p-Adic Heisenberg Group and Maslov Index

E. I. Zelenov
Steklov Mathematical Institute, Vavilov str. 42, GSP-1, 117966 Moscow, Russia

Received October 29, 1991; in revised form October 22, 1992

Abstract

A "system of coordinates" on a set Λ of selfdual lattices in a twodimensional p-adic symplectic space (\mathscr{V}, \mathscr{B}) is suggested. A unitary irreducible representation of the Heisenberg group of the space (\mathscr{V}, \mathscr{P}) depending on a lattice $\mathscr{L} \in \Lambda$ (an analogue of the Cartier representation) is constructed and its properties are investigated. By the use of such representations for three different lattices $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3} \in \Lambda$ one defines the Maslov index $\mu=\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ of a triple of lattices. Properties of the index μ are investigated and values of μ in coordinates for different triples of lattices are calculated.

1. Introduction

As it is known one of the profitable methods to study a quantization procedure is to construct and to investigate topological characteristics associated with this procedure. An example of such a characteristic is the Maslov index [Ma]. Let us discuss generally one way to obtain such characteristics. Let G be a group and $\left(H_{i}, U_{i}\right), i=1,2,3$ be its unitary irreducible representations in the Hilbert spaces $H_{i}, i=1,2,3$ respectively. Let us assume that these representations are unitary equivalent and F_{21}, F_{32} and F_{13} be unitary intertwining operators. That is, say for $F_{21}, F_{21}: H_{1} \rightarrow H_{2}$ and for all $g \in G$ the relation

$$
F_{21}^{-1} U_{2}(g) F_{21}=U_{1}(g)
$$

holds (and similarly for operators F_{32} and F_{13}. By the last formula the operator $F=F_{13} F_{32} F_{21}: H_{1} \rightarrow H_{1}$ commutes with all operators $U_{1}(g), g \in G$. In view of irreducibility of $\left(H_{1}, U_{1}\right)$ the operator F is proportional to the identity operator, that is $F=\mu \mathrm{Id}$ for some $\mu \in \mathbb{T}$ (\mathbb{T} denotes a unit circle in the field \mathbb{C} of complex numbers). Hence we obtain a numerical characteristic μ of a group G and a triple of its unitary irreducible representations.

Let us take an example, see [LV]. Let (\mathscr{V}, \mathscr{B}) be a two-dimensional symplectic vector space over the field \mathbb{R} of real numbers and $\tilde{\mathscr{V}}$ be the Heisenberg group of the space $(\mathscr{V}, \mathscr{B})$ (that is $\tilde{\mathscr{V}}$ is the three-dimensional Heisenberg group). Let also L be a lagrangian (that is one-dimensional for $\operatorname{dim} \mathscr{V}=2$) subspace of \mathscr{V} provided with the natural Haar measure $d m(L)$. As it is known there is a unitary irreducible representation $\left(H(L), U_{L}\right)$ of the group $\tilde{\mathscr{V}}$ in the Hilbert space $H(L)=L^{2}(L, d m(L))$. For two different lagrangian subspaces L_{1} and L_{2} these representations are unitary equivalent. Let now L_{1}, L_{2} and L_{3} be different lagrangian subspaces in \mathscr{V}. By applying the procedure discussed above for the group $\tilde{\mathscr{V}}$ and for the representations $U_{L_{1}}, U_{L_{2}}$ and $U_{L_{3}}$ we obtain a numerical characteristic $\mu\left(L_{1}, L_{2}, L_{3}\right)$ of these representations. It turns out that in this case $\mu=\exp (i \pi \tau / 4)$, where $\tau=\tau\left(L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z}$ is the Maslov index of lagrangian subspaces L_{1}, L_{2} and L_{3}, see [LV].

As a different example we consider the Cartier representation [C] of the Heisenberg group $\tilde{\mathscr{V}}$. This representation is unitary, irreducible and depends on a selfdual \mathbb{Z}-lattice \mathscr{L} in the space \mathscr{V}. By using the procedure discussed above for the Cartier representations associated with lattices $\mathscr{L}_{1}, \mathscr{L}_{2}$ and \mathscr{L}_{3} we obtain an index of a triple ($\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}$) of selfdual \mathbb{Z}-lattices, see [LV].

As p-adic numbers find expanding applications in mathematical physics (the active advancement began from the paper [V]) it is interesting to extend the construction discussed above for the field \mathbb{Q}_{p} of p-adic numbers. Let now $(\mathscr{V}, \mathscr{B})$ be a twodimensional symplectic vector space over \mathbb{Q}_{p} and $\tilde{\mathscr{V}}$ be the Heisenberg group of this space (for the definition of the group $\tilde{\mathscr{V}}$ see Sect. 3 of this paper). As for the field \mathbb{R} there is a unitary irreducible representation of $\tilde{\mathscr{V}}$ in the space $L^{2}(L, d m(L))$, where L is a lagrangian subspace of the space \mathscr{V} and $d m(L)$ is the Haar measure on L, as to the corresponding index see [LV] and bibliography there.

There exist also a unitary irreducible representation of the p-adic Heisenberg group depending on a selfdual \mathbb{Z}_{p}-lattice in the space $\mathscr{V} .\left(\mathbb{Z}_{p}\right.$ denotes a ring of p-adic integers.) This representation is an analogue of the Cartier representation mentioned above. By applying the procedure discussed above for the p-adic Heisenberg group and a triple of its representations associated with lattices $\mathscr{L}_{1}, \mathscr{L}_{2}$ and \mathscr{L}_{3} we obtain a complex number $\mu=\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right) \in \mathbb{T}$. This number μ we call the Maslov index of a triple $\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ of selfdual \mathbb{Z}_{p}-lattices. This index is the subject of our investigation. It is not improbable that this index will be useful for p-adic quantum mechanics constructed in [VV] (see also [Me, R]).

The structure of this paper is the following. In Sect. 2 one considers \mathbb{Z}_{p}-lattices and their properties. In particular one constructs a "system of coordinates" on a set Λ of selfdual \mathbb{Z}_{p}-lattices in a two-dimensional symplectic space $(\mathscr{V}, \mathscr{B})$ over \mathbb{Q}_{p} (Proposition 1). In Sect. 3 we define the Heisenberg group $\tilde{\mathscr{V}}$ of the space (\mathscr{V}, \mathscr{B}) and construct a unitary irreducible representation $\left(H(\mathscr{L}), W_{\mathscr{E}}\right)$ of this group depending on a lattice $\mathscr{L} \in \Lambda$. We prove also some properties of this representation (Proposition 2). In Sect. 4 an intertwining operator of two such representation is constructed and its properties are investigated (Proposition 3). In Sect. 5 we construct the Maslov index of a triple of selfdual \mathbb{Z}_{p}-lattices. We also obtain an explicit formula for this index (Proposition 4) and prove some natural properties of the index (Proposition 5). Section 6 is devoted to calculations of the Maslov index in coordinates defined in Sect. 2.

2. Lattices

Let $(\mathscr{V}, \mathscr{S})$ be a two dimensional symplectic space over \mathbb{Q}_{p} and \mathscr{E} be a lattice in $(\mathscr{T}, \mathscr{B})$ (that is \mathscr{C} is a finitely generated \mathbb{Z}_{p}-submodule of the space \mathscr{T} containing a basis of \mathscr{T}). A dual lattice \mathscr{L}^{*} is defined as follows:

$$
\mathscr{S}^{*}=\left\{x \in \mathscr{T}: \mathscr{P}(x, y) \in \mathbb{Z}_{p} \forall y \in \mathscr{L}\right\}
$$

If $\mathscr{L}=\mathscr{L}^{*}$, then \mathscr{S} is a selfdual lattice. Let $\Lambda=\Lambda(\mathscr{V}, \mathscr{B})$ denote the set of all selfdual lattices in $(\mathscr{V},, \mathscr{B})$. Note that if $\mathscr{L} \in \Lambda(\mathscr{V}, \mathscr{B})$, then $(\mathscr{L}, \mathscr{B})$ is a space with symplectic inner product.

As \mathbb{Z}_{p} is a local ring, then there exists a symplectic basis $\{e, f\}$ of the space $(\mathscr{V}, \mathscr{B})$ (symplectic means that $\mathscr{B}(e, f)=1$) wherein (see [MH])

$$
\mathscr{L}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f
$$

Moreover for any $\mathscr{L}_{1}, \mathscr{C}_{2} \in \Lambda$ there is a symplectic basis $\{e, f\}$ wherein these lattices have the form

$$
\mathscr{L}_{1}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f, \quad \mathscr{S}_{2}=p^{m} \mathbb{Z}_{p} e \oplus p^{-m} \mathbb{Z}_{p} f
$$

for some nonnegative integer m. For the proof of existence of such basis (but is not of necessity symplectic) see for example [W1], reduction to symplectic case is rather obvious.

Now we define a "system of coordinates" on the set Λ. Let $S p(\mathscr{V})$ denote the group of all linear automorphisms of \mathscr{V} preserving the form \mathscr{B} (symplectic group) and $S p(\mathscr{S})$ be a stabilizer of a selfdual lattice \mathscr{S} in $S p(\mathscr{V}) . S p(\mathscr{V})$ acts on Λ in a standard manner, this action is transitive. Thus Λ can be identified with the homogeneous space $S p\left(\mathscr{V}^{\prime}\right) / S p(\mathscr{L})$.

Proposition 1. Let $\{e, f\}$ be a symplectic basis in $(\mathscr{V}, \mathscr{B})$. Then the map $\varphi: \mathbb{Z} \times$ $\mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \Lambda$,

$$
\mathbb{Z} \times \mathbb{Q}_{p} / \mathbb{Z}_{p} \ni(m, \bar{\mu}) \stackrel{\varphi}{\mapsto} \mathbb{Z}_{p} p^{m} e \oplus \mathbb{Z}_{p}\left(\mu p^{m} e+p^{-m} f\right) \in \Lambda
$$

defines a one-to-one correspondence between $\mathbb{Z} \times \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and Λ. (In the right-hand part of the last formula μ denotes an arbitrary element of a coset $\bar{\mu}$.)
Proof. Let \mathscr{L}_{0} denote the following lattice:

$$
\mathscr{S}_{0}=\mathbb{Z}_{p} e+\mathbb{Z}_{p} f
$$

In the basis $\{e, f\} S p(\mathscr{V})$ and $S p\left(\mathscr{L}_{0}\right)$ have the matrix realizations: $S p(\mathscr{V}) \cong$ $S L\left(2, \mathbb{Q}_{p}\right), S p\left(\mathscr{H}_{0}\right) \cong S L\left(2, \mathbb{Z}_{p}\right)$. Let \mathscr{L} be an arbitrary lattice from Λ. Then there is an element $g \in S L\left(2, \mathbb{Q}_{p}\right)$ such that $\mathscr{L}=g \mathscr{C}_{0}$. By the Iwasawa decomposition (see [PR]) g can be represented in the form:

$$
g=\left(\begin{array}{cc}
p^{m} & 0 \\
0 & p^{-m}
\end{array}\right)\left(\begin{array}{cc}
1 & \mu \\
0 & 1
\end{array}\right) g_{0}
$$

for some $m \in \mathbb{Z}, \mu \in \mathbb{Q}_{p}$ and $g_{0} \in S L\left(2, \mathbb{Z}_{p}\right)$. Thus \mathscr{L} has the form

$$
\mathscr{L}=\mathbb{Z}_{p} p^{m} e \oplus \mathbb{Z}_{p}\left(\mu p^{m} e+p^{-m} f\right)
$$

and the map φ is surjective. As for $m, m^{\prime} \in \mathbb{Z}$ and $\mu, \mu^{\prime} \in \mathbb{Q}_{p}$ we have

$$
\begin{aligned}
& {\left[\left(\begin{array}{cc}
p^{m^{\prime}} & 0 \\
0 & p^{-m^{\prime}}
\end{array}\right)\left(\begin{array}{cc}
1 & \mu^{\prime} \\
0 & 1
\end{array}\right)\right]^{-1}\left(\begin{array}{cc}
p^{m} & 0 \\
0 & p^{-m}
\end{array}\right)\left(\begin{array}{cc}
1 & \mu \\
0 & 1
\end{array}\right)} \\
& =\left(\begin{array}{cc}
p^{m-m^{\prime}} & p^{m-m^{\prime}} \mu-p^{m^{\prime}-m} \mu^{\prime} \\
0 & p^{m^{\prime}-m}
\end{array}\right) \in S L\left(2, \mathbb{Z}_{p}\right)
\end{aligned}
$$

if and only if $m=m^{\prime}$ and $\mu-\mu^{\prime} \in \mathbb{Z}_{p}$, then the definition of the map φ is correct (that is it doesn't depend on a choice of μ in a coset $\bar{\mu}$). This finishes the proof.
Corollary. For any $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{C}_{3} \in \Lambda$ there is a symplectic basis $\{e, f\}$ wherein

$$
\begin{aligned}
& \mathscr{L}_{1}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f \\
& \mathscr{L}_{2}=p^{m} \mathbb{Z}_{p} e \oplus p^{-m} \mathbb{Z}_{p} f, \\
& \mathscr{L}_{3}=\mathbb{Z}_{p} p^{n} e \oplus \mathbb{Z}_{p}\left(\nu p^{n} e+p^{-n} f\right)
\end{aligned}
$$

for some $m \in \mathbb{Z}_{\geq 0}, n \in \mathbb{Z}, \nu \in \mathbb{Q}_{p}$.

3. p-Adic Heisenberg Group

Let χ_{p} be an additive character of \mathbb{Q}_{p} of rank 0 (that is $\chi_{p}(x)=1$ if and only if $x \in \mathbb{Z}_{p}$), \mathbb{T} be a unit circle in the field \mathbb{C} of complex numbers. Heisenberg group $\tilde{\mathscr{V}}$ of a space $(\mathscr{V}, \mathscr{B})$ is the set of pairs

$$
\tilde{\mathscr{V}}=\{(\alpha, x), \alpha \in \mathbb{T}, x \in \mathscr{\mathscr { V }}\}
$$

with the composition law

$$
(\alpha, x)(\beta, y)=\left(\alpha \beta \chi_{p}(1 / 2 \mathscr{B}(x, y)), x+y\right)
$$

We assume that $p \neq 2$ below. Now we construct some representation of $\tilde{\mathscr{V}}$. This representation depends on a lattice $\mathscr{B} \in \Lambda$ and therefore we call it \mathscr{L}-representation. Let $\tilde{H}(\mathscr{C})$ denote the space of finite complex valued functions on \mathscr{V} satisfying the relation

$$
f(x+u)=\chi_{p}(1 / 2 \mathscr{B}(x, u)) f(x)
$$

for all $x \in \mathscr{V}$ and $u \in \mathscr{L}$. Note that if $f, g \in \tilde{H}(\mathscr{L})$ then $|f|$ and $f \bar{g}$ are constant on every coset in $\mathscr{T} / \mathscr{B}$ and nonzero only on a finite number of such cosets. For $f, g \in \tilde{H}(\mathscr{L})$ the formula

$$
(f, g)=\sum_{\alpha \in \mathscr{F} / \mathscr{E}} f(\alpha) \bar{g}(\alpha)
$$

defines a nonnegative hermitian form on $\tilde{H}(\mathscr{C})$ and thus $\tilde{H}(\mathscr{C})$ is provided by a prehilbertian structure. The space $H(\mathscr{B})$ of \mathscr{L}-representation is defined as the completion of $\tilde{H}(\mathscr{C})$ with respect to the norm $\|\cdot\|^{2}=(\cdot, \cdot)$. As $\mathscr{V} / \mathscr{L}$ is a countable set, then $H(\mathscr{C})$ is a separable Hilbert space.

On the space $\tilde{H}(\mathscr{B})$ we define the following set of operators, $x, y \in \mathscr{V}$:

$$
\left(W_{\mathscr{E}}(x) f\right)(y)=\chi_{p}(1 / 2 \mathscr{B}(x, y)) f(y-x)
$$

These operators satisfy the co-called Weyl relation

$$
W_{\mathscr{S}}(x) W_{\mathscr{L}}(y)=\chi_{p}(1 / 2 \mathscr{B}(x, y)) W_{\mathscr{L}}(x+y)
$$

It is easy to see that $W_{\mathscr{E}}(x), x \in \mathscr{T}$ are isometric operators on $\tilde{H}(\mathscr{B})$ and therefore are uniquely extended to unitary operators on $H(\mathscr{C})$ (for these operators we retain the same notation $\left.W_{\mathscr{E}}(x)\right)$. \mathscr{L}-representation of $\tilde{\mathscr{V}}$ is defined as a pair $\left(H(\mathscr{L}), \tilde{W}_{\mathscr{C}}\right)$, where $\tilde{W}_{\mathscr{L}}(\alpha, x)=\alpha W_{\mathscr{L}}(x)$. From the Weyl relation we see that this pair is in fact a unitary representation of $\tilde{\mathscr{V}}$. For the sake of convenience we use the term " \mathscr{C} representation" for a pair $\left(H(\mathscr{L}), W_{\mathscr{L}}(x)\right)$. A similar representation was considered in [W2]. Note that \mathscr{L}-representation is a p-adic analogue of the Cartier representation [C] of the Heisenberg group over real numbers.

Let $\phi_{\mathscr{C}}$ denote the following element of $H(\mathscr{C})$:

$$
\phi_{\mathscr{S}}(u)= \begin{cases}1, & u \in \mathscr{L}, \\ 0, & u \notin \mathscr{L} .\end{cases}
$$

We call it a vacuum vector of $\left(H(\mathscr{L}), W_{\mathscr{E}}(x)\right)$. It is easy to see that this vector satisfies the property

$$
\begin{equation*}
W_{\mathscr{L}}(x) \phi_{\mathscr{L}}=\phi_{\mathscr{L}} \tag{1}
\end{equation*}
$$

for all $x \in \mathscr{L}$.
Let $\eta_{\mathscr{E}}: \mathscr{V} \rightarrow \mathbb{T}$ be a function satisfying the property

$$
\eta_{\mathscr{C}}(x+u)=\chi_{p}(1 / 2 \mathscr{B}(x, u)) \eta_{\mathscr{H}}(x)
$$

for all $x \in \mathscr{V}$ and $u \in \mathscr{L}$. It is quite easy to prove that the map $\mathscr{V} \rightarrow H(\mathscr{L})$:

$$
\mathscr{T} \ni x \mapsto \eta_{\mathscr{E}}(x) W_{\mathscr{L}}(x) \phi_{\mathscr{L}}
$$

is constant on every coset in $\mathscr{T} / \mathscr{C}$ and thus one defines a map $\psi: \mathscr{V} / \mathscr{B} \rightarrow H(\mathscr{L})$ by the same formula. The range of values of the map ψ we call a set of coherent states of \mathscr{L}-representation.

Proposition 2. The representation $\left(H(\mathscr{C}), W_{\mathscr{C}}(x)\right)$ has the properties:
(i) $\left(W_{\mathscr{L}}(x) \phi_{\mathscr{C}}, \phi_{\mathscr{C}}\right)=\phi_{\mathscr{E}}(x)$;
(ii) the set of coherent states forms an orthonormal basis in $H(\mathscr{B})$;
(iii) the representation $\left(H(\mathscr{L}), W_{\mathscr{L}}(x)\right)$ is irreducible.

4. Intertwining Operator

Let for $\mathscr{L}_{1}, \mathscr{L}_{2} \in \Lambda \varrho^{-2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)$ denotes the number of elements of the group $\mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)$.
Proposition 3. Let $\left(H\left(\mathscr{C}_{1}\right), W_{\mathscr{L}_{1}}\right)$ and $\left(H\left(\mathscr{L}_{2}\right), W_{\mathscr{L}_{2}}\right)$ be \mathscr{L}_{1} - and \mathscr{L}_{2}-representations. Then the operator $F_{\mathscr{L}_{2}, \mathscr{C}_{1}}: H\left(\mathscr{L}_{1}\right) \rightarrow H\left(\mathscr{L}_{2}\right)$ defined by the formula

$$
\begin{equation*}
F_{\mathscr{C}_{2}, \mathscr{H}_{1}} f(u)=\varrho\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}(1 / 2 \mathscr{B}(\alpha, u)) f(u+\alpha) \tag{2}
\end{equation*}
$$

is a unitary operator. It satisfies the property

$$
\begin{equation*}
F_{\mathscr{L}_{2}, \mathscr{H}_{1}}^{-1}=F_{\mathscr{L}_{1}, \mathscr{L}_{2}} \tag{3}
\end{equation*}
$$

and it is an intertwining operator for the \mathscr{L}_{1} - and \mathscr{L}_{2}-representations, that is for all $x \in \mathscr{V}$ the following relation holds:

$$
\begin{equation*}
F_{\mathscr{L}_{2}, \mathscr{L}_{1}}^{-1} W_{\mathscr{L}_{2}}(x) F_{\mathscr{L}_{2}, \mathscr{L}_{1}}=W_{\mathscr{L}_{1}}(x) \tag{4}
\end{equation*}
$$

Proof. At first we check that the definition (1) is correct, that is the right-hand part of the formula (2) doesn't depend on a choice of an element in coset $\alpha \in \mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)$. In fact taking into account that $f \in H\left(\mathscr{L}_{1}\right)$ for $\alpha^{\prime} \in \mathscr{L}_{1} \cap \mathscr{L}_{2}$ we have

$$
\begin{aligned}
& \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{E}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}\left(1 / 2 \mathscr{B}\left(\alpha+\alpha^{\prime}, u\right)\right) f\left(u+\alpha+\alpha^{\prime}\right) \\
= & \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}\left(1 / 2 \mathscr{B}\left(\alpha+\alpha^{\prime}, u\right)+1 / 2 \mathscr{B}\left(u+\alpha, \alpha^{\prime}\right)\right) f(u+\alpha) \\
= & \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{C}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}\left(1 / 2 \mathscr{B}\left(\alpha, \alpha^{\prime}\right)\right) \chi_{p}(1 / 2 \mathscr{B}(\alpha, u)) f(u+\alpha) \\
= & \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}(1 / 2 \mathscr{B}(\alpha, u)) f(u+\alpha) .
\end{aligned}
$$

It is easy to check that for $f \in H\left(\mathscr{L}_{1}\right)$ the condition $F_{\mathscr{L}_{2}, \mathscr{L}_{1}} f \in H\left(\mathscr{S}_{2}\right)$ holds.
Let us prove unitarity of $F_{\mathscr{L}_{2}, \mathscr{E}_{1}}$. From the definition of the operator $F_{\mathscr{S}_{2}, \mathscr{H}_{1}}$ we get

$$
\begin{equation*}
F_{\mathscr{L}_{2}, \mathscr{E}_{1}} f(u)=\varrho\left(\mathscr{B}_{1}, \mathscr{L}_{2}\right) \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{S}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}(\mathscr{B}(\alpha, u)) W_{\mathscr{L}_{1}}(-\alpha) f(u) . \tag{5}
\end{equation*}
$$

From the definition of \mathscr{L}-representation, orthogonality of coherent states, ParsevalStokes relation and the last formula we have

$$
\left\|F_{\mathscr{L}_{2}, \mathscr{L}_{1}} f\right\|_{H\left(\mathscr{L}_{2}\right)}^{2}=\varrho^{2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)}\left\|W_{\mathscr{C}_{1}}(-\alpha) f\right\|_{H\left(\mathscr{L}_{1}\right)}^{2}=\|f\|_{H\left(\mathscr{L}_{1}\right)}^{2}
$$

Now we prove the formula (3). Taking into account the condition $f \in H\left(\mathscr{L}_{1}\right)$ we get

$$
\begin{aligned}
& F_{\mathscr{L}_{1}, \mathscr{L}_{2}} F_{\mathscr{L}_{2}, \mathscr{E}_{1}} f(u) \\
& =\varrho^{2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\beta \in \mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}(1 / 2 \mathscr{B}(\beta, u)) \\
& \times \sum_{\alpha \in \mathscr{E}_{2} /\left(\mathscr{E}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}(1 / 2 . \mathscr{B}(\alpha, u+\beta)) f(u+\alpha+\beta) \\
& =\varrho^{2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{L}_{1} \cap \mathscr{E}_{2}\right)} \\
& \beta \in \mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{E}_{2}\right) \\
& \times \chi_{p}(1 / 2 \mathscr{B}(\beta, u)+1 / 2 \mathscr{B}(\alpha, u+\beta)+1 / 2 \mathscr{B}(u+\alpha, \beta)) f(u+\alpha) \\
& =\varrho^{2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\alpha \in \mathscr{L}_{2} /\left(\mathscr{L}_{1} \cap \mathscr{H}_{2}\right)} \chi_{p}(1 / 2 \mathscr{B}(\alpha, u)) f(u+\alpha) \sum_{\beta \in \mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{E}_{2}\right)} \chi_{p}(\mathscr{B}(\alpha, \beta))
\end{aligned}
$$

and (3) follows from the formula

$$
\varrho^{2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\beta \in \mathscr{H}_{1} /\left(\mathscr{S}_{1} \cap \mathscr{U}_{2}\right)} \chi_{p}(\mathscr{S}(\alpha, \beta))= \begin{cases}1, & \alpha \in \mathscr{L}_{1} \cap \mathscr{L}_{2} \tag{6}\\ 0, & \alpha \notin \mathscr{L}_{2} \cap \mathscr{B}_{1}\end{cases}
$$

For $\alpha \in \mathscr{L}_{1} \cap \mathscr{L}_{2}$ (6) obviously follows from the definition of $\varrho\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)$. For $\alpha \notin \mathscr{L}_{2} \cap \mathscr{S}_{1}$ let us choose $\beta^{\prime} \in \mathscr{L}_{1}$ satisfying the condition $\chi_{p}\left(\mathscr{P}\left(\alpha, \beta^{\prime}\right)\right) \neq 1$ (by virtue of selfduality of \mathscr{L}_{1} such β^{\prime} always exists). Then

$$
\begin{aligned}
& \varrho^{2}\left(\mathscr{H}_{1}, \mathscr{L}_{2}\right) \sum_{\beta \in \mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}(\mathscr{P}(\alpha, \beta)) \\
& \quad=\varrho^{2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\beta \in \mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}\left(\mathscr{B}\left(\alpha, \beta+\beta^{\prime}\right)\right) \\
& \quad=\chi_{p}\left(\mathscr{B}\left(\alpha, \beta^{\prime}\right)\right) \varrho^{2}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \sum_{\beta \in \mathscr{L}_{1} /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)} \chi_{p}(\mathscr{P}(\alpha, \beta))
\end{aligned}
$$

and therefore (6) is valid. The property (4) of the operator $F_{\mathscr{F}_{2}, \mathscr{L}_{1}}$ can be proved by analogy to that of (3).

The operator $F_{\mathscr{S}_{2}, \mathscr{S}_{1}}$ we call a canonical intertwining operator.
In particular from the last proposition it follows that \mathscr{L}_{1} - and \mathscr{L}_{2}-representations are unitary equivalent.

5. Maslov Index

Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3} \in \Lambda$. Then the corresponding representations $\left(H\left(\mathscr{L}_{1}\right), W_{\mathscr{L}_{1}}\right),\left(H\left(\mathscr{L}_{2}\right)\right.$, $\left.W_{\mathscr{L}_{2}}\right)$ and $\left(H\left(\mathscr{L}_{3}\right), W_{\mathscr{L}_{3}}\right)$ are unitary equivalent. Let us consider the unitary operator $\mathscr{F}=F_{\mathscr{H}_{1}, \mathscr{H}_{3}} F_{\mathscr{L}_{3}, \mathscr{L}_{2}} F_{\mathscr{L}_{2}, \mathscr{C}_{1}}$ on the space $H\left(\mathscr{L}_{1}\right)$. By using the formula (4) for intertwining operators $F_{\mathscr{L}_{1}, \mathscr{L}_{3}}, F_{\mathscr{L}_{3}, \mathscr{H}_{2}}$ and $F_{\mathscr{S}_{2}, \mathscr{H}_{1}}$ it is easy to see that the operator \mathscr{F} commutes with all operators $W_{\mathscr{C}_{1}}(x), x \in \mathscr{V}$ and by virtue of irreducibility of the \mathscr{L}_{1}-representation $\left(H\left(\mathscr{L}_{1}\right), W_{\mathscr{L}_{1}}\right)$ it is proportional to the identity operator on $H\left(\mathscr{L}_{1}\right)$. Thus we have

$$
\mathscr{F}=\mu\left(\mathscr{S}_{1}, \mathscr{L}_{2}, \mathscr{H}_{3}\right) \mathrm{Id}
$$

The number $\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right) \in \mathbb{T}$ we call the Maslov index of a triple of selfdual lattices.

Let us take an explicit formula for the Maslov index.
Proposition 4. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3} \in \Lambda$. Then the following formula holds:

$$
\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=\frac{\varrho\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \varrho\left(\mathscr{L}_{2}, \mathscr{L}_{3}\right)}{\varrho\left(\mathscr{L}_{3}, \mathscr{L}_{1}\right)} \sum_{\substack{\alpha \in \mathscr{H}_{2} /\left(\mathscr{C}_{2} \cap \mathscr{V}_{3}\right) \\ \beta \in \mathscr{L}_{3} /\left(\mathscr{H}_{3} \cap \mathscr{L}_{1}\right) \\ \alpha+\beta \in \mathscr{F}_{1}}} \chi_{p}(1 / 2 . \mathscr{B}(\alpha, \beta)) .
$$

Proof leans upon the formula (2) for a canonical intertwining operator. Let $f \in H\left(\mathscr{L}_{1}\right)$, then we have

$$
\begin{aligned}
& \mathscr{F} f(u)=\varrho\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \varrho\left(\mathscr{L}_{2}, \mathscr{L}_{3}\right) \varrho\left(\mathscr{L}_{3}, \mathscr{L}_{1}\right) \sum_{\gamma \in \mathscr{L}_{1} /\left(\mathscr{L}_{3} \cap \mathscr{L}_{1}\right)} \chi_{p}(1 / 2 . \mathscr{B}(\gamma, u) \\
& \beta \in \mathscr{L}_{3} /\left(\mathscr{F}_{2} \cap \mathscr{E}_{3}\right) \\
& \alpha \in \mathscr{H}_{2} /\left(\mathscr{E}_{1} \cap \mathscr{E}_{2}\right) \\
& +1 / 2 \mathscr{B}(\beta, u+\gamma)+1 / 2 \mathscr{B}(\alpha, u+\beta+\gamma)) f(u+\alpha+\beta+\gamma) \\
& =\varrho\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \varrho\left(\mathscr{L}_{2}, \mathscr{L}_{3}\right) \varrho\left(\mathscr{B}_{3}, \mathscr{L}_{1}\right) \sum_{\gamma \in \mathscr{L}_{1} /\left(\mathscr{L}_{3} \cap \mathscr{H}_{1}\right)} \\
& \beta \in \mathscr{E}_{3} /\left(\mathscr{E}_{2} \cap \mathscr{H}_{3}\right) \\
& \alpha \in \mathscr{L}_{2} /\left(\mathscr{H}_{1} \cap \mathscr{K}_{2}\right) \\
& \times \chi_{p}(1 / 2 \mathscr{B}(\alpha, \beta)+\mathscr{B}(\alpha+\beta, \gamma)) f(u+\alpha+\beta) .
\end{aligned}
$$

By using the last formula for $f=\phi_{\mathscr{L}_{1}}$ we get the needed formula:

$$
\begin{aligned}
\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right) & =\left(\mathscr{F} \phi_{\mathscr{L}_{1}}, \phi_{\mathscr{L}_{1}}\right)_{H\left(\mathscr{E}_{1}\right)} \\
= & \frac{\varrho\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \varrho\left(\mathscr{L}_{2}, \mathscr{L}_{3}\right)}{\varrho\left(\mathscr{L}_{3}, \mathscr{L}_{1}\right)} \sum_{\substack{\alpha \in \mathscr{L}_{2} /\left(\mathscr{L}_{2} \cap \mathscr{L}_{3}\right) \\
\beta \in \mathscr{H}_{3}\left(\mathscr{H}_{3} \cap \mathscr{H}_{1}\right) \\
\alpha+\beta \in \mathscr{L}_{1}}} \chi_{p}(1 / 2 \mathscr{B}(\alpha, \beta))
\end{aligned}
$$

Proposition 4 shows that the Maslov index of a triple of selfdual lattices does depend on only the "relative positions" of lattices, although in its definition one uses a representation of the Heisenberg group.
Proposition 5. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4} \in \Lambda$. The following statements are valid.
(i) $\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=\mu\left(g \mathscr{L}_{1}, g \mathscr{L}_{2}, g \mathscr{L}_{3}\right)$ for all $g \in \operatorname{Sp}(\mathscr{T})$;
(ii) $\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=1$ if at least two lattices in the triple coincide;
(iii) $\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ remains the same under an even permutation of lattices in the triple and transfers to a conjugate expression under an odd one;
(iv) the following cocycle relation holds:

$$
\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{B}_{3}\right) \mu\left(\mathscr{L}_{1}, \mathscr{L}_{3}, \mathscr{L}_{4}\right)=\mu\left(\mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}\right) \mu\left(\mathscr{L}_{2}, \mathscr{L}_{4}, \mathscr{L}_{1}\right) .
$$

Proof. (i) follows directly from the explicit formula for μ (Proposition 4). The statement (ii)-(iv) one proves in a similar manner immediately from the definition of μ. Let us prove the statement (iv). From the definition of the Maslow index we have:

$$
\begin{aligned}
& \mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right) \mu\left(\mathscr{L}_{1}, \mathscr{L}_{3}, \mathscr{L}_{4}\right) \text { Id } \\
& = \\
& \quad F_{\mathscr{L}_{1}, \mathscr{F}_{4}} F_{\mathscr{L}_{4}, \mathscr{L}_{3}} F_{\mathscr{L}_{3}, \mathscr{L}_{2}} F_{\mathscr{L}_{2}, \mathscr{L}_{1}}=F_{\mathscr{L}_{2}, \mathscr{L}_{1}}^{-1}\left(F_{\mathscr{S}_{2}, \mathscr{C}_{1}} F_{\mathscr{L}_{1}, \mathscr{H}_{4}} F_{\mathscr{S}_{4}, \mathscr{L}_{2}}\right) \\
& \quad \times\left(F_{\mathscr{L}_{2}, \mathscr{H}_{4}} F_{\mathscr{L}_{4}, \mathscr{H}_{3}} F_{\mathscr{L}_{3}, \mathscr{L}_{2}}\right) F_{\mathscr{E}_{2}, \mathscr{L}_{1}}=\mu\left(\mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}\right) \mu\left(\mathscr{L}_{2}, \mathscr{L}_{4}, \mathscr{B}_{1}\right) \mathrm{Id} .
\end{aligned}
$$

6. Calculations of the Maslov Index

Let us remind that any $x \in \mathbb{Q}_{p}^{*}$ can be uniquely represented in the following form:

$$
x=p^{\operatorname{ord}_{p}(x)} \varepsilon(x)
$$

where $\operatorname{ord}_{p}: \mathbb{Q}_{p}^{*} \rightarrow \mathbb{Z}$ and $|x|_{p}=p^{-\operatorname{ord}_{p}(x)} ; \varepsilon: \mathbb{Q}_{p}^{*} \rightarrow \mathbb{Z}_{p}^{*}$ and $\varepsilon(x)=x_{0}+x_{1} p+\ldots$, $x_{j}=0,1, \ldots, p-1, x_{0} \neq 0$. Fractional part $\{x\}_{p}$ equals 0 if $x \in \mathbb{Z}_{p}$ and for $x \notin \mathbb{Z}_{p}$ is defined by the formula

$$
\{x\}_{p}=p^{\operatorname{ord}_{p}(x)}\left(x_{0}+x_{1} p+\ldots+x_{-\operatorname{ord}_{p}(x)-1} p^{-\operatorname{ord}_{p}(x)-1}\right)
$$

Let $\lambda_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{T}$ be a function defined by the formula (see [VV]):

$$
\begin{aligned}
& \lambda_{p}(0)=1 \\
& \lambda_{p}(x)= \begin{cases}1, & \operatorname{ord}_{p}(x)=2 k, k \in \mathbb{Z} \\
\left(\frac{\varepsilon(x)}{p}\right), & \operatorname{ord}_{p}(x)=2 k+1, k \in \mathbb{Z}, p \equiv 1(\bmod 4) \\
i\left(\frac{\varepsilon(x)}{p}\right), & \operatorname{ord}_{p}(x)=2 k+1, k \in \mathbb{Z}, p \equiv 3(\bmod 4)\end{cases}
\end{aligned}
$$

where $\left(\frac{\varepsilon(x)}{p}\right)$ is the Legendre symbol of a p-adic unit $\varepsilon(x) \in \mathbb{Z}_{p}^{*}$. This function has the following properties.

Lemma 1. Function λ_{p} has the properties:
(i) $\lambda_{p}(-x)=\overline{\lambda_{p}(x)}$;
(ii) $\lambda_{p}\left(a^{2} x\right)=\lambda_{p}(x), a \in \mathbb{Q}_{p}^{*}$;
(iii) $\lambda_{p}(x) \lambda_{p}(y)=\lambda_{p}\left(\frac{x+y}{x y}\right) \lambda_{p}(x+y)$;
(iv) $\lambda_{p}(x) \lambda_{p}(y)=(x, y) \lambda_{p}(x y)$, where (x, y) is the Hilbert symbol.

Proof. For the proof of the properties (i)-(iii) see [VV]. Taking into account that $\lambda_{p}(x)=1$ for $x \in \mathbb{Z}_{p}^{*}$, statement (ii) and the symmetry of (iv) it is sufficient to check (iv) for the cases $x=y=p, x=y=\eta p, x=p, y=\eta p$, where $\eta \in \mathbb{Z}_{p}^{*},\left(\frac{\eta}{p}\right)=-1$ that can be done by direct calculations.

From the definition of λ_{p} it is easy to make out the connection of this function with the Gauss sum

$$
\begin{equation*}
\sum_{k=0}^{p^{n}-1} \exp \left(2 \pi i a \frac{k^{2}}{p^{n}}\right)=p^{n / 2} \lambda_{p}\left(a p^{n}\right) \tag{7}
\end{equation*}
$$

where $a \in \mathbb{Z}, n \in \mathbb{Z}_{\geq 0}$ and a is not divisible by p.
Let $m, n \in \mathbb{Z}, \mu, \nu \in \mathbb{Q}_{p}$ and $\{e, f\}$ be a symplectic basis of $(\mathscr{V}, \mathscr{B})$. We consider now the following triple of selfdual lattices in $(\mathscr{V}, \mathscr{S})$:

$$
\begin{aligned}
& \mathscr{L}_{1}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f \\
& \mathscr{L}_{2}=\mathbb{Z}_{p} p^{m} e \oplus \mathbb{Z}_{p}\left(\mu p^{m} e+p^{-m} f\right) \\
& \mathscr{L}_{3}=\mathbb{Z}_{p} p^{n} e \oplus \mathbb{Z}_{p}\left(\nu p^{n} e+p^{-n} f\right)
\end{aligned}
$$

As it is evident from the foregoing the Maslov index of these triples can be represented as function of m, n, μ and ν, that is $\mu\left(\mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{L}_{3}\right)=M(m, \mu ; n, \nu)$ for some function $M:\left(\mathbb{Z} \times \mathbb{Q}_{p}\right) \times\left(\mathbb{Z} \times \mathbb{Q}_{p}\right) \rightarrow \mathbb{T}$. The explicit formulas for the function M in simplest cases is given by the following theorem.

Theorem. The following formulas are valid:

$$
\begin{align*}
& M(m, 0 ; n, 0)=1 \text { for all } m, n \in \mathbb{Z} ; \tag{i}\\
& M(m, 0 ; 0, \nu)= \begin{cases}1, & m \geq 0 \text { or } \nu \in \mathbb{Z}_{p} \\
\lambda_{p}(-\nu), & m<0,1<|\nu|_{p}<p^{-2 m} \\
1, & m<0, p^{-2 m} \leq|\nu|_{p}\end{cases} \tag{ii}\\
& M(0, \mu ; 0, \nu)= \begin{cases}1, & \mu \in \mathbb{Z}_{p} \text { or } \nu \in \mathbb{Z}_{p} \text { or } \quad \mu-\nu \in \mathbb{Z}_{p}, \\
\lambda_{p}(\mu \nu(\mu-\nu)) \text { in other cases. }\end{cases} \tag{iii}
\end{align*}
$$

Proof. Since $\left|\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)\right|=1$, then all calculations can be carried out up to some real positive factor and instead of the equality sign we shall write the sign \sim. By virtue of Proposition 4 and the last remark we have

$$
M(m, \mu, n, \nu) \sim \sum_{\substack{\alpha \in \mathscr{L}_{1} /\left(\mathscr{E}_{2} \cap \mathscr{Z}_{3}\right) \\ \beta \in \mathscr{S}_{3}\left(\mathscr{F}_{3} \mathscr{Z}_{1}\right) \\ \alpha+\beta \in \mathscr{L}_{1}}} \chi_{p}(1 / 2 \mathscr{B}(\alpha, \beta))
$$

(i) Taking into account Proposition 5 (ii) it is sufficient to consider the case $m \neq 0$, $m \neq n, n \neq 0$. Besides that we can reduce the general case to the case of $m>n$, $m>0$ by means of changes of order of lattices in the triple and transformation of basis $e \rightarrow f, f \rightarrow-e$ if it is necessary. Since $\alpha \in \mathscr{L}_{2}$ and $\beta \in \mathscr{L}_{3}$ they can be represented in the following form:

$$
\begin{gathered}
\alpha=\alpha_{1} p^{m} e+\alpha_{2} p^{-m} f, \\
\beta=\beta_{1} p^{n} e+\beta_{2} p^{-n} f
\end{gathered}
$$

where $\alpha_{1}, a_{2}, \beta_{1}, \beta_{2} \in \mathbb{Z}_{p}$. As $p^{m} \alpha_{1} \in \mathbb{Z}_{p}$ if $m>0$ and $\alpha_{1} \in \mathbb{Z}_{p}$ then the condition $\alpha+\beta \in \mathscr{L}_{1}$ has the form:

$$
\begin{equation*}
p^{n} \beta_{1} \in \mathbb{Z}_{p}, \quad p^{-m} \alpha_{2}+p^{-n} \beta_{2} \in \mathbb{Z}_{p} . \tag{8}
\end{equation*}
$$

Since χ_{p} is of rank 0 and taking into account the condition $m-n>0$ and the formula (8) we get:

$$
\begin{aligned}
\chi_{p}(\mathscr{B}(\alpha, \beta)) & =\chi_{p}\left(p^{m-n} \alpha_{1} \beta_{2}-p^{n-m} \alpha_{2} \beta_{1}\right)=\chi_{p}\left(-p^{n-m} \alpha_{2} \beta_{1}\right) \\
& =\chi_{p}\left(-p^{n} \beta_{1}\left(p^{-n} \beta_{2}+p^{-m} \alpha_{2}-p^{-n} \beta_{2}\right)\right) \\
& =\chi_{p}\left(-p^{n} \beta_{1}\left(p^{-n} \beta_{2}+p^{-m} \alpha_{2}\right)+\beta_{1} \beta_{2}\right)=1
\end{aligned}
$$

and therefore $M(m, 0 ; n, 0)=1$ for all $m, n \in \mathbb{Z}$.
(ii) Taking into account Proposition 1 and 5 (ii) it is sufficient to consider the case $m \neq 0, \nu \notin \mathbb{Z}_{p}$. Let $\alpha \in \mathscr{L}_{2}$ and $\beta \in \mathscr{L}_{3}$. Then we have

$$
\begin{gathered}
\alpha=\alpha_{1} p^{m} e+\alpha_{2} p^{-m} f \\
\beta=\beta_{1} e+\beta_{2}(\nu e+f)
\end{gathered}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{Z}_{p}$. The condition $\alpha+\beta \in \mathscr{L}_{1}$ has the form:

$$
\begin{equation*}
p^{m} \alpha_{1}+\nu \beta_{2} \in \mathbb{Z}_{p}, \quad p^{-m} \alpha_{2} \in \mathbb{Z}_{p} \tag{9}
\end{equation*}
$$

Since of χ_{p} is a character of rank 0 and taking into account the formula (9) we get:

$$
\begin{align*}
\chi_{p}(\mathscr{B}(\alpha, \beta)) & =\chi_{p}\left(p^{m} \alpha_{1} \beta_{2}-p^{-m} \nu \alpha_{2} \beta_{2}\right) \\
& =\chi_{p}\left(p^{m} \alpha_{1} \beta_{2}-p^{-m} \alpha_{2}\left(p^{m} \alpha_{1}+\nu \beta_{2}-p^{m} \alpha_{1}\right)\right) \\
& =\chi_{p}\left(p^{m} \alpha_{1} \beta_{2}-p^{-m} \alpha_{2}\left(p^{m} \alpha_{1}+\nu \beta_{2}\right)+\alpha_{1} \alpha_{2}\right)=\chi_{p}\left(p^{m} \alpha_{1} \beta_{2}\right) . \tag{10}
\end{align*}
$$

If $m \geq 0$ then as it follows from (10) $\chi_{p}(\mathscr{B}(\alpha, \beta))=1$ and $M(m, 0 ; 0, \nu)=1$. Let now $m<0$ and $|\nu|_{p} \geq p^{-2 m}$, that is $\operatorname{ord}_{p}(\nu) \leq 2 m$. By virtue of (9) and (10) we have

$$
\begin{aligned}
\chi_{p}(\mathscr{B}(\alpha, \beta)) & =\chi_{p}\left(p^{m-\operatorname{ord}_{p}(\nu)} \varepsilon^{-1}(\nu) \alpha_{1}\left(p^{m} \alpha_{1}+\nu \beta_{2}-p^{m} \alpha_{1}\right)\right) \\
& =\chi_{p}\left(p^{m-\operatorname{ord}_{p}(\nu)} \varepsilon^{-1}(\nu) \alpha_{1}\left(p^{m} \alpha_{1}+\nu \varphi_{2}\right)-p^{2 m-\operatorname{ord}_{p}(\nu)} \varepsilon^{-1}(\nu) \alpha_{1}^{2}\right) \\
& =\chi_{p}\left(-p^{2 m-\operatorname{ord}_{p}(\nu)} \varepsilon^{-1}(\nu) \alpha_{1}^{2}\right)=1
\end{aligned}
$$

and $M(m, 0 ; 0, \nu)=1$. In the last case $m<0$ and $1<|\nu|_{p}<p^{-2 m}$ the proof is given below for the case $1<|\nu|_{p} \leq p^{-m}$ (the case $p^{-m}<|\nu|_{p}<p^{-2 m}$ one considers analogously). Let a and b denote α_{1} and β_{2} respectively, n denotes $\operatorname{ord}_{p}(\nu)$ and ε denotes $\varepsilon(\nu)$. As any $x \in \mathbb{Z}_{p}$ can be represented in the form

$$
x=x_{0}+x_{1} p+x_{2} p^{2}+\ldots, \quad x_{j}=0,1, \ldots, p-1
$$

then the condition (9) takes the form

$$
p^{m}\left(a_{0}+a_{1} p+\ldots\right)+p^{n}\left(b_{0}+b_{1} p+\ldots\right) \varepsilon \in \mathbb{Z}_{p}
$$

From the last formula we get that the formula (9) is equivalent to the set of equations:

$$
\begin{gathered}
a_{0}=a_{1}=\ldots=a_{n-m-1}=0 \\
a_{n-m}+(b \varepsilon)_{0}=0 \\
\vdots \\
a_{-m-1}+(b \varepsilon)_{-n-1}=0
\end{gathered}
$$

thus from (10) we have

$$
\begin{align*}
\chi_{p}(\mathscr{B}(\alpha, \beta))= & \chi_{p}\left(p^{n}\left(a_{n-m}+a_{n-m+1} p+\ldots\right)\left(b_{0}+b_{1} p+\ldots\right)\right) \\
= & \chi_{p}\left(-p^{n}\left((b \varepsilon)_{0}+(b \varepsilon)_{1} p+\ldots+(b \varepsilon)_{-n-1} p^{-n-1}\right)\right. \\
& \left.\times\left(b_{0}+b_{1} p+\ldots+b_{-n-1} p^{-n-1}\right)\right) \\
= & \chi_{p}\left(-p^{n}\left(b_{0}+b_{1} p+\ldots+b_{-n-1} p^{-n-1}\right)^{2} \eta\right) \tag{11}
\end{align*}
$$

where $\eta=\varepsilon_{0}+\varepsilon_{1} p+\ldots+\varepsilon_{-n-1} p^{-n-1}$. It is easy to see that the set $\mathscr{C}_{3} \cap \mathscr{L}_{1}$ has the form:

$$
\mathscr{S}_{3} \cap \mathscr{C}_{1}=\left\{\beta_{1} e+\beta_{2}(\nu e+f), \beta_{1} \in \mathbb{Z}_{p}, \nu \beta_{2} \in \mathbb{Z}_{p}\right\}
$$

and from the last formula and (11) we have

$$
M(m, 0 ; 0, \nu) \sim \sum_{b_{0}, b_{1}, \ldots, b_{-n-1}=0}^{p-1} \chi_{p}\left(-p^{n} \eta\left(b_{0}+\ldots+b_{-n-1} p^{-n-1}\right)^{2}\right)
$$

whence it follows that

$$
M(m, 0 ; 0, \nu) \sim \sum_{k=0}^{p^{-n}-1} \exp \left(-2 \pi i \eta \frac{k^{2}}{p^{-n}}\right)
$$

(Here we use the explicit form for the character $\chi_{p}(\xi)=\exp \left(2 \pi i\{\xi\}_{p}\right)$. Taking into account the formula (7) we get the needed formula $M(m, 0 ; 0, \nu)=\lambda_{p}\left(-p^{-n} \eta\right)=$ $\lambda_{p}(-\nu)$.
(iii) Taking into account Propositions 1 and 5 (ii) it is sufficient to consider the case $\mu \notin \mathbb{Z}_{p}, \mu-\nu \notin \mathbb{Z}_{p}, \nu \notin \mathbb{Z}_{p}$. We present here the proof only for the case of $|\mu|_{p} \neq|\nu|_{p}$, otherwise (iii) can be proved analogously. By the symmetry we can suppose that $|\nu|_{p}<|\mu|_{p}$. Let $\alpha \in \mathscr{L}_{2}, \beta \in \mathscr{L}_{3}$, then

$$
\begin{gathered}
\alpha=\alpha_{1} e+\alpha_{2}(\mu e+f) \\
\beta=\beta_{1} e+\beta_{2}(\nu e+f)
\end{gathered}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{Z}_{p}$. The condition $\alpha+\beta \in \mathscr{L}_{1}$ takes the form:

$$
\mu \alpha_{2}+\nu \beta_{2} \in \mathbb{Z}_{p}
$$

Since the rank of χ_{p} equals 0 we have:

$$
\begin{equation*}
\chi_{p}(\mathscr{B}(\alpha, \beta))=\chi_{p}\left(\mu \alpha_{2} \beta_{2}-\nu \alpha_{2} \beta_{2}\right)=\chi_{p}\left((\mu-\nu) \alpha_{2} \beta_{2}\right) \tag{12}
\end{equation*}
$$

Let $\operatorname{ord}_{p}(\mu)-m, \operatorname{ord}_{p}(\nu)=-n, \alpha_{2}=a, \beta_{2}=b$. As for the proof of the statement (ii) from the formula (12) we get:

$$
p^{-m} \varepsilon(\mu)\left(a_{0}+a_{1} p+\ldots\right)+p^{-n} \varepsilon(\nu)\left(b_{0}+b_{1} p+\ldots\right) \in \mathbb{Z}_{p}
$$

In the case of $m>n \geq 1$ from the last formula we have:

$$
\begin{gather*}
\left(\varepsilon \left(\mu(a)_{0}=(\varepsilon(\mu) a)_{1}=(\varepsilon(\mu) a)_{m-n-1}=0\right.\right. \\
(\varepsilon(\mu) a)_{m-n}+(\varepsilon(\nu) b)_{0}=0 \\
\vdots \tag{13}\\
(\varepsilon(\mu) a)_{m-1}+(\varepsilon(\nu) b)_{n-1}=0
\end{gather*}
$$

As for the proof of (ii) from (12) and (13) we have:

$$
\chi_{p}(\mathscr{B}(\alpha, \beta))=\chi_{p}\left(-(\mu-\nu) \frac{\varepsilon(\nu)}{\varepsilon(\mu)} p^{m-n}\left(b_{0}+b_{1} p+\ldots+b_{n-1} p^{n-1}\right)^{2}\right)
$$

Since $\operatorname{ord}_{p}(\mu-\nu)=\operatorname{ord}_{p}(\mu)$ from the last formula we obtain:

$$
\chi_{p}(\mathscr{B}(\alpha, \beta))=\chi_{p}\left(p^{-n} \eta\left(b_{0}+b_{1} p+\ldots+b_{n-1} p^{n-1}\right)^{2}\right),
$$

where

$$
\eta=\left(\varepsilon(\nu-\mu) \frac{\varepsilon(\nu)}{\varepsilon(\mu)}\right)_{0}+\left(\varepsilon(\nu-\mu) \frac{\varepsilon(\nu)}{\varepsilon(\mu)}\right)_{1} p+\ldots+\left(\varepsilon(\nu-\mu) \frac{\varepsilon(\nu)}{\varepsilon(\mu)}\right)_{n} p^{n-1}
$$

The set $\mathscr{L}_{3} \cap \mathscr{L}_{1}$ has the form

$$
\mathscr{L}_{3} \cap \mathscr{C}_{1}=\left\{\beta_{1} e+\beta_{2}(\nu e+f), \beta_{1} \in \mathbb{Z}_{p}, \nu \beta_{2} \in \mathbb{Z}_{p}\right\}
$$

and as for the proof of (ii) we have:

$$
M(0, \mu ; 0, \nu)=\lambda_{p}\left(p^{n} \eta\right)
$$

Taking into account the properties of the function λ_{p} and the relation $\operatorname{ord}_{p}(\nu-\mu)=$ $\operatorname{ord}_{p}(\mu)$ we derive from the last formula:

$$
\begin{aligned}
M(0, \mu ; 0, \nu) & =\lambda_{p}\left(p^{n} \varepsilon(\nu-\mu) \frac{\varepsilon(\nu)}{\varepsilon(\mu)}\right) \\
& =\lambda_{p}\left(p^{n} \varepsilon(\nu) p^{m} \varepsilon(\mu) p^{m} \varepsilon(\nu-\mu)\right)=\lambda_{p}(\nu(\nu-\mu))
\end{aligned}
$$

The proved theorem makes possible to calculate the Maslov index in the general case. By Proposition 1 for an arbitrary triple $\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ of selfdual lattices there is a symplectic basis $\{e, f\}$ wherein

$$
\begin{align*}
& \mathscr{L}_{1}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f, \\
& \mathscr{L}_{2}=\mathbb{Z}_{p} p^{m} e \oplus \mathbb{Z}_{p} p^{-m} f, \\
& \mathscr{L}_{3}=\mathbb{Z}_{p} p^{n} e \oplus \mathbb{Z}_{p}\left(\nu p^{n} e+p^{-n} f\right), \tag{14}
\end{align*}
$$

where $m \in \mathbb{Z}_{\geq 0}, n \in \mathbb{Z}, \nu \in \mathbb{Q}_{p}$. Therefore the Maslov index of this triple is given by the relation

$$
\mu\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=M(m, 0 ; n, \nu)
$$

Let $\mathscr{L}_{4}=\mathbb{Z}_{p} p^{n} e \oplus \mathbb{Z}_{p} p^{-n} f$. In the symplectic basis $\left\{\tilde{e}=p^{n} e, \tilde{f}=p^{-n} f\right\}$ we have

$$
\begin{aligned}
\mathscr{L}_{1} & =\mathbb{Z}_{p} p^{-n} \tilde{e} \oplus \mathbb{Z}_{p} p^{n} \tilde{f} \\
\mathscr{L}_{2} & =\mathbb{Z}_{p} p^{m-n} \tilde{e} \oplus \mathbb{Z}_{p} p^{n-m} \tilde{f} \\
\mathscr{L}_{3} & =\mathbb{Z}_{p} \tilde{e} \oplus \mathbb{Z}_{p}(\nu \tilde{e}+\tilde{f}) \\
\mathscr{S}_{4} & =\mathbb{Z}_{p} \tilde{e} \oplus \mathbb{Z}_{p} \tilde{f}
\end{aligned}
$$

Taking into account Proposition 5(i), (iii), (iv) we have

$$
\begin{aligned}
\mu\left(\mathscr{L}_{1}, \mathscr{B}_{2}, \mathscr{D}_{3}\right) & =\bar{\mu}\left(\mathscr{L}_{1}, \mathscr{L}_{3}, \mathscr{L}_{4}\right) \mu\left(\mathscr{L}_{2}, \mathscr{S}_{3}, \mathscr{L}_{4}\right) \mu\left(\mathscr{L}_{2}, \mathscr{S}_{4}, \mathscr{L}_{1}\right) \\
& =\bar{M}(-m, 0 ; 0, \nu) M(m-n, 0 ; 0, \nu) M(-n, 0 ; m-n, 0)
\end{aligned}
$$

By virtue of the theorem and the last formula the following corollary is valid.
Corollary. For the lattices $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}$ of the form (14) we have

$$
\mu\left(\mathscr{C}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)= \begin{cases}1, & m=0 \text { or } \quad \nu \in \mathbb{Z}_{p} \quad \text { of } n \leq 0 \\ \lambda_{p}(\nu), & 0<n \leq m, 1<|\nu|_{p}<p^{2 n} \\ 1, & 0<n \leq m, p^{2 n} \leq|\nu|_{p} \\ 1, & m<n, 1<|\nu|_{p}<p^{2(n-m)} \\ \lambda_{p}(\nu), & m<n, p^{2(n-m)} \leq|\nu|_{p}<p^{2 n} \\ 1, & m<n, p^{2 n} \leq|\nu|_{p}\end{cases}
$$

Acknowledgements. I would like to thank I. Volovich for helpful discussions and the referee for valuable comments.

References

[C] Cartier, P.: Quantum mechanical commutation relations and theta-functions. Proc. Sympos. Pure Math. 9, 361-383 (1966)
[LV] Lion, G., Vergne, M.: The Weil representation, Maslov index and theta-series. Boston: Birkhäuser 1980
[Ma] Maslov, V.P.: Aymptotic methods and perturbation theory. Moscow: Nauka 1988
[Me] Meurice, Y.: Quantum mechanics with p-adic numbers. Int. J. Math. Phys. A 4, 5133-5147 (1989)
[MH] Milnor, J., Husemoller, D.: Symmetric bilinear forms. Berlin, Heidelberg, New York: Springer 1973
[PR] Platonov, V.P., Rapinchuk, A.S.: Algebraic groups and number theory. Moscow: Nauka 1990
[R] Ruelle, P., Thiran, E., Verstegen, D., Weyers, J.:, Quantum mechanics on p-adic fields. J. Math. Phys. 30, 2854-2861 (1989)
[VV] Vladimirov, V.S., Volovich, I.V.: p-Adic quantum mechanics. Commun. Math. Phys. 123, 659-676 (1989)
[V] Volovich, I.V.: p-Adic strings. Class. Quant. Grav. 4, L83-L 87 (1987)
[W1] Weil, A.: Basic number theory. Berlin, Heidelberg, New York: Springer 1967
[W2] Weil, A.: Sur certains groupes d'operateurs unitaires. Acta Mathem. 111, 143-211 (1964)

Communicated by H. Araki

