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Abstract We introduce a method to establish stability of non-local interactions, and
we apply this method to certain polynomial non-linear field theory. The non-local
potential must satisfy the property of slow decrease at infinity in Fourier space (SDI).

1. Introduction

We extend the stability proof of constructive quantum field theory to a certain class
of non-local Hamiltonians. Energy expressions for which the highest degree terms
are non-local do not fit into the conventional proofs of stability. Our method is to
show that a certain class of non-local interactions can be bounded from below by
a local interaction - with a coupling constant that is "momentum dependent," and
vanishes for large momentum. This method can be combined with an estimate on
the measure of configurations for which the interaction is negative to establish
•stability.

Non-local potentials of the form

W = J 0>(χ) V(x - y)0>(y)dxdy (1.1)

often occur in the physics literature, and it is useful to have methods to study them.
One such example is the study of long range (infra-red) interactions. Another
example arises from the introduction of a non-local cutoff in supersymmetric
quantum field theories, which gives rise to interactions of the form (1.1). They are
not amenable to the standard methods.

In (1.1) we consider polynomials &>(x) in the field operator; furthermore we
normal order (1.1), which we denote by \W\. The method used here works for
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a special class of potentials V9 namely those which have slow decrease at infinity in
their Fourier transform (momentum space). This corresponds in constructive
quantum field theory to a restricted class of cutoff functions. It is interesting that
certain analytical methods in constructive quantum field theory are suited to a very
restricted class of cutoffs. This differs from more standard methods which are not
so closely tied to the analytical form of mollifiers.

We also investigate local and non-local perturbations of potentials (1.1) by
polynomials Q of degree less than twice the degree of ^ , and we study the
continuity of the corresponding heat kernels as a function of a parameter.

The interaction operator (1.1) is a multiplication operator on Fock space by the
function W, namely by a polynomial W( )m an infinite number of variables. These
variables are the Fourier coefficients φ(k\keΈ of φ. While the polynomial Wis
unbounded from below, the operator Ho + : W\ is bounded from below. This lower
bound can only be established for a certain class of cutoff functions in W.

2. Slow Decrease at Infinity (SDI)

On the circle of length { (which we denote Sj) a function χ(x) can be defined by its
Fourier series

Z(x) = 7 Σ X(P)e-ipx, x(p) = J X(x)eipxdx . (2.1)
* peS

We are interested in specifying χ by the Fourier coefficients χ, and we consider that
(2.1) converges in the sense of distributions. The Fourier coefficients define a multi-
plication operator χ on 12(S\ namely

X'J(P) -> xip)f(p), with norm \\χ\\ι^p = sup \χ(p)\ . (2.2)
peS

By unitarity of the Fourier transformation from L2(Sj) to 12(S) the convolution
kernel χ(x — y) defines the corresponding operator on L2(S}\

* : / ( • ) - > ( * * / ) ( • ) = ί x( -y)f(y)dy, (2.3)

with norm

We call χ (or χ) a cutoff function if χ has three basic properties:

(i) 0 g χ(p) £ 1 ,

(iii) χ(0) - 1 . (2.5)

As a consequence of (i), the operators (2.2-3) defined for a cutoff χ are positive
contractions. As a consequence of (iii), their norm is 1. As a consequence of (ii), the
kernel χ(x — y) is real, so the operator χ in (2.3) is real.

The class of cutoff functions includes characteristic functions in Fourier space,
namely



Stability of Bilocal Hamiltonians 185

For shorthand, we reserve the subscript K to denote the action of the sharp cutoff
function, namely

UP) = xΛp)f(p) (2-7)

In this note the key property of a cutoff is slow decrease at infinity (SDI). We are
interested in restricted classes of cutoffs which do not include the sharp cutoff (II.6),
but the sharp cutoff will be obtained as a limit of a sequence of cutoffs in these
classes. Given ε ^ 0, define the SDIε property by

(iv) (SDϊε). The cutoff χ is SDIε if there exist positive constants y, <5, M such
that

(1 + δ\p\Γε S X(P) ύ M(l + y j p l p . (2.8)

The identity cutoff function χ(p) = 1 corresponds to the limiting case ε = 0 or
y = <5 = 0, M = 1. Thus one can think of the SDIε property as a measure of the
small deviation of χ(p) from the identity cutoff.

It is also possible to introduce a logarithmic SDI property, in which the bound
(2.8) is replaced by a lower (and related upper) bound on the form

(l+<5|p|Γ ε(ln2)α(ln(2 + |p | )Γ«.

The case ε = 0, α > 1 can be used, for example, in certain supersymmetric quantum
field theories.

In Sect. 5 we wish to define a family of cutoff functions χp which depend on
a positive parameter p. This parameter we wish to interpret as a scaling parameter.
In order to define χp, we interpolate χ(p), defined for p e TL to a function defined for
all pelR. We choose a C 0 0 interpolation for p e R , which also satisfies (2.5, 2.8) for
all peR. We denote this interpolation also by χ(p). Clearly every cutoff satisfying
(2.5, 2.8) has a C0 0 interpolation which also satisfies (2.5-8). While this interpola-
tion is not unique, we can work with any choice of C0 0 extrapolation. We then
define

UP) = iiPlp) > ( 2 9 )

and

()p ϊ Σ i p X ' (2.10)
t peS

Given an SDIε cutoff χ, the family χp is also SDIε. In fact if χ satisfies (2.8), then

(l + δ\p\/Pr
ε g UP) ύ M(l + y\p\/pΓε. ( i l l )

In other words the constants γ, δ are replaced by γ/p, δjp.
The p -» oo limit of any SDIε family χp is

lim χp(P) = 1 , (2 1 2 )

the identity cutoff. The SDIε property also gives an estimate on the rate at which
the limits (2.12) is achieved. In particular, as p -* oo,

o ^ XOO(P) - UP) = i - UP) ^ £0\P\/P (2 1 3 )



(p')] = 0 .

The Fock vacuum Ώ o is in the null space of all the a(p), and the field φ is
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3. Stability

Let φ(x) denote a single-component, real, massive field defined on a bosonic Fock
space g over a circle of length L The fundamental operators on g are creation and
annihilation operators α(p)*, a(p) defined for peS, and which satisfy

(3.1)

peS

Normal ordering is denoted by : : and is defined as a linear operator on poly-
nomials in α's and α*'s; a normal ordered monomial of α's and α*'s has the α*'s
acting after the α's. Let

»{ξ) = t "jξJ ( 3 2 )
j = o

be a complex polynomial of degree n > 0. Let &(ξ)~ denote the complex conjugate
polynomial.

We define a multiplication operator W on g by the expression

where μ(p) = (p2 + m 2 ) 1 / 2 . The free field Hamiltonian is

Ho= Σ

W* = W(φχ) = f : ̂ (φ,W) F(x - y)P(φχ(y)) :dxdy , (3.3)

where F(x) is an SDIε function. Here φχ = χ * φ is the field φ smoothed with
a cutoff function satisfying (2.5). (The function χ(p) is assumed to satisfy (2.5), but
this function may or may not be SDIε. In particular, it may also be the identity
cutoff χ(p) = 1.) We let W\ denote the expression (3.3) with φχ replaced by φχκ,
namely by the sharp cutoff (2.6) applied to φχ. This has Fourier coefficients

ΪS>:
Both Wχ and W* are multiplication operators on g. By the standard methods of
constructive quantum field theory, the domain of Wχ and W* (including the cases
χ(p) = 1) contains S>, the set of all vectors in g with a finite number of particles and
wave functions with compact support in p-space. These operators are essentially
self adjoint on <2).

Theorem 3.1. {Stability) Let Wχ, W^ be defined as above, where χ satisfies (2.5) and
where V is SDIε with 0 ^ ε ^ l/(8n2). Then on the domain Q) the operators

Hχ = H0+ Wχ and H* = H0+ Wχ

κ

are bounded from below uniformly in χ, K.
2. Furthermore for T > 0,

Ίv(e-TH/) < oo, Tr{e-TH") < oo , (3.5)

with the traces bounded uniformly in χ, K.
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Remarks. Without the normal ordering, W would be a positive sesquilinear form.
In the case that χ decreases sufficiently fast at infinity, then W extends to an
unbounded multiplication operator. However the spectrum of W in general covers
the real line. In case W is normal ordered, then W extends to a densely defined
operator even though χ may not tend to 0.

In spite of the fact that W is unbounded from below, the operator Hχ is
bounded from below. Its stability is restored because Ho grows sufficiently on
vectors where Wis very negative. This requires that V satisfy the SDIε property for
ε sufficiently small.

In case ε = 0 or χ = 1, the stability of Hχ is a classic result of constructive
quantum field theory [3], see also [1]. However, in the case ε > 0, the Hamiltonian
H is essentially non-local. In that case, stability of H is a new result; it is even new
for the case of fixed K < oo.

The nontrivial nature of this result can be seen by considering

W% = :( J φχ(x) a
\s}

which is of the form considered, except F Ξ I S O that Vis not SDIε. In this case
j φ\ dx can be small on vectors for which J φ\dx is large. Analysis of this effect leads
to the conclusion that for certain functions χ, the operator Ho + W\ is unbounded
from belowl Even for three degrees of freedom, namely for the choice

Γ 1, ifp = O

χ(p) = < δ, if \p\ = 2π/ί ,

[ θ , i f | /? |>2π//

there is an unusual phenomenon. In this special case, the operator Hχ is bounded
from below for each 0 g <5 g 1. Surprisingly, the lower bound diverges to — oo as
δ-+0 + , and hence the lower bound is discontinuous at δ = 0. This example
illustrates the robust nature of the SDI property in proving stability bounds.

In the following section we extend Theorem 3.1 and establish stability for
perturbed Hamiltonians of the form H* + Qκ, occasionally suppressing the super-
script χ. Here Qκ is a non-local polynomial in φ of degree 2n — 1 or less.

The novelty of this paper is the non-local nature of the interaction monomial of
highest degree, which we bound from below by a local polynomial with a mo-
mentum dependent coupling constant. Other stability proofs (using for example
phase cell or renormalization group methods) also rely on the leading order
polynomial interaction to be local. Thus it is presumably interesting to incorporate
the SDIε method introduced here into such arguments.

As a corollary of our method of proof, we can follow standard constructive
quantum field theory analysis to establish:

Corollary 3.2. The operators Hκ and H are essentially self adjoint. Furthermore for
Γ > 0 ,

lim | | e~ Γ H κ — e~ T H | | H S = 0 ,
κ-+ co

where HS denotes the Hilbert-Schmίdt norm.
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Proof of Theorem 3.1. We introduce an auxiliary sharp cutoff K' and field
φχKκ' with Fourier series

- i \ _ \<P(P)ήp\ if \P\ ύ. min(fc, K')
ΨXKKΛP)-^ otherwise

If K < oo, then the auxiliary cutoff plays a role only for K > κr. In what follows we
omit explicit consideration of K. For simplicity of notation we denote κf by K. The
modification to include the analysis of both K and κf (to obtain bounds which are
uniform in K) are a straightforward extension of the argument we present.

We prove that the functional integral representation for Tr(exp(— TH)) is
bounded. The functional integral representation for the trace of the heat kernel is
obtained by studying a perturbation of the Gaussian measure dμc of generalized
functions 21 defined on the torus ^ , where ZΓ = Sj x Sγ is the toroidal compactifi-
cation of the cylindrical space-time Sj x 1R, see [2]. Let A denote the Laplacian on
5", and let C = (— A + m2)~x, m > 0. The measure dμc is the Gaussian on
with mean zero, with covariance C, and with the normalization

TH°). (3.6)

The action functional £f(Φ) is defined as follows for

J : &(Φx(x, ή) V(x - y)0>(Φx(y9 ή): dxdydt. (3.7)

Here normal ordering of a monomial Φ(f)n means to orthogonalize the monomials
Φ{f)n with respect to dμc. Then the Feynman-Kac formula is the identity which
relates the heat kernel of Hy with Sfχ,

Tr(ίΓ T H Z )= J e-y'dμc. (3.8)

The field Φχ in (3.7) is a classical variable, and its cutoffs correspond to Wχ in
(3.3). In particular

Φχ{x, t) = j χ(x — y)Φ(y, ί)^y

In other words the cutoff χ acts only on the spatial variable x,

Φ ( x 9 ί ) ^ d x .

We also introduce Φχκ defined by its Fourier series in x,

for |p | > K. '

We use Φχκ to construct ί̂ *, namely ^ J = Sf(Φχκ). Then the corresponding
Feynman-Kac identity is

Tφ-™ί)= ί e"

(3.9)

As before, to simplify notation we at times suppress χ.
In order to bound (3.8), we study
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which has the property

= ] ea+1f(a)da. (3.10)ea+1

— 00

Note that / ( — oo) = Tr(e~THo) and that f(a) is monotonically decreasing in a.
Hence the integral (3.10) converges if and only if f(a) tends to zero sufficiently
rapidly so that eaf(a) is integrable. Because f(a) is monotone, it is sufficient to show
that

sup I a2eaf(a) ^ const. . (3.11)
α>0

Proposition 33. There exist constants δ and k such that for δ :§ δ and κ^k,

yκ\^l}^e-κll4n . (3.12)

Proposition 3.4. Let P(ξ) be given as in_ (3.2), and let εe[0, 1) Then there exist
constants M, δ, and k such that for δ S δ and κ^k,

yκ ^ ε(l + nδκyε\an\
2 WΦΛlLw - Mκ2n* . (3.13)

Let us assume the propositions and derive inequality (3.11), thus completing the
proof of the theorem. As a consequence of (3.13) we have for κ^k,

Denning a(κ) = Mκ2nε + 1, we see that

e~y < e

a

e~
1~(^-^^ m

Thus whenever e~y ^ ea, it must be true that \Sf — £fκ\ ^ 1. In other words

Then by the assumed bound (3.12),

f(a(κ)) ^ e-*ll4n ,

and for ε < (8ft2)"1, we have

\a(κ)2ea(κ)f(a(κ))\ S {Mκ2nε + i)2ew*2ne + i)-κll4n ^ const. ,

which is (3.11). This completes the reduction of Theorem 3.1 to Propositions

3.3-3.4.

Proof of Proposition 3.3. This bound is proved by a standard asymptotic method.
See e.g. [3, 1] for more details. Briefly, for any r > 0,

μc{\^ ~ Sfκ\ £ 1} ^ J ψ> - yκ)
2rdμc . (3.14)

For integer r, this polynomial moment of the Gaussian measure dμc reduces to
a sum of O(4nrll) terms. Each term can be expressed as a sum or integral over
a finite dimensional space, of kernels composed of products of C(p), V{p), χ(p\
χκ(p\ and the coefficients α,- of (3.2). Each such term can be bounded by the L2

norm of its kernel. The difference Sf — £PK yields a kernel with convergent integral
in the L2 norm, having a convergence rate of O(κ~a) for α < 1/2, as K -> oo. We use
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K\ ^ 1} ^ Mrκ~rl2r2nr, (3.15)

where M is a constant depending on n, on the mass m, and on the constants απ, but
it is bounded uniformly in χ and in V. This bound is optimized by
r = κ1/An(l/eM)ll2H

9 yielding

Choosing α slightly larger than 1/4, we can replace A and 5 by 1, thus proving
(3.12).

0/ Proposition 3.4. Our new idea is contained in the proof of this bound. It is
sufficient to prove the proposition for the case an = 1, since for α e C ,

If the inequality (3.13) holds with the constant M for an = 1, then it holds for an Φ 1
with the constant M replaced by the constant | α n | 2 M . We thus restrict attention to
αn = 1. In order to simplify notation, we first assume that ^(ξ) = ξn is a monomial.
We return at the end to establish the proposition for general 0*. We start with the
formula for :Φ{:,

U(2] , ,

{

Here [j/2] denotes the integer part of j/2. Also cκ = cκ(0), where

For some constant M x < 00,

M x - y)| g cκ(0) = cκ ^ M 1ln(2 + /c), (3.17)

with the constant Mx uniform in χ. The definition (3.16) extends by linearity to
define :Φκ{xu t) Φκ(xn, t): so we can write, in the case &>(ξ) = ξn,

K=Σ Σ SrsjM , (3.18)
j = 0 r,s^[(n-j)

where

sFaJ(κ) = (-l)r+s+jcr

K

+sarsjW(n - 2r -j, n - 2s -jj).

Here α r s j is the combinatorial coefficient

and

W(k,l,j)= I Φκ(x,t)kcκ(x-y)JV(x-y)Φκ(y,t)'dxdydt. (3.19)

The constants arsj depend only on n, r, s and j , and αOOo = l
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The outline of the proof is to bound sOooM from below, and to use the estimate

Σ \srsj{κ)\Sj(n+ I)3 sup \srsj{κ)\

based on the number of srsj(κ)\ to establish a lower bound on ̂ κ , namely

M - \ (n + I)3 sup |srsj.(ιc)| . (3.20)

Using (3.20), the proof of Proposition 3.4 for &*{ξ) = ξn follows immediately from:

Lemma 3.5. For Sfκ given in (3.18), with ^{ξ) = ξn, the following bounds hold:

(i) soooM ^ (1 + nδκ)~ε J Φκ(x, t)2ndxdt . (3.21)

(ii) For any ex > 0, there exists M < oo suc/z ί/zαf /or r + s + j φ θ ,

|<vSJ (κ)| ^ ε^l + nδκ)'ε f Φκ(x, ί)2"^rfί + M(((5/c)2/ίε + l)ln(2 + κ)M . (3.22)

Proof. The bound (i) is a consequence of the fact that Φκ(0, ί) contains only Fourier
modes with |/?| ^ ?c, for ρe5. It follows that Φκ(x, t)n contains only Fourier modes
with \ρ\<^nκ. Thus we use the SDIε property to establish (3.21). Essentially the
bound (3.21) says that the operator V with kernel V(x — y)9 when restricted to the
subspace L%K(S}) spanned by Fourier modes with \p\ ̂  nκ> is bounded from below
by (1 + nδκ)~\

In order to prove (ii), we introduce some further notation. Let 7} denote the
operator on L2(Sj) with integral kernel

-y) = cκ(x-y)jV(x-y).

Then

W(kJJ)= J (Φk

κ,TjΦι

κ)dt, (3.23)

with < , > denoting the inner product on L2(S}). We also let < , >L2(̂ > denote
the inner product on L2 of the torus. Thus

W(kJJ) = <Φk

κΛTj®I)Φι

κ)L2{^ . (3.24)

We summarize some properties of the Ws which are useful in this and in later
sections.

Proposition 3.6. (i) The operators 2J on L2(S}) sastisfy

OSTjS c{l, (3.25)

where cκ is bounded in (3.17),

(ii) I W(k, I, j)\ S W(k, k, j)1'2 W(l, I, ; ) 1 / 2 (3.26)

(iii) WiKKβScίWΦJlk^. (3.27)

(iv) Let k,l^n, k + I ^ 2n — I. Given £1 > 0, there exists M < oo such that

ίc)". (3.28)
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(v) // in (iii) k + / ̂  In - 2, then (1 + nκ:^)ε(2/I~1) in (3.28) can be replaced by
( 1 \

(vi) Given <5_> 0, K > 0, ί/ie second term in (3.28) can be replaced by Mκ2nε, uniformly
in 0 < δ ^ (5, and κ^.κ.

Proof, (i) As a convolution kernel, 7} is a multiplication operator on momentum
space. In fact, 7J is the ./-fold convolution

(3.29)

with

^ (3.30)

Since both c(p) and F(p) are positive, we infer fj(p) ^ 0. The upper bound on fj(p)
follows from

ύ ||cj|/i(s) II ̂ llr(S) = cί . (3.31)

(ii) This inequality is the Schwarz inequality applied to W(k, l,j), and takes
into account the fact that 7} ̂  0 has a square root. We apply the Schwarz
inequality on L2{*Γ) to (3.24), and use (7} ® / ) 1 / 2 = Γ j / 2 (g) /.

(iii) Use (ii) and the upper bound

^cj

κ®l (3.32)

to establish (3.27).
(iv-v) Using (ii) and (iii), we infer

ΦJlU(^)ll^lli-(^) . (3.33)

We now analyze (3.33) in some detail. For simplicity we denote cκ by c. We consider
two cases of the bound (3.33).

Case /c, / ̂  n — 1. In this case, we bound (3.33) by

c»-o+w-i\W(Kl,j)\ύ sup (c"-"| |ΦJIw)) (3-34)
ue{fc,l}

If the sup occurs for u = 0, then we use bound (3.17) for c to obtain

cn-{k + l)l2~j\W(k,lJ)\ S cnlT^lTM\\n{2 + κ)n. (3.35)

The expression (3.35) is bounded by the right side of (3.28), with εx = 0 and an
appropriate constant M.

If the sup occurs for 1 ̂  u ̂  n — 1, then we use the elementary bound for
a,b>0,

ab^-ap +-b\ (3.36)
p q

with p, q dual exponents. Let p = n/u and q = n/(n — u), so q/p = w/(n — w), and

— ! — ^ - ^ (n - 1) . (3.37)
(n — 1) p
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We apply the inequality to the right side of (3.34) with

a = wΦ*u

9 b = w-1cn-\ (3.38)

where εί < 1 and w is the constant

w = ε\lp(l +nδκyε/p. (3.39)

Then

cn-uφ2u ^ fii^ + nδκy*φ2n + ( ε-i c)»(i + n ^ ) ε ( " ~ 1 ) , (3.40)

and so we have

x(εϊ1όyι{l + nδKf^-VfT. (3.41)

Using (3.17) to bound c", we obtain a bound of the desired form (3.28).

Case I :g n — 1, k = n. (The case I = n, k ^ n — 1 is similar.) We bound (3.33) by

2

If / = 0, then the second term in (3.42) equals ^εΓ 1(l + nκδ)εcnίT, and we have
a bound of the form (3.28). Thus we can assume 1 ̂  / ̂  n — 1. We apply (3.36) to
(3.38). Replace w in (3.39) by w2 to obtain

) ̂  ef(l + nδicΓ^IIΦJIiV) + (εΓ 2 ^" 1 ^)^ + )

(3.43)

Insert (3.43) in (3.42) to yield

c{n-l)/2-j\W{kJJ)\ S βi(l + nκ:(5)-ε || Φκ || ̂ n (^) + ̂ βΓ ( 2 l l" 1 )c"(l + mδf^'^T .

(3.44)

Note that if / ̂  n - 2, then the last term in (3.43) has the factor (1 + nδκ)2εqlp

^ (1 + nδκ)ε(n-2) in place of (1 + n^K;)2^"1^ since now q/p S (n - 2)/2. Hence
ε(2n — 1) in (3.44) can be replaced by ε(n — 1). In either case we obtain the bound
(3.28) as claimed. This completes the proof of Proposition 3.6.

Completion of the Proof of Lemma 3.5. We remark that srsj(κ) in (3.18) for ocn = 1
satisfies

\srsj(κ)\ g αcΓ

κ

+ s | W(n -2r-j,n- 2s -jj)\ , (3.45)

where α = supα r s j for r, s ^ [(n — 2)/2], j ^ n. Using Proposition 3.6.iv, with
ε1 replaced by εja, and a new M, we infer

\srsj(κ)\ £ £ l ( l H- n δ i c Γ l Φ J I i V ) + Mtίδfc)^2"-^ + l)ln(2 + κ)n . (3.46)

This is the bound (3.22) as claimed.
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We have now completed the proof of Proposition 3.4 in case 0P(ξ) = ξn. We now
return to the general case

= ξn + Q(ξ), (3.47)

where Q(ξ) is a polynomial of degree at most n — 1. Write

We claim that given &x > 0, there exists M < oo such that

κ)n . (3.49)

Adding (3.49) to the lower bound on ^-Γ, which is the special case of the
proposition proved above, we obtain the proposition for general &.

In order to establish (3.49) we use Proposition 3.6. We expand ΘC into a sum of
terms without normal order, using the following generalization of (3.16), namely

min(M)

:W(kJ,0):= X Σ (-iY+s+jcr+sotrsjW(k-2r-jJ-2s-jJ),

(3.50)
where

/ Jjl{2r- l ) ! ! (2s- 1)!! . (3.51)

Then

%κ= Σ oίkoίι:W(kJ,O):, (3.52)

O^k + lkΊn-l

and using (3.51)—(3.53) we have reduced 9£ to a sum of terms for which Proposition
3.6 gives the desired bound. This completes the proof.

4. Stability under Perturbations

In this section we consider two sorts of perturbations of H in Theorem 3.1. First we
consider how H varies if we vary the coefficients of the polynomial & defining H.
Secondly we show that H remains stable under the addition of a class of poly-
nomials Q.

Let / 2 (S) denote the ideal of Hubert Schmidt operators on Fock space. In
Theorem 3.1, we show that H = H(0>) has a heat kernel exp(- TH{0>))eI2{%). We
now consider how the heat kernel varies as the coefficients of βP vary over
a bounded set of <Γ\ Let

Σ"jξJ> α i e C > \*i\ύM9 | α n | ^ ε > 0 . (4.1)
j = o

Theorem 4.1. As 3P varies over the set (4.1), the map

(4.2)

is continuous from <Cn to / 2(5). The continuity is uniform in χ satisfying (2.5).
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Proof. Let &l9&2 be two polynomials in the set (4.1). Then writing Hi = #(^\) ,
etc.,

||e-Hi _ e'H2\\hm = Tr((έΓHl - έΓfl*)έΓflι) - Tr(Γ H 2 (^ H l e" f l 2 ) ) .

(4.3)

Each term in (4.3) has a functional integral representation. The first term, for
example, is

(4.4)

where dμc is now the Gaussian measure on Q)'(βΓ\ with 2Γ = Sf xS\. Further-
more, for j = 1, 2,

o
and

&j = J :
1

We estimate (4.4). The estimate of the other term in (4.3) is similar. Write

o

2(Using the Holder inequality on L2(dμc\

Λle-^^1-^ (4.5)

The continuity of the right side of (4.5) in (α x , . . . , ocn) is a consequence of two
facts:

(i) The action functions S^uS^29^i, &2 satisfy the estimates of Proposition 3.3
uniformly for all polynomials 0* satisfying (4.1).

(ii) The moment \ίf2 — £f± llL2(dμc) is uniformly continuous in the coefficients
α l 5 . . . , αn for {α,} satisfying (4.1).

The first fact is an elementary consequence of the proof of Theorem 3.1. It is
important that an is bounded away from zero. The second fact is true by inspection
of the integral defining the moment.

The second type of perturbation which does not destroy our stability bound is
of the form

H(0>9 Q) = H + Q, (4.6)

where if is a Hamiltonian discussed in Theorem 3.1 and where Q is a polynomial in
φ of degree at most In — 1. More specifically, we take Q to be a sum of terms of the
form

j :φχ{xjι . . . φχ{xkY
k f(xi> • > Xfc)<&i dxk . (4.7)

{S?k

Here rx + + rk = r ^ 2n — 1, and feLp for p/r ^ max(r — r,-)"1. Methods
similar to the ones used above lead to
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Theorem 4.2. For H(&, Q) of the form (4.6) with Q a finite sum of terms of the form
(4.7), the map

is continuous from Q)iLPι —> I2($). The continuity is uniform for χ satisfying (2.5).

5. Families H(p, &>, Q)

In this section we investigate a family of Hamiltonians H(p, 0>) with a fixed
interaction polynomial 0 as we vary the cutoff function χ and the potential V. The
parameter pe(0, oo) will yield a continuous family of heat kernels
exp(— TH(ρ, 0*)). We study this family and its limit as p -^ oo (the ultraviolet limit
in which the cutoff tends to the identity).

5.7. Continuity in p. We introduce p into F b y defining

where we assume V to be an SDIε cutoff function. We study the Hamiltonian
H(p, 0, Q), where we introduce p into a Hamiltonian (4.6) H(0>, Q) studied in
Sect. 3 (with Q = 0) or in Sect. 4. This Hamiltonian may also depend on a cutoff
χ satisfying (2.5), as introduced in Sects. 3 and 4.

Theorem 5.1. For p bounded away from 0 and oo, the map

is continuous as a function from R to / 2 ($) . This continuity is uniform in χ satisfying
(2.5).

Proof The uniformity of the bound on Ίΐ(e~H{p^]) follows immediately from the
inspection of the proof of Theorem 3.1. Hence the continuity in p can be investi-
gated as in the proof of Theorem 4.1. We require continuity of | |S p — Sp>\\Li{dμc).
This in turn is an elementary consequence of the convergence of the integrals
defining the moment || Sp - Sp> || h{άμcy Each integrand is bounded uniformly by an
integrable function for p, p' in a compact interval. Furthermore the integrand
vanishes for p — p'. Hence by the dominated convergence theorem the norm
II Sp - Sp> || L2{dβc) vanishes as \p - p'\\-* 0.

As a consequence of the uniformity of the continuity in χ, we have

Corollary 5.2. Ifχn is a sequence of cutoffs satisfying (2.5) and χn-*χ pointwise, then

| | exp(- Hn(p, 0>, 0 ) - exp(- H(p9 &, β)) | |/2 ( S ) - 0 .

5.2. The Limit p -> oo. The investigation of the p -• oo limit is also straightfor-
ward. In this section we fix 3P and investigate the continuity of exp(— TH(p, &)) in
p and the uniformity of the lower bound as p -• oo. In this limit χp{p)-*l
pointwise. The estimates of Sect. 3 are stated in terms of their dependence of
a cutoff χ on φ and a potential V. In Sect. 3, the estimates are uniform in χ but
depend on V. Inspection of the bounds show, however, that the dependence on
p enters through δ being replaced by δ/p. Thus as p -» oo, the constant δ in Sect. 3
tends to zero. This improves the lower bound on ^κ (Proposition 3.4) and it does
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not affect the bound on μ{\^ — Sfκ\ ^ 1}, Proposition 3.3. Hence the bound on

Trexp(— H(p, &)) is uniform as p -* oo. We thus conclude as above that:

Theorem 5.3. The map (5.1) is also continuous as p -• oo.
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