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Abstract. Given any Einstein manifold ME, one can obtain further examples of
Einstein manifolds by taking the quotient ME/G by a freely acting, properly
discontinuous group of isometries. We study this method in the case in which ME is
Kahlerian, ME/G is compact, and the Ricci curvature is non-negative. In many
cases, the candidates for G can be completely classified.

1. Introduction

The Einstein manifolds constitute perhaps the most interesting special class of
Riemannian manifolds, and their properties have frequently attracted the attention
of physicists: one thinks of the application of Myers' theorem by Freund and Rubin
[5], of Yau's theorem by Candelas et al. [3], of hyperkahler geometry by workers in
supersymmetric sigma models [8], and so on. A more complete understanding of
the full range of Einstein manifolds would clearly be highly desirable both in
physics and in mathematics [2].

Given any Einstein manifold ME, one has a canonical procedure for construct-
ing further examples of the same dimension. If a group G acts isometrically, freely,
and properly discontinuously on ME, then ME/G is also an Einstein manifold. The
distinction between ME and ME/G is purely global, but this global distinction can
have physical consequences: in string theory, the fact that Calabi-Yau manifolds of
the form ME/G can support flat gauge fields with non-trivial holonomy is the basis
of the "Hosotani mechanism" for breaking gauge symmetries.

The "quotient Calabi-Yau" manifolds of string theory are special examples of
an interesting class of manifolds which we may call the "locally Kahlerian" Einstein
manifolds. These are Einstein manifolds of the form ME/G, where ME is a simply
connected, irreducible Kahler-Einstein manifold, and where G acts isometrically
but not necessarily holomorphically (so that the restricted holonomy group of
ME/G is contained in U(n\ where n is the complex dimension of ME). In this work
we present some results on this important class of Einstein manifolds, mainly
confining ourselves to the case in which ME/G is compact and of non-negative Ricci
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curvature. In particular, we find that the candidates for G can be completely
classified for many types of the manifold ME.

2. The Structure of G

Recall first that if ME/G is compact and locally irreducible, then [4] ME must be
compact if the Ricci curvature is non-negative. Thus G must be finite. Now if ME is
a compact irreducible Kahler-Einstein manifold with non-negative Ricci curva-
ture, then its holonomy group is either Sp(^rc) (if the complex dimension
n = dim c(M£) is even), SU(n), or U(ri). We consider the three cases in turn.

Case [ i ] . ME is Hyperkάhlerian, with Holonomy Sp(jn). We denote such a manifold
by SH. These manifolds possess a two-sphere of parallel complex structures, giving
rise to a two-sphere of Kahler forms, {aφj + bφj + cφκ}, where a, b, c are real
numbers such that a2 + b2 + c2 = 1. If Fis the vector space spanned over the reals
by Φi, φj, ΦK, then the hyperkahler metric induces a canonical inner product on V,
and then the two-sphere of Kahler forms can be regarded as the unit two-sphere
in V.

Let/ : SH -> SH be any (not necessarily holomorphic) isometry of SH, and let
aφj + bφj + cφκ be any element of V. If V is the Levi-Civita connection of the
hyperkahler metric, then

V lf*(aφj + bφj + cφκ) =f*V(aφj + bφj + cφκ) = 0 .

But [2] all parallel forms on SH belong to the exterior algebra generated over the
reals by φu φj, φκ. Thus/* is a linear automorphism of V. Because/is an isometry,
the restriction of/* to the two-sphere of Kahler forms is a linear isometry of the
two-sphere. This simple construction yields the following information on the
isometry group of SH and on its freely acting subgroups.

Theorem 1. Let SH be a connected, compact, irreducible hyperkahler manifold. Then

[a] The full isometry group, lsom(SH), is a group extension of a finite subgroup of the
orthogonal group 0(3) by a finite group of symplectomorphisms. (A symplectomor-
phism of a hyperkahler manifold is a holomorphic map which preserves the canonical
non-degenerate parallel holomorphic two-form.)
[b] IfG is a non-trivial freely acting subgroup oflsom(SH), then G is a finite subgroup
ofSO(3), of order and isomorphism type governed by dim€(S

H): to be precise,

(i) Ifdim€(S
H) is a multiple of four, then G is a finite cyclic group of order dividing

;

(ii) Otherwise, G is either as in (i), or G is a finite dihedral or polyhedral group of
order dividing 2 + ^
Proof [a] By Bochner theory and the compactness of SH, Isom(SH) is necessarily
finite [9]. Let F be the homomorphism from Isom(5liί) into 0(3) defined by

F:f-+(f -i\*

where (/ x )* is restricted to the two-sphere of Kahler forms discussed above. The
image of F is some finite subgroup of 0(3): that is, a cyclic, dihedral, or polyhedral
group, or some product of one of these with Έ2. The kernel of F consists of
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isometries satisfying

f*Φi = Φi, f*Φs = Φj, f*Φκ = Φκ

Such an isometry is holomorphic (with respect to every complex structure in the
two-sphere). Now set ω = φj -f- iφκ. Then ω is a closed holomorphic two-form
with respect to L Since SH is irreducible, we can take ω to be the (essentially unique)
complex symplectic form on SH. Clearly Ker(F) consists of symplectomorphisms.
Now Isom(SH)/Ker(F) is isomorphic to a finite subgroup of 0(3), and this com-
pletes the proof of part [a].
[b] According to Beauville [1], the only non-trivial Dolbeault cohomology groups
of SH are those generated by the canonical holomorphic two-form. It follows that
every symplectomorphism has a positive holomorphic Lefschetz number [6]. Since
G acts freely, and since Ker(F) consists of symplectomorphisms, the holomorphic
Lefschetz fixed point formula [6] implies that G and Ker(F) intersect only in the
identity map; and so the restriction of F to G maps the latter isomorphically onto
some finite subgroup of 0(3). In fact, the image lies in 50(3). To see this, let/be in
G, and let Έm be the cyclic group generated by/ According to Reference [10], there
is a complex structure / on SH such that 7Lm acts holomorphically with respect to /.
As/is both isometric and /-holomorphic, it preserves φj. That is,/* fixes some
directed axis of the two-sphere of Kahler forms. Now as before, we take φ3 -f- iφκ to
be the complex symplectic form; the irreducibility of SH implies that we have

f*(φj + ιφκ) = <ΦJ + ιφκ),

where, by the maximum principle and the compactness of SH, α is a constant
complex number. As/is of finite order, it now follows that α is unimodular, and so
/ * merely rotates the two-sphere of Kahler forms through the corresponding angle.
Thus G contains no reflections and is a subgroup of SO (3).

The cyclic group generated by / acts freely and holomorphically. By the
Riemann-Roch-Hirzebruch theorem [2], the order of this cyclic group must divide
the arithmetic genus of SH

9 which is 1 + \ dim^S^) by the work of Beauville [1].
Thus G must be a cyclic, dihedral, or polyhedral group such that the order of each
element divides this integer. (Of course, it is clear from their action on the
two-sphere of Kahler forms that the dihedral and polyhedral groups cannot act
holomorphically with respect to any one complex structure; however, for each
element, one can find such a complex structure.) If dim^S^) is a multiple of four,
this is impossible for the dihedral and polyhedral groups, all of which contain at
least one element of order two. Hence the odd cyclic groups are the only possibil-
ities in this case. Otherwise, it is a straightforward exercise in finite group theory to
show that the least common multiple of the orders of the elements of the dihedral
group D2m (order 2m) is 2m if m is odd, m if m is even. For the polyhedral groups
P 1 2 (tetrahedral), P24 (octahedral), and P 6 0 (icosahedral), the corresponding num-
bers are 6, 12, and 30. Thus, in all these cases, the order of the group must divide
2 + dim^S**). This completes the proof.

This theorem contains, in the case dim(C(Siί) = 2, a well-known result of
Hitchin [7]: this states that a compact Riemannian 4-manifold, locally isometric to
a K3 surface endowed with a Ricci-flat Kahler metric, must have the structure
K3/Z2 or K3/[Έ2

 x %ϊ]> where Z2 is generated by a fixed point free holomor-
phic involution, and Z2 by a fixed point free antiholomorphic involution. For in
this case K3 is a hyperkahler manifold, 2 4- άim(C(K3) = 4, and TL2 xZ2 is the
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dihedral group of order four. Thus, for example, the generalisation of Hitchin's
theorem to complex dimension 6 states that the only manifolds locally isometric to
a compact irreducible hyperkahler manifold of that dimension are of the form
SH/Z2,S

H/Z^, SH/[Z2 x Z2\ or SH/D8.

Case [2], ME has Holonomy SU(n). We denote such a manifold by SCY and describe
it as a Calabi-Yau manifold. These manifolds do not, of course, possess a two-
sphere of parallel complex structures, and in fact each isometry is either holomor-
phic or antiholomorphic with respect to a fixed complex structure.

Theorem 2. Let SCY be a compact, connected, simply connected, irreducible Calabi-
Yau manifold. Then

[a] The full isometry group, Isom(<SCY), is a group extension of a finite cyclic or
dihedral group by a finite group which is ίsomorphic to a group of holomorphic maps
which preserve the complex volume form on Scγ.
[b] If G is a non-trivial freely acting subgroup of Isom(SCY), then

(i) //dim c (S c γ ) is even, G is isomorphic to Z2 , to Z2 , or to Z2

 x%ΐ > where
Z2 (Z2) is generated by an (anti) holomorphic involution.

(ii) 7/dimc(iSCY) is odd, then either Scγ/G is itself a Calabi-Yau manifold, or it has
the structure MCY/Z2 , where Mcγ is a Calabi-Yau manifold covered by Scγ, and
Z2 is generated by an antiholomorphic involution.

Proof. Let δ denote the complex volume form. Then with an appropriate nor-
malisation we can put

δ A δ = φn,

where φ is the Kahler form. As δ is unique modulo complex scalars, we have
/*<S = cδ, where c is constant, and where / is a holomorphic isometry. Such an
isometry must be orientation-preserving, and so c must satisfy cc = 1. Similarly, if
/is an antiholomorphic isometry, we have/*0 = — φ and so if we put/*<5 = cδ,
then

/*(<$"Λ δ) = ccδ A δ = {- \)nccδ A δ= f*φn

= (-l)nδAδ .
Thus cc = 1, and so

Hence/is represented as an involution when acting on δ.
Now as in Theorem 1, Isom(S c γ) is finite. Thus the homomorphism

F: / - » ( / " x )*, where (/~ x )* is restricted to its action on δ, represents any group of
holomorphic isometries as a finite cyclic group. If a group of isometries contains an
antiholomorphic element h, with h*δ = bδ, then F maps h to an involution which
satisfies

h*f* h*δ = bh* f*δ = bch*δ = bbcδ = cδ = {f~x)*δ ,

where / is a holomorphic isometry. Thus the image of F is either a finite cyclic
group if Isom(SCY) consists only of holomorphic maps, or a finite dihedral group if
it contains antiholomorphic elements. The kernel consists of holomorphic maps
satisfying /*<5 = δ. Thus Isom(Sc γ) must be as described.
[b] Let dim(c(SCY) be even. Since δ is essentially the only holomorphic form on SCY,
we can readily compute the holomorphic Lefschetz number [6] of any element of
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the kernel of the homomorphism F defined above. The only non-zero trace is on
forms of type (0, n), and it is given by

Trace/* |Ho,n(ScY) = J δ Λf*δl J δ A δ = 1 .
7 5CY / s cv

Thus the holomorphic Lefschetz number of any element of the kernel of F is 2, and
so, by the holomorphic Lefschetz fixed point formula, it follows that every element
of this kernel has a fixed point. Thus if G is a freely acting subgroup of Isom(SCY),
then G intersects this kernel only in the identity. Thus G must itself be a cyclic or
dihedral group. Assume that G is cyclic, generated by a holomorphic m a p / Since
/ has no fixed point, its holomorphic Lefschetz number must be zero, and so we
must have f*δ = — δ. Clearly G = Έ2 in this case. Assume instead that G is
dihedral. Then its cyclic normal subgroup of index 2 must be either trivial or
isomorphic to TL2, and so G = 2 ^ or 2ζ̂ ~ x2£^~, as claimed.

If dimc(SC Y) is odd, then the holomorphic Lefschetz fixed point formula
requires that each holomorphic/with no fixed points must satisfy f*δ = δ. Thus
the homomorphism F maps G onto either Zι or Έ2. In the first case, G acts
holomorphically and preserves δ, which therefore projects down to the quotient:
therefore SCY/G is a compact complex manifold with no holomorphic forms other
than the projected complex volume form, which is parallel with respect to the
projected metric. That is, the quotient SCY/G is a Calabi-Yau manifold. (Notice
that this never occurs when the complex dimension is even: the manifolds of the
form Scγ/G are not Calabi-Yau manifolds in that case if G is non-trivial.) In the
other case, when the image is TL2, G contains a normal subgroup N of index 2, and
N acts freely, holomorphically, and preserves the complex volume form. Thus
M C Y = Scγ/N is a Calabi-Yau manifold, and since G/N = TL2, we have

SCΎ/G = Mcγ/Z2 ,

where TL2 is generated by a fixed point free antiholomorphic involution on M c γ .
This completes the proof.

Case [3]. Let ME have Positive First Chern Class. This is the simplest case.

Theorem 3. Let Sp be a compact, irreducible, connected Kάhler-Einstein manifold of
positive scalar curvature, and let G be a finite freely acting non-trivial group of
isometries of Sp. Then G is isomorphic to TL2, generated by an antiholomorphic
involution.

Proof By Bochner theory [9], Sp has no non-trivial holomorphic forms. The
Lefschetz fixed point formula implies that every holomorphic map on Sp has a fixed
point. Thus every element of G other than the identity must be antiholomorphic. As
the product of two antiholomorphic maps is holomorphic, this means that G = ΊL2.

The full range of compact Einstein manifolds which can be obtained by applying
the quotient construction to Kahler manifolds may be classified as follows.
Theorem 4. Let ME/G be an Einstein manifold, where ME is a compact, connected,
simply connected, irreducible Kahler manifold, and G is a non-trivial, finite, freely
acting group of isometries. Then ME/G belongs to one of the following three classes:

[a] ME/G is itself a projective-algebraίc Kάhler-Einstein manifold.
[b] ME/G is the guotient of a manifold of type [a] by Έ2 , generated by an
antiholomorphic involution.
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[c] ME/G has the form SH/P12, or SH/P24., or SH/P60, where SH is a compact
hyperkάhler manifold and P12, P24., Pβo we the polyhedral groups.

Proof If G acts holomorphically on ME, then ME/G is Kahler-Einstein and ME is
projective, by means of a straightforward application of the Kodaira embedding
theorem [6]. Hence ME/G is projective.

If G does not act holomorphically, then unless ME is hyperkahlerian, each
element of G must be either holomorphic or antiholomorphic with respect to some
fixed complex structure. In the hyperkahlerian case, the same statement holds true
when G is cyclic or dihedral. In all these cases, G has a normal subgroup of index
2 which acts holomorphically, and so we have parts [a] and [b]. (For example, the
locally hyperkahlerian manifolds of the form SH/D2m can be expressed as
(SH/Zm)/Z2, where Zm is the cyclic normal subgroup of index 2 in D2m) The only
remaining cases are given in part [c]. This completes the proof.

Notice that, in this theorem, it is not necessary to assume that the scalar
curvature is non-negative: that is, the theorem classifies all quotients of compact
irreducible Kahler-Einstein manifolds.

4. Conclusion

There are many examples of compact Einstein manifolds which can be obtained
from Kahler manifolds by means of the quotient construction. These, however, are
most naturally discussed in the context of an analysis and classification of their
holonomy groups. In fact, the Kahler-Einstein quotient construction plays a cen-
tral role in the holonomy theory of non-simply-connected compact Riemannian
manifolds. For an application of the latter in physics, see Reference [11].
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