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Abstract. This paper is the final one in a series in which we investigate some
models of an interacting Bose gas using Varadhan's large deviation version of
Laplacian asymptotics; in it we study the equilibrium thermodynamics of the full
diagonal model of a Bose gas. We obtain a formula expressing the pressure, in the
thermodynamic limit, as the supremum of a functional over the space of positive
bounded measures. We analyse this formula for a large class of interaction kernels
and show that there is a critical temperature below which there is Bose-Einstein
condensation.

1. Introduction

The Hamiltonian for a system of bosons interacting through a pair potential
φ(x — x') can be written as

H=T+U, (1.1)

where T is the kinetic energy operator and U is the potential energy operator,

V = l ί Φ(χ ~ xW*(xW*(x'MxMx')dxdx' , (1.2)

where ψ(x) and ψ*(x) satisfy the canonical commutation relations. For particles in
a cube A of volume Fin Rd with periodic boundary conditions, the Hamiltonian
can be written in terms of momentum space operators using

V k A

and υ(k) =
A

(1.3)
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and

u = ̂ ΣΣΣv(q)<*ΐ+q<*t -qak ak , (i 4)
Z K q k k'

where nk = a*ak. When the pair-potential φ is identically zero, the system displays
a phase transition, Bose-Einstein condensation, provided the space-dimension d is
greater than two: at sufficiently high values of the mean particle density, the
ground-state is occupied on a macroscopic scale. Does an analogous phase-
transition occur in a system governed by the full Hamiltonian with a non-zero
pair-potential? This is one of the major unsolved problems of mathematical
physics. The expression (1.4) is complicated and so far the problem has failed to
succumb to a direct attack: physical insight must be used to group the terms. It has
long been recognized [1] that it is advantageous to write U as a sum UΌ + U OD,
where U D can be expressed as a function of the occupation numbers {nk} (the
diagonal part and U OD (the off-diagonal part) cannot be so expressed:

C/D = ̂ (N2-N) + 4Z Σ v(k-k')nknk.,LV LV k k' φ f e

= ΣΣ Σ
£V k k' tfφ 0

Here N = Σk n& Bogoliubov and his school have argued that UD contains terms
which deplete the condensate (these terms are claimed to be responsible for
a drastic change in the dispersion law of elementary excitations in the long
wave-length limit). Huang, Yang and Luttinger [2] have argued that terms in U?
enhance the amount of condensate (there is an instructive "back-of-the-envelope"
calculation on p. 156 of Thouless's book [3] which shows that the Huang-Yang-

Luttinger terms — {N2 — Σk

 nk}> where a = v(0) > 0, in UD give rise to a jump-

discontinuity in the amount of condensate as the chemical potential increases).
Yang and Yang [4] showed that in the case of d = 1 and φ(x) = aδ(x\ a > 0, the
grand canonical pressure can be computed explicitly and it exhibits no phase
transition (see also [5] and [6]). In this special case, the diagonal part of U reduces
to the Huang-Yang-Luttinger terms which at fixed temperature give a non-zero
amount of condensate for sufficiently high values of the chemical potential even for
d = 1; it follows that, in this case, the effect of these terms must be cancelled by the
off-diagonal terms. It is reasonable to suppose that, in general, the question
as to whether condensation occurs in a system governed by the untruncated
Hamiltonian H = T + U might be settled by estimating the competing effects of
UD and UOΌ. The main result of this paper is that the Thouless effect persists in the
system governed by the full diagonal Hamiltonian:

HFΌ= T + UD .

To place this result in context, it is convenient to distinguish four models:

— ΛΓ2, β > 0 ;

+ ;rr
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The first of these models, the meanfield model, has been studied exhaustively; the
first rigorous treatment was given by Davies [7]. It was studied in [8] for a more
general class of kinetic energy operators and in the present framework in [9, 10,
11]. The first rigorous treatment of the second model, the Huang- Yang-Luttinger
model [2], which we shall refer to as the HYL model, was given in [11, 12] as part
of the present programme. The third model, the perturbed meanfield model, was
studied in [10] and [13]. The fourth model, the full diagonal model, is the subject of
the present paper. In this paper, we express the pressure in the full diagonal model
as the infimum of a functional on the space of measures and investigate the
properties of the minimizer which are related to Bose-Einstein condensation.

Let Jί + (Rd) be the space of bounded positive measures on Rd; for μ e R let the
functional <$μ : Jt\ (Rd) ̂  R be defined by

(1.6)
Z Z I k )

where

/[m]= J \\k\\2m(dk)-β-i(2πΓd f s(p(k))dk , (1.7)
Rd Rd

s(x) = (1 + x)ln(l + x) - xlnx (x ̂  0) , (1.8)

p is the Radon-Nikodym derivative of the measure (2π)dm with respect to Lebes-
gue measure and <m, Fm> is defined by

<m, Vm) = JJ υ(k - k)m(dk)m(dk') . (1.9)
R d xIR d

In the term Σk m(k)2 the summation is over all fceIRd: this makes sense because
there are at most a countable number of values of k for which m(k) Φ 0. We shall
prove that pFD(μ), the pressure in the full diagonal model for chemical potential
μ in the thermodynamic limit, is given by the variational formula

p F D (μ)=_ inf <?"[m] . (1.10)
jtb+(Rd)

It is easy to see how the terms in <fμ[m] in (1.6) correspond to terms in the
Hamiltonian H FD of the full diagonal model. However, there is a subtle difference:

in the expression ^Σk nk m the Hamiltonian, the sum is over the fixed eigen-

momenta in the cube A, but in the functional <ίμ[w], the corresponding term
if l£ f c m({/c}) 2 involves summation over all the atoms in the measure m and
the location of these atoms, if any, in the minimizer is one of the things to be
determined in solving the problem. The method used to establish the variational
formula is an extension of that used in our earlier papers [10-12]. An upper bound
is proved in a straightforward manner using Laplace's method as formulated
by Varadhan [14]; the lower bound is more subtle and requires a non-trivial
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extension of the method used in [12] necessitated by the presence of the in-
homogeneous term

This will be descirbed in detail in Sect. 2.
The variational formula (1.10) established for the first time in this paper enables

us to obtain a clear picture of the mechanisms of condensation in the four models
whose Hamiltonians were listed above (1.5). In the meanfield model the functional
$ μ in the variational formula (1.10) reduces to

*fa(μ)=flm]+^<*\\m\\2-μ\\m\\ . (1.11)

The entropy term depends only on the absolutely continuous part of the measure,
the meanfield term ^α || m \\ 2 is independent of the location of any singular part of
the measure and the kinetic energy term is smallest when the singular measure is
located at k = 0. It follows that if a minimizer has a singular part it consists solely
of an atom at k = 0. In [10] it was shown that an atom at k = 0 corresponds to
generalized condensation introduced by Girardeau [15] and discussed in [16]. In
the absence of the entropy term the kinetic energy term forces the minimizer to be
an atom at k = 0. The presence of the entropy term alters drastically the situation;
we showed in [10] that the presence of the entropy term in the functional forces the
spreading of a minimizing measure, militating against condensation. However, the
Bosonic character of the entropy which makes s strictly increasing leads to an
upper bound on the total particle density | |m|| (see [10], Eq. (1.40)). Thus, at low
densities, there is no condensation but, when \\m\\ exceeds a critical value pc, the
excess particle density \\m\\ — pc condenses at k = 0.

In the perturbed meanfield model, the meanfield term ^α| |m| | 2 is replaced by
3r<w, Vm) and the functional $μ becomes

<^MF[m] =/[m] + \ <m, Fm> - μ\\m\\ . (1.12)

In this case, there is competition between the total energy and the entropy; in
general, there is no longer an upper bound on the total particle density || m || in the
minimizer and the amount of condensate is sensitive to the detailed form of the
kernel v. In [13] we gave an example in which condensation vanishes when the
total density exceeds a critical value.

The HYL model was considered in [11] and [12]. It is possible to gain more
insight concerning the mechanism of Bose-Einstein condensation in this model by
using the variational formula of this paper; we do this in detail in Sect. 4. In this
case, the functional $μ reduces to

(1.13)

The term ^a(\\m\\2 - Σkm({fc})2) corresponds to w 2 - Z f c w f c 2 in the

Hamiltonian HHΎL. This term is of a purely quantum mechanical character and
reflects the Boson statistics. As noted by Thouless [3], this term tends to produce
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condensation since the quadratic form N2 — Σ f c nζ is minimized when N = nk for
some fe. The presence of the kinetic energy term will tend to favour fc = 0. Thouless
showed that a calculation using a rough estimate of the entropy and the term
N2 - Σ/t nk f°r the energy leads to a preaiction that the amount of condensate has
a jump-discontinuity at a critical value of the chemical potential. The analysis of
Sect. 4 shows that there are two regions (see also [11, 12]): one in which the
interaction term \\m\\2 — Σk m({k})2 dominates and one in which the kinetic
energy dominates. It turns out that the parameter describing the strength of the
kinetic energy is (p'^O))"1, the reciprocal of the second derivative of the free gas

pressure p evaulated at zero chemical potential. For p"(0) < — the kinetic energy
i 2α

term dominates; in the region p"(0) > —, the HYL term dominates and it turns out
2a

that Thouless's conjecture is correct. In fact, in this region, the dominance of the
HYL term results in condensation when || m \\ exceeds a critical value irrespective of
the dimension d of momentum space. In the full diagonal model, the functional $μ

given by (1.6) contains all four terms. It is interesting that, for all the class of kernels
v considered in this paper, there is still a region of the parameters in which the HYL
term dominates: for a fixed value of the chemical potential, there is a critical
temperature below which there is condensation; this result is independent of d.

The paper is organized as follows: in Sect. 2, we derive the variational expres-
sion for the pressure leaving the parts of the proof which are very technical to
Sect. 3; in Sect. 4, we study the variational problem. Besides reexamining in detail
the HYL model from the point of view of his paper, we prove that for a class of
kernels v and for a fixed chemical potential μ, there is a critical temperature below
which the minimizer m always has an atom. We show also that a minimizer cannot
have more than one atom. We have not been able to show that if an atom exists in
the minimizer it must be located at k = 0.

2. A Variational Expression for the Pressure

In the full diagonal model, as discussed in the introduction, the Hamiltonian is
diagonal in the occupation number operators which makes it possible to regard the
occupation numbers as random variables rather than as operators. We shall do
this using the notation of [13]. The probability space on which we define our
random variables is the countable set Ω of terminating sequences of non-negative
integers, an element ω of Ω is a sequence (ω(/)e]N: j = 1, 2, . . .} satisfying
Σj> i ωO) < °° The basic random variables are the occupation numbers
[ffj'.j = 1, 2, . . . }; they are the evaluation maps σf. Ω -» N defined by σ/(ω) =
ω(j) for each ω in Ω. The total number of particles in the configuration ω is defined
by

N(ω)= Σ σj(ω). (2.1)

Let Aί9 A 2, . . . be a sequence of regions in Rd and denote the volume by V\\ we
assume that V\ -> oo as / -» oo . We associate with the region At the free-gas
Hamiltonian HI given by

(2.2)
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where ε: IRd->IR is a continuous positive map with bounded level sets and
mϊke^ε(k) = 0, and fcj(l), fef(2)... is a sequence in Rd.

The Hamiltonian of the full diagonal model studied in this paper is given by

j

2 F / , ,τ<.

(2.3)
j ^ i

where a = t?(0,0) > 0. Since Ω is a countable set, we may specify a probability
measure on Ω by giving its value at each point of Ω. The free-gas canonical measure
is defined for μ < 0 by

P,μ[θ>] = eβ{μN(ω)-Hι(ω)-Vιpι(μ)} ^ Qty

provided Σjzi e~βε(kl(j)) is finite for all β > 0. Here the free-gas pressure pt(μ)9

μ < 0, is defined by

pι(μ) = (βVι) ln Σ <
ωeΩ

it is given in terms of kt(j) by

Pι(μ) = ί P ( μ \ k ) v ι ( d k ) , (2.6)

where v/ is the measure on IRd defined by

and p ( μ \ k ) is the partial pressure given by

The pressure of the full diagonal model is defined by

pfD(μ) = (βVι)~l In Σ

which we may re-write as

ωeΩ

where α < 0 and

α N(ω) 1 ^
gl (ω) = (μ-oc)-^--- ^ υ(

\ ''Z / \ vi /

/ r ϊ r n Λ 2 Ί
(2.11)

We introduce the occupation measure Lt by defining for each ω in Ω,

ϊ/[ω] =- Σ σj(co)δkl(j) , (2.12)
^ j ^ i
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where δx is the Dirac measure concentrated a^x so that for each ω in Ω, Lj[ω] is
a bounded positive measure on IRΛ We let E = ^+(Rd) the space of bounded
positive measures on lRd equipped with the narrow topology.

As in [12] our first aim is to obtain an upper bound for the interaction term
gΐ ~α(ω) by ajunctional of the occupation measure Lj[ω]; to do this we introduce
the map S: E -> R+ as follows:

For each mεE let Λ(m) be the countable set {k: fcelRΛ m({fc}) > 0}) > 0} and
let

keA(m)

This definition may appear different from the one used in [12] but in fact one can
show that the definition in terms of partitions is equivalent to (2.13).

Define G μ ~ α : £ - > R b y

--<m, Fm>--α{| |m| | 2 -S[m]} , (2.14)

where

<m, Vmy= J J v(k,k')m(dk)m(dkf) (2.15)
R'xIR''

and

| | m | | = lm(dk). (2.16)

Then

G"~α[ϊ//[ω]] ̂  gff α(ω) (2.17)

with equality for all ω if and only if all k z(j) are distinct. Thus we have

P™(μ) £ Pz(«) + ̂  In Σ e^^"^^"Pf[dm] . (2.18)
P"l ωeΩ

Let Kf be the probability measure induced on E by Lt\

K~ α τp« o f"- 1 /o 1 OΛ/ — It i ° L/i . \L.L7)

Then we can express the upper bound for pfD in terms of Kf:

PιΌ(μ) ^ Pί(α) + ̂  In J e^" WK? [dm] . (2.20)

We impose conditions on { k t ( j ) } sufficient to ensure the existence of the limit
p(α) = lim^oo pz(α); we assume that the following conditions already given in [13]
are satisfied: For β > 0, let

mf(dk) = e-βε(k)vt(dk) . (2.21)

(Tl) There exists a measure v such that for all β > 0,

f eβε(k)v(dk)<oo

and the sequence {eβε(k}vt(dk)} converges to eβε(k)v(dk) in the narrow topology.
(T2) v is absolutely continuous with respect to Lebesgue measure with a density which
is strictly positive almost everywhere.
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If (Tl) is satisfied then p(μ) = lim^oo pι(μ) exists for μ < 0 and is given by

" P(μ)= S έ P ( μ \ k ) v ( d k ) . (2.22)

In the case in which ε(fc/(j)), 7 = 1, 2 , . . . are eigenvalues of the Laplacian with
periodic boundary conditions on the cube of side V\IA condition (Tl) is easily
checked (see [13]).

To obtain an upperbound we shall use Laplace's method as formulated by
Varadhan ([14] Theorems 3.5 and 3.3); the following version of Varadhan's results
is convenient for our purpose:

Varadhan's Theorem [14]. Let {IK/} be a sequence of Radon probability measures
on a regular Hausdorff space E satisfying the large deviation principle with rate
function I and constants {αj. Suppose G:E->R is upper semicontinuous and
satisfies

lim lim sup - In J eeiG(3e)K,[dx] = - oo , (2.23)

then,

lim sup - In J eβ|G(Jc)Kϊ[dx] ̂  sup {G(x) - I(x)} . (2.24)
'->«> al E xeC

Suppose G: E -> R is lower semicontinuous and then

liminf- In f eeiG(*}Kz[dx] ̂  sup (G(x) - /(x)} . (2.25)
00 I E xeE

In [10] and [13] we proved a large deviation result for the measures (K?} (see
[13] Theorem 1) which we state here:

Theorem 1. Suppose that (Tl) and (T2) hold; then, for each α < 0 the sequence of
probability measures {K"} satisfies the large deviation principle with constants {βVi}
and rate function /α : E -> [0, oo] given by

(2.26)

where

/[m] = J s(k)m(dk) - β~ 1 J s (k) v(dk) (2.27)
Rd Rd \dv J

and

s(χ) = (1 + x) In (1+ x) - x In x (x ̂  0) . (2.28)

As in [13] we make the following assumptions on v:

(P) i; : Rd x Rd ->• R is α bounded, continuous, positive definite function; there exists
a continuous, strictly positive, symmetric function v0: R

d x Rd -> IR swc/ί that for all
meE,

(m, Fm> ^ <

= J \^x^v0(k, k')m(dk)m(dkf).
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Note that (P) implies that a = ι?(0, 0) = <<50, Vδ0y ^ <(50, V0δ0y = t?0(0, 0) > 0. To
apply (2.24), we must check that mi— >G μ ~ α is upper semicontinuous and that it
satisfies (2.23); to this end we prove in Sect. 3 the following result

Proposition 1. The functional S: Eh-»R+ has the following properties:

1. For each element

2. The map m\-+S[m~\ is upper semicontinuous on E.

In Lemma 2.2 of [13] we proved that (2.23) is satisfied by Gμ~α[m] where

G<-α[m] = (μ ~ «) Nil - \ <m, Fm> (2.29)

since S[m]^||m||2, G"~α[m] ̂  G"~α[m] and so (2.23) is satisfied also by
Gμ"α[m]. Again in [13] we proved that m\-+ Gμ"α[m] is continuous and therefore
by Proposition 1 and the continuity of the map m κ> || m || on E we have that
mπ-> Gμ~α[m] is upper semicontinuous. Thus we can apply Varadhan's theorem to
get for any closed subset, C of E:

lim sup-In J eF<^~β[M]K?[<ίm] ̂  sup (G^α[m] - Γ*[m]} .
Z^oo n c meC

In particular putting C = E we obtain an upper bound for the pressure:

sup {G^α[m] - fα[m]} = - inf <T^[m] , (2.30)

where

[m] = Jα[m] - Gμ~α[m] - p(α)

μ | | m | i . (2.31)

The proof of the upper bound (2.30) given above was a straightforward
generalization of the equivalent proof in [12]; however because of the in-
homogeneous interaction term in the model under consideration we cannot em-
ploy the results of [11] as in [12] to obtain a lower bound.

For kl9 /c2, . . ., fcn, distinct elements of IRd choose n sequences of positive
integers j(l, ί), / = 1, 2 . . . , i = 1, . . . n such that lim^^ kι(j(l, i)) = k^ because of
the assumption (T2) this is always possible. Let E = R+ x E equipped with the
product topology and define L z : Ω -> E by

(2.32)

If we now define G"~" : E -» R by

||2- £ x? (2.33)
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for xeR+ and me£, we get a lower bound for gΐ~*(ω}\

0r>)^G*-«[L,[a>]]. (2.34)

We then proceed as above and let

K^PjoLΓ 1 (2.35)

to obtain a lower bound for pfD(μ);

}Kf[d(x,w)] . (2.36)
E

In Sect. 3 we shall prove the following theorem.

Theorem 2. Suppose that (71) and (T2) are satisfied', then for each α < 0, the

sequence of probability measures {K?} satisfies the large deviation principle with

constants {βVi} and rate function P\ E -» [0, oo ] given by

,.., (2.37)
oo otherwise .

Since G^α[(x, m)] = G^~α[m] - ( | |m | | 2 - £?=1 xf) and mh^G^α[m] is

continuous, it follows that (x, m)h^Gμ~α[(Λ;, m)] is continuous in the product

topology on E. Applying Varadhan's theorem we then get a lower bound for

liminf pf°(μ) ^ p(α) + sup (Gμ α[(x, m) — P
J-»oo E

inf I f (ε(k) - μ)m(dk) + ̂  <m; Fm> + ̂  α || m |
(x, m)e£ ^d 2 2

where

2 I / = ι ' J

Since the set {/c1? fc2, . . ., &„} is arbitrary we have also

liminf pfD(μ) ^ - inf inf δμ[m; fc1? fe2, . . . /cj , (2.40)
ϊ->oo {fci kn} meE
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where the first infimum is over finite subsets of IRA In Sect. 3 we shall prove that the
upper and lower bounds for the pressure are equal, that is:

Proposition 2.

inf £μ[m] = inf inf <$μ[_m\ kl9 k2, . . . fcπ] . (2.41)
meE {fci , . . ., kn] meE

Combining the inequalities (2.30) and (2.40) we then obtain:

Theorem 3. Suppose that (71) and (T2) hold and that the potential v has the property
(P); then the pressure pFΌ(μ) = lim/_,00pfD(μ) exists for the full diagonal model
determined by the Hamiltonian in (2.3), and is given by

m] (2.42)
E

where $μ[m~\ is given by (2.31).

3. Proof of Theorems

Proof of Proposition 1.

1. is obvious.
2. For rceN let {AJn\j^ 1} be the countable collection of closed hypercubes

Γ r. r. + i ]
of side n 1 in JRd of the form < f c : — r g f c f : g - , i = 1, 2, . . . d> with

__ I n n J
(r1? r2, . . . rd)eΊί . For each meE let md denote the discrete part of m and mc the
diffuse part, that is

md = Σ m({k}}$k

and

mc = m — md .

The first step in our argument is to prove that

lim ( sup mc(ΔJn)) j = 0 . (3.1)

Let CN be the closed hypercube of side 2N centred at the origin and suppose that

lim sup ί sup mc(AJn} n CN) ] = α > 0
n->oo \ j ^1 /

then there is a sequence of hypercubes {zf j f l ) }, nt -> oo, such that for / sufficiently
large mc(JJ" l ) n Cjv) > iα. For each i choose fefG JJJ10 n C^; since {/cj c CN it has
a subsequence which converges to fc0 say. It then follows that for any open set 0,
containing k 0 ,m c (0)>^α and consequently m c({k 0})^^α, which is a contradic-
tion. Therefore

( m) \lim sup I sup mc(A] n C^) 1 = 0 .
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Now given ε > 0, choose N such that mc(Cc

N) < ε; we then have

sup (mc(Δ(?)) ^ sup (me(Aj) n CN) + ε ,
7 ^ 1 7 =- 1

and therefore

0 ^ liminf ί sup mc(AJn}) J ̂  limsup ί sup (mc(AJn))\ < ε .

Since ε is arbitrary this gives (3.1).
Given ε > 0 choose A' c Λ(m) such that $(Λ') < oo and X f e e yi(W )\^'^({fc})

<ε| |m|Γ12" ( d + 2 ); then choose n such that n"1^ < minλ j λ ' e y l 'ί/(X λ') and
/ ^ lίm^j11^) < ε| |m|Γ12~ ( d + 2 ). With this choice of n we have

Σ / Λ (n)\ 1 ^ V"1

m(Δ} ) < >\ J / — Z_^

7 ^ 1 7 ^ 1

Let m^ = Σ t e Λ ' w{fc} ^fe and wι2 = md - mά\ then

X m(AfY< X
j ̂  i j ^ i

ε = X m({fc}) 2

Now it is sufficient to prove that wι->X j ^ l m(AJn))2 is upper semicontinuous since
then if (mj is a sequence in E converging to m we have

lim sup S(mt)£ limsup X m,(JJB))2 g X m(zl)π))2 ^ S(m) + ε
i->co

from which the upper semicontinuity of mi— >S(w) follows because ε is arbitrary.
We conclude the proof by proving that wh+X,. ̂  lm(Δf)}2 is upper semicontinu-
ous.

First notice that for each ^ 1, wι->w(zljw)) is upper semicontinuous and
therefore wιι->Xy= 1 m(zJJw ))2 is upper semicontinuous for any J < oo; we also

have that wi— >w(C^) is upper ̂ emicontinuous.
Let {nij} be a sequence in E converging to m. Given ε > 0 choose N such that

) < ε and let J be such that for; > J, AJn} c C&. Then

X rn^j10)2^
J ^ l 7 = 1

and thus

2 d 2limsup X m^f)2^ m(zjf )2 + 22dε2

^ X7 ^ 1

The required result follows since ε is an arbitrary positive number. D



Cα[(y, ί)] = lim T In f */»Ί «*,«>, (*»>κ? [rf(x, m)] ; (3.6)
l-+co pYi
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To find a candidate for the rate-function /α we employed the following standard
trick which was also used to find Γα (see [10]):

For ye^N and ίe^b(Rd) let

then

-— y i
βVn=ι

= p[α + ί] — p(oί), (3.7)

where

/?j[α + ί] = I p(a + t(k)\k)vι(dk) (3.8)

and

p[α + ί] = J p(α + t(k)\k)v(dk), (3.9)

provided

infd (β(/c) - α - ί(/c)} > 0 (3.10)

and

min {ε(ki) - a - t(ki) - yt] > 0 . (3.11)

We take /α to be the Legendre transform of Cα, that is

/m m)] = sup {<(*, m), (j;, ί)> - Cβ[(j;, ί)]} , (3.12)
(y, f)

where the supremum is taken over those (y, ί) in Rn x ^b(Rd) which satisfy (3.10)
and (3.11). Then we have

= Σ (e(kι)-*)xι
i=l

Γ/ Λ - \ Ί
+ sup ( ί, m - X Xiδ k ) - p[α + ί] + p(α) , (3.13)

* L\ i = ι / J

where the supremum is over te(£b(ΰίd) satisfying (3.10). If m({/cj) < x f for some ί,
we can take ί to be large and negative around kt so that in that case

/α[(x, m)] — oo if m({fej) ^ x^ for i = 1, . . ., n, using the formula

j~α[m] = sup [<ί, m> — p[α + ί] + p(α)] (3.14)

we get
n I— M —I

/Tw] = y (ε(fcf) — α)x; + P m — y x, (5fe. = /"α[ml , (3.15)_ U _l £. \ \ I/ / I I / j I K j I U _I 7 V /

by (2.26).
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The proof of Theorem 2 now proceeds in a manner very similar to that of
Theorem 3 in [10]. We shall use the notational device of defining /[A],_where A is
a subset of E, to be the infimum of the~5et {/[m] : m e y 4 } i f ^ 4 Φ 0 and /[0] = oo ,

and similarly for /.

Proof of Theorem 2.

1. 7α is lower semicontinuous because it is the supremum of a family of continuous
functions.
2. Let Kb = {mεE: fα[m] ^ b} and

Kb = {(x, m)eJE, /α[(x, m)] ^ b} .

We want to prove that the level sets of /α, Kb are compact.

Kb = {(x, m)e£: m({/cj) ^ x f, ί = 1, . . ., n, /α[m] ̂  b}

:t ^ sup || ffi

From [10] we know that Kb is compact and that if L > 0 is large enough

Kb c J5L = (me£: | |m|| ^ L}. Thus X fc is contained in

d A ^ - v - ^ Γ , ' 1 M \ > s / ϊ?:

j U = Xf = ^? * — 1, . . ., fί/ X JV^

which is compact, but since 7α is lower semicontinuous Kb is closed and therefore
compact.
3. The proof of the large deviation upper bound

limsup-^-lnKf[C] ^-/α[C] (3.16)
J->αo pVi

for any closed subset of E, C, is exactly as in [10] and we shall omit it.
4. To prove^ the large deviation lower bound we need the following two results:

Define Lt : Ω -> E by

£l>]=^ Σ Mω)^(j ) 5 (3.17)

and let Xz

α = P^Lf1. This amounts to removing n elements form the set { k t ( j ) }
and replacing v, by vt where vf(^) = VΓ^{j:j *j(lzi)9 i = 1, . . ., n, fc/O^e^}. It
is clear that v/ -> v in the sense of (Tl) and therefore^Kf satisfies the large deviation
principle with constants {βVi} and rate function Γ.

Define Ll :Ω->Ri by

(3.18)
\ y\ y\ j

and let

From (2.4) it is easy to see that the random variables σj(it i)(ω), . . ., σj(it B)(ω) are
independently distributed according to a geometric distribution with mean
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(exp β(ε(kι(j(l /))) — α) — 1) 1 therefore K" satisfies the large deviation principle
with constants {βVi} and rate function

Ϊ*(xί9 . . ., XB) = (3.19)

Let G be an open subset of E. If /α[G] = oo there is nothing to prove; if

/α[G] < oo then for each ε > 0 there exists (x, m) in G such that

/" [m] - 7α(x, m) < /α[G] + ε .

Since G is open there exist tl9 12, - . , tr e^&(IRd) and <5 > 0 such that G contains
the neighbourhood Nδ of (x, m) defined by

Nδ= Π , m -
ι=l

(3.20)

(3.21)

where

and

= n
i = l

Ω2 =
5=1

j7 Σ «5

Suppose that for s = 1, . . . . r, ωeΩ satisfies

£,?
j Φ j (

where m' = m — Σ?=ι ^fc,

5

2 '
(3.22)

./(U)
, . . ., n

for i = 1, . . ., n, then ωeΩ 2 . Now since t s ( k ι ( j ( l , i))) -> t s ( k i ) as / -* oo we can find
5' sufficiently small such that if

< δ\ i = 1, . . . n 5 (3.24)

then for / large enough ωeΩ, and (3.23) is satisfied. Let Ω[ be the set of ωeΩ
satisfying (3.24) and Ω'2 the set of ω e Ω satisfying (3.22); then Ω1 n Ω2 ID Ωi n Ω'2,
for / sufficiently large, so that

s=l
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Therefore

liminf ^-InKf(G) ̂  liminf ^-lnKf(N,)
/->oo pVi /-+oo βVi

^ - Ϊ*(xl9 . . . , xn) - 7α[m'] = - 7α[m] > - /α[G] - ε

but ε was an arbitrary positive number so that the large deviation lower bound
holds:

- - l n K f ( G ) ^ - /α[G] . (3.25)
Z->oo pVi

D

Proof of Proposition 2. For any fcl5 . . ., feπeRd, and any meE we have

and therefore

inf δ»\m\ ^ inf inf <^[m; kl9..., fcj .
me£ kι...knmeE

Let ^ = infme£ ^μ[m]. For any ε > 0 there exists meE such that <f μ[w] < e + ε.
Let yl(m) = (fc 1 ? fe25 ^3» } and put mn = mc + Σ"=ι m({^ί})^fcl Then mw con-
verges to m in the narrow topology and therefore 2<w/»> Fmn> — 20| |™JI 2

— μ || mn || converges to i < w, Fm> - iα || m || 2 - μ || m || . Also

/[m]-/[mj= X ε(fe ί )m({fej)>0
i ^ Λ + 1

and clearly S^wJ -> ^ίm) as n -> oo . Thus for π suίBciently large

But^[mJ = ίμ[m;kι, . . ., fej and therefore inf k l . . . k n infme£-^[m; fc1? . . ., fcn]
^ e + 2ε; since ε is arbitrary we have proved Proposition 2. D

4. The Minimization Problem and Condensation

Recall that the pressure for the full diagonal model is given by

where

l=/[m] + <m, Vm) + -a{\\ m || 2 - S[m]}

= fα[m]-Gμ~α[m]-p(α) .

Since Gίί~α[m] ̂  Gμ~α[m], where Gμ~α[m] is given by (2.29) the proof that the
infimum of $μ\m~] over E is attained is exactly as in Lemma 3.1 of [13]; we thus
have
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Lemma 4.1. Let e = inϊ£>μ[m']; then there exists m*e£ such that (f [w*] = e.

We can also prove that if m is a minimizer of Sμ then it must satisfy the
following Euler-Lagrange equations:

Lμ(m; k) = am({k}) ws-a.e. , (4.la)

Z/(m; fc) = β ~ 1 s f ( p ( k ) ) v-a.e. , (4.1b)

where

m(dk) = ms(dk) + p(k)v(dk)

is the Lebesgue decomposition of m with respect to v and Lμ(m; k) is defined by

Lμ(m; fc) = ε(fc) + (Fm)(fc) + a \\m\\ - μ (4.2)

with

(Vm)(k)= J v(k,k')m(dk').
Rd

The proof of this is as in [10]. However since δμ is not convex we cannot prove that
Eqs. (4.la, b) are sufficient for m to be a minimizer; in fact we shall see that this is
not true in the case of the HYL-model.

Theorem 4. Let m be a minimizer ofS>μ then

(a) p(k) > 0 a.e. with respect to v.
(b) m satisfies the Euler-Lagrange equations (4.1α, b).

In the situation of the perturbed meanfield model studied in [10] and [13], the
functional corresponding to δμ has a unique minimizer, and if suitable conditions
are imposed on v, v and ε the singular part of the measure is concentrated on
the point fc = 0 in momentum space; we were therefore able using Theorem 3.6 of
[13] to identify the atom in the minimizer with the generalized Bose-Einstein
condensate:

(4.3)

The situation here is different. As we shall see later when we examine the HYL-
model, $μ can have more than one minimizer; this somehow corresponds to the
existence of more than one equilibrium state for the system in the thermodynamic
limit. Moreover even though we can show that a minimizer can have at most one
atom and for low temperatures every minimizer must have an atom we are unable
to locate the position of the atom except in simple cases like the HYL model.
Therefore we cannot establish mathematically the identification of the weight of the
atom in a minimizer with the limit in (4.3) or its equivalent in the case when the
atom is not at fc = 0. However since a minimizer represents an equilibrium
distribution of the particles according to their momentum we shall still identify the
presence of atoms with Bose-Einstein condensation.

It is very instructive to consider the HYL-model analysed in [11] from the
point of view of this paper. For the HYL-model, v(k, fc') = a > 0 for all fc, fc'eRd
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and we therefore have

g*\m\ =/[m] + l-a{2 \\m\\2 - S[m]}

= J s(k)m(dk) -μ\\m\\ - - f s(p(k))v(dk) + iα{2 | |m| | 2 - S[m]} .
Rd PR" ^

We now assume that ε(/c) > 0 for all k Φ 0 and ε(0) = 0. It is clear in that case that if
m is a minimizer of <fμ[w], then ms is concentrated at zero. Let m be a minimizer
of δμ and let m0 = m({0}). If m0 = 0 then m must satisfy the Euler-Lagrange
equation.

ε(fc) - μ + 2α || m || = -β s'(p(k)) v-a.e. . (4.4)

We shall show that this has a solution if and only if the equation

^Γ = P/(α) (4'5)

has a solution α ^ 0.
Suppose (4.4) has a solution then

p(k) = e /Ke<*)-0 + 2a | |» | | ) _ j j- l ? (4>6)

and therefore

| | m | | = p ' ( μ - 2 α | | m | | ) . (4.7)

From (4.4) we see that ε(k) — μ + 2a \\m\\ ^0 v-a.e., but ε is continuous and
therefore this must hold for all feeRd; in particular for fc = 0 we get
2a || m || - μ ̂  0. If we put α = // - 2α || m || ^ 0 in (4.7) we obtain (4.5).

Conversely if (4.5) has a solution then

m(dk) = (eβ(ε(k)-^ - I)'1 v(dk) (4.8)

satisfies (4.4). Note that in that case

^[m]=-pf(α), (4.9)

where

pf(α) = p(α) + (μ-α) 2/4α. (4.10)

Let PC = p'(0); since p' is strictly increasing (4.5) has a unique solution if μ £Ξ 2apc

and no solution if μ > 2apc. Suppose now that m0 > 0 then we have two
Euler-Lagrange equations:

- μ + 2a\\m\\ - am0 = 0, (4.11a)

e(k)-μ + 2 a \ \ m \ \ = ^ s ' ( p ( k ) ) v-a.e.. (4. lib)

By letting a = 2a\\p\\ — μ it is clear that if (4.1 la, b) have solution then

= P'(«) (4.12)
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has a solution α with — μ < oc < 0. On the other hand if (4.12) has a solution in
( - μ, 0) then

m(dk) = -- δ0(dk) + . ( .0Λ), v(Λ) (4.13)
t* c? j.

is a solution of (4. 11 a, b).
When we examine (4.12) we find the following:
If μ > 2apc then (4.12) has a unique solution while for μ ^ 2apc the situation is

more complicated. If 2ap"(ϋ) 5Ξ 1, then for μ 5Ξ 2apc, (4.12) does not have a solution
in ( — μ, 0). If 2ap"(G) > 1, as in [11] let μ, = 2ap (oct) — α f, where αf is the unique
root of 2ap"(u) = 1, then μt < 2apc. For μ = 2apc and μ = μί? (4.12) has a unique
solution in ( — μ, 0) while for μe(μ r, 2apc\ (4.12) has two solutions ot,l < α2 < 0,
say, which must satisfy /?"(αι) < l/2<z < /?"(α2). We shall show that α2 does not
correspond to a local minimum. To see this fix xeR and for α such that
(α — α2)x > α2/α define wαe£ by

δ0(dk) + g / ? ( ε ( f c )_α ) _ ί v(dk) , (4.14)

and let/(α) = ̂ μ[mα]. Then/x(α2) - 0 and

+ 2α/?"(α2)
2 +

since p"(α2) > l/2α we can choose x such that/"(α2) < 0.
For μe(μ ί ? 2αpc) let α' = α! and for μ = 2αpc and μ = μt let α' be the unique

solution of (4.12). If

then

^μ[m]--^(α'), (4.16)

where

(4.17)

Let α" be the unique solution of (4.5). It was shown in [11] that there is a unique
value of μ, μ * such that

'pί(α")>P$(α'), foτμt£μ<μ*
I

•(α") = p2(α'), for μ = μ* ,

ί pf(«") < pZ(α'), for μ, < μ < 2αpc . (4.18)

We summarize the above results in the following theorem:

Theorem 5. In the ΉΎL-model $μ\_m~\ always has a unique minimίzer m* except
when 2ap"(ϋ) > 1 and μ = μ* in which case it has two minίmizers m* and m*

If 2ap"(ϋ) ^ 1 then for μ ^ 2apc, m* is given by (4.8) where α is the unique
solution o/(4.5) and $μ[m*~\ = — pί(ot)9 while for μ > 2apc, m* is given by (4.13),
where α is the unique solution of(4Λ2) and <f μ[w*] = — p2 (α).
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If2ap"(Q) > 1 then for μ < μ*, m* is given by (4.8) "where α is the unique solution
of (4.5) and ^^[m*] = — pί(α). For μ > μ*, m* is given by (4.13) where α = α' if
μ* < μ :g 2αpc and a is the unique solution o/(4.12) if μ > 2apc; $μ\m\ = — p2(a).

If μ = μ* then there are two minimizers: m* given by (4.8) with a = a" and
m2* given by (4.13) with a = a'; g "[m? ] = - p?(a") = - pg(a) = <f "[m2*].

We shall now treat the general case. We shall assume that i; has the properties
(A) and (B) below; as we shall see in Proposition 3 and Proposition 4 this results in
considerable simplification.

(A) For all kl9 k2 in Rd, v satisfies the inequality

(a + υ(kl9 k2))2 > v(kίyki)v(k2, k2) .

(B) For all kί9 k2 in Rd, v satisfies the inequality

a + v(kl9 k2) > -(v(kl9 fej + v(k2, k2)) .

Proposition 3. Ifv satisfies (A) and m is a mίnίmizer of $ μ then there is at most one
fceRd such that m({k}) > 0.

Proof. Suppose m({fc 1})>0, m({fc 2 })>0 and k1 Φ k2. For xeR let
mσ = m + σxδkl + σδk29 where σeR is chosen small enough so that
m^kί}) + σx > 0 and m({k2}) + σ > 0. Let/(σ) = <^(mσ); then

/'(O) = x{L"(m; /c t ) - £»«({*!}).+ {mm; k2) - am({k2}) = 0

and

/-(O) = x2ι;(fcι, fci) + 2x(ι?(fc l s fe2) + α) 4- p(/c2, /c2) .

Now if m is a minimizer we must have/"(0) ̂  0 and since x is an arbitrary real
number this means that

which contradicts (A). D

Proposition 4 Ifv satisfies (B) and m is a minimizer of$μ with m({fc0}) > 0/0r some
fc0 e Rd ί/z^n m /zαs no singular continuous part.

Proof. Let m = ra0<Sko + m', m'eE, and m r ({fc 0 }) = 0 then

= (ε(fc0) - μ)m0

. (4.19)

Let /C!eR d, m({k^}) = 0 and suppose that

ε ( k 1 ) + (Fm')(feι) + -m0v(kί9 kj < ε(/c0) + (Vm')(k0) + -m0v(k0, k0) ,

then £>μ(m0δkί + mf) < ^μ(m) which contradicts the assumption that m is a minim-
izer; therefore

ε(/c) + (Fm'M/c) + ^m0t;(fe5 fe) ̂  ε(/c0) + (Fm')(fc0) + \ mQv(kθ9 fe0) (4.20)
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for all fceRd such that m({k}) = 0. Thus if m{(k}) = 0 ,

Lμ(m; k) = ε(k) -μ + (Vm')(k) + m0v(k, k0) + a \\m\\

-m0v(k0> fc0)

- -m0v(k, k)

fco, fco) + v(k, k))

= αm0 + m0t>(fc, fc0) - - m0(t;(fco, fe0) + t;(fe, fe)) ,

since by (4.1a) Lμ(m; fc0) = αm0. If t? satisfies (B) then Lμ(m; fc) > 0 for every
such that m({/c}) = 0; this together with (4. la) implies that the singular part of
m must consist of atoms. D

Note that if v(k9 k'} ^ 0 for all fe, k' and v satisfies (B) then it satisfies (A). From
now on we shall assume that v(k, k'} ^ 0 and that v has the following property:

(P3) For each sequence {mn} which convergences in the narrow topology (Vmn)(k)
converges to (Vm)(k\ where m = limκ_,00 wn, uniformly on compact subsets 0/3RA

For weElet

LS(m)= mϊdL
μ(m;k). (4.21)

fcε 1R

Lemma 4.2. Let {mn} be a sequence in E such that mn satisfies the Euler-Lagrange
equations (4.1) at inverse temperature βn. Suppose that as n->oo, βn] oo and
mn-^m0eE in the narrow topology where m0 is such that LQ(^O) Φ 0. If pn is the
density of the absolutely continuous part with respect to v, ofmn then

lim J pn(k)v(dk) = 0 . (4.22)
-»

Proof. For each fcelRΛ mh^ Lμ(m; ίc) is continuous in the narrow topology on E
and therefore mi— >L{$(m) is upper semicontinuous; therefore

But for each n, Lμ(mn, k) ̂  0 v-a.e. and therefore since fci— >Z/(mπ, fe) is continuous
Z/(mn, fc)^0 for all feeRd and so Lg(mJ ^ 0. Choose ε > 0 such that
^o(^o) > ε > 0. Since ( fe : feeRd, ε(k) ̂  2μ} is compact there is n0 such that for
n > rc0

 and fc satisfying ε(fc) ^ 2μ,

But for k satisfying ε(fc) > 2μ, Lμ(mn\ k) ̂  -ε(fe). Thus using

f p.( fc)v(dfc)=f ^.(U-tVfrK)
lRd IR.4 ^

and (T2) we see that lim^^ JR<ί pn(k)v(dk) = 0. D
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Lemma 4.3. Let {mn} be a sequence in E such that mn satisfies the Euler-Lagrange
equations (4.1) at inverse temperature βn. Let m£ and ms

n denote the absolutely
continuous and singular parts in the Lebesgue decomposition ofmn with respect to v.
Suppose that as n -> oo, βn f oo and m» and ms

n converge in the narrow topology to m'
and m" respectively then

liminf *"(«.) ̂  *£(ι»0) - J L*(m0; k)m'(dk), (4.23)
«-»oo ]Rd

where m0 = m' + m" and for meE,

$π (m) = f (β(fe) — μ)mdk + - <m, Km> + - a < \\ m \\2 — - S(m) > . (4.24)
2 2 ( 2 }

Proof.

/? d fί d

+ j^pn(k)s'(pn(k)v(dk}). (4.25)

By (4.1b)

Thus

,] = *£(«!„) - J L»(mn, k)ma

n(dk) + ̂  J ln(l + Pn(k))v(dk)

= f (ε(/c) - μ)
Rd

-^a\\ma

n\\2+\a\\ms

n\\2 -\aSlmJ +^- J
2 2 2 / f n R <

Since ln(l + pn(fc)) g pB(fc), -̂ JR-ln(l + pn(k))v(dk) ^ ̂  | |m Λ

M | | and therefore
Pn Pn

lim 1 J ln(l + Pn(k))v(dk) = 0
w^°° P»lR d

because mi— >J(ε(/c) — μ)m(dk) is lower semicontinuous, mι-^<m, Fm> is continu-
ous and mi— >S[w] is upper semicontinuous we get

liminf <f "IX] ̂  f (ε(/c) - μ)m"(dk) - \ (m ', Fm r>
W ^ O O d 2

- ί L"(m0;k)m'(dk). D
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For the next lemma we require the following notation: For m e E let

C(m) = {/ceRd:L^(m; k) = Lg(m)} . (4.26)

Lemma 4.4. If {mn} satisfies the conditions of Lemma 4.3 and m0 = m' + m" then
supp m' c= C(m0).

Proo/ Since /cι— >Z/(m0; /c) is continuous C(m0) is closed. Let /c0e(C(m0))c and
choose δ > 0 such that B(k0, δ) n C(m0) = 0. Then

ε = inf jz/(m0; fc); /ce£ ffc 0 , 5 δ\l > Lg(m0) ̂  0 ,

and therefore because of (P3) there is n0 such that for n > n0,

inf \L»(mn; k): keB (k0,
 l-δH > is .

Consequently by (4.1b) for n > n0)

and therefore limM^00 m^(B(/c0,i(5)) = 0. But then m'(£(/c0,i<5)) = 0; since /c0 is
arbitrary element of (C(m0))c we have

(C(m0))c c U A .

^4 open

m'(A) = 0

We shall from now on assume that υ has the following property:
(P4) There exists a function u: Rd -> R, strictly positive such that

for aUk,kΈΊkd.

Note that in this case (A) and (B) are satisfied by υ. We shall also assume that
ε(k) > 0 for k Φ 0 as we assumed for the HYL-model.

Lemma 4.5. For μ > 0 the infimum of $ £ 0f£r £ ΐs attained at a unique minimίzer

Proof. Let e = infm e£ ^^[m]; since <f£[0] = 0, e ̂  0 and therefore there is a se-
quence {mn} in E such that e rg <^[mM] ̂  0 and limn^00 <^£>[mM] = e. Because
^«[^«] ̂  0 for any αeR we have:

J (ε(k) - φιn(dk) <-\ <mπ, Vmny - \a{\\mn\\2 - S[mn)} + (μ - α)| |mj
Rd 2 2
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Let α < 0, let γ > μ and let C = {k: fcelRΛ ε(fc) ^ y}; then by Lemma 2.1 of [13] it
follows that

J (ε(/c) - *)mn(dk) ^ r + (μ - α)mπ(C') , (4.27)
R- 26(C)

where b(C) > 0. Thus

(γ - α)mn(Cc) ̂  f (ε(fe) - *)mΛ(dk) £ ̂ ~- + (μ - α)mM(C<) . (4.28)

Equation (4.28) implies that

therefore the sequence (mn(Cc)} is bounded and thus JR<J(ε(fc) — α)mπ(dfc) is
bounded. Since $^d(ε(k) — α)mn(dfe) ^ ( — α) || mn || , { || mn || } is bounded. Also given
< 5 > 0 let B be the compact set {k: fceRd, ε(fe) g α + ^~1}, then mn(Bc)^
δ JRd(ε(k) — a)mn(dk) and thus {mn} is uniformly tight. Since {mπ} is bounded and
uniformly tight, by Prokhorov's Criterion [17] {mn} has a convergent subsequence
{wMk}. Let m* = linifc^oo mπίc; since <f£ is lower semicontinuous e ̂  ̂ »(m*) and so
^^ has a minimizer.

The argument of Proposition 3 applies to <?£ and so if m* is a minimizer of
<^ then it has at most one atom; also the argument of Proposition 4 shows that if
m* has an atom then m* consists solely of that atom. If m* does not have an atom
then Z/(w*; k) = 0, m*-a.e. and therefore

J (ε(k)-μ)m*(dfc) + <m*, Fm*> + a | |m*| |2 = 0 , (4.29)
Rd

so that

Now Lμ(m*;fc) = 0 implies that | |m*| |<- and thus δ*>\m*~\>- — . But
α 2a

-<>o \ = — IT- contradicting the assumption that m* is a minimizer of <?£.
α J 2a

Therefore w* consists only of one atom; let m* = || m* || δko, then

* | | + l f l | | m * | | 2

It is then clear that m* has to be equal to - δ0. D
a

Lemma 4.6. For each β let mβ e£ be a minimizer ofS>μ and let mβ = ma

β + ms

β be the
Lebesgue decomposition of mβ with respect to v; then for μ > 0, as β -» oo

maβ converges to 0 and mβ converges to -δ0 in the narrow topology.

Proof. Let β0 > 0 be such that

2μ
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Suppose that β>βQ,ms

β = Q and ||m|||^— , then Lμ(mβ; k) ̂  ε(fe) + μ and
o

therefore by (4.1b), || mβ\\ < — giving a contradiction. Thus if β ^ β0 and ms

β = 0

then

If m| Φ 0 then by (4. la), we have m|-a.e.:

ε(fc) - μ + (Km,)(fc) + fl K|| - αm,({fc}) - a \\ms

β\\ ^ 0 (4.30)

therefore || m||| g - . Thus we have in all cases that if β ̂  /?0 then || m||| < — .

Given δ > 0 choose L sufficiently large so that

f -1 - - - v(dk)<δ;

let C = { k : eIRd, ε(fc) ^ 2μ + L}. Then for β ^ j50, rna

β(Cc) < δ and so since C is
compact {ma

β:β^β0} is uniformly tight. The corresponding net of singular
measures [ms

β: β ^ β0} is also bounded and uniformly tight since first of all we
have m/ra.e. that

which means that ε(k) ̂  μ m^-a.e. or ms

β{k: /celR^, ε(fe) > μ} = 0; also (4.30)

implies that <w^, Fm^> ^ μ \\ ms

β \\ so that || ms

β \\ ̂  -, where b = inf ε( fc) ^ μ t;(fc, fc')

Let {m^-} be a subnet oϊ {mβ: β > β0}, then by Prokhorov's criterion [17] and
the Bolzano- Weierstrass theorem there is a countable subnet of {w/f}, {mβn} such
that both {ma

βn} and {ms

βn} converge in the narrow topology and lim,,.̂  βn = oo
let mf = lim^oo ma

βn and m" = limπ^00 m
s

βn and let m0 = m' + w". Suppose
Z/g(m0) = 0 then by Lemma 4.4, Z/(w0; k) = 0, w'-a.e. and so by Lemma 4.3

Now L" - <50; fc = ε(fe) + - "(fc) > 0 for all fceRd and therefore m0 cannot be
\a ) a
μ

equal to - <50 so that by Lemma 4.5,
a

^ «301 = <f " Γ- <50]a J |_α J
liminf <f *[>„]

but this means that for n sufficiently large <^[wπ] > Sμ \ - δ0 , contradicting the
|_fl J

assumption that {mn} are minimizers. Therefore L#(ra0) =t= 0 and consequently by
Lemma 4.2, m r = 0. Since every subnet of {mβ:β ^ β0} has a subnet which con-

verges to 0, mβ -» 0. To show that mβ -> - ^0 l
et (m/Fn} be as above; since we know
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now that m' = 0 by Lemma 4.3 we get

liminf <?"[>„] ^ <?£ [m"] .
n->oo

If m" Φ - (50 we get again a contradiction; therefore m" = - <50 and mj -> - <50. Πα 0 0

Theorem 6. Suppose that v has the properties (P3) and (P4) and that ε(k) > 0 for
k Φ 0. TTiew f/zere is 0 ί α/we o/ίfte inverse temperature β0 such that if β > βθ9 every
minimizer of$μ is the sum of a measure which is absolutely continuous with respect to
v and a single atom; moreover for each ε > 0 there is a βι > β0 such thatjfβ > β1 and
m = mQδko + ma is a minimizer ofS>μ

) where m0 > 0, fc0 e Rd and maeE is absolutely

continuous with respect to v, then w0 0
ε, || fe01| < ε and \\ ma

Proof. We know from Proposition 3 that a minimizer can have at most one atom
and from Proposition 4 that if it has an atom then its continuous part is absolutely
continuous with respect to v. Suppose there is no value of the inverse temperature
j80 such that for β > β0 every minimizer of <?μ has an atom; then there is a sequence
of minimizers {mn} at inverse temperatures {βn} such that lim,,^ βn = oo and
each mn is continuous. Let ms

n be the singular part of ww; by Eq. (4.la),
Lμ(ms

n\ k) = 0, w*-a.e. and therefore

- μ\ms

n\ + « Vmny + a\\mn\\ \\ms

n\\ ^ 0 . (4.31)

Now by Lemma 4.6 both ms

n and mn converge to - δ0 as n -» oo letting n -+ oo in
a

μ2

(4.31) we get a contradiction: — ^0.
a

The rest of the theorem is an immediate consequence of Lemma 4.6. D

We note that we have not excluded the possibility that singular part of a minimizer
m* of $μ can be continuous; we have only excluded the coexistence of a singular
continuous part with an atomic part. However if we make the assumptions of
rotation invariance (Rl), (R2) (R3) in [13] and assume also that the smoothness
condition on υ in Lemma 3.3 of [13] and the condition on v in Theorem 4 of [13]
then in the case when w*({fc}) = 0 for all fee Rd, the argument of Theorem 4 in that
paper is valid and so the measure m* is absolutely continuous with respect to v.

We now proceed to check that a kernel v which is the Fourier transform of
a positive translation invariant pair-interaction has the properties necessary for
Theorem 6 to hold apart from the positivity condition in (P4) which has to be
assumed separately; in particular it satisfies (P3).

Let 0:Rd-^]R be strictly positive and integrable; for /ceRd let u(k) =

-—-jj2 J elkr φ(r)dr, where dr is Lebesgue measure on Rd. Let v(k, k') = u(k — k'\
(2π) jRd
then v is a bounded, continuous, strictly positive definite function. In addition we
have:

Proposition 5. The kernel v defined above has the property (P3).

Proof. Let {mn} be^a sequence in E and suppose that mn converges in the narrow
topology to meE. Then lim,,^ ||mj| = | |m| | and for any b>0 satisfying
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m{keR d : \\k\\ = b} = 0 we have for (il9 i2, . . ., id)eNd that

lim J (kϊkϊ . . . kl/)mH(dk) = j ( k ϊ k £

2

2 . . . f e i d ) m ( d k ) . (4.32)
f l~MX) 1 1 * 1 1 ^b \\k\\ ^b

Let R > 0 and ε > 0. Choose R0 > 0 such that \(u(k)\ <ε if | |k | | > #0; this
is possible by the Riemann-Lebesgue lemma. Choose b > R0 + R such that
m{k: keRd, | |k | | = b} = 0; choose r1 > 0 such that JH| >rι Φ(r)dr < s. Finally

choose NeN such that £ ̂ - < ε. For | |k| | ^ R,

J u(k - k')mn(dk] - J u(k - k')m(dkf)

+ J \u(k - k')\mn(dk) + J \u(k - k'}\m(dk') .
\\k'\\>b \\k'\\>b

Now if | |k | | ^ R and | |k' | | > fe, ||k - k' | | > b - R > R0 and therefore |tι(k - k')|
< ε; thus

f u(k-k')\mn(dk')<ε\\mn\
\\k'\\>b

and

J u(k - k'}m(dk') = j ^fer ( J e-ik'rm(dkf) } φ(r)dr
'\\^b Rd \ | | f c ' | | < f c /

= J eίkr( J e-ίk'rm(dkf)]φ(r)dr
| | r | | gπ \ | | f c ' | l ^ & /

+ J e*r J e-^'Xdk'
| | r | |>Π \ | | k ' | | ^ f t

The modulus of the second term is clearly bounded by ε || m || we split up the first
term again:

J eikr( J e-ίk'rm(dk'))φ(r)dr
l l r l l ^ π \ | | k ' | l ^ & /

/
= ί e* J

/ / °° ( — ik'r\s\ \

ί e**( J ΣLJf^1 }m(dk')}φ(r)dr.
l ^ π V | | f e ' | | ^ b V s = N 5! / /

The modulus of the second term is bounded by

< β I I r o l l 1 1 0 H i -
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Repeating these bounds with m replaced by m« and combining them we get for
11*11 ^Λ:

\(VmΛ)(k)-(Vm)(k)\

N I / \
I eikrφ(r)i } (k' r)smn(dk')- J (k' r)sm(dk')\ dr

S = 0

i k'2
i2 . . . k'd

id)m(dk')

Thus using (4.32) we see that \(Vmn)(k) — (Vm}(k)\ can be made arbitrarily small
for n > HQ where n0 is sufficiently large but can be chosen independent of k for
\\k\\ £R. D
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