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Abstract. We characterize the automorphisms of a C*-algebra si which extend
to automorphisms of the crossed product 8S of si by a compact group dual. The
case where the inclusion si Q88 is equipped with a group of automorphisms
commuting with the dual action is also treated. These results are applied to the
analysis of broken gauge symmetries in Quantum Field Theory to draw
conclusions on the structure of the degenerate vacua on the field algebra.

1. Introduction

The first problem considered in this short note is that of extending automor-
phisms from a unital C*-algebra si to the crossed product 8ft by the action of
a compact group dual. This problem appears, for example, in the structural
analysis of symmetries in the algebraic setting of Quantum Field Theory.
Having these applications in mind, we therefore work within the framework
developed in [1], where the action of a compact group dual is determined by
a specially directed symmetric monoidal subcategory (̂ ~, ε) of the category
Endj/ of unital endomorphisms of si. We present necessary and sufficient
conditions for an automorphism of si to be extendible to an automorphism
of 88. These conditions are best summed up by considering the completed cate-
gory {2t, έ) whose objects are the unital endomorphisms of si dominated by an
object of 3~. Then an automorphism β of si extends to 88 if and only if it
induces an automorphism of the symmetric monoidal category (2Γ, έ).

We also consider the problem of whether such automorphisms can be chosen
to commute with a given group T of automorphisms of the crossed product 88
which leaves si invariant as a set and commutes with the dual action.

As an immediate application, we consider an infinite factor acted on by
a compact group where the fixed-point algebra has trivial relative commutant
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and characterize the automorphisms of the fixed-point algebra which extend to
an automorphism of the original factor (Sect. 2).

Turning to the applications to Quantum Field Theory, it was shown in [2]
that there is a canonical field net associated with a net of local observables.
In the absence of spontaneously broken symmetries, this field net is basically
given as the crossed product of the net of local observables by the action of the
dual of the compact gauge group. In this context, ZΓ describes the superselection
structure associated with localizable charges and T is the group of translations
in spacetime. Our present results allow one to extend local automorphisms of 5t
to local automorphisms of the field net g, possibly commuting with translations
(Sect. 3).

In Sect. 4 we apply these results to study the spontaneous breakdown of
gauge symmetry in Quantum Field Theory in the framework described in [3].
This phenomenon can occur when essential duality but not duality holds in
the vacuum sector. The full group Γ of gauge symmetries is the (pointwise)
stabilizer of 91 in g a n d the elements of Γ which do not leave the vacuum state
on g invariant are the spontaneously broken symmetries. The subgroup G
leaving the vacuum state invariant consists precisely of those symmetries which
also leave the dual net 9ld pointwise invariant. A spontaneously broken sym-
metry maps the vacuum state on g into another vacuum state which is also an
extension of the vacuum state on 91. We pose the question of whether all such
extensions arise from broken symmetries but give only a partial answer char-
acterizing the G-invariant extensions which preserve essential duality.

This characterization applies whenever Γ commutes with translations as
it does if there are local energy-momentum operators associated with the ob-
servable algebra [3]. Should Γ not commute with translations then we still
obtain a simple variant of our characterization when the centre of G is discrete.

2. Extensions of Automorphisms

Let s/ be a C*-algebra with centre <C/, (Δ, ε) a permutation symmetric, specially
directed semigroup of unital endomorphisms of s/. In other words, cf. [1], if we
consider the full subcategory SΓ of Endj/ with objects A then {2Γ, ε) is
a symmetric monoidal category. Furthermore, 2Γ has sufficient special objects,
i.e. objects with determinant one. Such an object ρ is characterized by there
being an isometry Re(ι,ρd) with

(d!)-1 Σ sign(p)ερ(p),
peΨd

where d denotes the dimension of ρ and ερ the unitary representation of the
group P ^ of finite permutations of the integers derived from ε. P d is considered
in the obvious fashion as a subgroup of P^. As is shown in [1], these conditions
mean that (&~, έ) is an abstract dual of a unique compact group G which is the
stabilizer of si in a crossed product $ of si by 2Γ\

OΆ—rd\fOΓ' Q/ — UAG

tSCt "~~ τXSf A» t / , ύQf — i/a

and we have
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3ft is generated by si and the subsets

He: = {ψe&: ψA = ρ{A)ψ, Aesi)

for ρ G A. With the norm induced by J*, Hρ is a Hubert space which has support /,
i.e. if ψi is an orthonormal basis then

Any finite-dimensional Hubert space H in a C*-algebra 3ft induces a canonical
endomorphism σH defined by

lϊH and K are two Hubert spaces in J*, then Θ(H, K) denotes the canonical unitary
operator in 3$ permuting the tensor product of the two spaces

θ{H,K)φψ = xpφ, φeH, ψeK.

The problem we consider here is whether an automorphism of si can be ex-
tended to an automorphism of 3ft and we begin by considering automorphisms β
of si which normalize Δ, i.e.

^A. (2.1)

In this case, necessary and sufficient conditions for β to extend to 3ft are given in

Proposition 2.1. An automorphism β of si which normalizes A extends to an
automorphism β of 3ft if and only if

) , ρ,ρ'eA . (2.2)

//, furthermore, β is unitarily implemented in a faithful representation π 0 of si,
β is unitarily implemented in the representation π of $ obtained by inducing
up from π 0 .

Proof. The first assertions are immediate consequences of the uniqueness state-
ments in [1, Theorem 5.1, Theorem 6.1]. Letting η denote the inclusion mapping
of si into J*, uniqueness says that, given two systems as in [1, Theorem 5.1], say
{&,η,G,ρeA\-^Hρ} and {^l9ηu G^ρeA H I Ϊ J } , there is a *-isomorphism φ of
h onto J \ such that

φoη = η i ; φ{Hρ) = H^ ρeA. (2.3)

Furthermore, if we let 0t9 38 γ be the spatial versions of the crossed product as
in [1, Theorem 6.1], and π, πί be the associated representations of si on the
Hubert spaces <#, Jf1? reducing to the faithful representations π 0 and π 0 1 on
the subspaces Jf0, Jf01 of G-invariant and Grinvariant vectors, respectively,
then, a unitary operator U from Jf0

 t 0 ^ o i s u c h that

t/π oμ) = πol(i4)l/, Aes/,

will extend to a unitary W of Jf onto Jfx by setting (cf. the proof of
[1, Theorem 6.1])
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and this unitary will satisfy

= π1{A)W,

Now given a system \β\ η; G,ρeA\-+ Hρ) as in [1, Theorem 5.1], Eqs. (2.1), (2.2)
allow us to define another such system \β,γ\°β,G,ρeA \-+ Hβρβ-i}. Hence, in
this case, the map φ is an automorphism β of J* such that

(2.4)

β = HβQP-l9 QEΔ. (2.5)

If π 0 is a faithful representation of si on Jf 0 and U is a unitary operator on J^o

such that

then, in view of the preceding remarks, if we consider the representations of J*
induced up from π 0 and π 0 1 : = π0o /}, we see that the automorphism β of ^
is implemented by W in the induced representation. Conversely, if ft is an
automorphism of & extending β, Eq. (2.5) follows from

Hρ={ψe J 1 |φyl =

and Eq. (2.2) follows from

ε(ρ,ρf) = θ(Hρ,Hρ,), Q9ρ'eA. Q

Now the condition that our automorphism β should normalize A,

is unnecessarily restrictive and can be easily modified to yield necessary and
sufficient conditions for an automorphism β of si to extend to $. The point
is that A and hence 2Γ is not uniquely determined in the sense that there are
other choices yielding the same crossed product. However, there is a maximal
choice AjA; A is the set of unital endomorphisms of si induced by finite
dimensional Hubert spaces in J*.

An equivalent characterization of A is given by the following elementary
lemma.

Lemma 2.2. Let 0$ be a C*-algebra with unit and G a group of automorphisms
such that t δ/ 'nJ = C /, with si the G-fίxed points in &. A finite-dimensional
Hilbert space H with support I in & induces an endomorphism ρ of si if and only
if it is G-stable.

Proof. If H induces an endomorphism ρ of si we have, for each ψeH,

ψA = ρ(A)ψ, A e si.

Since si'c\$ = <L- /, the set of all ψ e M fulfilling this equation is a Hilbert space
which is obviously G-stable; it includes H and hence coincides with H because H
has support /. If H is G-stable, the inner endomorphism ρH of 0H commutes with
G and hence leaves si globallx stable. •
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Remark. More generally, finite-dimensional Hubert spaces H with support 1H

in £3 induce endomorphisms ρ of si with ρ(J) = l H , if and only if they are
G-invariant.

Now let έt denote the full subcategory of End si with objects A. This is
the full subcategory of the symmetric monoidal category ^{β, α) considered in
[4] determined by the objects which are unital endomorphisms. The symmetry έ
is determined by

where H and K are the Hubert spaces inducing ρ and σ, respectively. (β^, ε) is
therefore a symmetric monoidal category and έ extends ε. It can be easily
checked that A satisfies the conditions imposed on A above. Furthermore, by
the uniqueness of the crossed product [1, Theorem 5.1], the algebra J* is the
crossed product of si by 2Γ so that

Moreover, if ft is an automorphism of the inclusion sic J*, i.e. if ft is an
automorphism of Si such that ft(si) = si, then clearly

A may be alternatively described as the set of objects in End si which are direct
sums of subobjects of elements of A [4, Lemma 6.2] or as the set of objects
which are dominated by an object of A.

We are now led to the following

Proposition 2.3. An automorphism $ of si extends to an automorphism ft of $
if and only if
a) βAβ'^A^β-'AβcA;
b) βiε&σV^εiβρβ-Kβσβ-1), ρ,σeA.

Proof. Obviously, a) implies βAβ'^^cA and the reverse inclusion whereas b)
also holds for ρ,σeA as follows easily from the basic property of a sym-
metry and the fact that each element of A is a direct sum of subobjects of ele-
ments of A. •

An alternatively way of looking at this result is to say that β extends to an
automorphism of & if and only if it induces an automorphism of the symmetric
monoidal category {ZΓ, έ).

Corollary 2.4. Let N CM bean inclusion of infinite factors such that NfnM = (E I
and G a compact group of automorphisms of M such that N = MG. Let (&\ ε) be
the full symmetric monoidal subcategory of Sf(M,a) determined by the objects
which are unital endomorphisms, where ε(ρ,σ) = θ(H,K) if ρ, σ are induced by
the Hubert spaces H,K, respectively, and α is just the inclusion into AutM. An
automorphism of N extends to an automorphism of M if and only if it induces an
automorphism of {£Γ, ε) as a symmetric monoidal category.

Proof. By [1, Sect. 7] M arises from N as the W*-crossed product of N by
a compact group dual {β', ε), and G is the dual action. The result follows by
combining the argument in [1] with the preceding propositions. •
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A related result on extending automorphisms of a von Neumann algebra to
the crossed product by modular groups can be found in [5, Proposition 12.1].
This, too, relies on the uniqueness of the crossed product [6].

Now suppose we are given an action α of T on ^ extending to an action
α of T on 3$ commuting with G. As we know from [1, Sect. 8] such an exten-
sion exists if and only if there is a unitary cocycle Wρ{t)e(ρ,atρa^*), ρeA,teT
determined by

oίt(ψ)=Wρ(t)ψ, ψeHρ9 QEΔ

and satisfying

WQQ{t) = Wρ(t)ρ( WQ{t)), ρ9ρ'eΔ9 teT9

Wρ{t)SWρ(t)* = φ), S e (ρ, ρ'), ρ, ρ' 6 A ,

Wρ(tt') = at(WQ(t'))Wρ(t).

Now let β be an automorphism of si and ft an extension of β to an auto-
morphism of ^ . Without loss of generality, we may suppose that β normalizes A.
Then if

βoct = atβ, teT, (2.6)

β(Wρ{t)) = Wβρβ->{t) (2.7)

hold, we have for each ρeA and ψeHρ,

P&tiψ) = KWQ{t)w) = β(Wρ(t))ft(ψ), (2.8)

StRψ^Wβ^iήRψ); (2.9)

so that ftat=aίtft both on $t and on each Hρ, ρe A. Since these sets generate Jf,
ft and &t commute. Conversely, if ft and αf commute for teT, (2.8) and (2.9)
show that (2.7) holds, too.

We next study the situation where β fulfills (2.1), (2.2), (2.6) but (2.7) is not
required a priori. In our application in Sect. 4, T will be the group of transla-
tions in spacetime, so we assume here that T is a connected topological group
and that ί e T π &t{B) is strong-operator continuous for each Be& in a spatial
version of the crossed product.

We let i/ o cAuW denote the group of all jSeAut^ satisfying (2.1), (2.2),
and (2.6) and note first that Ho acts on the centre Z(G) of G as follows:
if ft is the extension of β e Ho to # , ft is unique up to an element of G and
normalizes G (since ftgft~x leaves si pointwise fixed for each g e G and is thus
an element of G). Hence ft induces an automorphism

zeZ{G) h-> h\ = ftzft~
of Z(G) which is independent of the choice of extension ft of β.

If Hom(T, Z0(G)) denotes the set of continuous homomorphisms of T
into Z(G) [i.e. into the connected component Z0(G) of the identity in Z(G) since
T is connected], we have an action of Ho on Hom(T, Z0(G)) defined by

(βz)(t) = βz(ή, teT, zeRom(T, Z0(G))9 (2.10)

and we consider \-cocycles of Ho with values in Hom(Γ, Z0(G)) for the
action (2.10).
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Proposition 2.5. Given \stf, (Δ; ε),α} as above, there is a well defined 1-cocycle z
on Ho with values in Hom(T, Z0(G)) such that zβ is the identity if and only if β
extends to an automorphism of & commuting with αf, t e T, i.e. if and only if β
satisfies (2.7). In particular, this will be the case for each βeHoif G has discrete
centre.

Proof. Let β be an automorphism of 3% extending βeH0. We already saw that β
is in the normalizer of G and since at is in the centralizer of G, the commutator
βoίtβ~ ίδί^1, which is independent of the choice of the extension β of β, commutes
with the elements of G. But it also leaves s/ pointwise fixed since β and oct

commute, hence it is also in G and is easily checked to depend multiplicatively on
t. Hence it defines a continuous homomorphism of T into Z(G) which takes
values in Z0(G) since T is connected:

β^β-'δί-^ZβiήeZoiG). (2.11)

Now if βί,β2eH0, (βiβ2y=βiβ2%o f° r s o m e go^G a n d f° r given extensions
°f βu βi> β\βi t o automorphisms of $. Hence

iϊ'' = βi β2go*tgo Ψi lβϊl = βx βi&tβϊ 'βϊ

= foβ2(t)*tfc' = βίzβ2(t)zβι(t)at

so that
_ β ι

- Z β Zβ2_ βι
2-Zβί Zβ

and z is the anticipated 1-cocycle. Obviously, by (2.11), zβ = 1 if and only if one
(and hence any) extension of β to an automorphism of 3 commutes with αf,
teT. D

3. An Exact Sequence of Symmetries

We now turn to some applications of the preceding results to Quantum Field
Theory. We consider a net 21 of local observables satisfying duality in the
vacuum sector, i.e.

for each double cone Θ. This means that, for the moment, we suppose that there
are no spontaneously broken gauge symmetries. Under these circumstances,
there is a canonical field net 5 with Bose-Fermi commutation relations con-
taining 91 and 91 is the fixed-point net of % under the action of a compact
group G which is the group of all automorphisms of 5 leaving 91 pointwise
fixed.

From a physical point of view, the most obvious question concerning the
extension of automorphisms from 91 to g is that of the extension of spacetime
symmetries. In this case, the extensions commute with gauge symmetries and
the underlying mathematical theory was already treated in [1, Sect. 8] and the
application to Quantum Field Theory was treated in detail in [2, Sect. 6]. For
the problem to have a positive solution it is necessary to restrict oneself to
the subsemigroup Δc of Δ, the semigroup of localized morphisms with finite
statistics, consisting of covariant morphisms. However, under mild regularity
conditions it has been recently shown that each element of Δ is in fact co-
variant [7].
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Another related problem concerns the extension of KMS states from 91 to g
and hence of the extension of the associated KMS automorphisms. This, too, has
already been treated in the literature [8].

We now turn to a third problem, that of extending local symmetries of the
theory and we first give a discussion without assuming that the theory is transla-
tion covariant. The net 91 is merely required to be irreducible and to satisfy
Property B (cf. [2]).

Let Hx denote the group of all symmetries of the net 91, i.e. βeHι if and
only if /?eAut9I and β(9l(0)) = 91(0), ΘeJf. Similarly, we let Kx denote the
symmetries of the pair (91, g), i.e. the group of all symmetries of the net %
which leave the net 9ϊ globally stable; hence GcKt and if βeKx then its restric-
tion to 91 belongs to Hx. We now have

Proposition 3.1. There is a short exact sequence

ί-+G-+Kι->Hι-+ί9

where the second and third arrows are just inclusion and restriction to 91,
respectively.

Proof. The kernel of the restriction of Kt to 91 is precisely <?, so that we have
only to prove that each βeHt extends to an element β of Kt. This is a direct
consequence of the comments following [2, Theorem 3.6] but we give here
an explicit proof drawing on the results of Sect. 2. For each double cone 0,
g(0) can be thought of as the W*-form of the crossed product of 91(0) by ^ ,
the full subcategory of End9I(0) with objects Λ(0) = {ρ|9I(0): ρeΔ, ρ{A) = A,
A e 91(0')} and whose symmetry is the Bosonized symmetry έ ([2, Sect. 3] and
[1. Sect. 7]). We now verify the validity of relations (2.1) and (2.2). If ρ is
a transportable localized morphism localized in 0 and βeHt then so is βρβ~γ

since β acts locally. Now consider the permutation symmetry which describes
statistics:

s(ρ,ρ') = (U'xU)*oUxUf, (3.1)

where U e (ρ, ρx) and Uf e (ρ', ρ\) are any unitary intertwiners such that ρx and ρ\
are localized spacelike to one another. Here x and o denote the monoidal and
composition product in our monoidal category (cf. [9]). Since β acts locally,
βργβ~^ and βρΊβ'1 are localized spacelike to one another and

β(U)e(βρβ-\βQlβ-1), βmeiβρ'β-'Jρ'J-1) (3.2)

so that

j8(e(ρ, ρ')) = (β(Uf) x β{U))* o β(U) x β(Uf) = ε(βρβ- \ βQ'β~ι).

Now if φ is a left inverse for ρ then βφβ'1 is a left inverse for βρβ~γ and
if φ is a standard left inverse then so is βφβ'1 (this terminology was introduced
in [9]). Hence if ρ has finite statistics then so does βρβ~ι and (2.1) is satisfied.
Simple computations (cf. Eq. (1.9), (7.3), (7.16), and (7.17) of [10]) then show
that

β(έ(ρ^)) = t{βρβ-\βρ'β-'). (3.3)

Thus β extends to an automorphism of the C*-crossed product. Since β in-
duces an automorphism of each 91(0), a von Neumann algebra on a separable
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Hubert space with a properly infinite commutant (by Property B and local
commutativity), β is locally unitarily implemented and so is its extension to the
crossed product by Proposition 2.1. Thus β extends locally to the VF*-closures
$(&) and hence globally to an automorphism β of 5 which belongs to Kx and
extends β. •

We now consider a translation covariant theory where the vacuum sector
fulfills the spectrum condition. Denote by Wx the elements of Hι which commute
with the action α and by K\ the automorphisms of the net $ which commute
with the action α of translations and leave the net 91 globally stable, where $
now refers to the covariant complete normal field system with gauge sym-
metry (cf. [2, Sect. 6]). Since βeH] commutes with α we have βAcβ~ί = Ac and,
reasoning as above using Proposition 2.5, we can deduce the following result.

Corollary 3.2. // the gauge group G has a discrete centre, there is a short exact
sequence

where the second arrow is inclusion and the third one is the restriction to 91.

Corollary 3.2 will be applied in the next section to study vacuum degeneracy
in the case of spontaneously broken gauge symmetry. We do not know whether
the corollary might not hold without any assumption on the centre of G as
a consequence of the spectrum condition which has not been directly exploited
here.

4. Vacuum Degeneracy and Gauge Automorphisms

We now apply the results derived in the previous section to study the problem
of vacuum degeneracy in theories with spontaneously broken gauge symmetries.
The setting here is that described in [3] and we begin with a net 91 of observables
satisfying essential duality

The canonical field net g *s n o w given by the construction recalled in the
previous section but starting with 9Id rather than 91 so that we now have in-
clusions

g, (4.1)

and by the previous results,

G = A\tifιd%. (4.2)

The full gauge group Γ can now be defined by

Γ = Aut5 ίg. (4.3)

As shown in [3, Sect. 2], Γ acts locally on the field net:

We impose the physically reasonable requirement that the local energy-momen-
tum tensor be an observable (cf. [3, Sect. 2]), so that Γ commutes with the
spacetime translations on g and the vacuum state ώ0 of 5 is transformed by
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γ e Γ into a vacuum state ώ 0 © y on g which is also an extension of the vacuum
state ω0 on 2t. The reference vacuum state ώ 0 is the unique G-invariant vacuum
state of g which is normal on SΆd.

The natural question here is whether ώ 0 o y, γ e Γ exhausts the set of pure
vacuum state extensions of ω0 to $. We are only able to offer a partial positive
answer to this question by characterizing those extensions of ω0 which lie on
the orbit of ώ 0 under the normalizer of G in Γ. To this end, we will study the
set 1Γ of vacuum states of g defined as follows: a state ω of g is in f̂  if and
only if
a) ω|2l = ω 0,
b) ω is translation invariant,
c) ω is G-invariant,
d) n(W(&f)y = n(Md(&)l for each double cone 0,
where π denotes the GNS representation obtained from the restriction of ω
to 9Γ*. We express d) by saying that ω preserves essential duality since the
condition can also be written as an equality of nets:

πoSΆd = (πoS&)d. (4.4)

Restricting the family y of states on g to 9Id, we get a family iV of states on 2Γ*.
iV determines "K completely since any G-invariant state ω on 5 satisfies

ω = ω|9ϊdom, (4.5)

where m denotes the (normal, completely positive) map of J^Jf7) onto U(G)'
got by integrating Ad l/(g) with respect to the normalized Haar measure on G.
Here U(g) is the unitary implementing g e G on the Hubert space of the GNS
representation of the G-invariant state ώ0.

Let HcAutSΓ* be the group of all automorphisms β of the C*-algebra <Άd

which leave 9Ϊ pointwise fixed. By our standing assumptions they automatically
commute with translations. It follows immediately from the definition of β and
the dual net that

3ld(0), βeH, &eJίT. (4.6)

Given ωeΨ, let (πω,Φω) denote the covariant representation of {2ϊd,α}
arising from the GNS-construction.

Proposition 4.1. The map βeHh+ω0oβisal — l correspondence of H onto W;
if ω = ω 0 o β, β e H, then

(πω,Wω)*(π0<>β9%) (4.7)

so that each ωe'Ψ is locally normal, fulfills the spectrum condition and thus is
indeed a vacuum state.

Proof. If βeH, ω0oβ is in iV and (π0oβ,<%0) is covariant since ocaβ = βoca,
αeR 4 , so that (4.7) follows easily. Furthermore, β is uniquely determined by ω
since, for A,A'e% BeK\ ω(ABA') = ωoβ{ABA') = ωo(Aβ{B)Af) so that ω0oβ
= ω0 o β' implies β = β'. So if ω = ω 0 o β with β an automorphism of 2lrf leaving ?l
pointwise fixed and coef , then ω = ω 0 ° ααβa~ 1,aeR4, hence β = oίaβoc~1 and β
is actually in H. Thus we need only show that each ω e HΓ is of the form ω 0 o β
with /?eAut2Id leaving 9ί pointwise fixed. Note, first, that πω |9l is irreducible
and πω is locally normal. For by (4.4),

C πω(5ί(0/))/ = πω(3Id(0)), & e X ,
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hence πω(9l)' C Centre πJW*) = C/. Now, by assumption, πω(SΆd(&)) is a von Neu-
mann algebra and 9Id is a simple C*-algebra [11] hence πω is locally an iso-
morphism and hence πω is locally normal. Since 21 is irreducible, Ω is cyclic
for 91, hence by a) we can define a unitary operator V, intertwining the restric-
tions of πω and π0 to 9ί, by

Vπω(A)ξω = π0

so that, in particular, VπJ^iβ^V'1 = πo(Sl(0')); and, taking commutants and
using c), we get

V

β(B): = Vπ

defines an automorphism β of 9ld fixing 91 pointwise and such that ω = ω0 o β.
By the above comments, such a β is unique, commutes with αα and is
hence in H. •

By (4.5) and Proposition 4.1, we can conclude that each state ω in Y is locall
normal on g and that the associated covariant representation (πω, Φω) of {g, α
fulfills the spectrum condition with πω being irreducible [1, Proposition 6.4].

Let K denote the normalizer of G in Γ. Since Γ commutes with translations,
each state ώ0 oy, γeK9 is translation invariant and G-invariant. We can now
characterize the orbit of ώ 0 under K as follows:

Theorem 4.2. Under our general assumptions implying that Γ commutes with
translations, the orbit of the reference vacuum ώ0 under the normalizer of G in Γ
coincides with the set Ψ* of degenerate vacua which preserve essential duality. We
have a short exact sequence of groups

where the second arrow is inclusion and the third is restriction to (ίld.

Proof Since each fieK normalizes G and ώ 0 is G-invariant, ώ 0 oβ is G-invari-
ant, hence ώ0oft=ώ0oβom = ω0°β°rn = ω°m = ώ. Now ω = ωo°β spans Ψ*
by Proposition 4.1, so ώo°i^ spans 'V as β varies in K. The other assertions
follow immediately from Proposition 3.1 and Corollary 3.2.

Remarks. We close with a few remarks on the more general case where local
energy-momentum operators are not assumed to exist in 21 so that Γ might not
commute with translations. The conclusions in Theorem 4.2 can still be drawn
by Corollary 3.2 provided we assume that the centre of G is discrete: let H
denote the local automorphisms of 2f* which leave 9ί pointwise fixed and com-
mute with translations and let K be its inverse image in the normalizer of
G in Γ under the quotient map. Then by Corollary 3.2, K commutes with
translations and the conclusions of Theorem 4.2 still hold.
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