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Abstract. We study general relativity in the framework of non-commutative differ-
ential geometry. As a prerequisite we develop the basic notions of non-commutative
Riemannian geometry, including analogues of Riemannian metric, curvature and scalar
curvature. This enables us to introduce a generalized Einstein-Hilbert action for non-
commutative Riemannian spaces. As an example we study a space-time which is
the product of a four dimensional manifold by a two-point space, using the tools of
non-commutative Riemannian geometry, and derive its generalized Einstein-Hilbert
action. In the simplest situation, where the Riemannian metric is taken to be the same
on the two copies of the manifold, one obtains a model of a scalar field coupled
to Einstein gravity. This field is geometrically interpreted as describing the distance
between the two points in the internal space.

1. Introduction

The poor understanding we have of physics at very short distances might lead one to
expect that our description of space-time at tiny distances is inadequate. No convincing
alternative description is known, but different routes to progress have been proposed.
One such proposal is to try to formulate physics on some non-commutative space-time.
There appear to be too many possibilities to do this, and it is difficult to see what
the right choice is. So the strategy is to consider slight variations of commutative
geometry, and to see whether reasonable models can be constructed. This is the
approach followed by Connes [1], and Connes and Lott [2,3]. They consider a model
of commutative geometry (a Kaluza-Klein theory with an internal space consisting of
two points), but use non-commutative geometry to define metric properties. The result
is an economical way of deriving the standard model in which, roughly speaking, the
Higgs field appears as the component of the gauge field in the internal direction.

In this paper, we show how gravity, in its simplest form, can be introduced in
this context. We first propose a generalization of the basic notions of Riemannian
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geometry. This construction is based on the definition of the Riemannian metric as an
inner product on cotangent space. Connes has proposed to define metric properties of
a non-commutative space corresponding to an involutive unital algebra A in terms of
K-cycles over A, [3J. It will be shown that every if-cycle over A yields a notion of
"cotangent bundle" associated to A and a Riemannian metric on the cotangent bundle
ι. We then introduce orthonormal bases, "vielbeins", in a space of sections of the
cotangent bundle, analogues of the spin connection, torsion and Riemann curvature
tensor, and we derive Cartan structure equations. This enables us to define an analogue
of scalar curvature. After this, we propose a generalized Einstein-Hilbert action and
see how it looks like in the case of a Kaluza-Klein model with a two-point internal
space.

The construction illustrates an interesting feature of non-commutative geometry for
commutative spaces: the fact that the metric structure is more general allows one to
consider a class of metric spaces more general than Riemannian manifolds, in which
however differential geometric notions, such as connections and curvature, still make
sense.

The physical picture emerging from this is of a gravitational field described by a
Riemannian metric on a four-dimensional space-time plus a scalar field which encodes
the distance between the two points in the internal space. This field is massless
and couples in a minimal way to gravity. Its vacuum expectation value turns out to
determine the scale of weak interactions in the formalism of [3J.

2. Riemannian Geometry

In this section we develop some concepts of Riemannian geometry in the more
general context of non-commutative spaces. Let j?" be a Z-graded differential

oo

algebra over R or C. This means that Ω' — φ Ωn is a graded complex of vector
o

spaces with differential d:Ωn —> Ωn+ι and that there is an associative product
m:Ωn 0 Ωm -> Ωn+m. In particular, A = Ω° is an algebra, and Ωn is a two
sided A module. We will always assume that Ω' has a unit 1 G A. The algebra A
is to be thought of as a generalization of the algebra of functions on a manifold,
and Ω' as a generalization of the space of differential forms. The most important
example for us is Connes' algebra of universal forms Ω'(A) over an algebra A. It
is generated by symbols /, of degree zero, and df, of degree one, / e A, with
relations d{fg) = df g + f dg, f,gζA, and d\ = 0. The notation is consistent, since
Ω\A) = A.

In non-commutative geometry, a notion of vector bundles over a non-commutative
space described by an algebra A is provided by finitely generated, projective left
A modules. A connection on a left A module E is, by definition, a linear map
V : E -> Ωι (g) E such that, for any / e A and s e E,

A

V(fs) = df®s + fVs. (1)

For any left A module E, define Ω'E to be the graded left Ω' module, Ω'E =
Ω' (g) E, of "^-valued differential forms". A connection V on E extends uniquely

A

We thank A. Connes for help in finding the right construction of a metric
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to a linear map of degree one V:ΩΈ —> Ω'E with the property that, for any
homogeneous a G Ω', φ G Ω'E,

V(aφ) = daψ + ( - l)deg(α)αV(/>. (2)

The curvature of. V is then β(V) = -W2:E -> J?2 (g) £ , and obeys -V 2 (/s) =

/(-V 2 )s, for any / G A and s G E .
Suppose now that Ω' is involutive, i.e. there is an antilinear antiautomorphism

a H-> α* with α** = α, for all α G Ω\ Assume that deg(α*) = deg(α) and
(da)* = (—l)d e g ( ; α ) + 1d(α*), for homogeneous a. If A is any involutive algebra
then the algebra Ω'(A) of universal differential forms is involutive, with the above
properties, if we set (df)* = — d(/*), for / G A In general, elements of A of the form
g = Σftfi> a r e called non-negative (# > 0). The module E is called hermitian if it

has a hermitian inner product ( , ) : E x E —> A, which is by definition a sesquilinear
form such that

(i) (fs.gt) = / ( * , % * , f,geA,s,teE.

(ii) (s, s) > 0.
(iii) The map s ι-> (s, •) from £ to the left A module E* = {£:£ -> A,
ί(/s + pi) = ί(s)/* + Kt)g*} is an isomorphism.

Any hermitian inner product on E extends uniquely to a sesquilinear map
Ω'E x Ω'E -> β such that {aφ,βψ) = a(φ,ψ)β* for all α,/3 G β", 0 , ^ e Ω'E.
A connection V on a hermitian A module E is unitary if, for all 8, t G E1,
d(s,ί) = (Vs,t) - (s,Vt) [the minus sign appears here because we have set
(df)* = —df*]. One has then for homogeneous 0, ψ G β"£^

d(0,ψ) = (V0,ψ) - (-l)deg(^ )deg(^((/>, V^>. (3)

Next, we attempt to introduce the notion of non-commutative Riemannian geome-
try. The first step consists in introducing a notion of distance on a non-commutative
space. Apparently, in non-commutative geometry, a natural notion of distance is pro-
vided by K-cycles. Recall that a K-cycle over an involutive algebra A is a pair
(H, D), where H = H+ 0 H_ is a Z 2 graded Hubert space with a *-action of A by
even bounded operators, and D is a possibly unbounded, odd self-adjoint operator,
called Dirac operator, such that [£), /] is bounded, for all / G A, and (D 2 4- I ) " 1 is
compact. Then π(fodfx . . . dfn) = fo[D, f{]... [D, fn] defines an involutive [i.e. with
TΓ(Q;*) = π(α)*] representation of the algebra Ω'(A) of universal forms. One shows
then that the graded subcomplex Ker(π) + dKer(π) is a two-sided ideal of Ω'(A), so
that the quotient

ΩD(A) = β'(A)/(Ker(π) + dKer(π)) (4)

is a graded differential algebra2.
In Riemannian geometry, we choose A and Ω'(A) to be algebras over the field

]R. In order to introduce a notion of metric on a non-commutative space, we must
try to define an analogue of the tangent- or cotangent bundle over a manifold for
non-commutative spaces. One might be tempted to define a "space of sections of the
tangent bundle" as the space of derivations of A. However, this turns out to be not
a very useful notion, (as many interesting algebras A have too few derivations). It

2 This algebra was introduced in the Cargese lecture notes of Connes and Lott [3]. It replaces the
algebra of universal forms used in [1,2] and allows for a more transparent treatment of "auxiliary
fields"
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is more promising to introduce an analogue of the cotangent bundle in our context.
Given a K-cycle (ff, D) over A, we define a "space of sections of the cotangent
bundle" as Ωι

D(A). We note that Ωι

D(A) is a left A module, hence a vector bundle
over A.

A Riemannian metric is a hermitian inner product - more generally, a non-
degenerate inner product - on Ωι

D Ξ Ω[

D(A) which, in the examples considered
below, determines a notion of distance coinciding with the one obtained from the
Dirac operator, as in [3]. In view of these examples and results in [3], it is natural
to ask, whether Ωι

D(A) can be equipped with a Riemannian metric that is uniquely
determined by the iί-cycle (H, D) over AΊ In order to answer this question, we
have to introduce an analogue for non-commutative spaces of the notions of "volume
form" and "integration". Following Connes, see [3], we say that a iί-cycle (H, D) is
(d, oo)-summable if

9 _ d

trH(Dz + 1) p < oo , for all p > - .

Let Ίvω denote the Dixmier trace [3J. The integral of an element a £ Ω'D(A) is
defined by

a: = T r ω ( π ( α ) | D Γ d ) . (5)

An alternative definition of J a which, in the examples considered below, is equivalent
to the one just given is the following one:

tΓrrl

a: = lim ——

(assuming the limit exists). The advantage of this definition is that it might still be
meaningful in examples where d = oo.

When d < oo and /(•) is defined by (5) then J ( ) defines a trace on the algebra
Ω'D(A), hence on the subalgebra A = Ω°D(A) c Ω'D(A), which is invariant under
cyclic permutations. It also defines a scalar product on ΩD(A): For a,β £ Ω'D(A),
we define

(α,/?)= fa.β*=Ύτω(π(a.β*)\D\-d). (6)

This scalar product permits us to choose special representatives in the equivalence
classes defining the elements of Ω'(A)/(Ker(π) + dKer(π)) as follows: Given
a G ΩD(A), we define a^ to be the operator on H corresponding to a and
orthogonal to Ker(π) + dKer(π) with respect to the scalar product ( , •). From now
on we identify the elements a £ Ω'D(A) with the operators a-1 and omit the sym-
bol J_.

Let ΩD(A) = L2(ΩD{A)) and A = L2(A) denote the completions of Ω'D(A),A,
respectively, in the norm defined by the scalar product (6). It is easy to show that
Ω'D(A) is a left- and right Ω'D(A) module, and A is a left- and right A module. We

/ n \

define Pn to be the projection onto the subspace L21 φ Ωp(A) I that is orthogonal
\m=0 /

in the scalar product (6). For a £ Ω'D(A), we abbreviate Pna by an. [Note that in the
classical case, where A = C°°(M), M is an even-dimensional, compact Riemannian
manifold with spin structure, and D is the usual Dirac operator, an n-form corresponds
to the operator a — α n - 1 , for some a £ Ω^(A).]
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Given a and β in Ωι

D(A), we define an element, {a,β)0 e A by the equation

for all c£ A.
By the Cauchy-Schwarz inequality for ( , •),

(7)

jcβa>\ < JJcc'Jj,

= const v (c, c),

which shows that (a, β)0 indeed belongs to A. The element (α, β)0 defines an operator
on the dense subspace A c A by the equation

Since

((a,β)oc,d): = / aβ*cd* .

\((a,β)0,c,d)\ =

(α, /5)0 actually is an operator in A which is a bounded operator on the Hubert space
L2(A) = A.

It is straightforward to check that the definition of ( , ) 0 extends to Ωι

D(A) x

Ωι

D(A): For ayβ in Ωλ

D(A), (a,β)0 defines a unique linear functional on the dense

subspace A C A. Next, we note that, for α,/3 in Ωι

D(A),

f
= / cbβa*a*

= I a*cbβa*

= J a*cb(a,β)*

= ίcb{a,β)*a*

= [c(a(a, β)ob*f

for arbitrary a, b and c in A. Hence

(8)

Furthermore, for every a e Ωι

D(A), (a, a}0 defines a positive-semidefinite quadratic

form on the dense subspace A c A. Finally if for some a £ Ωι

D(A),

(a,β)Q = 0, for all β e Ωι

D(A),
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then (1, (α, α)ol) = / αα* = 0, and hence

/ «7* < \ / oia* J / 77* = 0,

for all 7 e Ω'D(A). Thus a = 0, as an element of β^CA).
We conclude that ( , ) 0 defines a hermitian inner product on the left A module

Ωι

D(A) satisfying (i)-(iii), above; i.e., ( , }0 defines a Riemannian metric on Ωι

D(A).
Since A contains A, it may happen that {a,β)0 belongs to A, for arbitrary a and β
in Ωι

D(A). In this case, ( , )o defines a Riemannian metric on Ωι

D(A). In general, we
say that ( , ) 0 defines a generalized Riemannian metric on Ωι

D(A). We wish to thank
A. Connes for having suggested to us this construction of the metric ( , ) 0.

It is straightforward to see that the arguments described above can be generalized
to construct Riemannian metrics, ( , ) 0, on the spaces Ωp(A), for all n = 1,2,3,...,
which are uniquely determined by the i^ί-cycle (ϋΓ, D) over A.

Next, we consider some connection V on Ωι

D(A). We say that V is unitary with
respect to the generalized Riemannian metric ( , ) 0 on Ωι

D(A) iff, for arbitrary α, β
and 7 in Ωι

D(A)9

0 0 , (9)

where

(7,(Vα,/3)0): = j ηβ{Vaf , etc.

We define the torsion of a connection V on Ωι

D(A) by

(10)

It is an A linear operator from Ωι

D(A) to 4?£,(-A). The connections of interest in
Riemannian geometry are those with vanishing torsion. Among such connections we
should like to find ones that can be inteφreted as natural generalizations of Levi-Cίvita
connections. A connection V on Ωι

D(A) is a Levi-Civita connection iff Γ(V) = 0
and V is unitary with respect to the Riemannian metric defined on Ωι

D(A).
It is straightforward to derive Cartan structure equations in this context. Suppose

that Ωι

D is a trivial vector bundle, i.e. a free, finitely generated A module, with
Riemannian metric. (The following analysis could be generalized to situations where
Ωι

D is a non-trivial vector bundle by introducing a suitable family of subspaces of
H invariant under π(Ωι

D) with the property that the restriction of π(Ωι

D) to every
subspace in this family is trivial.) Let EA, A— 1,. . . , AT, be a basis of Ωι

D which is
orthonormal in the metric on Ωι

D. We define ΩA

B e Ωι

D by

VEA = -ΩA

B®EB. (11)

The components of torsion and curvature are defined by

(12)
T(V)EA = TA ,

= RA

B®E£
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The Cartan structure equations follow by inserting the definitions of T(V) and i2(V):

B l ' (13)
TA = dEA + ΩA

 RED .

Next, we determine the transformation properties of the components, ΩA

B,T
A and

RA

B, of a connection V, its torsion T(V) and its curvature iϊ(V), respectively, under
a change of the orthonormal basis of Ωι

D(A). We recall that Ωι

D(A) is a left A module
of some dimension N, and {EB}B=ι is a basis of Ωι

D(A) which is orthonormal with
respect to a (generalized) Riemannian metric ( , ) on ΩX

D{A). We introduce a new
basis, {EB}%=1, of Ωι

D(A) by setting

EB = MB

CE
C , (14)

where M = {MB

c) is an AT x AT matrix with matrix elements M β

c e A. Requiring

that {£B}B=\ be again orthonormal with respect to ( , •) implies that

δBC = (EB,EC) = MB

D(ED,Eκ){Mc

κf

= MB

DδDK(Mc

κf = MB

D(MCDf , (15)

where we have used property (i). [Note that, since δBC = δB = δBC = 1 if B = C,
- 0 if 5 ^ C, MBC = MB

C = M^ c . ] It follows from (15) that M is a unitary
N x N matrix with matrix elements in A, i.e., M G UN(A). In real Riemannian
geometry we assume that A is an algebra over R. Then α* is the same as the
transposed of a € A, and it would be more natural to call N x N matrices satisfying
(15) "orthogonal" and replace UN(A) by ON(A).

In order to determine the transformation properties of the components ΩA

B of V
under the change of basis given in (14), we use their definition, Eq. (11): Then

VEB = V(MB

CE
C) = dMB

cE
c + MB

CX7EC

= dMB

cE
c - MB

CΩ
C

KEK . (16)

But we also have that

VEB = -ΩB

CE
C = -ΩB

CM
C

KEK . (17)

Comparing (16) and (17), for arbitrary B — 1,..., N, and using (15), it follows that

ΩB

C = MB

DΩD

κ(Mc

κf - dMB

κ(Mc

κf . (18)

It then follows from the first equation in (12) that

TB = MB

CT
C . (19)

Using the second equation in (12), Eqs. (18) and (15) and the identity

dMB

κ{Mc

κf = -MB

κd(Mc

κf

which follows from (15), one verifies by a direct calculation that the components of
curvature transform as follows:

RB

C = MB

DRD

κ{Mc

κf . (20)

These transformation properties enable us to define an analogue, r(V), of scalar
curvature:

r(V):=P0(E*RB

cE
c). (21)
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It follows from Eqs. (14), (20), and (15) that r(V) is independent of our choice of the
orthonormal basis {EB}B=l of Ωι

D(A). [At this point, our assumption that Ωι

D(A)
be a trivial bundle is likely to become superfluous.] Note that, by the definition of
P0,r(X7) belongs to A.

If the metric on Ω{

D(A) is the generalized Riemannian metric ( , )o determined by
the K-cycle (H, D) over A we may define an analogue of the Einstein-Hilbert action
by setting

J(V): = Jr(V) = J E*BRB

CE
C

= (RB

CE
C

1EB). (22)

If V is chosen to be a Levi-Civita connection associated with ( ϋ , D), i.e., T(V) = 0,
and V is unitary with respect to ( , ) 0, then the action functional / = J(V) defines a
functional on a "space of X-cycles over A"

3. The Example of a Two-Sheeted Space

We now introduce a class of algebras and of K-cycles for which the Riemannian
geometry concepts introduced above are well defined.

Let X be a compact even dimensional C°° spin manifold, with a reference
Riemannian metric g0 and fixed spin structure, A the algebra of smooth real functions
on X and Cliff(T*X) the Clifford bundle over X, whose fiber at x is the (real)
Clifford algebra of the cotangent space Cliff(T*X) associated to go(x). Let S be
the spinor bundle. Thus S is a Z 2 graded complex vector bundle over X, with a
representation of the Clifford algebra of the cotangent space on each fiber Sx, such
that End c(S;) ~ Cliff(T*X) 0 C. A section of End(S) ~ Cliff(Γ*X) 0 C is called
real if it takes values in the real Clifford algebra. We consider K-cycles (if, D) where:
(a) D is an odd first order elliptic differential operator on the space C°°(S) of smooth
sections of S.
(b) For each / e A, [D, /] is a real section of End(5).
(c) H = L 2(5, ρddx) is the space of square integrable sections of 5, where ρ(y) is a
density for which D is self-adjoint.

We will also need the following variant with group action: Let X, A,CΓiff(T*X)
and S be as above, and suppose that X is a finite smooth covering of a manifold Y.
That is, p:X —» Y is a principal G bundle with base space Y = X/G, and G is a
finite group. The reference metric will be chosen to be preserved by the group action,
and we assume that the group action lifts to S. Denote by p^S the vector bundle
over Y whose fiber over y is the direct sum φ Sx. Both A and the group G act

on the sections of p^S. A linear operator on the space of smooth sections of p*S is
called equίvariant if it commutes with the action of G. The vector space Έnάc{p^.Sy)
is the space of matrices indexed by p~ι(y) with entries in Cliff(T*Y) 0 C. A vector
in Enάc(p*Sy) is called real if its matrix entries belong to the real Clifford algebra,
and a section of End(p*5) is called real if it takes real values.

In this setting, we consider K-cycles (H, D) where:
(a') D is an odd equivariant first order elliptic differential operator on the space
C°°(p*S) of smooth sections of p*S.
(b7) For each / £ A, [D, /] is multiplication by a real section of



Gravity in Non-Commutative Geometry 213

(c;) H = I?(p*S,ρddy) is the space of square integrable sections of p^S, where
ρ(y) is a density for which D is selfadjoint.

These data define a Riemannian geometry on the graded differential algebra
ΩD(A). The Riemannian metric is defined to be

G(α, β) = tr(τr(α)7r(/3*)), α, /? G Ωι

D(A). (23)

This is independent of the choice of repesentatives α, /? since cίKer(π) Π i ? 1 ^ ) = 0
and therefore Ωι

D(A) is isomoφhic to π(Ωι(A)). The trace over the Clifford algebra
is defined fiberwise. We normalize it in such a way that the trace of the identity is
one. It is not hard to check that the metric G( , •) coincides with the metric ( , ) 0

determined by the i^-cycle (if, D), as constructed above.

4. The Gravity Action for a Two-Sheeted Space

Let us apply the formalism introduced in the previous section to an example. As in
[1-3], we take X to be two copies of a compact, say four-dimensional, spin manifold
Y:

X = Y x Z 2 ,

and we have the trivial Z 2 bundle p: X —» Y. The algebra A is then C ^ Q O θ C ^ O O .
It is convenient to think of A as a subalgebra of diagonal matrices in the algebra
M2(C) 0 C°° (Cliff(T*Y)) of two by two matrices whose entries are smooth sections
of the Clifford bundle. The chirality operator 7 5 belongs to the real Clifford algebra
and defines a Z 2 grading of the spinor bundle 5. The operator

7 5 0

defines a Z 2 grading of C°°(p*S) = C°°(S) Θ C°°(5) (the minus sign is a matter of
convention).

We work in local coordinates. Let us introduce gamma matrices j a with (7α)* =
- 7 α , α = 1,.. ., 4, obeying the relations Ί

aγ-\-γΊ

a = - 2δab. Then 7 5 = 7 1 7 2 7 3 7 4

is self-adjoint and has square one. We set ηab = ~ (ηaηb — ηhηa) = - (ηbaγ.

The Dirac operator can then be represented as a two by two matrix (DZJ),
i,j G {+,—}, whose entries are first order differential operators acting on spinors
of Y. What are the restrictions on these entries imposed by (a')-(cθ? First of all, Z 2

equivariance implies that D+_ — D_+ and D++ ~ D__, and the fact that [D, /] is
a multiplication operator implies that D+_ should be a multiplication operator. The
most general form of D, compatible with self-adjointness, reality and oddness is then

D =

where ε^, ψ, and φ are real functions. Since D is elliptic, ε%dμ is a basis of the tangent
space, and we can define a Riemannian metric g on Y by g(εa,εb) = δab. The dots
in the definition of D indicate zero order contributions which do not contribute to π.
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The representation π on one-forms can now be computed. Let a = Σiaίdbι £
Ωι(A) be a representative of a one-form in Ωι

D(A). Then π(a) is parametrized by
two classical one-forms α l μ , α 2 μ , and two functions a5,ά5, on Y:

We use the notation ημ — 7αε^, 7 = ψ + ^φ. In terms of the variables a% — anΘai2

and bτ = bτl θ 6 ϊ2, we have

The Riemannian metric G .Ώj^A) 0 i7^(A) -^ A can be expressed, using the
isomorphism J?]}^) = π(i71(^4)), in terms of components:

G(α, /3) - {gμvotXμβlv + ^55α5/35) θ ( ^ μ ^ 2 μ / 3 2 , + £ 5 5α 5/? 5),

where g^ = - ^(7^7^) = εμ

aε
v

a and g55 = tvj2 = ψ2 + (/>2.
To compute torsion and curvature, we must understand two-forms, Ω2

D{A). This
space is isomorphic to the quotient of π(Ω2(A)) by the space of "auxiliary fields"
7r(dKer(π 1̂  1^))). We proceed to compute the general form of auxiliary fields. If
α = Σiaidbι G Ker(π), we obtain for π(da) = Σ^D, α ] [D, 6 ],

π(da) = Γ - f a ^ f l ^ - 2 ^

and it is not difficult to see that, for a suitable choice of α i 5 6Z subject to the constraint
π(α) = 0, any expression of the form

can be obtained.
Next, we express π(da) modulo auxiliary fields, for any one-form a, in terms of

its components:

π(da) = ' μ ι" 5 5 ! μ 5 l μ 2μ

V — 0 7 μ 7 (dμά5 + α l μ — α 2 μ ) Ίμvdμa2v 4- 2φ/φrγ (a5 — ά5)

This choice of representative in the class of π(dα) in π(J?2(yl))/7r((iKer(7r|i7i(A)))
is uniquely determined by the property to be orthogonal to all auxiliary fields, with
respect to the inner product on Ω2(A) defined by the Dixmier trace:

0a,β) = Jaβ* =
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For explicit calculations it is convenient to introduce local orthonormal bases {EA}
of Ωι

D{A). We use the following convention for indices: capital letters A, B,... denote
indices taking the values 1 to 5, and lower case letters α, 6,... take values from 1 to
4. Introduce a local orthonormal frame of one-forms ea

μdyμ on Y. The basis is

e; o

\ 1" v /

Suppose now that the connection V is unitary with respect to the given K-cyclt.
The components of the one-form corresponding to π(V) are denoted by

/ ^ιίLιl)
AB *jlAB \

~ A D } W\il I1 \

-Ί~lAB Ί»ωA

The unitarity condition (ΩAD)* — ΩBA implies the component relations

AB yBA
ωΊll = —ωΊlt .

TAB _ TBA

The components of torsion and curvature are readily computed. As above, we give
the representative in Ω2

D(A) orthogonal to auxiliary fields. For the torsion we find

a (ΊμV(S-

~ V

T " V -<h
The expression

RAB

where

RAB

ΠAB

^μ
QAB

ΦΊ

ib

μe

for

=

e

= -

l + ωfμe
b

ιy)-2φψ\Ύ5la5

»Ί

5(ϊabeb

μ - Xωfμ)

\ — 2φψλ^5l55 φημη5{

\dμ\ - ϊ5beb

μ) ημuωψμe

the curvature is

ί _

? ωAB — d ωAB + ωACω

ί i A B _i_ / AB , ΛB
 _L , ,

1μί +ω\μ ~ω2μ + ^
β jBA | Aβ ωAB -\-

-φΊ

μ

Ί

5(labeb

μ - \ωfμ)

ημv{dμel + ω%*el) - 2φψλj5ϊa5

:dμλ~l5beb

μ) \

I + 2φφ\η5l55 ) '

Ίμv^2μBu + 2φφΊ

5PAB ) '

ACjCB _ CBjAC
\μ ω2μ ">
, CBiCA , ACΊBC
ω\μ l ~ω2μ l i

pAB __ jAB , jBA i jACiBC

pAB = {AB + jflΛ + fAfB

As a gravity action we choose the generalized Einstein-Hilbert action, given in terms

of the inner product (α,/?) = Trω(π(a)π(β)*\D\~4) on two-forms defined through

the identification of Ω2

D(A) with π(Ω2(A)) Π π i 1

see Eq. (22).
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This action reduces to (and could be alternatively defined as) the integral over Y

= Jtr((EAfR
A

BEB).
Y

[Here the trace is over Endίj^S^)]. Inserting the above expressions for EA and RA

B

yields the action as a function of the component fields. Set Uμ = Qa

μ + Qa

μ — Qμ

a —

Q5

μ

a. The result is

• #2μ«,) + λΦ2εa^ - 4φ2ψ2X2(Pl5 + P^y/gάty .

At this point two possibilities are open. One can either take the action / as a
starting point, with all fields independent, and eliminate non-dynamical fields by
their equations of motion. Or one can impose the torsion constraint, and derive an
action for Levi-Civita connections. We will follow the second approach.

It turns out that, in general, one gets an uninteresting model, describing just
two decoupled universes. A more interesting example is obtained by imposing the
additional condition ψ = 0. In other words, we consider only Dirac operators of the
form

_ fΊaeμdμ + ... Tφ(x)
~ \ Ί5Φix) Ίa<dμ +

which is in fact closer to the form of Dirac operators used in particle models [1-6].
The zero torsion condition has the following consequences for the components:

1. ωab = ω^b = Lϋ2μ is the one-form corresponding to the classical Levi-Civita

connection of the metric gμv — ea

μe^. It is the unique solution of dea +ωab A eb — 0,

ω

a b = - ω

b a .
2. lab = lba, l5a = -la5.
Q , ,o5 , ,α5 \— liab^b

In — — 2u — a'

4. dμX = ea

μl
5a.

It is interesting to notice that the zero torsion constraint selects Z2-equivariant
connections. In other words, let θ: A —• A be the involution θ(a{ Θ α2) = α2 Θ av

Extend it, using the equivariance of D, to the unique involutive automorphism
of ΩD(A) such that dθ — θd. Then Levi-Civita connections have the property

0
The resulting gravity action is then

/ = ί[2R - \-ι4Vμd
μλ + 4X~2laal55 + \-2(laalbb -

The fields lab,l55 decouple, and with the substitution Λ = exp(σ), we finally obtain
the action of a massless scalar coupled to the gravitational field:

f
1 = 2 [R-2dnσd^

To understand the role of the field σ we can study the coupling of gravity to
the Yang-Mills sector. In particular, in the example of the standard model in [3] we
see that gμv is the metric of the Riemannian manifold while φ — e~σ replaces the
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electroweak scale μ. In other words, the vacuum expectation value of the field φ
determines the electroweak scale, thus forming a connection between gravity and the
standard model. From the form of the gravity action, it is clear that the field σ has
no potential. The only other term we could have added is a cosmological constant

Λ ίl,

and this is σ-independent. This implies that at the classical level the vacuum
expectation value of φ is undetermined. It is conceivable that the gravity action
acquires a Coleman-Weinberg potential through quantum effects. However, at present
this is beyond our capabilities, since the problem of quantization in non-commutative
geometry has not as yet been dealt with.
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Note added in proof. Since the time this paper was accepted for publication, we have found general,
manifestly "coordinate-independent" definitions of analogues of Ricci curvature and scalar curvature
in non-commutative geometry, not assuming that Ωι

D(A) is a free left A module. Furthermore, we
have found that the Yang-Mills and fermionic sectors induce a Coleman-Weinberg potential for the
field σ, as conjectured above. Finally, we have analyzed torsion-free connections in more detail and
found an alternative definition of the generalized Einstein-Hilbert action. These results will appear
in forthcoming publications.






