Commun. Math. Phys. 157, 83-92 (1993)

Half-Sided Modular Inclusions of von-Neumann-Algebras

Hans-Werner Wiesbrock*

Institut für Theoretische Physik, FU Berlin**, WE4, Arnimallee 14, D-14195 Berlin, Germany

Communications in Mathematical Physics © Springer-Verlag 1993

Received July 6, 1992

Abstract. Let $\mathcal{N} \subset \mathcal{M}$ be von-Neumann-Algebras on a Hilbert space \mathcal{H}, Ω a common cyclic and separating vector. Denote $\Delta_{\mathcal{M}}, \Delta_{\mathcal{N}}$ resp. $J_{\mathcal{M}}, J_{\mathcal{N}}$ the associated modular operators and conjugations. Assume $\Delta_{\mathcal{M}}^{-it} \mathcal{N} \Delta_{\mathcal{M}}^{+it} \subset \mathcal{N}$ for $t \ge 0$. We call such an inclusion half-sided modular. Then we prove the existence of a one-

parameter unitary group U(a) on $\mathscr{H}, a \in \mathbf{R}$, with generator $\frac{1}{2\pi} (\ln \Delta_{\mathscr{H}} - \ln \Delta_M) \ge 0$

and relations

1.
$$\Delta_{\mathcal{M}}^{it}U(a)\Delta_{\mathcal{M}}^{-it} = \Delta_{\mathcal{N}}^{it}U(a)\Delta_{\mathcal{N}}^{-it} = U(e^{-2\pi t}a)$$
 for all $a, t \in \mathbb{R}$,
2. $J_{\mathcal{N}}J_{\mathcal{M}} = U(2)$,
3. $\Delta_{\mathcal{N}}^{it} = U(1)\Delta_{\mathcal{M}}^{it}U(-1)$ for all $t \in \mathbb{R}$
4. $\mathcal{N} = U(1)\mathcal{M}U(-1)$.

If \mathcal{M} is a factor and Ω is also cyclic for $\mathcal{N}' \cap \mathcal{M}$, we show that \mathcal{M} has to be of type III_1 .

1. Introduction

In Algebraic Quantum Field Theory it is a long outstanding question, what physical meaning the Tomita–Takesaki modular objects have. The algebraic approach of quantum field theory, as proposed by Haag and Kastler, see [6], is formulated in terms of nets of von-Neumann-algebras indexed by special open sets of the Minkowski space, forming the algebras of local observables. The Poincaré group acts covariantly on this net. One assumes a unique Poincaré invariant state ω on this net, the vacuum state, with the additional property: the spectrum of the representation of the translation subgroup in the associated GNS-Hilbert space (vacuum sector) lies in the forward light cone. Denote \mathscr{H} the GNS Hilbert space,

^{*} EMAIL: Wiesbroc @risc4.physik.fu-berlin.de; FAX [049] 308383741

^{**} partly supported by the DFG, SFB 288 "Differentialgeometrie und Quantenphysik"

 Ω the vector state of ω . The Reeh-Schlieder property guarantees that Ω is a common cyclic and separating vector for local algebras, see [6, 16]. Therefore one can apply the Tomita-Takesaki-Theory. A first result concerning the physical content of the objects was obtained by Bisognano and Wichmann [1], who were able to identify under physically reasonable assumptions the modular group of the local algebra to a wedge region

$$W = \{x = (x^0, x^1, \dots, x^3) \in \mathbf{R}^{1,3} / |x^1| > |x^0| \text{ with arbitrary } x^2, x^3\}$$

In this special case the modular group acts like the representation of special Lorentz-boosts

$$\Lambda(s) = \begin{pmatrix} \cosh(s) & \sinh(s) & 0 & 0\\ \sinh(s) & \cosh(s) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(1)

i.e. as geometrical transformations on the net. The modular conjugation is found to be up to a rotation the physical PCT-conjugation.

In a conformal invariant field theory a similar result was obtained by Hislop and Longo, see [7], for regions

$$k_1 = \{ x \in \mathbf{R}^{1,3} / |x^0| + |(x^1, x^2, x^3)| < 1 \}.$$

It was this circle of ideas which lead Borchers [2] to consider the following setting:

Let \mathscr{M} be a von-Neumann-algebra on \mathscr{H} , Ω cyclic and separating w.r.t. \mathscr{M} . One might think of \mathscr{M} as a local algebra to a wedge region in Minkowski space, \mathscr{H} the vacuum sector and Ω the vacuum state. Assume U(a), $a \in \mathbb{R}$, to be a continuous unitary group on \mathscr{H} with positive generator, leaving Ω fixed. This unitary group might be interpreted as a time-like translation group. Denote J, Δ the modular conjugation and operator to this setting. Then in a remarkable paper Borchers proved (see [2]).

Theorem 1 (Borchers). If $U(a)MU(-a) \subset M$ for $a \ge 0$ we get:

1.
$$\Delta^{it}U(a)\Delta^{-it} = U(e^{-2\pi t}a)$$
 for all $t, a \in \mathbf{R}$.
2. $JU(a)J = U(-a)$.

This theorem generalizes the results of Bisognano and Wichmann resp. Hislop and Longo considerably. Looking carefully at the proof a stronger version of the theorem can be seen to be true:

Theorem 2 (Borchers). Let $U(a), a \in \mathbf{R}$ be a family of unitary operators leaving Ω fixed with the following properties:

- 1. U(a) can be analytically continued to $\{z \in C/0 < \text{Im } z < \pi\}$ with $||U(a)|| \leq 1$ for $a \in \{z \in \mathbb{C}/0 \leq \text{Im } z \leq \pi\}$.
- 2. $U^*(a) = U(a + i\pi) \quad \forall a \in \mathbf{R}.$
- 3. $U(a)\mathbf{M}U(-a) \subset \mathbf{M} \quad \forall a \in \mathbf{R}.$

Then one gets

- a) $\Delta^{it}U(a)\Delta^{-it} = U(e^{-2\pi t}a) \quad \forall t, a \in \mathbf{R}.$
- b) $JU(a)J = U(a)^* a \in \mathbf{R}$.

Borchers' proof is rather difficult. He looks at matrix products

$$\langle \varphi, \Delta^{ii}U(a)\Delta^{-ii}\psi \rangle \quad \varphi, \psi \in D(\Delta) \cap D(\Delta^{-1}).$$

Using the Tube Theorem he can enlarge the region of holomorphy in t and a. The Edge-of-the Wedge Theorem together with the assumptions on U(a) and the modular properties of Δ^{it} are the other inputs in order to get a complex line in the domain of holomorphy. The estimates on U(a) lead to a bounded holomorphic function on a line, i.e. a constant function, from which he concludes the result. For the proof the interested reader is referred to the beautiful original work of Borchers [2].

2. The Basic Result

The idea is to apply Borchers result to special inclusions. Let $\mathcal{N} \subset \mathcal{M}$ be von-Neumann-Algebras on a Hilbert space \mathcal{H} , Ω a common cyclic and separating vector in \mathcal{H} . Denote $\Delta_{\mathcal{M}}, \Delta_{\mathcal{N}}$, resp. $J_{\mathcal{H}}, J_{\mathcal{N}}$ the associated modular operators and conjugations. Assume $\Delta_{\mathcal{M}}^{-it} \mathcal{N} \Delta_{\mathcal{H}}^{+it} \subset \mathcal{N}$ for $t \geq 0$.

From $\mathcal{N} \subset \mathcal{M}$ we conclude

$$\Delta_{\mathcal{M}}^{\frac{1}{2}} \leq \Delta_{\mathcal{N}}^{\frac{1}{2}} \tag{2}$$

in the sense to quadratic forms, see [3] or the proof of Theorem 3 below. The log-function is operator monotone, see [12, p. 317 Ex. 51], and we get

$$\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}}) \ge 0 \tag{3}$$

in the sense of quadratic forms. Assume now that $\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}})$ is essentially selfadjoint on $D(\ln(\Delta_{\mathcal{N}})) \cap D(\ln(\Delta_{\mathcal{M}}))$, i.e. we can apply the Trotter product formula, see [4]. We get

$$\exp(it(\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}}))) = s - \lim_{n \to \infty} (\Delta_{\mathcal{M}}^{\frac{-it}{n}} \Delta_{\mathcal{N}}^{\frac{+it}{n}})^n$$
(4)

from which we read off

$$\operatorname{Ad}(\exp(it(\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}}))))(\mathcal{N}) \subset \mathcal{N} \quad \text{for } t \ge 0.$$
(5)

 $(\operatorname{Ad} \Delta_{\mathcal{N}}^{\frac{tr}{t}}(\mathcal{N}) \subset \mathcal{N}$ by modular theory, $\operatorname{Ad} \Delta_{\mathcal{M}}^{-\frac{it}{t}}(\mathcal{N}) \subset \mathcal{N}$ for $t \ge 0$ by assumption.)

We can apply Borchers result (Theorem 1) to \mathcal{N} , Ω and $U(a) = \exp(ia(\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}}))))$. Using a slightly different method we can avoid the assumption on essentially selfadjointness of $\ln(\Delta_{\mathcal{M}}) - \ln(\Delta_{\mathcal{N}})$.

Theorem 3. Let $\mathcal{N} \subset \mathcal{M}$ be von-Neumann-Algebras acting on a Hilbert space \mathcal{H} , Ω a common cyclic and separating vector. Denote $\Delta_{\mathcal{M}}, \Delta_{\mathcal{N}}$ resp. $J_{\mathcal{M}}, J_{\mathcal{N}}$ the related modular operators and conjugations. If

$$\Delta_{\mathscr{M}}^{-it} \mathcal{N} \Delta_{\mathscr{M}}^{+it} \subset \mathcal{N} \quad \text{for all } t \ge 0 \tag{6}$$

we get:

a) $\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}})$ is essentially selfadjoint of $D(\ln(\Delta_{\mathcal{N}})) \cap D(\ln(\Delta_{\mathcal{M}}))$. Denote p the selfadjoint closure of $\frac{1}{2\pi}(\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}})), U(a) := e^{iap}$. Then

b)
$$\Delta_{\mathscr{M}}^{it}U(a)\Delta_{\mathscr{M}}^{-it} = \Delta_{\mathscr{N}}^{it}U(a)\Delta_{\mathscr{N}}^{-it} = U(e^{-2\pi t}a)$$
 for $t, a \in \mathbf{R}$, (7)

c)
$$J_{\mathcal{M}}U(a)J_{\mathcal{M}} = J_{\mathcal{N}}U(a)J_{\mathcal{N}} = U(-a) \quad a \in \mathbf{R}.$$
 (8)

Proof. First notice that

$$T(z) \coloneqq \Delta_{\mathscr{M}}^{-iz} \Delta_{\mathscr{N}}^{iz} \tag{9}$$

can be analytically continued to $\{z \in \mathbb{C}/0 < \operatorname{Im} z < \frac{1}{2}\}$ with $||T(z)|| \leq 1$, see [3]. For the reader's convenience we will sketch this proof:

Let $A \in \mathcal{N}$ be entire analytic w.r.t. the modular group of \mathcal{N} . Then

$$T(0)A\Omega = A\Omega ,$$

$$T\left(\frac{i}{2}\right)A\Omega = \Delta_{\mathcal{M}}^{\frac{1}{2}} \Delta_{\mathcal{N}}^{-\frac{1}{2}} A\Omega = J_{\mathcal{M}}J_{\mathcal{M}}\Delta_{\mathcal{M}}^{\frac{1}{2}} J_{\mathcal{N}}\Delta_{\mathcal{N}}^{\frac{1}{2}} J_{\mathcal{N}}\Omega$$

$$= J_{\mathcal{M}}J_{\mathcal{N}}A\Omega .$$
(10)

From this one concludes

$$\|T(t)\| = \|\Delta_{\mathscr{M}}^{it} T(0) \Delta_{\mathscr{N}}^{-it}\| \leq 1,$$

$$\|T\left(\frac{i}{2} + t\right)\| = \|\Delta_{\mathscr{M}}^{it} T\left(\frac{i}{2}\right) \Delta_{\mathscr{N}}^{-it}\| \leq 1$$
(11)

for $t \in \mathbf{R}$, and by the Hadamard–Three-Line theorem, see [13], the final assertion follows. Define

$$V(t) = \Delta_{\mathcal{N}}^{\frac{it}{2}} \Delta_{\mathcal{M}}^{-it} \Delta_{\mathcal{N}}^{\frac{it}{2}} = T(t)^* T(t), \quad t \in \mathbf{R} .$$
(12)

V(t) is a unitary family which can analytically be continued to $\{z \in \mathbb{C} / 0 < \text{Im } t < 1\}$. Notice that

$$V^*(t) = V(-t)$$
 (13)

and $||V(t)|| \leq 1$ for $t \in \{z \in \mathbb{C}/0 \leq \operatorname{Im} z \leq 1\}$.

Furthermore by assumption we have

Ad
$$V(t)(\mathcal{N}) \subset \mathcal{N}$$
, for $t \ge 0$.

In order to apply Borchers result we make a variable transformation. The sinhfunction maps $\{z \in \mathbb{C}/0 < \operatorname{Im} z < \pi\}$ biholomorphically onto the upper half plane $\{z \in \mathbb{C}/\operatorname{Im} z > 0\}$. The log-function maps this domain biholomorphically onto $\{z \in \mathbb{C}/0 < \operatorname{Im} z < \pi\}$. Therefore

$$z \mapsto \left(\frac{1}{\pi} \operatorname{arcsinh} \exp(z)\right)$$
 (15)

maps $\{z \in \mathbb{C}/0 < \operatorname{Im} z < \pi\}$ biholomorphically onto $\{z \in \mathbb{C}/0 < \operatorname{Im} z < 1\}$.

Furthermore the real line is mapped onto the positive part of the real line, the elements with imaginary part $i\pi$ onto the negative part.

86

Half-Sided Modular Inclusions of von-Neumann-Algebras

87

Let $\tilde{U}(a) := V\left(\frac{1}{\pi}\operatorname{arcsinh}(\exp(a))\right), a \in \mathbb{R}$. We can apply Borchers result, i.e. Theorem 2, to $\tilde{U}(a), \mathcal{N}, \Omega$ getting

$$\Delta_{\mathcal{N}}^{it} \tilde{U}(a) \Delta_{\mathcal{N}}^{-it} = \tilde{U}(e^{-2\pi t}a) \quad \text{for } t, a \in \mathbf{R} .$$
(16)

Rewriting this in terms of the modular operators we get

$$\Delta_{\mathcal{N}}^{i(t-\frac{\tilde{2}}{2}+\frac{e^{-2\pi t\tilde{2}}}{2})} \Delta_{\mathcal{M}}^{i\tilde{a}} = \Delta_{\mathcal{M}}^{ie^{-2\pi t\tilde{a}}} \tilde{\Delta}_{\mathcal{N}}^{i(t+\frac{\tilde{2}}{2}-\frac{e^{-2\pi t\tilde{a}}}{2})}, \qquad (17)$$

with $\tilde{a} = \frac{1}{\pi} \operatorname{arcsinh}(\exp(a))$. This proves that $\Delta_{\mathscr{N}}^{it}, \Delta_{\mathscr{M}}^{is}, t, s \in \mathbb{R}$ generate a two dimensional unitary group. Instead of trying to identify the group by working out the above commutation relation directly we will use the following property: In the case of a unitary representation of a Lie group G on a Hilbert space, we always have a common core for the representation operators of the Lie algebra of G, see [8]. From this we get

a) $\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}})$ is essentially self adjoint on $D(\ln(\Delta_{\mathcal{M}})) \cap D(\ln(\Delta_{\mathcal{N}}))$. Therefore we can apply Borchers theorem for $\exp(-iap)$ as indicated above to get b) and c). The group generated by $\Delta_{\mathcal{N}}^{it}, \Delta_{\mathcal{M}}^{is}$ is now easily recognized to be the twodimensional Poincaré-group.

Exploiting the group structure of the 2-dimensional Poincaré group we get

Corollary 4. 1. $\Delta_{\mathcal{M}}^{it} \Delta_{\mathcal{N}}^{-it} = e^{i(-1 + e^{-2\pi i})p}$ $t \in \mathbb{R}$. 2. $\Delta_{\mathcal{M}}^{it} = e^{ip} \Delta_{\mathcal{M}}^{it} e^{-ip}$. 3. $J_{\mathcal{M}} J_{\mathcal{N}} = e^{-i2p}$.

Proof. Let $g_n, g_m, g_{n,m}$ denote the Lie algebra elements belonging to the generators $\ln(\Delta_{\mathcal{N}})$, $\ln(\Delta_{\mathcal{M}})$ resp. p. From Theorem 3a) we know their commutation relations. Applying a Baker-Campbell-Hausdorff formula one gets a). The last statement is

a specialization of a). Analytic continuation of a) to $t = \frac{-i}{2}$ leads to

$$e^{-i2p} = \Delta_{\mathscr{M}}^{\frac{1}{2}} \Delta_{\mathscr{N}}^{-\frac{1}{2}} = J_{\mathscr{M}} J_{\mathscr{N}} .$$
⁽¹⁸⁾

Therefore we get the announced relations.

Remark. It is not difficult to see the following: let $\mathcal{M}, \mathcal{N}, \Omega$ be as in Theorem 3 but (6) replaced by

$$\Delta_{\mathcal{M}}^{it} \mathcal{N} \Delta_{\mathcal{M}}^{-it} \subset \mathcal{N} \quad \text{for all } t \ge 0 .$$
⁽¹⁹⁾

Then we get instead of b),

b')
$$\Delta_{\mathscr{M}}^{it} U(a) \Delta_{\mathscr{M}}^{-it} = \Delta_{\mathscr{N}}^{it} U(a) \Delta_{\mathscr{N}}^{-it} = U(e^{+2\pi t}a) \text{ for } t, a \in \mathbf{R}$$
. (20)

Similarly in Corollary 4 1) has to be changed to

1') $\Delta_{\mathscr{M}}^{it} \Delta_{\mathscr{N}}^{-it} = e^{i(-1+e^{2\pi t})p} \quad t \in \mathbf{R}$.

The theorem suggests to give special names to such type of inclusions.

Definition 5. Let $\mathcal{N} \subset \mathcal{M}$ be von-Neumann-algebras on a Hilbert space \mathcal{H} . Let Ω be a common cyclic and separating vector. Denote $\sigma_{\mathcal{M}}^{t}$ the modular group associated to

 (\mathcal{M}, Ω) . If $\sigma_{\mathcal{M}}^{-t}(\mathcal{N}) \subset \mathcal{N}$ for all $t \geq 0$ or $t \leq 0$, we call $(\mathcal{N} \subset \mathcal{M}, \Omega)$ a half-sided modular inclusion.

In the next section we want to draw some conclusions from the result.

3. Some Conclusions

As a simple corollary we get the symmetry in the conditions in $\mathcal{N} \subset \mathcal{M}$ and $\mathcal{M}' \subset \mathcal{N}'$:

Corollary 6. Let $(\mathcal{N} \subset \mathcal{M}, \Omega)$ be a half-sided modular inclusion, $\Delta_{\mathcal{M}}, \Delta_{\mathcal{N}}$ be the associated modular operators. Assume $\Delta_{\mathcal{M}}^{-it} \mathcal{N} \Delta_{\mathcal{M}}^{it} \subset \mathcal{N}$ for $t \geq 0$.

Then

$$U(t)\mathcal{M}U(-t) \subset \mathcal{M} \quad \text{for } t \ge 0 \tag{21}$$

and

$$\Delta_{\mathcal{N}}^{it} \mathscr{M}' \Delta_{\mathcal{N}}^{-it} \subset \mathscr{M}' \quad \text{for } t \ge 0 , \qquad (22)$$

where $U(t) = \exp(it(\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}}))))$.

Proof. By Theorem 3 we know

$$U(2)\mathcal{M}U(-2) = J_{\mathcal{N}}J_{\mathcal{M}}\mathcal{M}J_{\mathcal{M}}J_{\mathcal{N}} \subset \mathcal{N} \subset \mathcal{M} .$$
⁽²³⁾

Using $\Delta_{\mathcal{M}}^{it}U(2)\Delta_{\mathcal{M}}^{-it} = U(2e^{-2\pi t})$ we immediately get (21). Applying the relation $\Delta_{\mathcal{N}}^{it} = \Delta_{\mathcal{M}}^{it}U(-e^{-2\pi t}+1)$ from Corollary 4, a) leads to (22).

Corollary 4 b) suggests $\mathcal{N} = U(1)\mathcal{M}U(-1)$. That this is really the case is the content of

Corollary 7. Let \mathcal{N}, \mathcal{M} be as in Corollary 6.

Then $\mathcal{N} = U(1)\mathcal{M}U(-1)$ with $U(a) = \exp(ia(\ln(\Delta_{\mathcal{N}}) - \ln(\Delta_{\mathcal{M}}))))$.

Proof. Let $A \in \mathcal{N}$. Then $\Delta_{\mathcal{N}}^{-it} A \Delta_{\mathcal{N}}^{+it} \in \mathcal{N}$ for all t and thereby

 $\Delta_{\mathscr{M}}^{it} \Delta_{\mathscr{N}}^{-it} A \Delta_{\mathscr{N}}^{it} \Delta_{\mathscr{M}}^{-it} \in \mathscr{M} \quad \text{for all } t \in \mathbf{R}.$ (24)

By Corollary 4 we get

$$U(e^{-2\pi t} - 1)AU(1 - e^{2\pi t}) \in \mathscr{M} \quad \forall t \in \mathbf{R} .$$
⁽²⁵⁾

Therefore

$$U(-1)\mathcal{N}U(1) \subset \mathcal{M} , \qquad (26)$$

i.e.

$$\mathcal{N} \subset U(1)\mathcal{M}U(-1) . \tag{27}$$

 Ω is a cyclic and separating vector for both algebras and their modular groups agree. From this follows equality, see [15].

For the next result we need some preparatory lemmatas. The aim is to show that in the case of factors \mathcal{N} and \mathcal{M} have to be of type III_1 . It will be enough to prove the uniqueness of Ω as an invariant vector under U(a), $a \in \mathbb{R}$.

First let me recall a result of R. Longo see [9, 10].¹

¹ The author thanks R. Longo for pointing out an error in an earlier version of this work

Half-Sided Modular Inclusions of von-Neumann-Algebras

Theorem 8. Let $\mathcal{N} \subset \mathcal{M}$ be factors, Ω be a common cyclic and separating vector. Denote $\gamma := \operatorname{Ad} J_{\mathcal{N}} J_{\mathcal{M}} : \mathcal{M} \to \mathcal{M}$ the canonical endomorphism to this situation, $J_{\mathcal{N}}, J_{\mathcal{M}}$ the modular conjugations to (\mathcal{N}, Ω) , resp. (\mathcal{M}, Ω) . If Ω is also cyclic for $\mathcal{N}' \cap \mathcal{M}$, it follows that

$$\omega - \lim_{n \to \infty} \gamma^n(A) = \langle \Omega, A\Omega \rangle \quad A \in \mathcal{M} \quad n \in \mathbb{N} .$$
⁽²⁸⁾

Proof. See [10, Chap. 4].

From this result we immediately conclude

Corollary 9. Let $\mathcal{N} \subset \mathcal{M}, \Omega$ as in Theorem 3 and also cyclic for $\mathcal{N}' \cap \mathcal{M}, \mathcal{M}$ a factor. Assume $\psi \in \mathcal{H}$ invariant under $U(a), a \in \mathbf{R}$. Then

 $\langle \psi, A\psi \rangle = \langle \Omega, A\Omega \rangle \langle \psi, \psi \rangle \quad \text{for } A \in \mathcal{M} .$ (29)

Proof. From Corollary 4 we get $J_{\mathcal{N}} J_{\mathcal{M}} = U(2)$. Then

$$\langle \psi, A\psi \rangle = \langle U(-2n)\psi, AU(2n)^*\psi \rangle \quad \text{for all } n \in \mathbb{N}$$

$$= \lim_{n \to \infty} \langle \psi, (\operatorname{Ad} J_{\mathcal{N}} J_{\mathcal{M}})^n (A)\psi \rangle$$

$$= \langle \psi, \psi \rangle \langle \Omega, A\Omega \rangle$$

$$(30)$$

by the result of Longo, see Theorem 8.

To prove the uniqueness of the vector we will exploit the natural order structure of modular theory.

Denote $P^{\natural}(\mathcal{N}) := \{\Delta_{\mathcal{N}}^{\frac{1}{4}} A\Omega | A \in \mathcal{N}^+\}^-$ the standard cone to (\mathcal{N}, Ω) , see [15]. We get

Lemma 10. For $t \ge 0$ U(it) is positive w.r.t. $P^{\sharp}(\mathcal{N})$, i.e.

$$U(it)P^{*}(\mathcal{N}) \subset P^{*}(\mathcal{N}) .$$
(31)

Proof. By the positivity of the generator we can analytically continue U(a) to the upper half plane. Let $A, B \in \mathcal{N}^+$, we get

$$\left\langle \Delta_{\mathcal{N}}^{\frac{1}{4}}A\omega, U(it)\Delta_{\mathcal{N}}^{\frac{1}{4}}B\Omega \right\rangle = \left\langle A\Omega, \Delta_{\mathcal{N}}^{\frac{1}{4}}U\left(\frac{it}{2}\right)\Delta_{\mathcal{N}}^{-\frac{1}{4}}\Delta_{\mathcal{N}}^{\frac{1}{2}}\Delta_{\mathcal{N}}^{-\frac{1}{4}}U\left(\frac{it}{2}\right)\Delta_{\mathcal{N}}^{\frac{1}{4}}B\Omega \right\rangle.$$
(32)

From the commutation relations of Theorem 3 we conclude

$$= \left\langle A\Omega, U\left(-\frac{t}{2}\right) \Delta_{\mathscr{N}}^{\frac{1}{2}} U\left(\frac{t}{2}\right) B\Omega \right\rangle.$$
(33)

With $A \in \mathcal{N}^+$ we also have $U\left(\frac{t}{2}\right)AU\left(-\frac{t}{2}\right) \in \mathcal{N}^+$, i.e.

$$\langle \Delta_{\mathcal{N}}^{\dagger} A\Omega, U(it) \Delta_{\mathcal{N}}^{\dagger} B\Omega \rangle \geq 0$$
. (34)

This proves the statement.

As a simple application we can show

Corollary 11. Let \mathcal{M} be a factor, $\psi \in \mathcal{H}$ be U(a)-invariant. Then ψ is a multiple of Ω .

 \square

Proof. From $U(a)\psi = \psi$ for all $a \in \mathbf{R}$ we get

$$U(a)J_{\mathcal{N}}\psi = J_{\mathcal{N}}U(-a)\psi = J_{\mathcal{N}}\psi , \qquad (35)$$

that is, $J_{\mathcal{N}}\psi$ also U(a) invariant. Denote

$$\psi_1 = \psi + J_{\mathcal{N}}\psi, \quad \psi_2 = i\psi - iJ_{\mathcal{N}}\psi. \tag{36}$$

Both vectors are U(a)-invariant and by construction $J_{\mathcal{N}}$ -invariant. We can therefore uniquely decompose $\psi_{1/2}$ into

$$\psi_{1/2} = \xi_{1/2}^+ - \xi_{1/2}^-$$

with
$$\xi_{1/2}^{+/-} \in P^{\sharp}(\mathcal{N}), \ \xi_{1/2}^{+} \perp \xi_{1/2}^{-}, \text{ see [15]. For } t \ge 0 \text{ we can estimate}$$

 $\langle (\xi_{1/2}^{+} + \xi_{1/2}^{-}), U(it)(\xi_{1/2}^{+} + \xi_{1/2}^{-}) \rangle = \langle \xi_{1/2}^{+} - \xi_{1/2}^{-}, U(it)(\xi_{1/2}^{+} - \xi_{1/2}^{-}) \rangle$
 $+ 2(\langle \xi_{1/2}^{-}, U(it)\xi_{1/2}^{+} \rangle + \langle \xi_{1/2}^{+}, U(it)\xi_{1/2}^{-} \rangle)$

$$\geq \langle \psi_{1/2}, U(it)\psi_{1/2} \rangle \tag{37}$$

by the positivity of U(it) w.r.t. $P^{\natural}(\mathcal{N})$, Lemma 10. But from the positivity of the generator of U(a) we know $||U(it)|| \leq 1$ for $t \geq 0$, i.e.

$$\|U(it)(\xi_{1/2}^{+} + \xi_{1/2}^{-})\| = \|\xi_{1/2}^{+} + \xi_{1/2}^{-}\|$$
(38)

from which we conclude

$$\xi_{1/2}^+ + \xi_{1/2}^- \quad U(a)$$
-inv., (39)

and therefore

$$\xi_{1/2}^{+/-}$$
 U(a)-inv. (40)

But $\xi_{1/2}^{+/-} \in P^{\sharp}(\mathcal{N})$ by the very definition. From Corollary 9 we get that

$$\langle \xi_{1/2}^{+/-}, A \xi_{1/2}^{+/-} \rangle = \langle \Omega, A \Omega \rangle \langle \xi_{1/2}^{+/-}, \xi_{1/2}^{+/-} \rangle .$$
(41)

Now the vector representation of states in $P^*(\mathcal{N})$ is unique, see [15], from which we conclude $\xi_{1/2}^{+/-}$ is a multiple of Ω and therefore the final proof.

Collecting the results we get

Theorem 12. Let $(\mathcal{N} \subset \mathcal{M}, \Omega)$ be a half-sided modular inclusion of von-Neumann algebras on a Hilbert space \mathcal{H} . If $\mathcal{N} \neq \mathcal{M}$, \mathcal{M} a factor, \mathcal{M} has to be of type III₁.

Proof. Applying Theorem 3 and Corollary 11 we get a unitary group U(a), $a \in \mathbb{R}$ with a unique U-invariant vector Ω and positive generator. Furthermore we have

$$U(a) \mathcal{M} U(-a) \subset \mathcal{M} \quad \text{for } a \ge 0 .$$
(42)

From $\mathcal{N} \neq \mathcal{M}$ we easily get that

$$U(a)\mathcal{M}U(-a) \notin \mathcal{M} \quad \text{for } a < 0.$$
(43)

For such a situation Longo showed in [11] that \mathcal{M} has to be of type III_1 . \Box

Remark. Using Corollary 11 one can prove uniqueness of the vacuum for models in Algebraic Quantum Field Theory. For example consider the von-Neumann-Algebra \mathcal{M} of observables localized in a wedge region. Assume \mathcal{M} to be a factor. Let $U(a), a \in \mathbf{R}$ be the unitary representation of timelike translations into the wedge region, $U(a)\mathcal{M}U(-a) \subset \mathcal{M}$ for $a \ge 0$. U is assumed to have positive

90

Half-Sided Modular Inclusions of von-Neumann-Algebras

generator. If Ω is a cyclic and separating vector for \mathcal{M} , U-invariant, we conclude with the help of Corollary 11 that it is the unique U-invariant vector. Notice that we do not use any localization property or asymptotic abelianness for this argument. To get the conclusion one applies Borchers result [2], see Theorem 1, to that situation. Then define $\mathcal{N} := U(1)\mathcal{M}U(-1)$. It is easy to see that $\mathcal{N} \subset \mathcal{M}$ fulfills the conditions of Corollary 11.

All these statements on the inclusion of $\mathcal{N} \subset \mathcal{M}$ depend on the state Ω . The natural question arises under what general conditions we can find to a given inclusion $\mathcal{N} \subset \mathcal{M}$ a common cyclic and separating vector Ω with $\sigma_{\mathcal{M}}^{-t}(\mathcal{N}) \subset \mathcal{N}$ for all $t \geq 0, \sigma_{\mathcal{M}}^{t}$ the modular group of (\mathcal{M}, Ω) . Let us restrict to the case of factors.

Next let me recall the following definitions:

An inclusion $\mathcal{N} \subset \mathcal{M}$ is called split iff there exists a type I factor N in between, i.e. $\mathcal{N} \subset N \subset \mathcal{M}$. A vector Ω is called standard iff Ω is cyclic and separating for \mathcal{N} , \mathcal{M} and $\mathcal{N}' \cap \mathcal{M}$, see [5].

Assume now $\mathcal{N} \subset \mathcal{M}$ to be factors of type III_1 . If $\mathcal{N} \subset \mathcal{M}$ is split it follows that $\mathcal{N}' \cap \mathcal{M}$ is too a type III_1 factor, see [5]. We get as an easy application of the above results

Lemma 13. Let $\mathcal{N} \subset \mathcal{M}, \mathcal{N}' \cap \mathcal{M}$ be factors of type III_1, Ω a standard vector. If $\sigma_{\mathcal{M}}^{-t}(\mathcal{N}) \subset \mathcal{N}$ for all $t \geq 0, \sigma_{\mathcal{M}}^{t}$ the modular group of (\mathcal{M}, Ω) , the inclusion cannot be split.

Proof. Assume $\mathcal{N} \subset \mathcal{M}$ to be split. Denote $J_{\mathcal{N}' \cap \mathcal{M}}$ the modular conjugation of $(\mathcal{N}' \cap \mathcal{M}, \Omega)$. By the results of Doplicher and Longo [5, Th. 4.1.]

$$N := J_{\mathcal{N}' \cap \mathcal{M}}(\mathcal{M}) J_{\mathcal{N}' \cap \mathcal{M}} \cap \mathcal{M}$$

$$\tag{44}$$

has to be of type I, Ω a cyclic and separating vector for this algebra N. By the very assumption we get

$$\sigma_{\mathscr{M}}^{-t}(\mathscr{N}') \subset \mathscr{N}' \quad \text{for } t \leq 0 \tag{45}$$

and therefore

$$\sigma_{\mathscr{M}}^{-t}(\mathscr{N}' \cap \mathscr{M}) \subset \mathscr{N}' \cap \mathscr{M} \quad \text{for } t \leq 0.$$
(46)

From this we conclude by Theorem 3 the existence of a unitary group $\tilde{U}(a) = \exp(ia(\ln(\Delta_{\mathcal{N}' \cap M}) - \ln(\Delta_{\mathscr{M}}))))$ with the special properties listed there. Especially we get

$$J_{\mathcal{N}' \cap \mathcal{M}} = \tilde{U}(2)J_{\mathcal{M}} .$$
⁽⁴⁷⁾

We rewrite

$$N = J_{\mathcal{N}' \cap \mathcal{M}}(\mathcal{M}) J_{\mathcal{N}' \cap \mathcal{M}} \cap \mathcal{M} = \tilde{U}(2) \mathcal{M}' \tilde{U}(-2) \cap \mathcal{M} .$$
(48)

Using the commutation relation we conclude

$$\sigma_{\mathscr{M}}^{-t}(N) \subset N \quad \text{for } t \leq 0 . \tag{49}$$

From Theorem 12 we get a contradiction to N being of type I. \Box

4. Final Remarks

We showed in this article that half-sided modular inclusions carry a strikingly rich structure. In a sloppy way they lie between Jones inclusions and split inclusions. In the former case one has a faithful conditional expectation from \mathcal{M} onto \mathcal{N} w.r.t. a state ω . By Takesaki's theorem, see [11], this is equivalent to $\sigma_{\mathcal{M}}^t(\mathcal{N}) \subset \mathcal{N}$ for all $t \in \mathbf{R}$, $\sigma_{\mathcal{M}}^t$ the modular group of (\mathcal{M}, ω) . On the other hand Lemma 13 shows that in the standard case the position of \mathcal{N} in \mathcal{M} is too narrow to \mathcal{M} to be interpolated by a type I factor.

We will continue our investigations on such types of inclusions in the near future.

Acknowledgements. I would like to thank D. Buchholz and M. Karowski for pointing out to me some helpful remarks at a crucial stage of the work and B. Schroer for his stimulating interest and discussions.

References

- 1. Bisognano, J., Wichmann, E.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985 (1975)
- 2. Borchers, H.-J.: The CPT-Theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315 (1992)
- 3. Buchholz, D., D'Antoni, C., Longo, R.: Nuclear Maps and Modular Structure I. J. Funct. Anal. 88, 233 (1990)
- 4. Chernoff, P.: Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators. Mem. AMS 140 (1974)
- 5. Doplicher, S., Longo, R.: Standard and split inclusions of von-Neumann-algebras. Inv. Math. **75**, 493 (1984)
- 6. Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer 1992
- 7. Hislop, R.: Long, R.: Modular structure of the local algebras associated with the free massless scalar field theory. Commun. Math. Phys. 84, 71 (1982)
- 8. Knapp, A.: Representation Theory of Semisimple Groups. Princeton, NJ: Princeton University Press 1986
- 9. Longo, R.: Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split W*-inclusions. Inv. Math. 76, 145 (1984)
- 10. Longo, R.: Simple Injective Subfactors. Adv. Math. 63, 152 (1987)
- 11. Longo, R.: Algebraic and Modular Structure of von Neumann Algebras of Physics. Proc. of Symposia in Pure Math. 38, 551 (1982)
- 12. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. New York: Academic Press, Vol. 1 (1972)
- Reed, M., Simon, B.: Methods of Modern Mathematical Physics. New York: Academic Press, Vol. 2 (1975)
- 14. Strătilă, S.: Modular Theory in Operator Algebras. Abacus Press, 1981
- 15. Strătilă, S., Zsido, L.: Lectures on von-Newmann Algebras. Abacus Press, 1979
- 16. Streater, R., Wightman, A.: PCT, Spin and Statistic and All That. New York: Benjamin 1964

Communicated by A. Connes