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Abstract. We investigate the fluctuations in Na(R), the number of lattice points
n £ Z2 inside a circle of radius R centered at a fixed point α e [0, I)2. Assuming that
R is smoothly (e.g., uniformly) distributed on a segment 0 ̂  R ^ T9 we prove that

the random variable — - - 7= - has a limit distribution as T -> oo (independent

of the distribution of R\ which is absolutely continuous with respect to Lebesgue
measure. The density pu(x) is an entire function of x which decays, for real x, faster
than exρ( — |x|4~ε). We also obtain a lower bound on the distribution function
Pα(x) = J^ pΛ(y)dy which shows that Pα( — x) and 1 — PΛ(x) decay when x -> oo

not faster than exp( — x4+ε). Numerical studies show that the profile of the density
pα(x) can be very different for different α. For instance, it can be both unimodal and
bimodal. We show that J^ xpα(x)dx = 0, and the variance Dα = J^ x2p(X(x)dx
depends continuously on α. However, the partial derivatives of Da are infinite at
every rational point α e Q2, so Dα is analytic nowhere.
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I. Introduction

Let α = (α1? α2) be a fixed point in the unit square, with 0 ̂  α l s α2 < 1 and define

ΛΓα(#) = # {neZ2\\n - oc\ ^ R} (1.1)

as the number of integer points inside the circle of radius R centered at α. Clearly
Nχ(R) will grow for large R as the area πR2, but what can one say about the nature
of the fluctuations about this mean value?

The classical circle problem which goes back to Gauss is to estimate the error
term when α is the origin. The best result in this direction:

\N0(R)-πR2\ ^ C£JR
(7/11)+ε

for every ε > 0 was obtained by Iwaniec and Mozzochi (see [IM]).1

Hardy's careful conjecture (see [HI]): "it is not unlikely that

\N0(R)-πR2\ =

for all positive ε," remains open. In Table 1 and Fig. 1 we present numerical results.
They are consistent with the asymptotics:

min (JV0(r) - πr2} -- const. R1/2(\ogR)λ~ ,
Γ 5 Ξ R

max {N0(r) - πr2} ~ const. Rll2(\ogR)λ+

r ^ R

with λ- =0.6 + 0.1 and λ+ = 0.3 + 0.1. This should be compared with the
Ω-results of Hardy (see [H2]),

and

N0(R) - πR2

 Λhm sup - -ϊj-2 - > 0 .
-» A

Later, log log-improvements of these estimates were obtained (for the best results in
this direction see [Haf] and [CK], and for a review, the monograph [G]),
however, there has been no improvement in the exponents 1/4 and 0 at the
log-term.

In this paper we shall be interested in the limit distribution of the suitably
normalized error term

N,(R)-πR2

α( } =

assuming that R is uniformly (or approximately so) distributed on [0, Γ] and
T-* ao. Our work follows closely and generalizes recent results of Heath-Brown
who proved in [H-B] the existence of the limit distribution of FQ(R), assuming that
R is uniformly distributed on [0, Γ]. Heath-Brown also showed that this limit

Very recently Huxley obtained a stronger result, improving the exponent 7/11 to 46/73 (see [Hux])
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Table la, b. Minima and maxima of (F0(r)\r < R}

(a) R
2
 min{(JV

0
(r) - πr

2
)/r

1/2
 | r < R}

1
4
16
25
144
288
1681
3025
3961
5184
31681
38018
40321
106250
114242
114244
201601
574561
1149109
1149122
7441954
40589629
40589636
40589641
133055698
133055701
133055714
133055721
133055744
133055753
133055761
133055770

-0.854372
-1.006055
-1.050312
-1.702022
-1.772309
-1.915399
-1.994813
-2.061242
-2.154738
-2.304541
-2.386141
-2.516160
-2.566369
-2.590165
-2.621929
-2.671462
-2.847067
-2.950457
-3.014438
-3.122152
-3.231051
-3.235172
-3.265116
-3.303641
-3.307234
-3.312526
-3.345365
-3.397335
-3.606301
-3.622178
-3.656102
-3.731411

(b) R
2
 max {(No W - πr

2
)/r

1/2
 |r < R}

1
2
5
53
340
586
850
986
5525
17225
147652
457317
574930
776533
3710538
3823300
3823301

0.741397
0.911407
1.411856
1.551844
1.566243
1.623847
1.673214
1.949967
2.022154
2.056893
2.087299
2.105906
2.160667
2.185626
2.200426
2.25375Γ
2.297583
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Table la, b. (Continued)

(a) R2 min{(JV0(r) - πr2)/r1/2 | r < R}

3823306
7646605
7646609
34307377
34307380
34307381
5792465045
34788691946
34788692025
34788692045
35756257745

2.300217
2.328358
2.415100
2.447120
2.481394
2.506720
2.512855
2.517548
2.532156
2.533235
2.582907

0.8

Fig. 1. Plots of ln(-min{F0(r)|r < R}) ( + ) and of ln(max{F0(r)|r < R}) (O) vs. In In R2.

distribution is absolutely continuous with respect to Lebesgue measure and its
distribution density PQ(X) is an entire function which decreases on the real line
faster than polynomially.

This probabilistic approach to problems in number theory fits in well with
current interest in problems relating to the statistics of eigenvalues of "typical"
Schrόdinger operators. The numbers (n — α)2, whose distribution we study here,
may be thought of as eigenvalues of the "displaced" Laplace operator (iV - α)2 on
the two dimensional torus corresponding to the classically integrable Hamiltonian
(p - α)2 (see [B, CCG]). More generally it was shown by Colin de Verdiere [CdV]
(see also the works of Sinai [S] and Bleher [Bll]) that the asymptotics of
eigenvalues of the Laplacian on surfaces of revolution may be related to the type of
statistics we study here with the circle replaced by a suitable curve.

An early study of Fα(K) when α itself is a random variable uniformly distributed
on [0, I)2 was carried out by Kendall [K]. He showed that the average second
moment

lim J dx
Γ-^ oo •* 0

J = a2 > 0
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exists and can be computed explicitly, a = 0.67649... . Similar results hold for
more general oval figures (see [K]).

In the present work we do not consider averages over α. Instead we use
Heath-Brown's methods to prove the existence of the limit distribution of F^R) for
all αe[0, I)2. The limit distribution is absolutely continuous and its density
decreases at infinity roughly as exp( — const. |x|4). This implies that there is no
central limit theorem for the fluctuations. We also show that this limit distribution
is the same for a class of distributions of R described by a density p(R/T)dR/T,
where p(x) is an integrable non-negative function on [0, 1] with J0 ρ(x)dx = 1.

In contrast with the above results, Beck (see [Be]) recently derived different
behavior for some very irrationally oriented rectangles. A natural parameter of the
orientation of the rectangle is η = tan φ, the tangent of the angle between x-axis
and a side of the rectangle. Hardy and Littlewood, Ostrowsky and others showed
that the behavior of the error term as R -> oo, for a rectangle of orientation η and of
sides Ra^ Ra2, depends on the behavior of the coefficients in the expansion of
η into a continued fraction. Assuming that the continued fraction coefficients are
bounded, Beck proved in [Be] that for such a rectangle with the center at any fixed

point α in a plane, the error term, after normalization by ^/logR, satisfies a central
limit theorem. In this case (i.e., when the continued fraction coefficients are
bounded) a classical theorem proved by Littlewood and Hardy, and independently
by Ostrowsky gives a bound C log R for the error term.

Before giving a precise formulation of our main results, we present numerical
data of the distribution o{FΛ(R) for several values of α. In Fig. 2 we plot the density
po(x) of the random variable F0(R) for R2 uniformly distributed in the range
[9 x 108,49 x 108]. This corresponds to p(x) = 2x. The maximum oϊpQ(x) occurs at
positive x while its tail is skewed towards negative x. In fact a computation of the
third moment of F0 shows it to be negative (see the work of Tsang [Ts]). Figures 3,
4 show pα(x) for α = (0.3437 . . . , 0.4304 . . . ) and α - (0.4685 . . . , 0.01814 . . . ),
respectively. In Fig. 5 we plot the average of pa(x) over α, corresponding to the case
studied by Kendall [K]. The shape of pα varies greatly as α changes.

The width of the distribution is largest for α = 0 in Figs. 2-4. This can be
understood from the equation (1.20) below for the variance Da. It is clear that Z>α

has a maximum at α = 0 and at α = (1/2, 1/2). It is also easy to see that Dα is
continuous in α. A more detailed analysis of (1.20), which will be described
elsewhere, shows that Dα is quite wild: when a -> β, where β is a point with rational
coordinates,

Da = Dβ- Cβ\a - β\ |log|α - β\ | + o(\a - β\ |log|α - β\ \),

with some Cβ > 0. This shows that Dα has a sharp local maximum with infinite
partial derivatives at every rational point.

Our results do not imply the existence of higher moments of FΛ(R), as T-+ oo,
i.e., we do not know if

lim ^}(FΛ(R))kp(R/T)dR
Γ-+OD ^ 0

exists for k > 2, and if it does exist, whether it is equal to {^ xkpa(x) dx. For α = 0

Heath-Brown showed the existence of the moments for k ̂  9. It seems likely that
similar results hold for all α.
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-3 -15 0 15 3

Fig. 2. Plots of pΛ(x) = (2π)1/2pα((2π)1/2x) vs. x for: α = 0

0 5

-3 -15 0 1.5

Fig. 3. Plots of pΛ(x) = (2π)1/2pα((2π)1/2x) vs. x for: α = (0.3437 . . ., 0.4304. . .)

-3 -15 0 15

Fig. 4. Plots ofpΛ(x) = (2π)1/2pα((2π)1/2x) vs. x for: α = (0.4658 . . ., 0.01814 . . .)

Statement of Results.
Let p(x) ^ 0 be an arbitrary probability density on [0,1]. The reader may think

of p(x) as equal to 1 or 2x, corresponding to uniform distribution of R or R2

respectively.
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Fig. 5. Plots of pa(x) = (2π)1/2pα((2π)1/2x) vs. x for: average of pΛ(x) over αe[0, I)2

Theorem 1.1. For every piecewise continuous bounded function g(x) on R1,

γ T oo

lim - J g(Fa(R))p(R/T)dR = J g(x)p«(x)dx , (1.2)

where pα(x) is a probability density on R1 which can be extended to the whole complex
plane as an entire function of x. For real x, pα(x) satisfies for every ε > 0 and
\x\ > x0(ε, α) the upper bound,

0^pα(x)<exp(-|x | 4- ε). (1.3)

The distribution function Pα(x) = J^ pa(x')dxf satisfies for every ε>0 and
x > x0(ε, α) the lower bound,

Pα( — x), 1 — Pα(x) > exp( — x 4 + ε) . (1.4)

This theorem expresses the weak convergence of the distribution of Fa(R) to an
absolutely continuous distribution pa(x)dx when Γ-> oo, and gives bounds on the
behavior of pΆ(x) at infinity. Recently Bleher proved the existence of a weak limit of
the distribution of FΛ(R) for any smooth strictly convex oval enclosing the origin
(see [B12]). He proved also (1.3), (1.4) for ovals satisfying a condition of absence of
resonances (see [B13]).

The techniques used to analyse the behavior of Na(R) are all based on the
Poisson summation formula

Σ /(») = Σ
neZ 2 neZ 2

where / is the two dimensional Fourier transform of /,

/({)= J e** f ( x ) d x
R 2

and xξ is the usual scalar product in R2, xξ = x1ξ1 + X 2 <

_ 1 if \x - «| ^ R
α ' 0 if |x - α| > R ,

we find immediately

(1.5)

Defining, for xeR 2 ,

(1.6)
neZ2 neZ 2
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where

= J e

(1.7)

and Ji(ί) is the Bessel function. Noting that

χα(0; R) = J χα(x; Λ)Λc = J dx = πR2 (1.8)
R 2 |x - α| ^ Λ

yields

£ χβ(2πn; R) = Σ *(««) R , (1.9)
n φ O n φ O I W I

which is a variant of the Hardy-Voronoi summation formula (see also the work
[K] where various generalizations of (1.9) are discussed). We use here and later on
the notation

e(t) = e2πit.

The well known relation

-0( | ίΓ 3 / 2 ), (1.10)
V πIH \ * /

then gives

χα(2τm; .R) = π"1 ^/R 3/2 cosί 2τφ|.R —— J + 0(|w|~ 5 / 2.R~ 1 / 2) (1.11)

so that

This leads us to the formula

N (K\
F«(R) = —

n φ 0

= ̂ J Σ o o β ^ N Λ - + OίΛ- 1). (1.12)

The basic idea of Heath-Brown is to rewrite (1.12) as a sum of terms represent-
ing a flow on an infinite-dimensional torus with incommensurate frequencies:
R playing the role of time. The problem of finding a limiting distribution is then
a problem in ergodic theory.

To do this we first group terms in (1.12) with commensurate frequencies, i.e., all

those n e Z2 for which |n| = k y/m, k = 1, 2, . . . , where m > 0 is a fixed square-free
natural number. Let us recall that m e N is square free if m φ k2 1 with k > 1 fc, / e N .
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We define for every square free m a function

! Σ
k=l n:\n\ = k

= ^3/4 Σ icos(2π/cί-3π/4) Σ _ e(nα) , (1.13)
m k = l K n lnHkv/m

which is periodic in ί with period 1 (for m not square free we define /m(ί; α) = 0).
Then (1.12) can be written as

FΛ(R)= Σ /mίv^K oO + Oί/T1). (1.14)
square free m

As is well known, the ^Jm with square-free m are linearly independent over the field
of rational numbers Q. We are thus led to the study of limit distributions of almost
periodic functions of the form

F(t) = Σ *»(?„*)
n = l

with γn linearly independent over Q. If the sum were finite, say, up to some N ^ 1,
the Birkhoff-Khinchin ergodic theorem in the strengthened form (see, e.g. [CFS])
would imply that for every continuous bounded function g(x) on a line,

j Γ 1 1 / N \ oo

lim - J g(F(t))dt = j . . . J g( Σ *„(*,.) )dtl...dtN= J g ( x ) v N ( d x ) ,
T^oo ^ 0 0 0 \ n = l / - o o

where vN(dx) is the distribution of the finite series Σ^=ι α«($n)> when the θn are
independent random variables uniformly distributed on [0,1]. This means, roughly
speaking, that the functions y n ίmodl, n = 1, . . . , JV, behave like independent
random variables uniformly distributed on [0, 1), as t varies over a sufficiently large
range. Our problem is that the series in (1.14) is infinite, and in fact only condi-
tionally convergent, since one can see from (1.13) that fm(t; α) ~ m~3/4. So the
problem is to prove the existence of a limit distribution of conditionally convergent
but square-summable series of periodic functions with incommensurable periods.

Heath-Brown has proved in [H-B] some general theorems concerning this prob-
lem. We will use a modified version of Heath-Brown's theorems to prove Theorem 1.1.

Following [H-B] we formulate conditions on the functions F(t) and an(t) in the
form of a hypothesis.
Hypothesis (H0). Let flι(ί), a2(t), . . . be continuous real valued periodic functions of
period 1 such that

o

n = l 0

(1.15)

an(t)2dt<π. (1.16)

Suppose that there are positive constants yl9 y2> - - , which are linearly independent
over Q, such that

1
lim lim sup — J min<l ,

T
Γ-+QO L 0

F(t)- (1.17)
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We prove the following ergodic theorem which will then be used to prove
Theorem 1.1.

Theorem 1.2. IfF(t) satisfies Hypothesis (f/0)> then for every probability density p(x)
on [0, 1] and for every continuous bounded function g(x) on R1,

lim i j g(F(t))p(t/T)dt= ] g(x)v(dx), (1.18)
T-» oo * 0 -oo

where v(dx) is the distribution of the random series

η = £ θn(tn) (1.19)
n = l

«m/ ίπ are independent random variables uniformly distributed on [0, 1].

As a consequence of Theorems 1.1 and 1.2 the variance of the limit distribution
pa(x)dx is given by the formula

where

neZ 2: |n| 2 = m

As was shown in [B12], Dα coincides with a squared £2-norm of F^R):

Da= lim - } |J
Γ^oo * 0

The outline of the rest of the paper is as follows. In Sect. II we prove Theorem
1.2, and in Sect. Ill we prove that the error function FΛ(R) satisfies the conditions of
this theorem, so that a limit distribution of Fa(R) exists. In Sect. IV we prove that
the limit distribution is absolutely continuous, and we prove an upper bound on
the distribution density. In Sect. V we prove a lower bound on the distribution
function, and we conclude the proof of Theorem 1.1. In Appendix A we prove
a general theorem on the analytic properties of distribution functions of random
series. This theorem is used in Sect. IV. In Appendix B we prove a number-
theoretical estimate of ra(m) which plays an essential role in proving upper and
lower bounds on the limit distribution.

Many problems remain unsolved. One is the convergence of higher moments of
FΛ(R) to the moments of the limit distribution. Another is to extend Theorem 1.1 to
higher dimensions and to more general strictly convex domains.

Convex ovals with flat points like

(allx1 + a12x2)
2k + (fl2ι*ι + a22x2)

2k = 1, k > 1 ,

deserve a special study. In this case the contribution to the error term
NΛ(R) — AR2, where A is the area enclosed by the curve, from a neighborhood of
the flat points can change the #1/2-asymptotics to a higher power of R. The
arithmetic properties of the slope of the oval at flat points are important in this
problem.

Heath-Brown proved in [H-B] the existence and properties of limit distribu-
tions for a number of functions of interest in number theory. We conjecture that the
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lower and upper estimates of Theorem 1.1 hold for the densities of those limit
distributions as well.

A more general problem is the existence and properties of limit distributions of
the oscillating part in the Weyl asymptotics for the spectral function of elliptic
operators on compact manifolds. In the simplest case of the operator — (V — fα)2

on a two-dimensional torus, this problem reduces to the shifted circle problem
studied in the present work. We believe that Theorem 1.1 actually holds in a much
more general situation.

II. Ergodic Theorem

Proof of Theorem L2. We shall first prove Theorem 1.2 in the particular case
p(x) = 1. In addition, we shall assume first that ^(x)eCo )(R1), i.e., g(x) is an
infinitely differentiate function with a compact support. We shall show that under
these assumptions,

lim i f g(F(t))dt = f g(x)v(dx).
Γ-» oo -* 0 -oo

The condition g(x)^C<§> implies that for all x, y,

\g(x)-g(y)\^Cmm{l\x-y\}

with some C > 0. So from (1.17),

(2.1)

i f \g(F(t))-g(FN(t))\dt£C^, f
1 o ^ o

l, \F(t) - F N ( t ) \ } d t ^ - (2.2)

when N ^ N0(ε) and T ̂  Γ0(ε, AT), where

F*(i)= Σ fl«(7«0

The function FN(t) is a continuous quasiperiodic function so by a strengthened
variant of the Birkhoff-Khinchin ergodic theorem (see e.g., [CFS], pp. 39 and 69),

1 τ 1 1 ί \
T ί 0(FN(t))dt - f . . . f g[ Σ fl»(ί») )Λι . . . ΛN
^ 0 0 0 \ w ^ N /

when Γ^ Γ^ε, N). Let v^(dx) be the distribution of

Then

and hence,

IN = Σ α»(^) -
n = l

\ oo

ί - ί ^ ί Σ an(tn))dtί...dtN= f g(x)vN(dx),

f g(FN(t))dt- f g(x)vN(dx)

Due to (1.15), (1.16) ηN converges weakly to η, so

oo oo

ί g(χ)vN(dχ)- J g(χ)v(dx)

(2.3)

(2.4)
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when ΛΓ^JV^ε). Put N = max{N0(ε),ΛΓ1(ε)}. Then for T^max{T0(ε, N),

i J g(F(t))dt- J

so (2.1) follows.

By implication, (2.1) holds not only for CQ but for all continuous bounded
functions g(x). Indeed, first by continuity we can extend (2.1) to the class C0 of
continuous functions with compact support. Then second, if φ(x)eCo>{R1) is
a function, such that 0 <£ ψ(x) ^ 1 for all x and ψ(x) = 1 for |x| <; 1, then for every
ε > 0 there exists A > 0 such that

(2.5)

Hence by (2.1) there exists Γ0 = Γ0(ε, A) such that for every T ̂  Γ0,

<i ί
= T J

It implies that

and so for every continuous bounded function g(x),

i f 0(F(ί))(l-^(F(ί)A4))Λ ^ 2ε sup \g(x)\ .

Similarly, (2.5) implies that

In addition, by (2.1),

^ ε sup
xeR 1

^} g ( F ( t ) ) Φ ( F ( t ) / A ) d t - ] g(x)ψ(x/A)v(dx)
•*• 0 - oo

<8

when T ). Therefore

- f g(F(t))dt- f ff(x)v(dx)gβ 1 + 3 sup \g(x)\ ,

when T ;> max {T0(ε, A), Tα (ε, A)}, which proves (2.1) for every bounded continu-
ous function g(x). Thus for the case p(x) = 1 Theorem 1.2 is proved.

Assume now that p(x) is a step-wise function consisting of a finite number of
steps. Because of the linearity of formula (1.18), it is enough to prove (1.18) for the
function

1
P(*) = j^ *['•*! W
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consisting of a single step. In the single step case, due to (2.1),

^ J g(F(t))p(t/T)dt = * 7 9(F(T))dt
i 0 i (o — a) Ta

1 ' i f g(F(t))dt-a~
10 o 7α 0

ft J 0(x)v(</x) - a I g(x)v(dx) ] = J gr(x)v(dx)

as stated in (1.18), above.

The general case follows now by approximating p(x)eL1([0,1]) by step-wise
functions pε(x) with

i
ί IpεM — p(x)| dx < ε, ε > 0 .
o

III. Almost Periodicity of the Error Function

In this section we will prove that Hypothesis (f/0) holds for the error function
Fa(R). To that end we will prove the following theorem:

Theorem 3.1.

1 Γ

lim lim sup — J
JV^oo Γ-» oo •*• 0

Proof. Define a (5-shaped Gaussian function of xeR 2 ,

A(x; T) = πΓ2exp( - π 2Γ 2 |x | 2) , (3.1)

so that J 2λ(x; T)dx = 1. Define then the smoothed characteristic function

χα(x; R, T) = χα( - 9 R ) * λ ( ;T)= J χa(y Λ)A(x - y; Γ)dy
R2

and the functions

and

Define also

π"1 °° exnί — mk2/T2}
Pi 7 J

m , 7̂3
^ fc=l ^

when m is square free, and/m (ί; α, Γ) = 0 otherwise.

Proof of Theorem 3.1 is based on three lemmas:

cos(2π/ct-3π/4) X e(na) (3.3)
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- J \Ff(R;T)-F.(R)\dR£CT -1/2

where C > 0 is an absolute constant.

Lemma 3.3.

ί F.(R;T)- ΛΓ1/3),

where C > 0 ι's an absolute constant.

Lemma 3.4. // Γ ̂  7V1/2,

M Σ l/J
-* 0 m^N

where C > 0 is an absolute constant.

Assume T > N. Then the Schwarz inequality and Lemma 3.3 imply that,

F.(R; T) -

i I

dR

1/2

Fβ(R; T) -
m^N

Hence by Lemmas 3.2, 3.4, when T ̂  N2,

- Σ
m ^ J

from which Theorem 3.1 follows.

Proof of Lemma 3.2. If |x — α| ^ R, then

|χα(x; ,R, Γ) - χ«(x; R)\ = J πΓ2exp( - π2T2\x - y\2)dy

^ j πΓ 2 exp(-π 2 Γ 2 | x-y | 2 )d);
\X-y\ZR-\X-U\

Similarly, if |x — α| ^ Λ? then

(3.4)

\χΛ(x; Λ, Γ) - χα(x; Λ)| - χα(x; Λ, Γ) = J πΓ2exp( - π2Γ2 |x - j/|2) dy
\y-a\ZR

^ J πΓ 2exp(-π 2Γ 2 |x-j; | 2)^

Hence (3.4) holds for all x.
From (3.4),

ι Γ ι Γ J D

-J \Fa(R;T)-F.(R)\dRZ-l Σ exp(-π 2 Γ 2 (R-n-α|) 2 )^=. (3.5)
7 0 ^ 0 neZ2
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For |n - α| <; Γ,

T

0

(since the main contribution to the integral comes from a small neighborhood of
the point R = \n — α|). Hence

- f exp(-π 2 Γ 2 CR- |n-α | ) 2 )

1

Γ 7 0

<- Σ= rr,2 ί-J
(3.6)

n — α

When |n - α

Γ Jn /-

f exp( - π2T2(R ~\n- α|) 2) -= ̂  — ̂  exp( - π2T2(\n - α| - Γ)2) ,
o

(since the main contribution to this integral comes from a small neighborhood of
the point R = Γ), hence

(3.7)
Γ

<-—— V pγr»f — Ίτ2T2(\-n r/\ T\2\ < Γ T~ll2

— 7^3/2 Zj exP\ π ^ v l " ~ α l ~ ^ ; ; = <^CM
|n - α| ̂  T

From (3.5)-(3.7) Lemma 3.2 follows.

Proof of Lemma 3.3. From the Poisson summation formula,

F ί Ώ T\ \~* £ C^TΓΊΛ' Ώ T'\ I /Ώ
α(K, 1)= 2^ Xa(*nn> K> 1 )/ V K

n Φ 0

= Σ exp(- |n | 2 /Γ 2 )χ α (2πn;K)/V^, Σ = Σ »
n φ O n φ O neZ 2 \{0}

hence (1.10) leads us to

Therefore Lemma 3.3 will follow if we prove that

1

m>N

Observe that

m>N neS(N)

(3.8)

- ̂  ) e(nα),

(3.9)

where
S(N) = {neZ2 \\n\2 = mk2 with m > N}
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If neS(N) then clearly |n| > JN. From (3.9),

1 f ~
7- J

n
-2 V

= π 2-
w.n 'eS(JV)

i f /
X I C O S I _,, ,.M^~ . —~ . ,.. ,^^

-* o \ ^ / \ ^

From the formula of product of cosines, we obtain

r

I
o

- cos τφ'|# - - dR
4

hence

-}T J

1 n
;α, Γ)

m>N

n,n'eS(N) n n
<A_ r

<1 Σ— ηr> L-t
•*- \n\ l u ' l ^

Straightforward computations give

1 _ exp(-(|n| 2

13/2 min { T1, 1 1 n I — | n 7 1

|n|3/2 |n'|3 / 2 min{Γ, | | n | - I n ' I Γ 1 ]

Hence we have (3.8), and Lemma 3.3 follows.
Let us sketch the proof of (3.10). The sum over the set

(3.10)

= {n,ri\ \n\, \n'\ > jN;\\n\ -\n'\\> 10}

is estimated by integral,

L N3'2 |n'|

<

To estimate the sum over the complementary set

Sr(JV) = {n, n' | |n |, |ι»'|

let us fix n and define the annuli

, n; fc) = n ' l ^ |M'| _ |n| ̂
4n 4n

(3.11)

fc = 0, 1, . . . , 40|n| .
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If ri, n"eSι(N,n;fc), then

1

449

^ I In' -In" 1 1 =
n - n"

2(|n| + 10)41,1

Without loss of generality we may assume that ^/N > 20 (say), \n\ > 20, so
\n\ + 10 < 2|n|, and the last relation implies

Hence n' 2 = \n"\2, and the number of elements in Sι(N, n; k) does not exceed the
number of representations of an integer m = \ri\2 as a sum of two squares, which is
bounded by Cε\n\ε. Hence

Σ
Sι(ΛΓ)

r2 ε). (3-12)

(3.10) follows from (3.11), (3.12).

Proof of Lemma 3.4. Observe that

φα) ^ r(m) ̂ (3.13)

for every ε > 0, where r(m) is the number of representations of m as a sum of two
squares. So setting ε = 0.01, we obtain from (1.13), (3.3) that, if T^ m1/2 then

,,,,.-™ ,,..-Λ.^ ^ | l-exp(-mk 2 /Γ 2 ) |
(m/c2)

Σ
mk2 ^ T2

Σ
k mk2 > T2

1

,^r>r2 (mk2)2\0.74

Indeed,

and

-,

L
k.mk2 ^ T2

Σ

/T
2 \ 0 . 2 6 2

g C0((T2)° 26/T2)(T/m1/2) = C0m~1/2T-°-° 48
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which was stated. We obtain now that, if T ̂  ΛΓ1 / 2, then

Σ l/m(ί; α, T) — fm(t; α)| ^ C2N
i/2 T~OΛS ,

from which Lemma 3.4 follows.

Theorem 3.5. Hypothesis (H0) holds for FΆ(R) with an(t) =/m(ί; α), where m = m(n)
is the n th square free integer.

Proof. The condition |0 /m(ί; oc)dt = 0 is evident from (1.13), which implies (1.15).
In addition, from (1.13),

|/ m (ί;α) |^m- 3 / 4 | k~^2r(mk2), (3.14)

where r(m) is the number of representations of m as a sum of two squares. As is well
known (see [HW]),

r(m) < Cεm
ε (3.15)

for every ε > 0, hence

I fm\t\ °OI = m εCE z^ί * ε<Cεm =Cεn
 ε . (3.16)

k=l

This implies (1.16). The condition (1.17) follows from Theorem 3.1.

Theorem 3.6. For every probability density p(x) on [0, 1] and for every continuous
bounded function g(x) on R 1,

I Γ oo

lim — J g(Fa(R))p(t/T)dt = j g ( x ) v 0 [ ( d x ) , (3.17)
Γ->oo -* 0 -oo

where vα(dx) is ί/ie distribution of the random series

ίm are independent random variables uniformly distributed on [0, 1].

Proof. It follows from Theorems 1.2, 3.5.

IV. Upper Bound on the Error Term Distribution Density

In this section we study some properties of the distribution va(dx) defined in
Theorem 3.6. These properties are needed to complete the proof of Theorem 1.1.
Our study is based on the following general theorem:

Theorem 4.1. Assume that απ(ί), n ̂  1, are real valued continuous functions, periodic
with period 1, satisfying the conditions:

( i ) ί (

(ii) supo^^i \an(t)\ < Jn~y with some J > 0 and \ < y < 1;

(iii) Σ°?=ll fo fl/ί)2 dt > J0n~λ with some J0 > 0 and 2γ — ί ̂
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Then the distribution of the random series η = X^=1#n(Ai)? where ί l 5 ί 2> are

independent random variables uniformly distributed on [0, 1], is absolutely continuous
with respect to Lebesgue measure, and the distribution density p(x) of η can be
extended to the whole complex plane C as an entire function of x. For real x,

0 ^ p(x) ^ C0exp( - C\x\{2y~λ)l(1-y))

with C, C0 > 0.

Proof of Theorem 4.1 is given in Appendix A.

Theorem 4.2. For every αeR2, the functions an(t) = f n ( t ; a ) satisfy the conditions
(i)-(iii) of Theorem 4.1 with y = (3/4) — ε and λ = (1/2) + εfor every ε > 0.

Corollary. The distribution va(dx) is absolutely continuous with respect to Lebesgue
measure, vΛ(dx) = p^xjdx. The density ρΛ(x) can be extended to an entire function
and satisfies (1.3) for real x.

Proof of Corollary. It follows from Theorems 4.1, 4.2.

Proof of Theorem 4.2. From (1.13),

where rα(m) was defined before,

(4.2)

The condition (i) is evident from (4.1). For the condition (ii),

sup | / m ( ί ;α) |<Λm- 3 / 4 + ε ,
O^ί^ l

see (3.16). The main problem is to verify (iii),

0

From (4.1) we have:

1 -~2 °° rα(m/c2)|2

We will deduce (4.3) from the estimate

n > N ^

The proof of (4.5) is based on the following theorem:

Theorem 4.3. For every α e R2,

00

lim inf(l/fc) £ |rα(n)|2exp( - n/b) ̂  π .
6-* oo n = 1
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Corollary. For every α e R2,

inf(l/&) £ Mn)l 2 exp(-rc/fc)>0. (4.6)
b^l n = l

The proof of Theorem 4.3 will be given in Appendix B. Let us show that (4.6)
implies

iwn)|2=ι^ (4 7)

when N ί; N0(α). Indeed,

Σ I '«(») I2 ^ Σ |r«(fi) | 2 exp(-n/fe).
n = l «=1

Let us fix some ε > 0 and put b = N/(2εlogN), ε > 0. Then by (4.6)

GO JY

Σ |rα(κ)|2exp( - n/b) ^ ε0b = ε0

n =ι zειog^\

with some ε0 = ε0(α) > 0, which does not depend on b and hence on N and ε. On
the other hand, |rα(n)|2 <Ξ Cεn

£, so

Σ |rα(n) | 2exp(-n/b)^C ε Σ n£exp(- n/b) ^ C'εN*bexp(- N/b)
n>N n>N

N1+ε /V 1 " 6 N

when N ^ A/Ί(ε). Hence
N N N N

' '= υ 2εlogN logN logN

when ε = ε0/4 and N ^ Nι(sQ/4)9 ε0 = ε0(α). Thus (4.7) is proved.
Let us prove (4.5). For all δ > 0,

n^JV n

By (4.7)

when N ̂  N0(α, δ). On the other hand,

N-l J V - l \τί+δ/2

Σ M«)I2^Q Σ «d/4^^r-

when AT ^ Nι(δ), so
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and

ΛJ- (3/2) (1+3) 1 Nl+δ/2 _ 1 λτ-1/2-3
= iV ^V ~3/2 = Zu 3/2 = Λ

n ^ N π n = ΛΪ n L

when ΛΓ ^ max{7V0(a, δ)9 N1(δ)}. Thus (4.5) is proved.
Let us turn now to the proof of (4.3). We have for all δ > 0:

2 - |Γ*(mfc2)|2

^^J^^Σ^,1^- (48)

The last double sum is equal to

\rM\2

 = y k(n)|2

{n\n ί> N1+δ;n = m/c 2,meβ,m ^ ΛΓ} ^ n ^ J V 1 + <5 ^

Σ l α \

~n'

where β is the set of square-free natural numbers. By (4.5)

On the other hand, if m < N and mk2 ^Ni+i, then fe > Nδ/2, so for m<N,

> (m/c2)2 3 / 2

Therefore

{n:n^Nί + δ n = mk2,meQ,m< N} n m<N

(4.11)
Combining (4.9)-(4.11) with (4.8),

Σ J /w(ί; α)2Λ ^ Cε,αJ

_ 2ε + 2δε\

Choosing now δ = 8ε, we get for small ε > 0,

— - -f 2ε 4- 2(5ε = — 2ε H- 16ε2 < — ε,

so for N ^ ΛΓ0(ε, α)

m^N 0

which proves (4.3). Theorem 4.2 is thus proved.
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V. Lower Bound on the Error Term Distribution Function

In this section we prove the following theorem:

Theorem 5.1. For every ε > 0, x0 = x0(ε) > 0 exists such that

Σ /w(ί,n;α)>
= l

{ Σ /«(**; «) < - 4 >
U=ι J

when x > x0.

Proo/ We prove the first inequality. The second one can be proved in the same
way.

We start with several definitions. Let ε > 0 be an arbitrary small number. We
will distinguish for m ̂  n between "good" m's, "bad" m's and "neutral" m's. Define
the set of "good" m's as

and Gc

n = Zn\Gn with Zn = {1, 2,. . . , n}. By |G| we denote the number of elements
in a finite set G.

Lemma 5.2. For every ε > 0, n0 = n0(ε) exists swc/i ί/iαί |G π |>n 1 ~ 3 ε

n > n0(ε).

Proo/ We have:

so by (4.7),

when n > n0(ε). On the other hand, |ί α(m)|2 < Cεm
ε ^ Cεn

ε, hence

X |rβ(m)|2 < CXIG.,1 .
meGn

Hence
|GJ>(C ε )- 1 n 1 - 2 ε >n 1 - 3 ε ,

when n > n^β), which proves Lemma 5.2.

When meGn, define

Lemma 5.3. For every ε > 0,n0 = n0(ε) > 0 exists such that mes Am > m' 10 /or α//
meGn w/ί/ί m, n > n0.

Proo/. When meGM,

} |/w(ί; α)|2rfί > Cm-3/2 |rα(m)|2
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and by (3.16),
sup |/m(ί;α)|<C;m- ( 3 / 4 ) + ε. (5.1)

o^ t ^ i
Hence

|/w(ί. α)| J }L(t. α)

ί^ 1 o

and

Define /+(£; α) = max(0, /m(ί; α)) and /~(ί; α) = max(0, -/m(ί; α)). Since
ft /m(ί; α)Λ = 0, (5.2) implies that

0

with Cε = (1/2) c;'. It follows from the definition of Am and (5.1), that

i
f /ί(ί; α)dί < (C^m~ (3/4)+ε) mesylm + m"(3/4)-4ε ,
o

so

mes^m > (C;m-(3/4)+TMQ™~(3/4)~3ε ~ m"(3/4)"4ε) - (Cf

BΓ
l(Cem"4ε - m"5 ε)

>m- 1 0

for m > n0(ε). Lemma 5.3 is proved.

Define the set of "bad" m's as

Bn = {1 ^ m ̂  tt|mes{ί:/m(ί; α) > 0} < m'10} .

When mεBn, define

^m = {ί|/m(ί;«)> -m"5} .

Lemma 5.4. When mεBn, mes^4m > m~10.

Proof. When meBn,

hence

and

Hence mes^l^ < m~5, so mes^m > w~1 0.
Define the set of "neutral" m's as Nn — Zn\(Gn u Bn). When meNn, define

Since then mφ Bn, mes^lm ^ m



456 P.M. Bleher, Z. Cheng, F.J. Dyson, and J.L. Lebowitz

Proof of Theorem 5.1. We have:
oo 1

Var Σ /»(*»;«)= Σ J7m(ί; α)2Λ <
m=n m=n 0

when n > n0. Hence by the Tchebyshev inequality

Pr

Define

Σ fm(tm; α) ^ 2 i ^ l -(1/4)*= 3/4.

When (t!,f 2 j . . . )£/>„,

m = l
>*;«) = Σ + Σ + Σ+ Σ

\ Gn -Bn Nn w — n +

π > ft0(
ε) On the other hand,

P r D M =
m=l

exp(-n1+ε)

when n > n0(ε). Setting X = n(1/4)~8ε, we obtain:

Pr

n > n^(εV Since ε > Q is arbitrarily small, Theorem 5Λ is proved.

Conclusion of Proof of Theorem LI. From Theorem 3.6 and Corollary of
Theorem 4.2 it follows that (1.2) holds for every continuous bounded function g(x).
By implication, it holds for every piecewise continuous bounded function. Proper-
ties of pΛ(x) follow from Corollary of Theorem 4.2 and Theorem 5.1.

Appendix A. Proof of Theorem 4.1

Let

be the characteristic function of α/ί). Then the characteristic function of

X(z) = Γ

Lemma A.I. χ(z) is an entire function of z = σ + iτ αnrf

wiίΛ some X, 5 > 0 depending only on the constants y, J, J0

 ίn ί/ze conditions (ii), (iii).
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Proof of Lemma A.I. Let us fix some zeC and define

n = n(z) = [ε'1^!1^] + 1 , (A.I)

where 0 < ε < 1 will be chosen later. For j^n — 1 we estimate |χ7 (z)| as

i
Jexp(feaj(i))A
o

where | |0/(ί) l l = supo^ί^ i|a/(i)|. So

.JΠ lκΛ*) l^

The condition (ii) implies that

Due to (A.I), (n - 1) ^ ε"1^]1^, so

7 ^ n - 1

n - 1
Hence

Π IχXz^
7 ^ n - 1

Let us estimate now |χ; (z)| for j ^ n. By the Taylor formula

~2 1

where
1 I z l 3 ί

\TJ(Z)\ ^ max - 1x7'(C)| |z|3 ^ —r- J |a_;(i)|3exp(|z| \dj

Due to the condition (ii),

so

Let us assume that ε = ε(J) is so small that

(A.2)

(A.3)

(A.4)

(recall that y > 1/2). Then we get from (A.4), (A.5) that

Let us write now χj(z) in the form

χ/z) = 1 ~ ί ί aj(t)2dt + rj(z) = expf-^ } α,(t)2rft + δj(z)
z o V z o

(A.5)

(A.6)

(A.7)

(A.8)
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To estimate |<5/(z)| we notice that by (A.6)

Since |ln(l + δ) - δ\ ̂  δ2, when \δ\ < 1/2, we get from (A.7), (A.8),

Hence

exp( -yJ f l j(r)2A

gexpl -
σ2 - τ2 \

2ε^(σ2 + τ2}laj(

= exp(-(Λ0σ2-B0τ2)jα/ί)2dί),
0

with A0 = (1/2) - 2ε1/4, B0 = (1/2) + 2ε1/4. Assuming that

we get

Hence

By (ϋ),

\χj(z)\ ^ exp -(0.4σ2 - 0.6τ2) J flj(t)2

|χ;(z) |^exp-(0.4σ 2-0.6τ 2)

Due to (A.I),

so

- 2 y ) / y

i

K (
i 0

^C0\τ\(1-2^?.

On the other hand, (iii) implies

X f aj(t)2dt ^ J0n~λ ^ J0(l + ε-
^ π 0

SO

Π |χXz)| ^ exp( -0.4C^2(1 + I
j*n

Setting A = 0.4Cl9 C = 0.6C0, we get

Π \χ3(z)\ ^ exp( -^σ2(l + \σ
^n

This estimate together with (A.2) implies

(A. 10)

(A. 11)

(A. 12)

= Π l/y W l ^
7 = 1
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Since |τ| \z\(l~yΉy ^ |τ|1 / y, we get

\χ(z)\ £ exp{ -Aσ2(l + \z\l/v)'λ + B\τ\ |z|(1^)/y}

with B = C + C'. Lemma A.I is proved.
From Lemma A.I it follows that for real σ,

Since y > λ,
00

p (x) = (2π) ~ 1 J exp ( — ixσ) χ (σ) dσ
— oo

is an entire function of x.
Let us estimate p(x) for large real x. By the Cauchy formula

00

p(x) = (2π)"1 j exp(-ix(σ - iτ))χ(σ - iτ)dσ
~ 00

00

= (2π) ~ 1 exp ( — xτ) j exp ( — ixσ) χ (σ — ίτ) dσ ,
— oo

SO

p(x)^(2π)-1exp(-xτ) ] \χ(σ - iτ)\dσ . (A. 13)
— oo

From Lemma A.I,

oo oo

j \χ(σ-iτ)\dσ^ f exp{ -Aσ2(\ + |σ - ί τ \ 1 / γ ) ~ λ + B\τ\ \σ - iτ\(1~y)ly}dσ .
— oo — oo

We will assume that |τ| ^ 1, so that |σ — iτ ^ 1,

|σ - iτ|1 / y)"λ ^ (2|σ - iτ| 1 / r)~A ^ -|

and
oo oo r j 2
J \%(σ - iτ)\dσ ^ J exp ^ -- — |σ - iτΓ λ / y + B\τ\ \σ - iτ\(1-

-oo -oo (. ^

Let us decompose the last integral into two integrals, over the regions (|σ| rg |τ|}
and (|σ| ^ |τ|}. If |σ| ^ |τ|, then |σ - iτ\ ̂  2|τ|, so the first integral is bounded by

J exp<^ -— — \ τ \ ~ λ / y + 2B\τ\l/Λdσ^ C\τ\λ/(2y}exp(2B\τ\l/y) .
-M I 4

If |σ| ^ |τ|, then \σ + iτ\ <. 2|σ|, so

J exp|-^-|σ + iτΓ
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Put σ = 5|τ | y / ( 3 y~A" 1 ). Then the last integral is equal to

W ( 3 y - A - l )
oo C /
J eχp J _ | τ | ( 2 y - A ) / ( 3 y - A - l )

o I V

with some D > 0. Hence

f \χ(σ - iτ)\dσ < C{\
— oo

_|_ |

The inequality λ ̂  2y — 1 implies that

3y - λ - 1 - y

so we may keep only the second term:

J |χ(σ - iτ)\dσ £ C0 |τ|
— 00

Hence by (A. 13)

p(x) ̂
Now,

min(-xτ
τ

and it achieves at

so

p(x) g C2 |x|λ/(2(1-

and Theorem A.I is proved.

Appendix B. Proof of Theorem 4.3

For completeness we state three theorems, only one of which is needed for the
purposes of this paper. We define

SΛ(b)= Σ kα(n)|2exp(-n/b). (B.I)
n = l

Theorem B.I = 4.3. For all α,

liminf^-1^))^. (B.2)
b -> oo

Theorem B.2. Except for an exceptional set of a of measure zero in R2,

SΛ(b) = πb + 0(fc(3/4) + ε) as b -> oo . (B.3)
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Theorem B.3. Suppose the vector a is rational, i.e. there exists an integer Q such that

2Qa1 = nίy 2Qκ2 = n2 (B.4)

are integers and (β, n l 5 n2) have no common factor. Then

SΛ(b) = (C/r(β))(&/β)log(fr/β) + 0(b) as b -> co , (B.5)
w/iere

Kβ) = Π ( 1 + P " 1 ) ' (β 6)
pie

wiίΛ ί/ze product taken over primes p dividing Q, am/

C = 3 (β even), C = 4 (Q odd, («! + w2) even), C = 2 (β odd, (nt + n2) odd) .

(B.7)
Theorems B.2 and B.3 give more precise estimates of SΛ(b) than Theorem B.I,

valid for some but not all α. We give here only the proof of Theorem B.I. This proof
can easily be extended to cover Theorem B.3, but Theorem B.2 requires a different
approach.

The definitions (4.2) and (B.I) give

SΛ(b) = Σ φ (m - m'))exp(-m2/£) , (B.8)

summed over integer vectors (m, ra') with

m2 - m'2 . (B.9)

To convert (B.8) into an unrestricted sum, we write

m, = (jk + W)/2, m\ = (jk - W)/2, m2 = (jl - hk)/2, m' 2 = (jl + hk)/2 ,

(B.10)
or conversely

7Wι + mΊ =7/c, m! — mΊ = hi, m2 4- m'2 =7/, — w2 + m'2 = Λfe .

(B.11)
If any four integers (j, k, I, h) are given satisfying

ft2+j2Φθ, fc2 + ; 2 Φ θ , (B.12)

either j = Λ Ξ 0, or fe = / = 0, orj = h = k = l=l (mod 2) , (B.13)

then (B.10) defines uniquely the integer vectors (m, m') with

4m2 = 4m'2 - (j2 + h2)(k2 + I2) Φ 0 . (B.14)

But there may be many sets (;', fc, /, /i) corresponding to one pair (m, m'}.
The pair (m, m') fixes uniquely the ratio

/= (k/l) = (m, + m/

1)/(m2 + m'2) = (-m2 + m'2}/(m, - m\) . (B.15)

If one of the fractions (B.I 5) is indeterminate (zero/zero), the other fraction is
determinate. In all cases the ratio / is determinate, being either finite, zero or
infinite. If / is finite, we fix k and / by reducing the fraction to its lowest terms, thus

(fc, /) = 1, / > 0 . (B.16)
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If /= 0 we take k = 0, / = 1, and if /= oo we take fc = 1, / = 0. With these choices
of k and i,

m t + m\ = -m2 + m'2 = 0 (mod fc) , (B.17)

m2 + m'2 = m1 - m\ = 0 (mod /), (B.18)

where congruence (mod 0) means equality. The integers

j = (mι + m'^/k = (m2 + m'2)/l , (B.19)

h = (ml- FiiΊ)// = ( -m2 + m'2)/fc , (B.20)

are uniquely fixed in all cases. The mapping from (m, m') satisfying (B.9), to
(j, fc, /, h) satisfying (B.12), (B.13), (B.16) is one-to-one. It is more convenient to
make the mapping one-to-two by dropping the condition (/ > 0) from (B.I 6). Then

SΛ(b) = (1/2) X e(h(hι - fcα2))exp( -(fc2 + I2)(j2 + h2)/4b) ,
kljh

summed over all (j, fc, /, h) satisfying (B.I 2), (B.I 3) and

(fc, / ) = ! . (B.22)

There are now two terms (fc = ± 1, I = 0) corresponding to / infinite in (B.I 5).
When (B.22) holds, the possibilities allowed by (B.I 3) reduce to two. Therefore

SΛ(b) = Se + S0, (B.23)

where the terms with j and h even are

- 1] , (B.24)
kl

summed over integers (fc, /) satisfying (B.22), and the terms with and h odd are

S, = (l/2)ΣG(w)G(0), (B.25)
kl

summed over odd integers fc and / satisfying (B.22). The functions (F, G) are defined
by

Σ exp( -x2/a)e(xt) = F(ί) or G(ί), (B.26)
JC

where the sum is over integer x for F and over half-odd-integer x for G. In (B.24),
(B.25), (B.26) we have used the abbreviations

w = 2(l(x,1 — fcα2), a = b(k2 + ί2)"1 . (B.27)

The (— 1) in (B.24) takes account of the fact that the term (j = h = 0) was omitted
from (B.21). By the Poisson summation formula, (B.26) gives

F(t) = M1/2 X exp( -π2a(p + ί)2), (B.28)
P

G(t) = (παJ^Σί-lί'expί-π^ίp + t)2). (B.29)
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According to (B.26), the functions F and G are periodic with periods 1 and
2 respectively,

F ( w + l ) = F(w), G(w+ 1)= -G(w). (B.30)

To estimate the behavior of Sα(b) by (B.24) and (B.25), the essential requirement is
to determine the distribution of the residues of w given by (B.27), modulo 1 and
modulo 2. For any real number g, let [0] be the integer part and

the fractional part of g. Let
g = mm({g}> 1 - {g}) (B.32)

be the distance of g from the nearest integer, and (by an abuse of notation) let ( — l)g

denote the parity of the nearest integer to g\ for half-integer g = n -f (1/2) we define
( — ϊ)9= 1. To estimate (B.23) we need separate estimates of F(w) and G(w) for large
and small a. For a ̂  1, (B.26) gives

F(w) - 1 + 0(Qxp(-a~1)\ G(w) - 0(exp(-4aΓ1)) , (B.33)

(δF/δw) - Oίexpt-α-1)), (SG/δw) - 0(exp(-(4α)'1)) , (B.34)

(dF/da) = 0(a-2Gxp(-a'1))9 (dG/da) = 0(α~2exp(-(4α)-1)) . (B.35)

For α ^ 1, (B.28) and (B.29) give

F(w) = (πα)1/2[exp(-π2αw2) + 0(exp(-(π/2)2α))] , (B.36)

G(w) = (-I)w(πα)1/2[exp(-π2αvv2) -f 0(exp(-(π/2)2α))] , (B.37)

(3(F, G)/3w) - O(α 3 / 2wexp(-π 2αw 2)) , (B.38)

(d(F9 G)/da) = 0((a'1/2 + α 1 / 2w 2)exp(-π 2αw 2)) . (B.39)

The constants implied in the 0 notation in (B.33)-(B.39) are independent of w and
a.

We now proceed to prove Theorem B.I, assuming that the vector α is irrational.
We return at the end to the case of rational α. Let u be any irrational number and
let (M/N) be one of the continued-fraction convergents to u. Such convergents exist
with N arbitrarily large and satisfy

\η\<N'19 η = M-Nu. (B.40)

Consider any N successive fractional parts of multiples of u,

Since M and N are coprime, the relation

k = Mj (mod N), 0 g k < N , (B.42)

between integers j and k is one-to-one. Then (B.40) and (B.41) give

Fj = {(k/N) - (Jη/N) - ((;• - J)η/N)}, J = L + (1/2)(N - 1) . (B.43)

Therefore,

|F, - (k/JV) - /I < (1/2)M < (2NΓ1, k = 0, 1, . . . , N - 1 , (B.44)
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with /independent of j. That is to say, the numbers FJ lie on the interval [0, 1] with
great uniformity.

Since we are assuming that α is irrational, we may suppose without loss of
generality that α2 is irrational. We write

u = — 2α2, v = 2α1? w = ku + Iv , (B.45)

in agreement with (B.27). Let / be any interval of length λ contained in [0, 1], and
let S be any set of 5 consecutive integers. We wish to estimate the number n(S,I) of
integers k in S for which {w} lies in I. Choose any convergent (M/N) to u, and
divide S into [s/N] subsets of N consecutive integers plus one subset of less than
N integers. Within each subset, by (B.44), the {w} lie within (2N)~ 1 of a uniformly
spaced set of numbers with spacing exactly equal to N~ 1. In the uniformly spaced
set, at least (λN — 2) lie within / and distant from the ends of / by at least (2JV)~ 1.
Therefore at least (λN — 2) integers in each subset have {w} in /, and all the subsets
together give

n(S, I) > ((s/N) - l)(λN - 2) . (B.46)

A similar argument, using one additional subset to include the whole of S, gives

n(S, I) < ((s/N) + l)(λN + 2) . (B.47)

We take N and s large enough so that

s > N2, (s/N) > N>2. (B.48)
Then (B.46) and (B.47) give

\n(S,I)-λs\<(4/N)s. (B.49)

Note that the bound on the right-hand side of (B.49) is independent of the position
and the size of /.

Now consider a square block B of (s2) pairs of integers (fe, /) with fe in Si and / in
S2, where Si and S2 are sets of s consecutive integers. We assume that B does not
include the pair (0, 0). We wish to estimate the number C(B, I) of pairs in B with
{w} in / and satisfying (B.22). We use the Mόbius inversion formula

l ) , (B.50)
( M ) = l dkl

valid for any function / with compact support in (fe, /). Provided that the support of
/ does not include (0, 0), the sum on the right of (B.50) contains only a finite number
of terms. Applying (B.50) to the block B, we find

C(B9 I) = Σ μ(d)n(Sι/d), (I/d))n((S2/d), I 0 ) , (B.51)
d

where (S/d) means the set of integers fe such that (dk) belongs to S, (I/d) means the
set of real numbers {w} such that {dw} belongs to /, and 70 is the whole interval
[0, 1]. If / is an interval of length λ, then (I/d) is a sum of d intervals with total
length λ. Thus (B.49) implies

\n((Sι/dl (I/d)) - (λs/d)\ < (4/N)sd , (B.52)
while

\ n ( ( S 2 / d ) , I 0 ) - ( s / d ) \ < l . (B.53)
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We divide the sum (B.51) into two parts. The terms with d < D are estimated using
(B.52) and (B.53), the terms with D < d < s using

n((Sld\ I) < 2(s/d) . (B.54)

Terms in (B.51) with d > s are zero since (0, 0) is not in B. Since

(B.55)
i

the estimates (B.52), (B.53), (B.54) applied to (B.51) give

C(B, I) = (6/π2)λs2 + 0(s2(DN~1 + D'1)) . (B.56)

We choose D = Nl/2 and obtain

C(B, I) = (6/π2)λs2 + 0(s2ΛΓ1/2) . (B.57)

The meaning of (B.57) is that in every block B the values of {w} with (fe, /) satisfying
(B.22) are distributed uniformly over the interval [0, 1].

We apply the estimate (B.57) to the sums (B.24), (B.25) with F(w), G(w) given by
(B.28), (B.29). The sums over (fe, /) are divided into boxes B with size s2, assumed to
be small compared with b. Within each box, the values of a given by (B.27) vary
only over an interval of length

Aa = sa(a/b)1/2 , (B.58)

and the values of {w} are distributed according to (B.57). We choose two integers
μ and M, such that

δ = (μ/M) (B.59)

is small compared with unity. We divide Se into two parts,

Se = Sel + Se2 , (B.60)

where Sel is the sum of terms in (B.24) with

w >δ , (B.61)

and Se2 is the remainder. Similarly, (B.25) is divided. We estimate separately the
three contributions Seί, Sol9 and S2 = Se2 + So2 to (B.23). We shall find that when
δ is small and b large, Sel is asymptotically equal to the desired bound πb, S01 is
small, and S2 is either positive or small.

To estimate Sel9 we apply (B.57) to the (M - 2μ) intervals [(m/M), ((m + 1)/M )],
m = μ, . . . , M — μ — 1. The result is

Sei = Σ *f *v[(6/π2)/(α, w) + R(a, w)] , (B.62)
kl,B δ

with
/(α, w) = (l/2)(F(w)F(0) - 1) , (B.63)

and the remainder term of order

R(a, w) = 0(MN~ll2f) + 0(M"1(df/d\^)) + 0((Aa)(df/da)) . (B.64)

After inserting the estimates (B.33)-(B.39) into (B.64), we can convert the summa-
tion over (fc, /) into an integration over a using (B.27). Thus

00

Σ becomes (πb) J a~2da , (B.65)
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and (B.62) becomes

with

l-δ

Sel =πb J dw[J(w) + K], (B.66)

J(w) = α-2dα(6/π2)/(α, w) , (B.67)
o

jR - 0(MN~1/2 + M'1 4- si?~1/2)K(<5) , (B.68)

jK(<5) - j α-1/2dαexp(-π2α<52) + } α-^dαexpC-α'1) . (B.69)

By (B.26),
1 oo

I F(w)dw = 1, J α-2(F(0) - l)dα = £ x~ 2 = (π2/3) , (B.70)
0 0 x Φ O

so that (B.67) gives
i
f J(w)<ίw = 1 . (B.71)
o

From (B.71), (B.33) and (B.36) it follows that
l-(5

f J(w)rfw = 1 + 0(<5|log<5|) . (B.72)
δ

The integrals on the right of (B.69) are convergent and give contributions of order
δ'1 at most. Therefore (B.66), (B.68) and (B.72) together give

Sel = πb(ΐ + 0(δ\lo&δ\) + 0(δ-*(MN-112 + M'1 + sfo~1 / 2))) . (B.73)

After choosing δ as small as we please, we may choose the other parameters in turn,

M = δ~2, JV>M 4 , s = N2, b>N4δ~4, (B.74)

with N a denominator of a convergent to u according to (B.40). Then (B.73) reduces

(B.75)

The estimation of Soί proceeds in exactly the same way, except that G(w) is
periodic with period 2 instead of 1, and by (B.30)

2

j G(w)dw - 0 , (B.76)
o

instead of (B.70). Therefore the 1 is missing in the analog of (B.73), and we have
instead of (B.75)

Soί=(πb)0(δ\logδ\). (B.77)

Lastly we estimate S2, the part of the sums (B.24) and (B.25) that have

w < δ . (B.78)

We divide the sums into boxes B of size s2 as before. Within each box, the fraction
of pairs (fc, /) satisfying (B.22) and (B.78) is by (B.57)

/ = (6/π2)2δ + 0(N~ 1/2) = 0(δ) , (B.79)
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when N is chosen to satisfy (B.74). We are concerned only with finding a lower
bound for S2ί and so we may drop any positive terms from the summand. By (B.26),
(B.28) and (B.29),

F(w)> |G(w)| > 0 , (B.80)

so that the summand in S2 is everywhere greater than ( — 1). Also, for a ̂  1, the
summand is by (B.33) uniformly majorized by

Converting the sums as before to integrals over a, we find from (B.79), (B.80) and
(B.81),

/°° /1 \\
S2> - f π b ( l / 2 ) ( J a~ 2 df l + 0 f α-2exp(-(4flΓ^α . (B.82)

\ i \o / /

The integrals are convergent, and so (B.79) and (B.82) imply

S2 > - Cbδ , (B.83)
with an absolute constant C.

It remains only to assemble (B.75), (B.77) and (B.83) and obtain

b~lSa(b} >π- Cδ\logδ\ , (B.84)

with another constant C, provided that b is large enough to satisfy (B.74). Therefore
the left side of (B.2) is bounded by the right side of (B.84). But the left side of (B.2) is
independent of 0. Letting δ tend to zero, the right side of (B.84) becomes π, and
Theorem B.I is proved for α irrational.

Suppose finally that α is rational, i.e. there exists an integer Q satisfying (B.4).
Then by (B.27), w is an integer multiple of Q~ 1. Accordingly, (B.24) and (B.25) imply

Se = (1/2) X [(F(0))2 - 1] + (1/2) £ [F(w)F(0) - 1] , (B.85)
kl,i kl,n

S0 = (1/2) £ ( - 1Γ(G(0))2 + (1/2) X ( - lfG(w)G(0) , (B.86)
kl,i kl,n

where the sums labeled ί are over the terms with integer w and the terms labeled
n are over non-integer w with

w ^ Q'1 . (B.87)

According to (B.33), (B.36) and (B.37), the non-integer terms are majorized by

X 0(min(exp(-(4^)-1), aexp(-(π/Q)2a))) , (B.88)
kl

with the sum extended over all integers (fe, /), whether they satisfy (B.22) or not.
When b is large, the sum in (B.88) becomes an integral over a according to (B.65).
The integral converges at large and small α, so that (B.88) is 0(b) as b -> oo.

It remains to estimate the sums in (B.85) and (B.86) with integer w. These sums
give

SΛ(b) = (l/2)ΣCd(OF(0))2 - 1) + (A, - /I2)(G(0))2) + 0(b) , (B.89)
kl

with the sums extended over all pairs (fc, /), where A is the density of integer pairs
(/c, /) satisfying (B.22) and

/«! - kn2 = 0 (mod β) , (B.90)
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while (Aί9 A2) are the densities of pairs with both k and / odd satisfying (B.22) and

In, - kn2 = (0, β) (mod 2β) . (B.91)

The sums in (B.89) can be estimated with an error of order b by using (B.33), (B.36)
and (B.37). To this accuracy, the terms with α ^ 1 are negligible, and the terms with
a > 1 can be approximated by taking

(F(0))2 - 1 = (G(0))2 = πa , (B.92)
so that

SΛ(b) = (Dπb/2) £ (k2 + I2)'1 + 0(b) , (B.93)
«>ι

with
D = A+Δ1-Δ2. (B.94)

When b is large compared with Q, the sum in (B.93) can be approximated by an
integral as before. With an error of order unity as b -> oo,

£ (fc2 + /2)-ι = π $a-
ida = πlogA. (B.95)

The upper limit of integration in (B.95) is according to (B.27)

A = b(mm(k2 + 12)Γ 1 = (b/Q) , (B.96)

neglecting a geometrical factor of order unity, since the smallest value of (k2 + I2)
satisfying (B.90) will be of order Q. Thus (B.93) becomes

SΛ(b) = (Dπ2b/2)log(b/Q) + O(b) . (B.97)

It is not difficult to calculate D explicitly, with the result stated in Theorem B.3. For
the proof of Theorem B.I, it is sufficient to observe that D is a positive number
depending only on Q, n± and n2 and independent of b. The fact that D is positive
follows immediately from the definitions (B.90), (B.91) and (B.94). Then (B.97)
implies that for rational α

lim(fe-1Sα(6))= oo , (B.98)
fo-»oo

and the proof of Theorem B.I is complete.
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