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Abstract. Let Jf a M be von-Neumann-Algebras on a Hubert space Jf, Ω a com-

mon cyclic and separating vector. Denote ΔM, Δjf resp. JMy J^ the associated

modular operators and conjugations. Assume Δ^ιtJfΔ^ιt a Jf for t ^ 0. We call

such an inclusion half-sided modular. Then we prove the existence of a one-

parameter unitary group U(a) on Jf, a e R, with generator —- (In Δjr — In ΔM) ^ 0
2π

and relations

1. Δ%U(a)Δ^u = Δ^ΌiήΔy* = U(e~2ilta) for all a, ίe R,
2. J ^ = 1/(2),
3. Δ%. = U(1)Δ%U( - 1) for all te R
4. j" = υ{\)Jiυ{- i).

If Ji is a factor and Ώ is also cyclic for Jf' n ,y#5 we show that ^ has to be of type
III,.

1. Introduction

In Algebraic Quantum Field Theory it is a long outstanding question, what
physical meaning the Tomita-Takesaki modular objects have. The algbebraic
approach of quantum field theory, as proposed by Haag and Kastler, see [6], is
formulated in terms of nets of von-Neumann-algebras indexed by special open sets
of the Minkowski space, forming the algebras of local observables. The Poincare
group acts covariantly on this net. One assumes a unique Poincare invariant state
ω on this net, the vacuum state, with the additional property: the spectrum of the
representation of the translation subgroup in the associated GNS-Hilbert space
(vacuum sector) lies in the forward light cone. Denote Jf the GNS Hubert space,
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Ω the vector state of ω. The Reeh-Schlieder property guarantees that Ω is a com-
mon cyclic and separating vector for local algebras, see [6,16]. Therefore one can
apply the Tomita-Takesaki-Theory. A first result concerning the physical content
of the objects was obtained by Bisognano and Wichmann [1], who were able to
identify under physically reasonable assumptions the modular group of the local
algebra to a wedge region

W={x = (x°,x\ . . . , * 3 )e R 1 ' 3/!* 1 ! > |x°| with arbitrary x\x3} .

In this special case the modular group acts like the representation of special
Lorentz-boosts

Λ(s) =

/cosh(s) sinh(s) 0 0\

sinh(s) cosh (s) 0 0

0 0 1 0

0 0 0 1

(1)

i.e. as geometrical transformations on the net. The modular conjugation is found to
be up to a rotation the physical PCT-conjugation.

In a conformal invariant field theory a similar result was obtained by Hislop
and Longo, see [7], for regions

It was this circle of ideas which lead Borchers [2] to consider the following setting:
Let M be a von-Neumann-algebra on Jf7, Ω cyclic and separating w.r.t. M. One

might think of Jί as a local algebra to a wedge region in Minkowski space, Jf the
vacuum sector and Ω the vacuum state. Assume U(a\ ae R, to be a continuous
unitary group on Jtf with positive generator, leaving Ω fixed. This unitary group
might be interpreted as a time-like translation group. Denote J, A the modular
conjugation and operator to this setting. Then in a remarkable paper Borchers
proved (see [2]).

Theorem 1 (Borchers). If U(a)MU( - a) c M for a ^0 we get:

1. ΔitU{a)Δ-it = U{e~2πta)for all t, ae R.
2. JU{a)J =U(- a).

This theorem generalizes the results of Bisognano and Wichmann resp. Hislop and
Longo considerably. Looking carefully at the proof a stronger version of the
theorem can be seen to be true:

Theorem 2 (Borchers). Let U(a),aeR be a family of unitary operators leaving
Ω fixed with the following properties:

1. U(a) can be analytically continued to {ze C/0 < I m z < π } with || U(a)\\ ̂  I for
ae {ze C/0 ^Imz^π}.

2. U*(a)= U(a + iπ) VαeR.
3. ί/(α)Ml/(-α)cM VαeR.

Then one gets

a) AitU(a)A~it = U(e~2πta) Vt, ae R.
b) JU(a)J=U(a)* αeR.
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Borchers' proof is rather difficult. He looks at matrix products

Using the Tube Theorem he can enlarge the region of holomorphy in t and a. The
Edge-of-the Wedge Theorem together with the assumptions on U(a) and the
modular properties of Δix are the other inputs in order to get a complex line in
the domain of holomorphy. The estimates on U(a) lead to a bounded holomorphic
function on a line, i.e. a constant function, from which he concludes the result.
For the proof the interested reader is referred to the beautiful original work of
Borchers [2].

2. The Basic Result

The idea is to apply Borchers result to special inclusions. Let Jί c Jί be von-
Neumann-Algebras on a Hubert space Jf, Ω a common cyclic and separating
vector in Jf. Denote AM, Δ^, resp. JM, Jjr the associated modular operators and
conjugations. Assume A ~JiJίΔ +Jf <= Jί for t ^ 0.

From / c J w e conclude

Λ\ ύ Δlr (2)

in the sense to quadratic forms, see [3] or the proof of Theorem 3 below. The
log-function is operator monotone, see [12, p. 317 Ex. 51], and we get

l n ( ^ ) - ln(z^) ^ 0 (3)

in the sense of quadratic forms. Assume now that ln(J^) — \n(AM) is essentially
selfadjoint on D(\n(ΔJr))nD(ln(ΔJί))9 i.e. we can apply the Trotter product for-
mula, see [4]. We get

))) = s - lim [Δ~f Af)n (4)

from which we read off

- \n(A j,))))(JT) c / forί^O. (5)

Jί by modular theory, AdAJ (Jί) c Jί for t ^ 0 by assumption.)
We can apply Borchers result (Theorem 1) to Jί, Ω and U(a) = exp(ia(ln(Ajr)

— in(Ajf))). Using a slightly different method we can avoid the assumption on
essentially selfadjointness of ln(J^) —

Theorem 3. Let Jί a M be von-Neumann-Algebras acting on a Hilbert space Jtif,
Ω a common cyclic and separating vector. Denote AM,Ajf resp. JM, J^ the related
modular operators and conjugations. If

1 ajί forallί̂ O (6)
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we get'.
a) ln(zl^) — ln(zl^) is essentially selfadjoint of D(ln(A^)) r\ D(\n(Aj^)).

Denote p the selfadjoint closure of—(ln(A^) - ln(zl^)), U(a) := eίap. Then

2π

b) A%U{a)A^ = Ai^O{a)Ajt = V {e~ 2itt a) for ί , α e R , (7)

c) JjtV{a)Jjf = J^U(a)J^ = U(-a) aeR. (8)

Proof First notice that

can be analytically continued to {z e C/0 < Im z < }̂ with || T(z) || ^ 1, see [3]. For
the reader's convenience we will sketch this proof:

Let A e Jf be entire analytic w.r.t. the modular group of Jf. Then

T{0)AΩ = AΩ ,

W

= JjtJj.AΩ . (10)

From this one concludes

fyϊ" 1̂ (ID
for te R, and by the Hadamard-Three-Line theorem, see [13], the final assertion
follows. Define

it U

V(t) = AjrΔ^Ajr = T(t)*T(t\ teR. (12)

V(t) is a unitary family which can analytically be continued to {ze C/
0 < Imί < 1}. Notice that

V*(t)=V(-t) (13)

and || V(t)\\ g 1 for te {ze C/0 ^ Imz ^ 1}.
Furthermore by assumption we have

Ad V{t){Jί) ajr, for t ̂  0 .

In order to apply Borchers result we make a variable transformation. The sinh-
function maps {z e C/0 < Im z < π} biholomorphically onto the upper half plane
{zeC/Imz>0}. The log-function maps this domain biholomorphically onto
{ze C/0 < Imz < π}. Therefore

z H-• I - arcsinh exp(z) ) (15)
\π )

maps {ze C/0 < Imz < π} biholomorphically onto {ze C/0 < Imz < 1}.
Furthermore the real line is mapped onto the positive part of the real line, the

elements with imaginary part in onto the negative part.
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/I \
Let U(a):= V -arcsinh(exp(α)) LαeR. We can apply Borchers result, i.e.

π

Theorem 2, to U(a), Jί, Ω getting

Ai^ϋ(a)Ayt= U(e-2πta) for ί, ae R . (16)

Rewriting this in terms of the modular operators we get

f ( t _ f + *zfϊία) .- . 2 π t~ «t+ %_*!%£)
Ajf AM = AM ΔJT , (if)

with a = -arcsinh(exp(α)). This proves that Δ% ,Δ%, ί, seR generate a two di-

mensional unitary group. Instead of trying to identify the group by working out the
above commutation relation directly we will use the following property: In the case
of a unitary representation of a Lie group G on a Hubert space, we always have
a common core for the representation operators of the Lie algebra of G, see [8].
From this we get

a) ln(zl^) — ln(zJ^) is essentially self adjoint on D(ln(zj^)) n D(ln(zl^)). There-
fore we can apply Borchers theorem for exp( — iap) as indicated above to get b) and
c). The group generated by Ajr,Δ% is now easily recognized to be the two-
dimensional Poincare-group. D

Exploiting the group structure of the 2-dimensional Poincare group we get

Corollary 4. 1. Δ%A ~/ = ei(-ι + e~2nt)p te R.
2. Aijr = eipA%e~ip.
3. ί,J^ = <Γi2*

Proof. Let gn, gm, gny m denote the Lie algebra elements belonging to the generators
ln(zl^), ln(zl^) resp. p. From Theorem 3a) we know their commutation relations.
Applying a Baker-Campbell-Hausdorff formula one gets a). The last statement is

a specialization of a). Analytic continuation of a) to t = —— leads to

Therefore we get the announced relations. D

Remark. It is not difficult to see the following: let M, Jf, Ω be as in Theorem 3 but
(6) replaced by

aJs f o r a l l t ^ O . (19)

Then we get instead of b),

b') A$U(a)Aiti = A%.U(a)Aj* = U(e + 2πta) for ί, ae R . (20)

Similarly in Corollary 4 1) has to be changed to

1 ' ) A % A j * = e i { - l + *lia)P t e R .

The theorem suggests to give special names to such type of inclusions.

Definition 5. Let Jί c Ji be von-Neumann-algebras on a Hilbert space M\ Let Ω be
a common cyclic and separating vector. Denote σM the modular group associated to
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(Jί, Ω). If σJ(Jί) ajί far all ί ^ 0 or ί ^ 0, we call (Jί ^Jί,Ω) a half-sided
modular inclusion.

In the next section we want to draw some conclusions from the result.

3. Some Conclusions

As a simple corollary we get the symmetry in the conditions in Jί c Jί and
M' c Jί':

Corollary 6. Let (Jί c Jί9Ω) be a half-sided modular inclusion, Δ^.Δ^ be the
associated modular operators. Assume Δ^ix Jί Δix

M c Jί for t ^ 0.
Then

U(t)JfU(-t)cJf f o r ί ^ O (21)

and

ΔixjrJ('Δ-Jx ajί' for t ^ 0 , (22)

w/z^ U(t) = Qxp(ίt(ln(Δ^) - \Ά(Δjt))).

Proof. By Theorem 3 we know

U(2)J(U{ - 2) = JjrJjtJIJjtJjf ciJίciJί. (23)

Using Δit

JίU(2)Δjt = l/(2e"2 π ί) we immediately get (21). Applying the relation
J$κ = ̂ ί # ^ ( - e ~ 2 π ί + l ) f r o m Corollary 4, a) leads to (22). D

Corollary 4 b) suggests Jί = V(ϊ)JiΌ( — 1). That this is really the case is the
content of

Corollary 7. Let Jί, Jί be as in Corollary 6.

Then Jί = Ό{\)Jίυ{ - 1) with U(a) = exp(iα(ln(J^) - ln(zl^))).

Proof. Let Ae Jί. Then ΔyxAΔpxe Jί for all ί and thereby

Δ*MAS*AΔ\AM*SJI foraUίeR. (24)

By Corollary 4 we get

U(e-2πt- 1)AU(1 -elnt)eJί Vie R . (25)

Therefore

U{- l)JίU{l) cJΐ, (26)

i.e.

Jί a υ(\)Jίϋ{- 1). (27)

Ω is a cyclic and separating vector for both algebras and their modular groups
agree. From this follows equality, see [15]. •

For the next result we need some preparatory lemmatas. The aim is to show
that in the case of factors Jί and Jί have to be of type lllγ. It will be enough to
prove the uniqueness of Ω as an invariant vector under U(a% aeR.

First let me recall a result of R. Longo see [9,10]. :

1 The author thanks R. Longo for pointing out an error in an earlier version of this work
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Theorem 8. Let Jίa Jί be factors, Ω be a common cyclic and separating vector.
Denote γ:= Ad JjrJj?: Jί' -> Jί the canonical endomorphism to this situation, Jjr, J'M
the modular conjugations to {Jί, Ω), resp. {Jί, Ω). IfΩ is also cyclic for Jί' n Jί, it
follows that

ω - lim yn{A) = (Ω,AΩ} Ae Jί rceN. (28)
«-*oo

Proof See [10, Chap. 4].
From this result we immediately conclude D

Corollary 9. Let Jί a Jί, Ω as in Theorem 3 and also cyclic for Jί' cλJί,Jί
a factor. Assume ψe Jf invariant under U{a), αeR. Then

} forAeJί. (29)

Proof From Corollary 4 we get JjrJjt = U{2). Then

(ψ,Aφ} = <£/(- 2n)φ,AU{2n)*ψ) for all ne N

= lim (ψ, (Ad JJ,JJt)
n{A)φ}

= (ψ,φ}(Ω,AΩ} (30)

by the result of Longo, see Theorem 8. D

To prove the uniqueness of the vector we will exploit the natural order structure
of modular theory.

Denote P\Jί) := {A^AΩ/Ae Jί + }~ the standard cone to {Jί, Ω), see [15].
We get

Lemma 10. For t ^ 0 U{it) is positive w.r.t. P*{Jί\ i.e.

XJ{it)P\Jί)aP\Jί) . (31)

Proof By the positivity of the generator we can analytically continue U{a) to the
upper half plane. Let A, B E Jί+, we get

I, \ {^^\7{^\ (32)

From the commutation relations of Theorem 3 we conclude

^ j ^ (33)

With Ae Jί+ we also have U(^\AU( - M e Jί+, i.e.

0 . (34)

This proves the statement. D

As a simple application we can show

Corollary 11. Let Jί be a factor, ψ e Jf be U {a)-invarίant. Then φ is a multiple ofΩ.
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Proof. From U(a)φ = φ for all ae R we get

U{a)Jjrψ = J^U(- a)φ = J^φ , (35)

that is, Jjrφ also U(a) invariant. Denote

φ1=φ + J^φ, φ2 = iφ -iJjrφ (36)

Both vectors are ί/(α)-invariant and by construction J^-invariant. We can there-
fore uniquely decompose φι/2 into

Φl/2 = £l/2 ~ £l/2

with ξt/2~ e P*(Λ0> £I + / 2 1£Γ/2, see [15]. For ί ̂  0 we can estimate

<(ξΐl2 + ξϊlll U(ίt)(ξΐ/2 + ίΓ/2)> = <ξΐl2 - ξϊ/2, U(it)(ξtl2 - ίΓ/2)>

+ 2«{Γ/2, ί/(iί)«ί/2> + < î+/2, l/(iί)ίΓ/2»

2, U(it)φ1/2} (37)

by the positivity of U(it) w.r.t. P"(^Γ), Lemma 10. But from the positivity of the
generator of U(a) we know || U(it)\\ ̂  1 for ί ̂  0, i.e.

\\U(it)(ξΐ/2 + ξΓ/2)ll = Πΐ/2 + ξm\\ (38)

from which we conclude

£i+/2 + £Γ/2 I/(fl)-inv., (39)

and therefore

ξϊ/2- I7(α)-inv. . (40)

But ξχ/2~ e P"(^Γ) by the very definition. From Corollary 9 we get that

<ξΐ/2~, Aξΐ/2-> = <ί2, AΩXξt/f, ξΐ/2- > . (41)

Now the vector representation of states in P*(JV) is unique, see [15], from which
we conclude ξ Xj2 is a multiple of Ω and therefore the final proof. D

Collecting the results we get

Theorem 12. Let (Jf a J(, Ω) be a half-sided modular inclusion of von-Neumann
algebras on a Hilbert space ffl.If Jf ^ M, Jl a factor, Jί has to be of type Πl1.

Proof Applying Theorem 3 and Corollary 11 we get a unitary group U(a\ aeR
with a unique 17-invariant vector Ω and positive generator. Furthermore we have

U{a)JίU{-a)c:Jί forα^O. (42)

From Jί Φ Ji we easily get that

U(a)J(U(-a)fiJl iora<0. (43)

For such a situation Longo showed in [11] that Jt has to be of type lll^. D

Remark. Using Corollary 11 one can prove uniqueness of the vacuum for models
in Algebraic Quantum Field Theory. For example consider the von-Neumann-
Algebra Jί of observables localized in a wedge region. Assume M to be a factor.
Let U(a\ aeR be the unitary representation of timelike translations into the
wedge region, U{a)JίU( — a) a Ji for a ̂  0. C/ is assumed to have positive
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generator. If Ω is a cyclic and separating vector for Jί, ^/-invariant, we conclude
with the help of Corollary 11 that it is the unique ^/-invariant vector. Notice that
we do not use any localization property or asymptotic abelianness for this argu-
ment. To get the conclusion one applies Borchers result [2], see Theorem 1, to that
situation. Then define Jf:= U{\)JίU{ - 1). It is easy to see that Jί a Jί fulfills
the conditions of Corollary 11.

All these statements on the inclusion oi Jί c Jί depend on the state Ω. The
natural question arises under what general conditions we can find to a given
inclusion Jί c Jί a common cyclic and separating vector Ω with σ^l{Jί) c= Jί for
all t ̂  0, σ^ the modular group of {Jί, Ω). Let us restrict to the case of factors.

Next let me recall the following definitions:

An inclusion Jί c Jί is called split iff there exists a type I factor N in between, i.e.
Jί c N c Jί. k vector Ω is called standard iff Ω is cyclic and separating for Jί, Jί
and Jί' n Jί, see [5].

Assume now , / c J t o b e factors of type 11^. If Jί c Jί is split it follows that
Jί' nJίι& too a type Πlx factor, see [5]. We get as an easy application of the
above results

Lemma 13. Let Jί a Ji, Jί' n Jί be factors of type HIU Ω a standard vector. If
σ^i\Jί) c Jί for all t ̂  0, σ^ the modular group of{Jί, Ω), the inclusion cannot be
split.

Proof Assume Jί c Jί to be split. Denote Jjf n jt the modular conjugation of
{Jί' n Jί, Ω). By the results of Doplicher and Longo [5, Th. 4.1.]

N:= Jjr n Λ-*)Jjr> cji^Jί (44)

has to be of type I,Ωa cyclic and separating vector for this algebra N. By the very
assumption we get

σ-J{Jί')aJί' forί^O (45)

and therefore

σJ{Jί' n Ji) c Jί' n Jί for ί ̂  0 . (46)

From this we conclude by Theorem 3 the existence of a unitary group
ϋ{a) = exp(ϊ'α(ln(zl^' n M) — l n ( ^ ) ) ) with the special properties listed there. Espe-
cially we get

. (47)

We rewrite

N = JjrnΛ-ΛVjrnJi π Jί = ϋ{2)Jί'ϋ{ - 2) n M . (48)

Using the commutation relation we conclude

σϊ(N)czN f o r ί ^ O . (49)

From Theorem 12 we get a contradiction to N being of type I. D
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4. Final Remarks

We showed in this article that half-sided modular inclusions carry a strikingly rich

structure. In a sloppy way they lie between Jones inclusions and split inclusions. In

the former case one has a faithful conditional expectation from Jί onto Jί w.r.t.

a state ω. By Takesaki's theorem, see [11], this is equivalent to σxjt(Jί) c Jί for all

t G R, σ^ the modular group of (Ji, ω). On the other hand Lemma 13 shows that in

the standard case the position of Jί in Jί is too narrow to Jί to be interpolated by

a type I factor.

We will continue our investigations on such types of inclusions in the near

future.
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