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Abstract. We establish an explicit isomorphism between two realizations of the

quantum affine algebra Uq(Ql(n)) given previously by Drinfeld and Reshetikhin-
Semenov-Tian-Shansky. Our result can be considered as an affine version of
the isomorphism between the Drinfield/Jimbo and the Faddeev-Reshetikhin-
Takhtajan constructions of the quantum algebra Uq(ol(n)).

1. Introduction

The theory of quantum groups has become firmly established with the fundamental
independent discovery of Drinfeld [ D l ] and Jimbo [J l ] that the universal envelop-
ing algebra U(Q) of any Kac-Moody algebra g admits as a Hopf algebra a certain
g-deformation Uq($). Their construction is given in terms of generators and
relations and does not reveal the specific structure of the new Hopf algebras, in
particular, when g is a classical finite dimensional simple Lie algebra. In the latter
case, Faddeev, Reshetikhin and Takhtajan [FRT1] gave a realization of Uq(§) by
means of solutions of the Yang-Baxter equation

^12^13^23 = ^23^13^12 > (l l)

where R12 = R®I, etc., and .ReEnd((C"(χ)(C"). This realization is a natural ana-
logue of the matrix realization of the classical Lie algebras. Related constructions
appeared previously in quantum field theory and statistical mechanics and pro-
vided main motivations for the subsequent discovery of Drinfeld and Jimbo (see
[FRT1] for historical remarks).

It is well known [G] that the affine Kac-Moody algebra $ associated to
a simple Lie algebra g admits a natural realization as a central extension of the
corresponding loop algebra g®C[ί , ί " 1 ] . Faddeev, Reshetikhin and Takhtajan
[FRT2] have shown how to extend their realization of Uq(c$) to the quantum loop
algebra £/β(g(χ)[ί, ί " 1 ] ) using a solution of the Yang-Baxter equation depending
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on a parameter ZE<E,

R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(z) , (1.2)

where R(z) is a rational function of z with values in End(Cπ®Cw).
The first realization of the quantum affine algebra Uq(§) and its special degener-

ation called the Yangian has been obtained by Drinfield [D2]. Later Reshetikhin
and Semenov-Tian-Shansky [RS] found a way to incorporate the central extension
in the previous construction of [FRT2], thus obtaining the second realization of
the quantum affine algebra l/9(g). In the case when g is a classical finite dimensional
simple Lie algebra, the construction in [RS] is an exact affine analogue of the
construction in [FRT1].

The main goal of this paper is to establish an explicit relation between the two
realizations of the quantum affine algebra Uq(§). We construct the isomorphism in
the case when g = cjl(n). The extension of our relation to the other classical Lie
algebras is straightforward though it requires some extra work and is not con-
sidered here.

We show that the realization of Drinfield's construction can be naturally
established in the Gauss decomposition of a matrix composed of elements of the
quantum affine algebra. This reflects the general principle that additive results in
the classical case admit multiplicative formulation in the quantum case. The
organization of the paper is the following.

In Sect. 2, we recall the isomorphism between Faddeev-Reshetikhin-
Takhtajan and Drinfeld-Jimbo definitions of C/g(gI(n)). ^ _ ^

In Sect. 3, we recall the two realizations of the quantum affine Uq(qί(n)) due to
Drinfeld and Reshetikhin-Semenov-Tian-Shansky and formulate our main
theorem.

In Sect. 4, we give the proof of surjectivity of the homomorphism in the case
n = 2 and in Sect. 5 we complete the proof.

The relation between the two realizations is interesting from the structural
point of view, and may also find important applications in constructions of

representations of the quantum affine algebra Uq(§l(n)) and isomorphisms between
them. In the classical case, at least four models of representations are known:
bosonic constructions [FK, S]; fermionic constructions [F, KP]; the algebraic
version of the WZNW model [TK]; and the free boson realization [W, FeF].
There exist quantum analogue of all four constructions [FJ]; [H, DF2]; [FR];
[M] and [ABE]. The bosonic constructions use the Drinfeld realization. The other
two are based on the Reshetikhin-Semenov-Tian-Shansky realization. Thus the

connection we establish between the two realizations of Uq(gΐί(n)) should be crucial
in obtaining isomorphisms between different models of representations.

II. Quantum algebra Uq(q\(n))

The Quantum Inverse Scattering Method was one of the principle motivations for
the creation of Quantum Groups [D2, FRT1]. The basic formula in this method

RT1T2 = T2T1R, (2.1)

where R is a solution of the Yang-Baxter equation (1.1), Tγ = Γ® J, T2 = I®T
and T = (tij)Ίj=ί, was later interpreted as defining relations for the generators
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tij of a Hopf algebra also called quantum group. In particular, the quantum group
associated to GL(n, (C) is determined by the following matrix R depending on
a complex parameter q Φ 0:

R = R12 = qΣ EU®EU + £ EU®EJJ + (q - q'1) £ E^E^ , (2.2)
ί=l ί Φ j 1 ^ i < j ^ n

where £ i 7eEnd((CM) are matrix units.
This matrix has a natural origin. In addition to Yang-Baxter equation, it also

satisfies

R - PRP'1 ={q- q~λ)P , (2.3)

where P is the permutation operator, P{v1<S)v2) = v2®vu for i ^ ^ ε C " . These
two properties ensure a representation of the Hecke algebra of type Λw-i on

®
The matrix # also satisfies the following properties:

/r1 = «_-!, (2.4)

Rtιt2 = PRP = R21 , (2.5)

where ί l 9 1 2 denote the transposition on the first or the second space respectively.
From now on, we will consider q to be a formal variable.

Definition 2.1. U(R) is an associative algebra with unit. It has generators /?},/Jϊ,
1 ^ i ^j ^ n. Let L ± = (/£), 1 ^ U ^ n, wzί/z /^ = /^ = 0 for 1 ^ j <i^n. The

defining relations are given in matrix form as follows:

RL\ Li2 = ^2 Lϊ iv, i\l^i Li2 = = ^ 2 -̂ -Ί R ?

/ίϊ/ί = /ί/i7 = 1 , (2.6)

w/zm? Lί = L 1 ® /, L | = / ® L±.

Since L ± are upper and lower triangular, respectively, and the diagonal ele-
ments of these matrix are invertible, L* have inverse ( L ± ) " 1 as a matrix with
elements in U(R). The relations between Lf and L\ immediately imply the
following proposition.

Proposition 2.1. Let Lf± = ( L 1 ) " 1 , L'r± =

L L L2R2iL1~L2~ = L2~L1~R2ι, R2\Lι L2 = L'2 Lγ

L'Γ = L'ΓL'l+ R . (2.7)

Definition 2.2. l/(i?) is α Hopf algebra with comultiplication A defined by

or in terms of the generators

antipode S is defined by:

Δ(lt})= Σ &®β
fc=l
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The counit is defined by:

ε(L) = I .

Originally, a wide class of examples of Hopf algebras associated to any simple
Lie algebra g was introduced independently by Drinfeld [ D l ] and Jimbo [J l ] . In
particular, we are most interested in the case when cj = sl(n), which is trivially
extended to the case when g = gl(n).

Definition 2.3. [J3]. Uq($l((n)) is an associative algebra over (C generated by q±H\
e{ andfi (1 ^j ^ n, 1 ^ i ^ n — 1) with the defining relations:

qHiejq~Hi = qδijq~δij+1ej, qHfjq~Hi = q~δijqδίj+ιfj

r r , qHτ-Hi+1 _q-Hi + Hi+1

edi —)iei = °ij —[ ,
q-q

eieJ = eJei9 fjj-fjfi ( | i - j | ^ 2 ) ,

efei±ί — (q + q~ί)eίei±ίei + ei±1ef = 0 ( U U + l ^ ) ,

yi2/±i - (« + q~γ)fifi±ifi +fi±Jt2 = 0 (1 g U ± 1 ^ n). (2.8)

subalgebra generated by eufh qHi~H^^ by definition is Uq($l(n)). Uq($l(n)) and
Uq(gί((n)) are Hopf algebras with the comultiplication A, antipode S and counit
ε defined as:

A(q±Hi) = q±Hι®q±H\ ^ ) = 1®^- + et

S(ei) = -eiq-hi

9 S{ft) = - qh% S(q±Hi) = qτH\

Ψd = ε(fi) = 0 , ε(qHi) = 1 , (2.9)

where h{ = Ht — Hί + 1.

The verification of the Hopf algebra axioms for Uq($l(n)) and Uq(ql(n)) is
straightforward. We call these Hopf algebras quantum algebras.

The important point of the approach in [FRT1] is an invariant, matrix-type
description of the quantum algebra Uq(§ί(n)). The authors constructed a surjective
homomorphism from Uq(qί(n)) to U(R) and stated that it is an isomorphism.

Theorem 2.1. There is a Hopf algebra isomorphism between U(R) and Uq(Ql(n))
defined by

(2.10)
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or in matrix form:

ICH, Λ \ I1 W « ^ 1 \

£ + =

281

0

0 ί H "J
0

\ /

L~ =

S.-i 1/ \

. (2.11)

Proof of Theorem 2.1. One can directly check that the map (2.10) is a homomor-
phism from Uq(ol(n)) to U(R) [FRT1]. Surjectivity of this map can be proved by
induction on the height of roots.

The injectivity of the homomorphism is less trivial. Quantum algebra Uq(sl(n))
has a structure of a quasitriangular Hopf algebra [D2] with a universal R matrix in
the form:

M = Σ α ( ® 6 l , (2.12)

where ate Uqb
+, bieUqb~ and L^b* are Hopf subalgebras of Uq($l(n)) generated,

respect ive ly , b y ei9 q

±^~H^^ orfhq
±iHί~Hi + ί).

Let Vλ be a highest weight representation of ύ(n\ where λ is determined by its
values on ht = H^ — Hi + ί . From the theory of Lusztig [L] and Rosso [R], we
know that for any highest weight representation of sl(rc), we can construct a quan-
tum deformation V*, which by definition is a representation of Uq(ύ(n)).

Let V = C" be the n-dimensional fundamental representation of Uq(ύ(n)). On

V%(g)V, we set

We also denote

and

? - i

23

(2.13)

(2.14)

(2.15)

where i^ = ( π F ® π F ) 9 ΐ and P 2 3 is the permutation operator of the last two
components of the tensor product. Explicit form of the universal R-matrix of
Uq(ύ(n)) [R2] implies that this R is exactly the same as the one we defined in (2.2).

Since 5R satisfies the Yang-Baxter equation, we obtain on Vλ ® V (x) V,

= L
(2.16)

(2.17)

From the explicit form of $1 [R2], we also know that L+ λ is upper triangular
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and L~Vχ is lower triangular, and the diagonal elements are in agreement with the
first formula in (2.10). On the other hand, for any re(C\0, r±1L±Vλ also satisfy
(2.16), (2.17). Thus we get a representation of U(R) with the action of the central
element Y[ 1% by any nonzero constant. Via the homomorphism (2.10), we can get
the representation of l/q(gl(n)) on V\ with the highest weight λ and an arbitrary
action of the central element, which means that every highest weight representation
of Uq(gjftn)) can be pulled through U(R). We denote by A a highest weight of gl(n),
i.e. the pair λ and the value of the central element. Therefore the kernel of map
(2.10) must also be inside l\, the kernel of representation of Uq(Ql(n)) on the highest
weight module V\.

Classical theory of simple Lie algebras [Di] that f]λIλ = 0 immediately implies

f]IΛ = 0 (2.18)
A

for £/(gI(n)), where Iλ (resp. IΛ) is the kernel of the representation of U{$l{n)) (resp.
U(QI(Π)) on the highest weight module with the highest weight λ (resp. A). On the
other hand, we can identify Uq(Ql(n))/(q - l)Uq(ql(n)) ^ Uq($l(n)). This follows
from Drinfeld's theorem in [D4] and can be checked directly. Note, for example,

that qπt = eto*a+(*-i))πt = ^o1-^-)^ = y fa ~ ^βn, where Bn is a poly-
n

nomial of i/£. Thus the kernel of the map (2.10) is inside the ideal generated by
q - 1. We will denote the map from l/β(gl(n)) to Uq(al(n))/(q - i)Uq(&l(n)) ^
U($l(n)) by φ0. Let A be a nonzero element in this kernel, then A = (q — l)mA,
where φo(A) Φ 0 as an element of l/(gl(π)), see [D4]. Since q is a formal parameter,
πv%(A) == 0 implies πv^(A) = 0. We get φo(A) as an element of t/(gl(n)) satisfies
πVΛ(φ0(A)) = 0 for any highest weight module A of l/(gl(n)). This contradicts
(2.18). Therefore

Π & = 0 , (2.19)
A

and the injectivity of map (2.10) is proven.

III. Quantum Affine Algebras and the Main Theorem

Drinfeld-Jimbo definition of quantum group by generators and relations is valid
for an arbitrary generalized Cartan matrix. In particular, the choice of extended
Cartan matrix of type A^ yields the quantum affine algebra Uq(sl(n)). Drinfeld
found in [D2] another realization of the quantum affine algebras, which to
a certain degree plays the role of loop algebra realization in the underformed case.
We extend Drinfeld's construction to the quantum affine algebra Uq(qί(n)).

Definition 3.1. Uq(ql(n)) is an associative algebra with unit 1 and generators

{Xt fc,7, k]-m, q^cI i = 1, . . ., n - 1, j = 1, . . ., n, fceZ, / e Z + , me - Z + } (3.1)

satisfying relations in terms of the following generating functions in a formal
variable z:

Xt{z) = Σ Xiz~\ fc/(z) = Σ kjiz-',
fceZ Ze-Z +

kj{z)= Σ *>*""• (3-2)
meZ +
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The generators q±^c are central and mutually inverse. The other relations are:

k+ k~ — h~ k± — 1

jθ j'o — j'o JO — x '

Γ(z)/cj-(w) = k]-(w)kf(z),

fc^(z)fcf(w) = kf(w)k*(z),
ώ+ ~ ^ ± fe±(w) = kf(w)kΐ(z) — ί ^ , i/; > i,

z±q-wτq

t f
fiwΓ'XjωkHw) = Xf(z)

kfor'xTMkUz) = Zτq'wq

z+ — w

z±-w

t (z)Xr(w) = Xr(w)χr(z)(zq _

(zq - wq-')Xt{z)Xt{w) = X*{w)Xt (z)(zq- ' - wq),

(z - vi)Xt(z)XΪ+AW) = {zq - wq-^Xΐ+^Xΐiz)

(zq - wq-ί)Xΐ{z)XΓ+ι{w) = (z - w)XΓ+1(w)Xr(z),

lXHz\ Xf(wU = 0, for Au = 0 ,

w)-] =(q- ήf-1)^.{5(zw-1

ί-
c)fcΓ+i(w+)fcΓ(w

(3.3)

{Xt(zί)Xt(z2)Xf{yf) -(q + q-^XH

+ Xf{w)X^z1)Xt(z2)} + {z^z2} = 0, for Au = - 1 . (3.4)

Here z+ = q±^z, A^ are the entries of the Cartan matrix for ύ(n\ and

δ(z) = Σ z" (3-5)
neZ

Drinfeldϋs realization of the subalgebra Uq{ύ{n)) is given by xf{z) =
(q-q-'Γ'XHzq1), U*) = kt+dzq^kTizq1)'1 and φ,(z) = kti{zqι)kt(zqT'
[D2], see also [FJ].

Drinfeld [D2] stated that the algebra Uq(ύ{ri)) is isomorphic to the one

constructed by generators and relations as in Definition 2.3 for Uq{ύ(ή)) for
extended Cartan matrix of type An-1.
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Definition 3.2. [D5] The algebra Uq(oί(n)) is a Hopf algebrta with comultiplication
A, antipode S and counίt ε defined by:

A(kf(z)) =

A(kt(z)) = kΐ(zq

A(xΐ(z)) = xΐ(z)

Δ(xT(z)) = l®xf(z) + xf

S(kf(z)) = /^(z)"1, S(x,+(z)) = - M z Γ V W ,

5(xΓW) = - x f ίz^ ίz)" 1 , e(Xi+(z)) = 0 ,

ε(xΓ(z)) = 0, ε(fef(z))=l. (3.6)

One can directly check the axioms of Hopf algebra. We note however that it is
still an open problem to find the complete Hopf algebra isomorphism between this
construction and the Drinfeld-Jimbo construction [D5].

Let R(z) be an element of End(<CM® <CM) defined by

R(z)= t En®Eii+ Σ E J

+ Σ Eij®Eij

Z^Q+ Σ E^Ej^Q, (3.7)
zq-q qz-q

where q, z are formal variables. Then R(z) satisfies the Yang-Baxter equation with
a parameter:

R12(z)R13(zw)R23(w) = R23(w)R13(zw)Rί2(z), (3.8)

and R is unitary, namely

R^zΓ^Riz-1), (3.9)

where Rχ2(z\ etc., are defined as in Sects. 1, 2.
The definition of R(z) implies

\imR(z)=Σ Eu®Eίi+ Σ qEii®Ejj + q{q-1 -q)
i=ί

lϊm R(z)=£jEii®Eii+ £ ^-1£

ij=l ί,j=l

= q-χR, (3.10)

Faddeev, Reshetikhin and Takhtajan in [FRT2] defined a Hopf algebra using
this element R(z). Later Reshetikhin and Semenov-Tian-Shansky in [RS] obtained
a central extension of this algebra. We denote this modified algebra U(R). The
central extension is incorporated in shifts of the parameter z in R(z). The algebra
U(R) contains a subalgebra U(R) because of the relation (3.10).
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Definition 3.2. U(R) is an associative algebra with generators {/J[ + m ] , m e Z + \ 0
and J+[0], ẐT CO], lίjZiίn}. Let ί±(z) = £ * = 0 l%[_ ± m\z±m

9 where

lΐjίOl = Iβ [0] = 0, for l^i<jSn. Let L±(z) = (/f/^))L=i τ h e n t h e defining
relations are the following:

[O] = l , (3.11)

R Q Lί(z) L\{w) = LΪ( Q

R 0±\ Lΐ(z) L-2(w) = Lϊ(w)LΪ(z)R ί^-) , (3.12)

where z+ = zq±2. For the first formula of(3.12), the expansion direction ofR I —

z w
can be chosen in — or—, but for the second formula ofΪ3.12), the expansion direction is

only in —.
w

U(R) is a Hopf algebra: its coproduct is defined by

A ̂ (z)) = L±(zq ± ί1®«)<g> L±(zq

or A(lfj(z))= t

/is antipode is

z)) = L±(zΓ1 . (3.14)

ί/iαί ί/ie invertibility of L±(z) follows from the properties that /J are inυertible
and L±(0) are upper triangular and lower triangular, respectively.

We remark that the original definition of Reshetikin-Semenov-Tian-Shansky
contained an extra set of generators L(z) satisfying additional relations below:

R™ Q L\{z)L\(w) = Lί{W)L\{z)R™ fy , (3.15)

Rvr* (—) Lί(z)LJ(w) = Lϊ(w)Ll(z)R (—) , (3.16)

RV*V ^ Lt(z)L2(W) = L2-(w)Lt(z)Rv*v ( ^ j , (3.17)

Rr*v' (A L+

T(z)Lί(w) = LHW)LUZ)RV*V*(^) , (3.18)

Rv*v* ίϊA Lt(z)L-2(W) = L2{w)Lt{z)Rv*v* (—) , (3.19)
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- l \ ί i

,* I z

tltl

It turns out that it is natural to impose one more relation

(3.20)

(3.21)

Then all the relations (3.15)—(3.19) follow from (3.12) and we obtain our definition
of U{R) [Re].

Main Theorem. L±(z) have the following unique decompositions:

1 1 ° ^ MM

W,i(*) - 1 /

0 \

Let

\ 0

etj(z)J^(z) and kΐ(z) (i

(3.22)

1 /

j) are elements in U(R) and kf(z) are invertible.

Xt(z) = eUuiz-) ~ eΓ+Uz + ) > (3.23)

where z+ = zq±ί, then q^c, X*(z)9 kf(z)9 ί = 1, . . ., n — 1, j = 1, . . ., n satisfy

the relations (3.3), (3.4) of Uq($l(n)). The homomorphism

Φ:Uq(tf(nj)^U(R) (3.24)

defined by (3.23) is an isomorphism.

Later we will use/i+(z) to denote /^+1 (z) and et(z) to denote e*+1>ί(z).

Since kf(z) are invertible, the elements ettJ(z)9f^i(z) and kf(z) (i>j) are
uniquely expressed in terms of the matrix coefficients of L±(z) as in the scalar case.
In view of this analogy we call (3.22) Gauss decomposition of L±(z).

We note that as a corollary of the Main Theorem and Definition 3.1, one gets

a realization of Uq($l(n)) as a subalgebra of U(R).
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To verify that Φ is a homomorphism, we will use (3.22), (3.12) their inversions as
follows:

1 /

(4.1)

^) Lt{z) = Lt(z)R2l (—
w ) \w+

—) L2(z) = ϊA Lΐ(w)
WJ

w

A = R21 (jA

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

The proof that Φ is a homomorphism is based on the induction with respect to
n. We consider first the case π = 2,

±
(4.8)

(Lγ(z)) J =
-fi±(z)ki{z) 1

-fei(z) xer(z)
( 4 9 )
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κ 2 1 - =

Λ 0 0

z — w w(q — <

— wq x zq — wq1

q — a'1) z — w

zq — wq 1 zq — wq 1

\o

W)Y-*))

/ I

o

0

z

zq-

w{q

zq-

0

— w

- wq'1

- wq'1

z(q-

zq-

z

zq-

0

-q-1)

- wq'1

— w

- wq'1

\o

0

0

J

°\
0

0

(4.10)

(4.11)

*

0

-fc 2 (w)- 1 ^ 1 (w)

0

0
*

-Λ(w)k2

0

(4-12)

From (3.15), (3.16) and (4.2)-(4.7), we can write down all the relations between
kϊ(z),kϊ(z),

1 \z)Kl \W) — Kγ \Z)K2 \Z) ,

k\(z)k\(w) = k\(w)k^(z) ,

fcί(z)feΓ(w) = feΓ(w)fcί(z),

fe2 (z)/C2"(w) = /C2 (w)fe2 (w) ,

feϊ(z)/c|(w) = /c|(w)/c±(z))

z+ — w _

Z + ^ f - W _ ^ f "

z_ —

z-q-w+q
= k1(z)k2(w)

+ Λ,.Λ-1

z_ — w H

— W -

Z + ̂ f - W-C

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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Then, we derive the relations between k\(z) and e\(z) or /^(z).

zq — wq ι

[w)kj(z), (4.20)

e\ (w)k\ (w)*± (z) = e\ (z)feί (z)kί (w)
zq — wq λ

(w)fcί(w), (4.21)

z+q ~

z+q-w+q

3T/cτ(w)/1

±(w)/cί(z), (4.22)

z+q-wτq

l{z)et{w)k\{w). (4.23)
z±q-wτq

Thus

kUzy^Mki(z) = zΛl^Llf±iw) + »m-« V1±(z), (4.24)

g ί ( z K ( w ) f c ί ( z Γ ^ ^ " ^ eH*)+Kq~q eΐ(z), (4.25)
z — w w — z

ί (z) = **«-**«/,» + ϊ ^ ϋ C ! ) / 1 ± W , (4.26)
Zq: — Wq: W ± — Z +

(±(z) = '±H-»W £{w) + W* > e±(zy ( 4 2 7 )

z±-w+ w+-z±

So

ΛT(w), (4.28)
z+ ~

(4.29)

Then we write down the relations between/^(z), /^(w); ef (z), ef (w),

ti{z), (4.30)

/ f ( z ) , (4.31)

(z)fcf (z)eί (w)fcf (w) = eί (w)fcf (w)ef (z)fcf (z), (4.32)

f f (w) = βϊ(w)fcϊ(w)ef (z)fcί(z). (4.33)
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From above, we get

+

z — w w — z

Λ± M t f (w) +Λ Mtf ( )
z τ - w± z τ - w±

vv±-z τ

f ( ) i ( )

z — w z — w

z±-w±

zτq-w±q-

(4-34)

flHz)f±ix), (4.35)

ί(w)eί(Z) + ^ i ^ ^ e f ( w ) β f ( w ) . (4.37)
z±-wτ z±-w+

Thus

(zq'1 - wq)X;(z)XT(w) = X;(w)Xϊ(z)(zq - wq'1), (4.38)

(zq - wq-1)Xt(z)Xt(w) = Xt(w)XΪ{z)(zq-1 - wq). (4.39)

The relations between ff{z), e*(z) and k\{z) are

(4.40)

z w , + , ,_, + . , , + , r ^ ( 4 4 1 )

w + , x y x - 1 „ + , x , χ , v _ ! ( 4 4 2 )
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z±q-wτq

Then

z±q — wτq

'ϊizΓ'eHWUwΓ1. (4.43)z± ~

W q f 1

± ( ^ ) + Σ { q q ) f f W , (4-44)
Z W Z W

^ ^ β f ( z ) + ί ! ^ i^ β f (w), (4.45)
z — w z — w

(4.46)

(4-47)
z±-wτ

Thus we get

ϊ(w)kί(z) = Z*q ~Wq XΓ (w) , (4.48)
z+ — w

(4.49)

fίzϊΛίίz)/!1^))*?(w)
1 — wq

, , , + , s Z — W

(kί(w) + ̂ (w)fcf (w)/1

±(w))/cf ( z ) ^ g _ J J , (4.50)

(z) + ef (z)fcί (z) Λ* (z))/ct (w)

(vv)fc? ( w ) / t

τ (w))fc? (z) z

Z_τ^_ J

(4.51)
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But from (3.15), (3.16) and (4.4), we also have

jj

(z)fcf (w) = k+ (w)kί (z)tf (z) _,
zτq-w±q

z+q-w+q

then

(4.53)

z w

Z ( g ~ g >
w

(4.54)

- w ±

z+ - w τ

w z
here the denominators are power series in — and — respectively. Thus

z w

(4.54)

- <5(zw" Y)fc2 (z+)fcί(z+)-1} . (4.56)

So we prove that the map Φ is a homomorphism in n = 2 case. Surjectivity is
immediate, and the injectivity will be proved in next section.

V. The Proof of the Theorem for the General n

We will start with the case n = 3, the cubic relations appear first time in this
discussion. Then we will prove the general case by induction on n. It will be
convenient to distinguish R(z) for different dimension n. In this section, we will use
the notation Rn(z) for this purpose, which should not be confused with the notation
R21(z\ etc., used in the previous sections.

Let us restrict (3.15) and (3.16) to Eυ(g)Ekh ij9 fe, / g 2, then we get

R2 (^JjUz)JHw) = JHw)Jϊ(z)R2 (jή , (5.1)

ΐ(z)J2(w) = JI(w)Jt(z)R2 (^-) , (5.2)
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where we denote

Jί=J®Ii J2 = I®J ,

J(z) = , . . (5.3)

\βr(z) 1/ V ° fcϊW/V0 ! /

Thus we are exactly in the setting of n = 2 case. Similarly consider (4.4) and (4.5)
and restrict them to Eij®Ekl, 2 ̂  i, j , k, I ^ 3, then

JίizrHJi)'^ Q = ̂ 2 ( j ή (Λίw))" 1 ^ W)"1 , (5-4)

) Ri (\jϊ(w)yHJΪ(z)Γ1 , (5.5)

where we denote

1 0\(kϊ(z) 0

It is also the same as in n = 2 case. We only need to check the relations between
k\ (z), fγ (z), e\ (z) and k%(z), f2[z\ e\ (z), the other relations are immediate from
above observation and the results for n = 2 case.

Let

Jki{z) 0

fef(z)

ej(z)fcf(z) * I . (5.7)

[el^kUz)

Let

x± = /cKw)-^ - el^w) + βί (w)βf (w)),

^ = ( -/i%(w) +/1

±(w)/2

±(w))/cf(w)-1 , (5.8)

then

* - f^ίw^/cίίw)-1/ I. (5.9)
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From (3.15), (4.2), (4.3) and (4.5) we have

kHz)ki{w) = kUw)ki(z), (5.10)

fcf(z)/i±(w) = /1

±(w)fe|(z), (5.11)

fcf (z)eί(w) = eΐ(w)fcf (z), (5.12)

ki(z)f2

±(w) = f2±Mki(z), (5.13)

ί i «f(w)*ί(z), (5.14)

ei(y*)fHz), (5-15)

eί(w)/ 2

± (z), (5.16)

, (5.18)

(z), (5.19)

k\{z)f?{w) = /2

T(w)fcT(z), (5.20)

kϊ(z)el(w) = 4(w)/cf (z), (5.21)

/Γ(z)e 2>) = eKwJ/^ίz), (5.22)

fiHz)e?(w) = eϊ(w)/2

±(z). (5.23)

Next we need to check the relations between f*(z) and f t{z\ and the relations
between e\{z) and e|(z). From the formulae (5.8), (4.2), (4.3) and (4.5), we have

zq — wq~

z — w

zq — wq
(5.24)

z±q-w+q

— eUz)kί(z)kl(w)-^(w) . (5.25)
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We multiply (5.24) by fcf(w) on the right side and by fcτ(z)"1 on the left
side, and (5.25) by fc^w) on the right, and by k\(z) on the left. Then we get

z — w
^

zq — wq ~1

where the terms are expanded in different directions as specified in
z — w

Definition 3.2. From this, we get

(z - w)Xt(z)XΪ(w) = (zq - wq-^XΪMXtiz), (5.27)

and we can use the same relations to get

= 0 , (5.28)

{X2-(z1)X2(z2)X^(w) -(q + q-1)X2(z1)X^(w)X2(z2)

+ XΓ(w)X2-(z1)X2-(z2)} + {z^z2} = 0 , (5.29)

As for fjr(z\ f2(z\ we have

zq — wq 1"

—Γ/cγ(z)/173(z)/C3(w) , (5.30)

zτq-w+q

H —Γ /ci(z)/1

±

3(z)/c3 (w)" 1 , (5.31)
z+q-w±q

then we get

zq — wq
(5.32)

Here also we should be careful with the expansion of coefficients of the equality.
From this, we get that

(zq - wq-1)X^(z)X2(w) = X2-(w)XΓ(z)(z - w) (5.33)
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and

- (q + q-1)XΪ(z1)X2(w)

+ Xl(w)Xt(Zl)Xt(z2)} +

J. Ding and I.B. Frenkel

= 0 , (5.34)

+ Xt{w)X+

2{z1)X+

2{z2)} + = 0 . (5.35)

Thus we proved that Φ is a homomorphism for n — 3. We note that in the
process of proof we have seen that /^(z), and ei,i(z) are generated by k\{z), k2(z),
H(z) f*{z), e\(z), /^(z) and e2(z), which shows that Φ is surjective.

Now we proceed to the proof of surjectivity for general n.
Just as in n = 3 case, we first restrict (3.15) and (3.16) to £; j(g)£k,, 1 ;£ i,j, k, I

^ n — 1, then get
/,\ /_\

(5.36)

(5.37)

/ 1 0 \ 0 \ /I βf(z)

\0

Similarly restricting (4.6) and (4.7) to Etj®Ekl, 2 ^ i,j, I Φ n, then

1 /

(5.38)

Q , (5.39)

^ , (5.40)

/I 0 \

βf(z) " .

\ ί-i(z)/

0 \ / l

*ίW/\o i /

(5.41)

By induction, we know all the commutator relations we need exccept those
between ff{z\ fer(z), eγ(z\ and f±(z\ k±(z), ej(z). We now use the formulae (4.2),
(4.3) and (4.5). First we write down /^(z),

fef(z) fcίW/^ίz)

Lf(z) = | ef(z)fcί(z) : ! ! - I (5.42)
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and

Then we obtain

fcf

) =/i±(w)/cn

±(z)

f (w) = ef (w)Λί(z),

— W4

z+q-w±q-

297

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

To prove the surjectivity of the map Φ, we only need to show that e^Λ (z) and f*n (z)
are generated by kf(z), ef(z) and /^(z). Since all other elements efj(z) and fij(z)
are generated by kf (z), ef(z) and /^(z) by the induction. From (4.2) and (4.3), we
can get the relations between e*_ 1Λ and e*n- t, and the relations between fi%-i (z)
and /«-i,n(z), which also contain e^Λ{z) and /i*n(z). These formulae are similar to
(5.24), (5.25), (5.30) and (5.31) in the case when n = 3. They imply that ff;n(z) and
βn,i{z) are generated by kf(z) /i±(z) and ef{z), therefore the algebra U(R) is
generated by kf (z), /^(z), ef(z). Thus we proved that Φ is a surjective map.

Now, we proceed to the last step to prove the injectivity of Φ, which essentially
is the same as the proof for the case of l/4(gl(n)).
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From the theory of Lusztig [L], we know that the highest weight representa-

tion of sl(n) admits a quantum deformation. Let Fj?ιC be a highest weight repre-

sentation of Uq(&l(n)) with central extension c and let Fg)(C[z, z - 1 ] =

<C"(χ)<C[z, z " 1 ] be the evaluation representation of Uq($l(n)) on the fundamental

representation of Uq(ύ(n)) [J3]. The algebra Uq(ύ(n)) possesses a universal
R matrix 5R(z) [D2].

Let

l c ^ 1 ^ ) , (5.62)

and

Rvv{z) = {πv®πv)
<ϋ{z). (5.63)

We know Rvv(z) =f(z)R(z)9 where R(z) is defined in (3.7) and/(z) is a function of
z [FR].

Set
I ± " ί c = L ± F - ( x ) / F , L Γ - = P23L±VΪC®IVP23 , (5.64)

^ m (5.65)

where P23 is the permutation opeator on the last two components.
The Yang-Baxter equation implies

Q L±vl.(z)L±vl.{w) = Lr^)LΪVHz)Rvq^v Q , (5.66)

t H ) 2 H ) 2 M ΐ H ) ϊΔ . (5.67)

In the other hand, we can define a Heisenberg algebra generated by h(n\
neZ\0 satisfying the following relation:

n,πM-n)w- =f(—\ ^ qΣn,π+ H - n)w- Σmeπ+ h(m)zm

\W+J
(5.68)

We define a Fock space representation of our Heisenberg algebra, which we denote
by Vc. It is generated by creation operators h(n\ neZ+, applied to the vacuum
vector 1 e Vc; the annihilation operators h(— n% neZ+, by definition annihilate the
vacuum vector.

Note that when c = 0 the Heisenberg algebra degenerates into an infinite-
dimensional abelian algebra and we can choose for Vc its trival representation.
Now let us look at the representation on VlfC (x) Vc. We set

( 5 . 6 9 )

w). (5.70)

Here r0 is in (C\0. Then we obtain

R (£) Lψl'(z)L°rl'(») = L°iyl'ML°rl'(z)R Q , (5-71)

R fΐ±\ L°;vi.m°;n.{w) = L^HW)L°ΐvHz)R (—) , (5.72)
\w-J \w+j
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Thus we get a representation of U(R) with the action of the central elment Y[ lχ

by any constant. Via Φ it also gives a representation of Uq(Ql(n)) with a highest

weight A and central extension c, where A as in Sect. 3 denotes a pair (λ, y). This

can be seen by the first term of 9ΐ(z)[RS]. Therefore the highest weight representa-

tion of Uq($l(n)) can be pulled through U(R). It implies that the kernel of Φ must be

inside /^, c , the kernel of the representation of Uq($l(nj) on the highest weight

module VΛ,C

From [D4], we know Uq(φrή)/{q - l)Uq(&(n)) ^ U(φjή), so the kernel of

the map Φ is inside (q — l)Uq($l(n)). Using the same argument as for Uq(ql(n)) in

Sect. 3 we can show that

Π IL = 0 , (5.73)
A,c

which follows the fact [GK] that

Π IΛ,C = 0 . (5.74)
Λ,c

Here IΛtC is the kernel of the representation U(§l(n)) on the highest weight module

with the highest weight A and central extension c. Thus we prove the injectivity

of Φ.
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