ( x : ) ξ " ) d ξ ' d ξ " .

Introduce a cutoff function χ(t) E C^(1R), χ = 1 for |ί| ^ i, χ = 0 for |ί| ^ 1. Then

χl-^-^-\a(x'9ξ')b(x'9ξ
ff) E Sμ'μl(X x(lRd l\0)xlRd 2) ,

while

(i-χ)

making the corresponding decomposition of u v yield (1.7).
If supp(w) c 7, then by [Ho], WF(uv) c AΓ*7uN*(7nZ), so that in the

above decomposition the second term belongs to 7 μ + μ / (7nZ) <= /μ'μ'(7, 7nZ),
yielding (1.8). Q.E.D.

We also need the multiplicative properties of conormal distributions associated
with a nested pair of submanifolds. Related results for a single submanifold are in
[Pi].

Lemma 1.2. // Y1 ID 72 are submanifolds ofX of codίmensions dl9d1 + d2> respec-
tively, M! e /Ml(71), and w2 e JM2(72) is mίcrolocally supported away from N*Yl9

then

e 7M''M"(71? 72), M' - (mi + dj+ - d, + εδm ι,_d l ,

ε > 0 . (1.9)
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Proof. Introducing on X local coordinates x = (x'? x", x'") as discussed above
(1.5), we have oscillatory representations

Ml(x) = J ex>'ξ'a(x;ξ')dξ', a e SMl(X x(Rd l\0)) (1.10)
JRd'

and

u2(x)= J ei(x"ξ'+x"'ξ'Ίb(χ 9ξ'9ξ")dξ'dξ"9 b e Sm2(X x(Rd l + d 2\0)) (1.11)
R<ί1+d2

with supp(b) c ( I f ) ^ c |ξ" l } Thus,

(wι*/2)(x) = J (a*'b)(x;ξ'9ξ")dξ'dξ"9 (1.12)
Rd1 +d2

where α *' b is the partial convolution

α*'&(*; £', Π = J α(x; */')&(*; ί' - η', ξ")dηf . (1.12)
R''

where α *' fc is the partial convolution

fl*'ft(x;£',n = f a(x;η')b(x;ξ'-η',ξ")dη' . (1.13)
Rd'

To estimate the size of 0*'b(x; £', £), where |ξ'| ^ c|ξ"|, note that

|α*'fe(x; <T, Γ)l ^ c<f >mι f <OmW g c<ξ, ξ'>«ι<ξ">^+-ι . (1.14)
\ξ'~η'\^c\ξ"\

On the other hand, if \ξ'\ ̂  c \ ξ " \ ,

\a*'b(x; ξ', ξ")\ ^ c(ξ"y^ J W*dη' ^ c<^>(«ι+^)+ + m2 + εδ^,.^
kΊ^ciπ

(1.15)

for any ε > 0. Thus, β *r 6 satisfies the correct size estimate to belong to
SM'>M"(X x (Rdl \0) x Rd2), with Mr, M/r as in (1.9). A derivative in ξ'9 d\\a *r b\ can
be represented as either (3^α)*'i> or a*'d\ b). In the region \ξ'\ ̂  c|ξ"|}, we use
d«ξ.a e SW l-"β | and (1.14) to get a gain of <O~ |α| as long as |α| ^ mx + ̂  for
|α| > W! + d l 5 we integrate by parts |α| — mx — di times and then apply (1.14) to
obtain the desired gain. On {| ξ'\ ̂  c \ ξ " \ } 9 we use δ|.6 e S"12~ |α| and (1.15) to obtain
the gain of <ξ">~ | α | = <ξ', ξ">" |α |. A derivative dβ

ξ», however, can only be distrib-
uted to b(x; ξ', ζ"\ lowering m2 to w2 — |j8| and consequently yielding a gain of
only <<T>-'". Thus, a*'b e SM>>M" (X x (Rdl\0) x Rd2) and 11̂ 2 e /M''M"(r1? Y 2 )
by (1.5). Q.E.D.

If u2 is microlocally supported near N*Yί9 we have a similar result.

Lemma 1.3. // Yί9 Y2 and u^(x) are as above, and u2 e Im2(Y2) has amplitude
b(x; ξ', ξ'f) supported in [\ξ"\ g c \ ξ ' \ } 9 then

Ulu2 G /»i.«2+rfi( 7 i j F2)5 m2< -dl9 m, + m2 < - d1 . (1.16)
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Proof. We repeat the calculations of the previous proof, except that in (1.13), the
integral is over {\ξ'-η'\^ c\ξ"\}. Thus, on {\ξ'\ ^ c\ξ"\}>

\a*' b(x; ξ'9 ξ")\ ^ c<£'>mι J <?/', ξ"ym2dη' ^ <ξ')mι <£">m2+dl

if m2 + di < 0, while on (|

|α*'b(x; ξ', ^/;)| ^ J (η'ym^+m2dη'τc(ζ"ymι+m2+d\ m^ + m2 H- d± < 0 .

Q.E.D.

We also will need the action of Imi(Yι) on spaces of product-type conormal
distributions.

Lemma 1.4. // Yl9 Y2 are as above, Wie/"1 1^), αnrf u2eIM>'M"(Yι9 Y2) is sup-
ported microlocally near N* Yί9 with M' < — dί9 M' ^ m1 ? then

'^M"(Yl, 72),M'-max((m1 + d1)+ + M' + εδm,t-d,9mι\ and ε > 0 .

(1.17)

/ We again have the oscillatory representation (1.12) of u1u2 with a *; b given
by (1.13) for aeSmί(X x(lRd l\0)) but now beSM''M"(X x(R d l \0)x Rd2); thus,

^ c<ξ'>mι and |6(x; ξ'9 ξ"}\ ^ c(ξfyM\ξ"yM". For \ξ'\ ̂  c \ ξ " \ ,

|α* '6(x;ξ ' ,ni^c J <η' >mι <ξ' - η' >M' <ξ" >M" dη'
\ξ'-η'\^c\ξ"\

If I £ Ί ^ C I £ Ί > we use the first inequality in (1.18) and then decompose the integral
into three pieces, corresponding to the regions I = {</7 /> ^ c<£'>},
Π = {c<O ^ <^> ^ c<^>} and III = {<£' - η"> ^ c<ξ">} we have

J ^ ̂ <^>M'<Γ>M"ί (η'ymίdηf ^ cζξ'yCm+dύ + M +εδζξvym 9 (L19)

I I

where δ = ^mι> _ d l and ε > 0 is arbitrary,

ί ^ c<OM"(<OM'ί <^
II V II

^ c<OM"«OM'max«

cmax«ξ'>M'<Γ>mι+M"+lί l, <ξ'>""<ξ">M'iM"+dl)5 mi+d1<Q

M'+M"+<i' i f m ^ M ' , (1.20)
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and

{ ^ c J (η'ymί+M'(ξ"yM"dη' ^ c(ξ>ynι+M'+*ι(ξ»yM" ^ ^2l)
III III

Since (m^ + dι) + sδ ^ mx + d l 9 the third term is dominated by the first; on the
other hand, since M' + d± < 0, the second term is dominated by c<Omι<OM".

|fl*'6(x;ξ',ni ^c<O'<OM" - (1-22)

The estimates (1.18) and (1.22) together imply the size estimate satisfied by an

amplitude belonging to SM''M". As before, d\ can be distributed to either a or b,
while <3f" must be applied to fo, yielding the required estimate

\dld\,.d\(a*'b)\ ^ c(ξ', ^M'-H^^M'--!/?, 9

so that W!M 2 e /^''M"(71? 72). Q.E.D.

Finally, we have

Lemma 1.5. Let Y± => 72 ^^ ^ above, and Y+ <^ X such that Y± φ Y+ with
Y1r^Y+ = Y2. Let u^ e /mι(^ι), and u2 E /M/'M"(7+, 72) be supported micro-
locally near AT* 7+ . Then,

+, 72) + /^'0(7+, 72) + /m"W 2(^i, 72) , (1.23)

M/' + d1)+ +ε<5m ι + M« i_ l f l,
m2 = M' + (M" + d±)+ + εδM"^ _d l, any ε > 0.

Proo/ We may choose the local coordinates x = (x'9 x", x'") so that Yv = {xf = 0},
Y+ = {x" = 0}, αnJ 72 = {*' = 0, x/r = 0}. Mi(x) is given by (1.10) while

W2(x)^ J ei(x"ξ'+x'"ξ">b(x;ξ",ξ')dξ'dξ", b e SM''M"(Jί x(Rd 2\0)x R)
Rd l + d 2

(1.24)

with supp(fc) cz {|ξ"| ^ c |<r i } (Note that {" plays the role of the "elliptic" vari-
able.) The product (u1,u2)(x) is again represented by (1.12), with

α *'&(*; ξ l 5 ξ2) = f a(x; ξ' - η')b(x', ξ", η')dη' .
Rdl

It suffices to show that

a *' 6 e SM''^"(JT x (Rd2\0) x R^) + ̂ ''°(Z x (Rd2\0) x Ί&dί){\ξ'\ ^ c \ ξ " \ }

(1.25)

while

α* / &eS m ι ' m 2 (*x(R d l \0)xR d 2 ) on{\ξ" ^c\ξ'\}. (1.26)
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Where \ξ"\ ^ c|<ΓI, one has

|α*'ft(x; ζ'9 HI ^c J
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dη'

^ c<OmXOM/ + (M"+dl)++ε^" -% any ε > 0 , (1.27)

which is the correct size estimate for (1.26). Applying d\. to the the first factor in
α*' f r , we lower ml by |α| and obtain a gain of <^>~ | a | ~ <ξ', ^">~ | a |, while 5f" must
be applied to the second factor, resulting in a gain of only <£ / />~ l /". Thus, (1.26)
holds. As for (1.25), on { \ ξ " \ ^ c\ξ'\}9 we have

J a(x;ξ'-η')b(x9ξ"9η')dη'

mι+M" (ξffyM'dηf

_|_ ^ / ε / / \ M ' / κ / \ M " + ( m ι + d ι ) + +εό m i ι _ d ι Q 2g)

which is the correct size estimate for (1.25). The desired gain of (ξ"y~^\ from the
application of d\» follows, since M' is lowered by | β |. As in the proof of Lemma 1.2,
the gain of <^>-iαi from δ|, follows by lowering M" to M" - |α| if
m1 + M/r ^ — d1; otherwise one integrates by parts first. Thus, (1.25) holds and
the lemma is proved. Q.E.D.

2. Action of Parametrices on Distribution Spaces

We now consider the mapping properties of a parametrix for a pseudodiίferential
operator of real principal type, acting on the spaces of distributions associated with
one and two lagrangians described in Sect. 1. The intended application in Sect. 3 is
to the d'Alembertian on RM + 1 xS""1, but the natural coordinates there do not
seem convenient for establishing these results, leading us to formulate and prove
them in the generality described below.

Let P(x, D) be an m th order classical ψDO, with real homogeneous principal
symbol pm(x, ξ). Recall that P is of real principal type if a) dpm Φ 0 at
char(P) - {(x, ξ) e T*X\Q: pm(χ9 ξ) = 0} so that char(P) is smooth, and b) char (P)
has no characteristics trapped over a compact set of X. Then P(x, D) is locally
solvable and parametrices for P(x, D) were constructed in [DH, MU1]. For
(x, ξ) e char(P), let Ξ(Xtξ} be the bicharacteristic of P(x, D) (i.e., integral curve of
HpJ) through (x, ξ). Then the flowout canonical relation generated by char(P),

ΛP = {(x, ξ; y9 η): (x, ξ) e char(P), (y, η) e Ξ ( X f ξ ) } ,
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intersects the diagonal ΔΓ*X cleanly in codimension 1. In [MU 1], it was shown that

P(x, D) has a parametrix Q e Γ2~m' "^(Δr*x, ΛP).

Proposition 2.1. Suppose Λ0 a T*X\Q is α conic lagrangian intersecting char(P)
transυersally and such that each bicharacteristics ofP intersects Λ0 a finite number of
times. Then, if T e Ip>l(Δτ*x, ΛP),

T:Γ(Λ0)^Γ+^(Λ^Λ,), (2.1)

where Av = ΛP°Λ0 is the flowout from A on char(P). Furthermore, for (x, ξ) e

σ(Tu)(x, ξ) = Σ σ(T)(x9 ξ; yJ9 ηj)σ(u)(yj9 ηj) , (2.2)

Proo/ Microlocalizing and conjugating by an elliptic Fourier integral operator
associated with a canonical transformation, we can assume [MU1] that X = R"
with coordinates x = (x l9 x'), Λ0 = ΓgR"\0, char(P) = {(x, ξ): ξ1 = 0} and thus

ΛI = {fa, 0; 0, ξ'): x, e R, ξ' e R»~ J \0} .

A distribution t/ e /r(^o) has the representation

u(χ)= $ e ί x ' ξ a ( χ - , ξ ) d ξ , αeS r-^(RMx(R"\0)), (2.3)
R"

and Γ e /*l(^r.Rn, vlp) has the form

Tf(x)= f e^-y^b(xίy;θ';
R" x R"

-(R2 ϊ l x (R"'1^) x R) . (2.4)

Note that on ^lp\JΓ*Rn, Γis a Fourier integral operator associated with ΛP,

Tf(x) = f '̂-^ β/c(x,y; θ')f(y}dθ'dy , (2.5)
JR"- 1xIR' 1

where, for x j φ ji,

c(χ, y; θ') = lei(x^-y^b(x, y; θf; θi)dθl e Sp+^2n x (R"'1^)) . (2.6)

Now, applying Γfrom (2.4) to M(J), and applying stationary phase in y, ξl9 θr, we
obtain, upon relabelling θi by ξί9

Tu(x) = J βfa «[α((0, x'); ί)6(^, (0, *r); ί'; f i) + . . .] dξ . (2.7)

The amplitude in (2.7) is easily seen to belong to 8r+p~~ l~~* (RM x (RM~ l \0) x R);

by [G17, §1], Γwe/^Γμ0^ι), with p' + /' - 5 = Γ + p + i _ ^ + / _ i and

p/ + - - - r + p + - - , s o that p' = r + p9l' = L
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To calculate the symbol of Tu on Λι\AQ9 we expand the amplitude a in (2.7)
about ξ± = 0:

TU(X) = J *fa <[α((θ, x'); (0, £'))*>(*, (0, x'); £'; W + £ιΦ; £'; ίι)]# , (2.8)
R»

where d(x; ξ'; ξ±)e Sr+p~* -*>l~* (Rw x (R"~ 1 \0) x R). The first term in (2.8) can be
written as

f ^'^'αί^xO ίO '̂
R"-1

which for xx Φ 0 is an element oίΓ+p(A1)) with symbol as in (2.2); the second term
is in Γ+p~ l(Aι \A0) and thus does not contribute to the principal symbol. Q.E.D.

Finally, we deal with the action of Ip'l(AT*x,Ap) on the double intersection
class /p/ z '(Λ 0,Λι).

Proposition 2.2. Under the same assumptions as Proposition 2.1,

Γ:/^Γμ0^ι)-^

77ms, ϊ/2 is a parametrix for P(x9 D),

Qi/^'Vo,^)^/'^1-"1'1'-1^,^!). (2.10)

We argue as in the proof of Proposition 2.1, but now ueIp''l'(A0, A I ) =>

u(x)= J <?χ ξa(x\ζ'\ξι)dξ, αeS r p '+ 5~ i 'Γ- i(IRnx(lRM" 1\0)xR), (2.11)
R W

so that instead of (2.7) we have

Tu(x)= J eiχtξe(x\ξf\ξl)dξ9 ecSp+p' + 1-"*> l + l'~1(ΊRn x(R / J-1\0)x R) ,(2.12)
R"

, 1 , , „ 1
so that Tuelp+p'+2'l + l> 2(A0ίA1). For the parametrix β, we specialize this to
p = i - m, / = - i, yielding (2.10). Q.E.D.

Finally, we need

Proposition 2.3. Suppose Λ1 c Γ* Z\0 is α conic lagrangian which is characteristic
for P: A^ char (P). Γfeπ, ifTeIp l(Δτ*X9ΛP\

(2.13)

ί/iws

(2.14)

Proof. Microlocalizing, we can find a A0 such that (AΌ9Aι) are as in Proposi-
tion 2.2. For each ΓeR, Γ(Al)dΓ^(AQ, A^ ([GuU]), which is mapped by T to

jr+p+ii' + i-τ (Λ^Λ!) by (3.9). Intersecting over all /'eR, we have T: Γ



560 A. Greenleaf and G. Uhlmann

i), again by the results of [GuU], proving

(2.13). Since Q e F~m* ~*(AT.X9 ΛP\ (2.14) follows. Q.E.D.

3. Plane Wave Ansatz for the Direct Problem

We now analyze the approximate solution, u0 + uί9 to the direct problem de-
scribed in the Introduction, under the assumption that the potential q(x) is
conormal to a smooth codimension k submanifold. Let S be given by a defining
function,

S=φeR":Λ(x) = 0}, (3.1)

where h e C°°(lRn, Rfe) satisfies τank(dh(x)) = k for x e S; in addition we assume
S has compact closure. Let

ί ίl -- j/c, fe - 1 j, rc ̂  5
Hj J

-max

(3.2)

μ < - max! -, / c - l , rc = 3 or 4

be compactly supported and real-valued. Since, by (1.3), q e Z/(IR"), for p = - for

n ^ 5 and p > 2, n = 3 or 4, it follows from a theorem of Phillips [P] that the
scattering kernel α(s, θ, ω) of q(x) exists; furthermore, the representation (3.34)
below is valid.

Now define

S1 = { O x , f , ω ) e l R n - 1 x S " - 1 : : x e S } (3.3)

regarding q(x) as a distribution on R""1 x S"1"1 independent of ί and ω, one has

fle/'ίSi). (3.4)

We wish to find an approximation solution to the problem

\(Ώ+q(x))u(x,t9ω) = 0 on IR"'1 xS""1

w(x, ί, ω) = δ(t - x ω), t <ζ 0,

32

where D = — ̂  — zJRn is the d'Alembertian on Rw + 1 acting independently of ω. We

look for an approximation

u ~ MO + Ui H- + u j + ,

where MO(X, ί, ω) = δ(t — x ω) and such that the series on the right is (formally)
telescoping when D + q is applied. Thus uj+1 = — Π ~ 1 ( q ( x ) u j ( x 9 t 9 ω ) ) 9 where
D ~ * is (say) the forward fundamental solution of D . For the purposes of this
paper, it suffices to consider the first two terms,

u0 -h M! = δ(t- x ω)- Ώ~1(q(x)δ(t — x ω)) . (3.6)
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Now, the leading term in (3.6) is

tio(x, t, ω) = δ(t - x ω) e /°(S+) , (3.7)

where

The submanifolds S+ and SΊ intersect transversally; let S2 = S+r\S1 be the
resulting codimension fe+1 submanifold at Rw + 1 xS""1. Let ^4 1 =JV*S 1 ,
Λ.+ =N*S+ and Λ2 = N*S2 be the respective conormal bundles, which, as
described in Sect. 1, are lagrangian submanifolds of Γ*(R" + 1 x S""1)^.

Proposition 3.1. a) WF(q) a Av and WF(uQ] c= Λ + .
b) A and A + are disjoint.
c) A2 intersects Al and A+ cleanly in codimensions 1 and k, respectively, so that

(Aί9 A 2 ) and (A + , A2) are intersecting pairs.

Proof, a) Follows from (1.1).
b) #£,,,„)$! = {(dh*(ξ), 0, 0): ξ E R*\0} while N?x,t,ω}S+ = {(- σω, σ, - σz*x):
σeR\0}, where iω: Γ^'^T^R".
c) Follows from the fact that S2 <^ S1 is codimension 1 and S2 <= S+ is codimension

fc. Q.E.D.

The second term in (3.6) is

where D ~ 1 acts only in the (x, ί) variables. By Lemma (1.1), with X = R"+ 1 x Sn~ \
Y=S+

^(x,ί).5(ί-χ.ω)6/°^(S+,S 2), (3.8)

so that

WF(q δ) ̂  A+ u A2. (3.9)

To obtain WFfa), recall that

1!;) c (AnΛΏ)°WF(υ), Vt? 6 ί ;(RM + 1 x S"'1) , (3.10)

where A is the diagonal of T*(JR" + l xSn~l)\Q and Λ π is the flowout of the
characteristic variety

char(D) = {(x, ί, ω; ξ, τ, O): |τ | 2 - \ ξ \ 2 } (3.11)

of D (acting on R"+1 x S""1). In (3.10), A u /1D acts as a relation between subsets
of Γ*(RW + 1 x S""1)^; if course, A acts as the identity. Also, ΛΏ °A+ = A+ since
A + is characteristic for D . Thus

°A2 . (3.12)

To understand the last term in (3.12), note that A2 is a (k + l)-plane over S2:

2 = {(x, x ω, ω; v — τω, τ, — τi*x): x e S, ω e S""1, (v, τ) e (ΛΓJS x R)\0} ,

(3.13)
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where i* denotes the restriction of an element of Rw* to TωSn~1. The intersection of
Λ2 with char(D) in these coordinates is given by

Σ = Λ 2 nchar(D) = {v (v - 2τω) - 0} . (3.14)

Above a point (x, x ω9ω) e S2 such that N*S c ω1, the fiber of A2 n char(D) is
just {( — τω, τ, — τz*x): τ e R\0}, while if JVJSφω1, the fiber is a smooth
/c-dimensional cone in Γ(*,x.ω,ω)R

M + 1 x Sn~l\Q. Since N*S c ω1 iff ω e ΓXS, we
see that the degenerate points correspond to the incoming plane wave being
tangent to S. Let

S3 = {(χ,χ.ω,ω)e S 2 :ωe ΓXS} . (3.15)

then S3 d S2 is codimension fc and away from Σ3 = Λ2 |S3, Γ is a smooth hypersur-
face in Λ2.

To discuss the geometry further, we first consider the situation when S is
a hypersurface (k = 1), so that h(x) is scalar-valued with gradient hX9 and (3.13) may
be rewritten as

A2 = {(x, x ω, ω; A/zx - τω, τ, - τz*x); x e S, (λ, τ) e R2\0} . (3.16)

In these coordinates,

Λ 2 nchar(D) = {λ(h2

xλ - 2(ω hx)τ) = 0} ,

and thus Σ = Σ+ u Σ - , where Σ + = {λ = 0} and Σ _ = {/z^/l — 2(ω /^τ = 0} are
smooth hypersurfaces intersecting transversally over S3 = {ω hx = 0}. Note that
Σ+ = Λ+ n A2 and thus the flowout AΏ ° (Z+ \Z"3) of Σ+ \Σ3 by the Hamiltonian
vector field

d d
HΏ= -ξ.-+τ-

is contained in A + . On the other hand, the flowout of Σ- \Σ3 is a new lagrangian,
which we denote by A- . In fact, assuming, as we may, that hi = 1,

Σ- = {(j;,j; ω,ω;τv(y,ω),τ, - τί*y): y e 5, ω e S""1, τ e R\0} , (3.17)

where ϋ(>;, ω) = 2(ω Λy)ίiy — ω. Note that v2 = 1 and υ(j;, ω) = — ω iff ω fιy = 0,
i.e, only at Σ3. HΏ can only be tangent to Γ_ if it arises as the image of a vector

d
Y — under the diferential of the parametrization (3.17); but then

y

Y = — ξ = — τv(y9 ω) and ω Y = τ, which imply that v(y, ώ) = — ω, which only
occurs at Σ3 by the above comment. Thus, HΏ ή\\Σ- on Σ-\Σ^9 and
A- = y l D ° ( Σ _ \ Z 3 ) i s a smooth lagrangian, intersecting A2 cleanly in codimension
1. Explicitly,

A- = {(y - rv(y,ω),y ω + r,ω;τυ(y9ω)9τ9 -τί*y):y e S, ω e S""1, ω hy φ 0,

reR, τ e R \ 0 } . (3.18)
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We remark here that A- is the conormal bundle of a smooth hypersurface,
which we denote by S-. In fact, the differential of the projection π from A- onto
the spatial variables is

j — rj*dyv — v — rdωv 0
D(x,ί,ω) I

;*ω 1 φc 0

0 0 / 0

where j denotes the differential of the inclusion S c* RM, from which we see that

rank(dπ) = n + rank(j — rj*dyv +j*ω ® v) . (3.19)

Away from S3, v(y9 ω) φ — ω and the rank of the second term in (3.19) is n — 1;
thus rank(dπ) = 2n - 1 and A- = ΛΓ*S_, for S_ c=RM + 1 x S"1"1 a smooth hyper-
surface.

Now consider the case when the codimension of S satisfies 1 < k < n. Then Σ,
defined by (3.14), has a conical singularity at Σ3. We will actually work away from
a larger set,

Σ2 = {(y,y ω9ω , v - τω, τ, - τi*y): (y, v)eJV*S, ωeS""1,

: 0} . (3.20)

By the same reasoning as for k = 1, HD φ Σ on Σ\Γ2; thus, Λ _ , which we define in
this case to be AΏ°(Σ\Σ2)9 is a smooth lagrangian intersecting A2 cleanly in
codimension L_ Furthermore, since Λ+ nA2aΣ2, A+ and Λ _ are disjoint (al-
though A+ r\A- Φ 0.) We can parametrize Σ\Σ2 and A- by solving v (v — 2τω)

v2

for τ, which we can do away from Σ2: τ = τ(y, v, ω) = . Note
2(v ω)

that |v — τω = τ . Thus,

Σ\Σ2 = {(y,j; ω,ω;v-τω,τ, - τι*y): (y, v)6^*5X0, ωe^""1, v ω Φ 0}
(3.21)

and

A- = {(y - rw(y, v, ω), y ω, ω; v - τω, τ, - τi*y): (3;, v)eJV*S\0, ωeS""1,

reR, v ω φ O } , (3.22)

where w(j;, v, ω) = ω; note that w2 = 1.

When k = n, so that S is a finite set of points in R", introducing Γ3 or Σ2 is
unnecessary: Σ is smooth, as is A _ = Λ.D ° Σ. A + and A _ intersect, however, and we
will work away from this intersection by using the parametrization (3.22).

Finally, we note that for 1 < k < n, A _ is contained in the conormal bundle of
a submanifold of Rw + 1 x S""1 having a conical singularity along S2. Not needing
this fact below, we will not describe its structure further.

Returning now to the second term, ^(x, ί, co), of the approximate solution for
the direct problem, let (9'ξ(9c:A2 be conic neighborhoods of Σ3, Σ2 or
(A+ r\A2}r\Σ in the cases when fc = 1, 1 < k <n or k = n, respectively. Let
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L = ΛΏ o 0, L' = AΏ o φ' be the conic neighborhoods of 0, Θ' in T*(ΊR" + 1 xS"'1)
invariant under the Hamiltonian flow. Then (3.12) becomes

WF(uι)\L^Λ+vΛ2vΛ- . (3.23)

In fact, microlocalizing uί away from L, M X belongs to the sum of the spaces of
lagrangian distributions associated with the pairs (A29Λ + ) and (Λ2,Λ-). Let
χ(x, ί, ω, & τ, Ω) e Cco(Γ*(Rn + 1 x Sπ"1)\ 0) be homogeneous of degree 0 in the
fiber variables, with χ = 0 on L' and χ = 1 on Lc. The corresponding pseudodif-
ferential operator χ(x, ί, ω, Dx,Dt,Dω) has the property that [D ~1, χ] is micro-
locally supported on the annulus L n Lfc. Let

fi^-Π-^te a)); (3.24)

then M! — MX is microlocally smooth on Lc by the above comment. Translating (3.8)
from conormal to lagrangian language, we find that

(Λ29Λ + ) . (3.25)

The same is true for χ(q δ)9 and since, by [GuU], the double intersection spaces
microlocalize, one has χ(q δ) = u+ + u~, where

^__ (3 26)
w 6 -••-•- - - ' _\~]

with w* supported microlocally near A2r\Λ±. Applying — D ~ 1 e
_- _- _

7-2. ~2(ylΓ*( ]R»+ιX5»-i)J ylD) to M and w~, and using Propositions 2.2 and 2.1,
respectively, we find that

1(ιι + ) e /-ί^' ̂ f-1 (Λ2\L,Λ+\L)

(3.27)

Since the variable ί is bounded on Λ2, by (1.4) we have

M! 6 / "ί^(yl + \L) + /^^t^ (ΛL\L), ί > 0 , (3.28)

and thus the approximate solution

ί > 0 , (3.29)

Furthermore, the analysis shows that WF(uι) c= ylD °y!2.
Now let #: g '(RM) -> <y'(R x 5 f / I~1) be the Radon transform

(Rf)(s,θ)= J f ( x ) d σ ( x ) , (3.30)
JC Θ = S

where dσ is normalized Lebesgue measure on the hyperplane {x θ = s}. Acting in
the x variable, R is defined on those elements of ̂ r(Rπ x R x S"1"1) having compact
support in x for each ί, ω; R is an elliptic Fourier integral operator, R e I(1 ~n)l2(CR\
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where CR is the local canonical graph c Γ*(R x S"'1 x R x S"'1 x R" x IR x S"'1)
given by

CΛ = {(x θ, 0, ί, ω, σ, - σ#(x), τ, O; x, ί, ω, σθ, τ, Ω):

(x,ί,ω)eIR n + 1xS n- 1, θ e Sn~l

9σ e R\0, τ e R, Ω e T*Sn~1} . (3.31)

The modified (Lax-Phillips) Radon transform [LP], which maps C2 - to C-valued
distributions, is defined by

= CnD^(DsRv0 - RυJ, n odd . (3.32)

For n even one replaces in (3.32) D^^by \D~^~ |. For another discussion of the
time dependent approach to scattering theory and also for a more detailed
treatment of the odd dimensional case, see [Pe].

The scattering kernel can be expressed in terms of #LP and the solution to the
direct problem (3.5) as follows [MU2]: letting

w = D^ (u(x9 ί, ω)-δ(t-x ω)), n odd , (3.33)

one has the relation

/ w \
α(ί - 5, θ, ω) = δ(t - s) <g) δ(θ - ω) + RLP[ „ , t > 0 . (3.34)

\DtωJ

For n even one replaces Dt in (3.33) by \Dt\.
Now, acting on the argument u — δ, w and Dtw are pseudodifferential operators

_ O _ -J

of orders — - — and — — , respectively, and thus

(α - δ <g> δ)(τ - s, θ, ω) = F(u - δ) , (3.35)

n- 1

where Fe/"T"(CΛ). Furthermore, if we denote the fiber variables in
Γ*(R x S"'1 x R x S""1) and Γ*(RM + 1 x S"-1) by (σ, <9, τ, Ω) and (ξ, τ', O'), re-
spectively, the symbol of F is an elliptic factor times σ — τ'. This is elliptic on the
region of CR giving rise to the first components in (3.40)! and (3.40)fe, which are
shown below to be those of interest.

To deal with the translation-invariance in (3.35), we introduce, for ί0 ̂  0* the
mapping p: R x S"'1 x S"'1 -> R x S"'1 x R x S""1, p(s, θ, ω) = (ί0 + s, θ, tθ9 ω),
which induces a restriction mapping

Here, Q>'p denotes those distributions whose wavefront sets are disjoint from the
_!

normals of p. p* is a Fourier integral operator, p* e /4(CP), where

Cp = {(s, θ, ω, σ, Θ, Ω; ί0 H- s; θ, ί0> ω, σ, β, fj, Ω):

sE^Θ,ωeSn~\(σ,Θ,τ,Ω)e Γ*(Rx S"1"1 x S""1)^} . (3.36)

Thus, the scattering kernel can be expressed by means of

(α - δ0 ® δ)(s9 Θ, ω) = p*F(w - δ) . (3.37)
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We first examine the right side of (3.37) applied to the approximate solution
u0 + HI; the comparison with p*F(u — δ) will be made later. Of course,
p*F(u0 + u1 - δ) = p*F(u1). Since CR is a local canonical graph, by (3.28) we have

F(Ul) e Γ*(CR°Λ + ) + I»+-(CRoA.) . (3.38)

Applying (3.31) to Λ + 9 we see that CR°Λ+ has two components,

CR ° Λ+ = {(y ω, ω, y ω, ω; σ, — σz* j;, — σ, σ/*y): y e R", ω e SM~*, σ e R\0}

u[-j; ω, -ω,y ω,ω;σ, -σi*ωj;,σ, -σi*y): y e R",

ωe5'"~ 1 ,σeR\0} . (3.39)

Similarly, applying CR to A- in the cases /c = 1 and 1 < k ̂  n, we obtain

CR o A_ = {(r - y υ(y, ω), - υ(y, ω\y ω + r, ω; σ, - σί*vy9 - σ, σj*.y):

y e S, ω e S""1, r e R, σ e R\0}

u {(y υ(y9 ω) - r, v(y9 ω), y ω + r, ω; σ, -σz*y, σ, - σi*y):

y e S, ω e S""1, r e R, σ e R\0} , (3.40)ι

CR°Λ-={(r-y w(y,v,ω), -w(y 9 v 9 ω\y ω + r,ω; - 1(3;,v,ω),τi*Wy9τ,

— τί*j;): (y, v) e N*S\Q, ω e 5"1"x, v ω Φ 0, r e R}

u {(j> w(j;, v, ω) - r, w(y9 v, ω), 3; ω + r, ω; τ(j;, v, ω), - τi*j;, τ,

- τi*y): (y, v) e AΓ*,S\0, ω e Sn~ \ v ω Φ 0, r e R} , (3.40)k

respectively. We also note that

•(Y v v \
C*% = <M ± — y, ±— ,τ,ω; ± |v|, ± - | v | f * + Λ 3;, 0, 0 :

l\ |v | | v | ~ i v i /

J
(>;,v)eN*S\0,τe R,ω eS"'1 > . (3.41)

Since it is impossible for both 5 and t to be > 0 on the second component of
CR°Λ+ in (3.39) and the second component of CR°Λ- in (3.40)!, (3.40)fc, the
application of Cp to these components is empty. Define the peak lagrangian

Λ+ = Cβ°CR°Λ+ = {(0, ω, ω; σ, - σi*ωy, σ*y): ω e S"-1, y e R", σ e R\0}

c {(0, ω, ω; σ, - Ω, Ω): (ω, Ω) 6 ^S""1, σ e R\0}

= jV*{s = 0,θ = ω}, (3.42)

and the reflected lagrangian^

Λ_ = Cp o CR o Λ- = {( - y (υ(y, ω) + ω), v(y, ω), ω; σ, - σi*vy, σί*y):

y e , S , ω e S / l " 1 , σ e R \ 0 } , (3.43)!

A- = {(-y (w(y, v, ω) + ω), - w(y, v, ω), ω; τ(j>, v, ω), - τi* wy, τf * j):

e5"- 1}, (3.43)*



Recovering Singularities of a Potential 567

for k = 1 and 1 < k ̂  n, respectively. One computes easily that the application of
Cp to CR ° A- falls under the transverse intersection calculus. Thus, from (3.38) one
obtains

p+F(uJ e Γl(Λ + ] + I^^(Λ.} . (3.44)

To compare this with the true scattering kernel given by (3.35), set
ΰ = u — (UQ + Mi). Then ΰ = 0 for t > 0 and

(D + q)ΰ = (D + q)u - (D + ^r)(w0 + MI)

= 0 — D w0 — g w0 — Π HI — q HI

= -q U l . (3.45)

Some care needs to be taken in interpreting the product q u1. Let Mq denote
multiplication by q; we will show that Mq is a "pseudodifferential operator with
singular symbol" on Rn + 1 x S""1. In fact, the Schwartz kernel of Mq is

KMq((x9 τ, ω), (x', τ', ω')) - tf(x)<5(x - x')δ(t - t')δ(ω - ω') ,
fe / k \

which belongs to Iμ+ϊ' ~^μ+ϊ'(Af

τ*^n-ιxS»-i}, Λ's\ where Λs is the flowout of

/ls = {(x, τ, ω, ί + ι/, τ, Ω; x, τ, ω, £ τ, Ω): (x, τ, ω, ξ, τ, Q)e

ηeNfS}. (3.46)

The resulting operator is defined when acting on distributions veD'(Rn + 1 x 5""1)
such that Λs° WF(v) n (0) = φ, where (0) is the 0-section. From (3.46), we see that
Mqv is defined for υ such that WF(v)r^Λ1 = φ. If K a τ*(Rn + 1 x Sn~l)\(0) is
a closed, conic set disjoint from Λl9 and HK consists of those elements of the local
Sobolev space Hfoc with wave front set contained in K, it follows from the results of
[GU] that

. (3.47)

To deal with t 's with wavefront set near Aί9 we make use of the results
of Sect. 1. Introduce zeroth order pseudodifferential operators Xj(D) =
Xj(x9 ί, ω, DXί Dt, Dω\ 1 ̂  j ^ 4, on Rn + 1 x Sn~ 1, forming a microlocal partition of
unity, such that χι(D) is supported on a neighborhood CK of Λl9 where K is as
above; χ2(D) is supported near (A + u A -)\L; χ3(D) is supported near L;

and χ4(D) is such that Σj=ι frΦ) = /. Now, since q(x)δ(t - χ ω)eIμ+ίL±~^ί(Λ2)
away from Λ + 9

and is supported near Λ1. By Lemma 1.3,

M v _ rμ,μ + / c - 2 / o c \ _ r2^ 2 ~μ^^Γ~( Λ Λ \
q Λ 1 ̂  1 W 15 ^ 2 / — •* v 15 2 / ?

since μ - 2 < -fe, 2μ - 2 < -fc. By (3.27),

L^
_κ+1 ,, + fc-2

^ - +



568 A. Greenleaf and G. Uhlmann

Applying Lemma 1.5 with Y1 = Sί9 Y2 = S2 and 7+ = S+ or S_, we obtain

where (x + /c)+ ε = (x + /c)+ + εδx -k for any ε > 0.
Since χ^D^eHj? for some s0e#, Mgχ2WιeHf0°c-

( μ + k ) + by (3.47), and
WF(Mqχ2u1) a L by (3.46) and the definition of L. Finally, Mqχ4uίe
I~k+(μ+k}+ ε(S1,S2)l this latter space also contains Mqχluί9 since
- + (μ + /c) + , ε ^μ.

Having described the right side of (3.45), we now apply the^ forward funda-

tal solution D -1 to both sides. Since IM'M'(S±9S2) = /M+^'M/+I(Λ2, Λ±\mental
(2.10) implies that

Furthermore, D -1 acts on /M'M'(SΊ, S2) as a pseudodifferential operator of order
-2. Finally, D ~l : Hs -> H&1. Thus, (3.45) becomes

/μ"2 ' μ + (s1, s2) + /"-2 "-1+<-1+«MSι, s2)

with the wavefront set of the last term contained in L. Given the Λπ -invariant
neighborhood L and any integer N ^ 1, we can find another Λπ invariant neigh-
borhood, LNζL such that ^T((D ~1Mq)

N)(LN) c L. Making all of the above

microlocalizations away from LN, and applying X7 =0 ( — l)j(Π~1Mq)
j to both

sides of (3.48), one sees using Lemmas 1.2, 1.3, 1.4 and 1.5 that, since μ < 1 — fc, the
right side of (3.48) is stable under the application of ( D " 1Mq)

j for 0 g j ^ AT - 1.
Thus, (/ + (- l)N( D ~ lMq}

N)ΰ belongs to the space on the right side of (3.48), and
the wavefront set of the Sobolev space term is contained in L. Now apply p*R to
both sides; using the mapping properties of R and p*9 noting that CP°Λ1 = 0 for
t > 0 (from (3.36)), and applying the standard Sobolev restriction theorem for
hypersurfaces, we find that

p*FΰeI ~ ( , + ) + Iμ~(Λ-) + H£G

+n- , (3.49)

where ΰeH{0°c and δ = 1 - (μ + fc)+ > 0.
Taking N -> + oo , we thus have shown

Theorem 3.1. Microlocally away from L,

α(5, θ, ω) - p*F(u0 + «ι)e/ ~l(Λ + )+ + /μ+*~M-) - (3-50)

μ - -
Thus, aeI4(Λ + \L) + / 2 4(/l_\L), and hence A- and the principal symbol
0"(μι)Lί- αre determined by α.
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4. Determination of S and σ(q)

We now examine how the leading singularity of q(x) is determined by the sin-
gularities of α(s, Θ, ω) and its restriction to various submanifolds of
RxS^^xS"" 1. We start by showing that α(s, 0, ω) determines the^surface, S. By
Theorem 3.1, it suffices to show that S is determined by A _ , where A _ is given by
(3.43)! and (3.43)k in the cases where the codimension of S is 1 and greater than 1,
respectively. For simplicity, consider k = 1 first; suppose there are two hyper-
surfaces, S, 5,_such that Λ-=Λ_. Then, by (3.43)!, there is a mapping
y\SxSn~l -»S, such that

{(-j> (i> + ω), -ϋ,ω;σ, -σi*ϋy, σi*y}}

= {(-χ (u + ω), -ι>, ω σ, -σi*^, σ/*j;)} , (4.1)

where u_= u(y(, ω), ω). Identifying tfie second (θ) coordinates in (4.1) yields
2(hy ω)hy — ω = 2(hy ω)hy — ω=>(hy ω)hy = (hy ω)/zy; since hy and /z^ are unit
vectors, this =>

hy=±hy. (4.2)

Identifying the last (Ω) components in (4.1) yields i*y = i*y =>

y = y + c1 ω, c^=c^ (y, ω) . (4.3)

Finally, comparing the first (s) components, we have

y (v + ω) = y (υ + ω)=>j? (fty ω)Λy = y(hy ω)hy=>

by (4.2), j; (±fty ω)(±Λy) = 3; (fty ω)Λ y=>by (4.3), (y + Cιω) (ftyω)Λy = y(hy ω)hy.
Now, fey ω is not identically 0 on SxS""1, so this => (j; + Cj ω) hj, = ^ ^
=>Ciω /ίy = 0. But again, ω hy φ 0, so this =>cx = Q=>y = y=>S = S.

For 1 < k ̂  n, we repeat the above argument, substituting (3.43)k for (3.43)x.
Thus, there is a functionjj;, v): (A^^SXO) x S"'1 -+N*S\Q making the identifica-
tion between A- and y l _ , and we may assume v(y9 ω)2 = v2. Identifying the

v _ v
^-coordinates then yields 2(vω)^ = 2(v ω) =2, which implies v = ±v, τ = ±τ.

The rest of the proof is the same.
We next consider the restriction of α(s, 0, ω) to submanifolds. Consider first the

case of backscattering.
Let IB = {(5, 0, ω): θ = -ω} c R x Sn~1 x Sn~1 be the backscattering surface.

Letjjβ: R x Sn~l -* IB be the canonical parametrizationj^s, ω) = (5, — ω, ω); then
the pullback operator,

j£: ^r(3Rx Sn~1 x ,Sn":) -> ̂ (IR x 5W"^ ,

defined on distributions whose wavefronts sets are disjoint from the normals of jB9n — 1
is a Fourier integral operator, 7^ e / 4 (Cjβ), where

CB = {fe ω, σ, Ω; 5', θ, ωr, σ', Θ, Ω'): s = 5', ω = ω' = — θ,

(σ,ί2) = (σ/,β,

LetLB = C B O L ^ Γ*B\0.
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Theorem 4.1. Away from LB,

α|Be/"+fc^+*(,lB), (4.5)

where

ιy, -hy; σ, σiϊ^y): yεS, σeR\0} (k = 1) (4.6)x

and
r/ Λ > v \ 1

-, — |v|, | v | i * y } : (y, v)eN*S\Q>, 1 < fc ̂  w — 1 . (4.6)fc

I M R / J

Proo/ α|β =j]f (α)e/μ+ϊ ϊ+ 4 (Cs0^-) by the transverse intersection calculus,

provided a) Λ_ rh Γ*(RxS"~1 x S"'1)^ and b) A- n ΛΓ*B = 0; both of these,
together with (4.6)1? (4.6)fc follow from (3.43)!, (3.43)k, respectively. Q.E.D.

Corollary 4.2. OC|B determines S.

Proof. We deal with the case k = 1, the case 1 < k ̂  n being handled similarly. By
Theorem 4.1, α|β is, microlocally away from LB, a Fourier integral distribution
associated with a lagrangian AB c 7^*18X0, invariant under the canonical involu-
tion induced by (5, ω) -> (—s, ω). On either component, we see that

Ω 1
sω = i±hyy ± (x /ιy)/ϊj, = y .

σ 2

Thus, 5 = < sω: (s,ω9σ,Ω)eΛB>. Q.E.D.
(σ 2 J

Now consider a more general manifold of scattering data, D =
{(s, 0, ω): 0 = </>(ω)}, where φ = Sn~1 ^ S"'1 is smooth. By (3.43)1? at a point of
J_ nΓ*(RxS" I ~ 1 xS π ~ 1 ), we must have

ω - 2(ω hy)hy = φ(ω)

or

Letting

(4.8)

under the assumption φ(ώ) Φ ω, VωeS" x, we thus have

We now assume that φ has a smooth left inverse, at least on the image of
the Gaussian map of S. Then the image of A- under intersection with
Γ*(Rx5' / ί~ 1xS'n~ 1) |ιD and modding out by N*JD is (in (s, ω, σ, Ω) coordinates),

ΛD = {(-2(φ-1(±hy) hy)y hy\φ-1(±hy)ι σ,σi*-ι ( ± M:yeS, σeR\0} . (4.9)
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As in the proof of Corollary 4.2, we can reconstruct yeS from — = i$-i(±hy)y, the

projection of y onto φ~1( + hy)
λ, and the dot product of y with any vector not in

φ~1(±hy)-L; but, if φ ~ 1 (v) v Φ 0 for all v in the image of the Gaussian map of S,
then this is determined by the S component.

We thus have established, for k = 1,

Corollary 4.3. //D = {(5, 0, ω): 0 = φ(ω)} with

""1a) </>(ω)Φω, VωeS

b) 4>(ω) = lϊ - ΓΓTΊΓ a diffeomorphism,
\\ω = φ(ω)\\

c) φ'^vj v φ 0, ve Gaussian image of S, then α|π) determines S.

Finally, we note that Corollary 4.3 holds for D of the form
D = {(s, 0, ω) : 0 = φ(s9 ω)}, satisfying

a') φ(5,ω)Φω, VωeS""1.

b') φ(s, •) = ' , ; ' ! is a difϊeomorphism S"'1 -> S"'1 for all seR.
\\ -φ(s,')\\

c') φ 1 (5, v) v Φ 0, Vv e Gaussian image, s e IR.

We leave the statement of Corollary 4.3 for 1 < k ̂  n to the interested reader.
Finally, we show that for determined sets D of scattering data as above, the

principal symbol σ(q)\N*s is determined by the principal symbol o^ali))!^. For
simplicity, we work with JD =J&, the backscattering. In fact, by Theorem 3.1, the
principal symbol of α on A- \L is the same as that oίp*F(uί)= —ρ*F Ώ_~l(q δ).
Microlocally near Σ_ , the principal symbol of q(x) δ(t — x ω) (in Iμ+ * Ί(Λ2)) is

in the coordinates^ (3.13). By Proposition 2.1, the symbol of D ~ 1(q δ) at a point
(x, τ, ω; ξ, τ, β ) 6 A _ \L is proportional (by σ ( D ~ l ) ) t o the symbol of q δ at that
point of Σ- on the same bicharacteristics. Since the Fourier integral operators
F, p * and jjfc are elliptic, the symbol

σ(*\Έ)(±2y hy9±hy'9σ9σiίhyy) (k = 1) (4.10)!

or

(KkZn) (4.10)k

is proportional to σ ( q ) ( y , v); since Σ-\Σ2 is dense in Σ_, we can recover σ(q) on all
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