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Abstract. This article demonstrates that in the Lobatchevsky space and on a sphere
of arbitrary dimensions, the concept of the mass center of a system of mass points
can be correctly defined. Presented are: a uniform geometric construction for defining
the mass center; hyperbolic and spheric "lever rules"; the theorem of uniqueness for
determining the mass center in these spaces. Among the compact manifolds, only the
sphere possesses this property.

1. Preliminary. Statement of the Main Results

The classical definition of the centroid (A, m) of a system of material points can be
stated as follows: a point A with mass m is called the centroid of a system of material
points Ax,..., Ak with masses mι,..., mk in the Euclidean space R n if

> k > k

m - OA = ^2 mι' OAt, and m — ̂  mτ,

k

where O £ R n is an arbitrary point (Fig. 1). Then the mass ra — Y2 πιi is located in
the point A. i=ι

{A2,m2)

Fig. 1
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Fig. 2

This definition is based on the existence of a linear structure in Rn. The centroid
satisfies the following properties a) if we decompose the system of points Aλ,...,Ak

into subsystems and replace each subsystem by its centroid, we obtain a new system
with the same centroid; and b) the definition of a centroid is invariant under the group
of isometrics of R n .

There is another definition of a centroid, an inductive one which is based on the
existence of the Euclidean structure in R n . First we define a centroid for a system of
two material points as a material point (A, m) for which "the Euclidean rule of the
lever" is fulfilled:

πiγaγ = ra2α2 -> (1)

where ax = \A{A\, α2 = \A2A\ (A belongs to the segment AιA2); and

m = mι+m2 (Fig. 2). (2)

To determine the centroid of k > 2 material points is necessary to replace any k — 1
of them Av ..., Ak_{ by their centroid and then find the centroid of two remaining
points (A, m) U (Ak,mk) as above.

This definition is correct as well, although it is not simple to check property a).
The following question arises: is it possible to give a consistent definition of a centroid
for a system of material points situated in a space of constant non-zero curvature -
for instance, in the spherical space Sn and in the hyperbolic space Λn (Lobatchevsky
space)?

Neither Sn nor Λn have a linear structure, so the above vectorial definition does
not work. Also the Euclidean lever rule does not work because Axiom a) fails. To see
this it is sufficient to consider an isosceles triangle ABC (AB is its base) with the
equal masses at its vertices. It follows from the Euclidean lever rule that the centroid
of this point system is the intersection point of the medians of ABC and that the
medians are divided by this point in ratio 1:2. But this does not hold for arbitrary
triangles in Sn or Λn (Fig. 3).

Nevertheless a definition of centroid in spherical and hyperbolic spaces does exist
and it is a unique one. There are special '''rules of the lever" for the spaces Sn and
Λn; the mass of the centroid in the case of Sn is less than the sum of masses and in
the case An is more than this sum.

The main results of the article are:
1) A definition of centroid in the space Λn is given based on Special Relativity
Theory (the so-called "relativistic centroid" )\
2) A uniform definition of centroid in the spaces Rn, Sn, and Λn is given (the so-
called "model centroid"). It is shown that relativistic and model centroids of given
points system in Λn coincide as well as classical and model centroids of given points
system in Rn;
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(C,m)

Fig. 3 Sn°rA"

3) A natural system of axioms of centroid is formulated (the so-called "axiomatic
centroid'. It is shown that the model centroids satisfy this system of axioms in the
spaces £ n , Λn, and R n .
4) A uniqueness theorem is proven for the spaces Sn, Λn, and R n with n > 2. It
asserts that the axiomatic centroid coincides with the model one.
5) Manifolds on which the notion of centroid can be defined are clarified.

2. "Relativistic" Centroid in the Lobatchevsky Space Λn

The definition of centroid in case of Λn arises from relativistic dynamics. Let A
be some inertial frame of reference in R n . Consider the space ψ*A of velocities
of relativistic particles in R n viewed in this frame of reference. Velocities {v} are
normalized by c = 1, where c is the light velocity (so for every scalar υ, 0 < υ < 1).
It is known [1] that 9^ is Lobatchevsky space realized as a unit ball with the centre
denoted by the same letter A Let B be a free particle in R n . Denote by vA\B its
(vector) velocity in the frame of reference A. Consider such a point β G ^ J (that is

denoted by the same letter as the particle) that AB = vA\B. Thus there is an infinite

number of particles in R n corresponding to every given point 5 of ^ : all these

particles have the same velocity υAJ,B which is equal to AB. Each point F of the

boundary sphere SA of the ball Ψ*A corresponds to the velocity of photon F e R n

moving in direction AF in Rn. So, SA is the absolute of the Lobatchevsky space
^ (Fig. 4).

Consider the space 9g corresponding to another frame of reference B. A natural
map LAB from 9^ to 9g arises: and this map is a projective transformation. When
speaking about spaces of velocities we will sometimes omit the name of the frame of
reference. Metrics || || in the space of velocities Ψ* is given by the formula

\\XY\\ = l/21n(l + vxlY)/(l - vx[γ) (3a)
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/A, β, A|, A2, ..., An are particles;
F, ^ are photones;

Fig. 4

or equivalently
VX\Y = (3b)

where X and Y are two points in the space 9^. The model of Lobatchevsky space
constructed above is, in fact, the well-known Cay ley-Klein Model.

Using the relative formulae for momentum p — mv{\ — υ2)~1/2 and energy
E = ra(l — v2)~1/2 of a relativistic particle X with the rest-mass m in inertial
frame of a reference A, we find the values p and E through the distance a —
for which tanh(α) = υ:

p — m sinh(α), E = m cosh(α), E — p — m (4)

Identify Λn with some % and consider a number of points Aι,...1Ak with the
masses ra^ . . . , m fc. We now define their centroid. Choose some corresponding rela-
tivistic particles A1,...,Ak in R n and consider their centroid A. The corresponding
point A in ^ is the desired centroid of the initial system A l 5 . . . , Ak.

The velocity υ, and hence the position, of point A £ %£ (υ = OA) can be defined
according to the conservation of momentum low. According to the conservation of
energy law the centroid's energy can be defined as the sum of the component particle's
energies. Then, according to the formula E — m cosh(α), the necessary value of mass
m is found which must be located at the point A e %. The couple (A, m) is called
the "relativistic" centroid of the system (Aγ^rriγ) + . . . + (Ak,mk). The correctness
of this definition will be established in the next section; but now we will obtain some
explicit formulae for the relativistic lever rule.

Calculate the centroid (A, m) of two-points system {Aλ, m^ + (A2, ra2) in An. We
set II^AH = α1 ? \\AA2\\ = α2 and consider the ball 9%. Suppose that corresponding
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relativistic particles A±, and A2 in R n are moving along the same straight line with
the velocities vλ = tanh(α1) and v2 = tanh(α2) with respect to their centroid A G R n .
Next, suppose at some moment they bind in this centroid together (particles Ax and
A2 position in R n can be varied arbitrarily: it does not depend on the points AlyA2

position in the ball 9Q. Point A is the center of the ball 9^ and represents the zero-
velocity while bound particles momentum of pulse have equal values but differ only
by the sign:

mι sinh(α1) = m2 sinh(α2). (5)

The total energy E = mι c o s h ^ ) + m2 cosh(α2) equals racosh(O) = m whence the
mass situated in the centroid A G 5^ of points AX^A2 G S^ equals

m — mY cosh(α1) + πι2 cosh(α2). (6)

Formulae (5), (6) give "relativistic rule of lever". It is quite clear how to define the
centroid of several points inductively (through adding the new points to arbitrary
chosen of points one by one).

3. The "Model" Centroids in the Space of Constant Curvature

We now give the uniform definition of centroid in the n-dimensional space X of
constant curvature (X = Rn, An

1 Sn) for a system of material points.
Let a certain model of space X, i.e. a hypersurface Mx exist in the Euclidean space

R n + 1 with Cartesian coordinate system # 0 , x { , . . . , x n \ AX^A2^..., Ak are the points
on M x with their masses mι,m2,... jTnk. Consider a ray starting at the origin of

k >

R n + 1 with direction Σ πιfiA%' The point of intersection of this ray with M x shall

be called the centroid of the points Ax,A2j...,Ak, and locate a mass m determined
by the formula:

ra O A i (F iS 5 a ) (7)
τ=l

Fig. 5 a)
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The couple (A, m) we shall call a "model" centroid of a system ( i ^ m j ) U
(i42,ra2) U 043,ra3) U . . . U (i4.fc,mfc). The correctness of given definitions (i.e., the
results independence of new points joining order) is followed by the commutativity
of a vector's addition.

We shall render concrete this definition for each space from Wι,Λn,Sn calling
obtained centroids "Euclidean" "hyperbolic" and "spherical" correspondingly.

3.1. Euclidean Centroid. Imagine that R n is a n-dimensional plane {x0 = 1} in the

space R n + 1 . The xQ-coordinates of all the vectors OA, i = 1,. . ., k, are equal to 1
k

and hence the x0-coordinate of vector in right-hand side of (7) is equal to ^ m ^ If

A e {x0 = 1} is the model centroid of the system {AJ, then the first coordinate of

vector OA is equal to 1; therefore, (7) at once implies that

m = (Fig. 5b). (8)

It is simple to obtain that centroid of two points which belongs to the plane R n

satisfies the Euclidean rule of lever (1).
Thus the fact that the classical centroid of the system of material points coincides

with the model one in R n is proven.

3.2. Hyperbolic Centroid. The model of Lobatchevsky space Λn of the curvature 1
in the space R n + 1 with the origin O is the upper sheet of two-sheeted hyperboloid
{x: ||x|| = [x,x] = 1} situated in the half-space [x,x] > 0, where x 6 R n + 1 and [x, y]
is pseudoscalar product in R n + 1 which is defined by the quadratic form:

[x, y] = xoyo - xιyι - . . . - xnyn . (9)

If A and B are two points belonging to this hyperboloid, and OA — x, OB — y,
then the distance r induced by the pseudoeuclidean metric between them is given by
the formula:

coshr = [x, y] (Fig. 6a). (10)

Fig. 6
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The hyperbolic rotations of space R n + 1 are the linear transformations of R n + 1

with determinant equal to 1, preserving the form [x,y] and translating each sheet of
cone [x, x] = 0 to itself. These rotations give the motions of space Λn in constructed
model. The cone [x, x] = 0 is an absolute of space Λn in this model.

Let (Aι, m{) U (A2, ra2) U . . . U (Ak,mk) be a /c-points material particles system
belonging to the upper sheet of the hyperboloid {||x|| = 1}. According to the general

definition (7) we shall find a ray with source O and directed by the vector Σ mi0Ai

and this ray's point of intersection A with the hyperboloid. This is the obtained
material point (A, m) which we shall call the t(hyperbolic centroid'.

Let us calculate a two-points system's (Aι,mι) + (A2,m2) centroid on the

hyperboloid {||x|| = 1}. Denote zx = OAl9 z2 = OA2; \\zλ\\ = | |z2 | | = 1. We
shall find the length of vector m 1 z 1 + m 2 z 2 in pseudoeuclidean metric:

| | m 1 z 1 + m 2 z 2 | | 2 = m 2 | | z j | 2 + 2ra1m2[z1,z2] + ra2||z2||
2 = ra2-f ml + 2mιm2 coshr ,

where r is the distance between points A1 and A2 on the hyperboloid. Notice that for
— $ *

z = OA, \\z\\ = 1 and that vector z can be obtained from vector ra^ + ra2z2 by its
decreasing H^Zj + m 2 z 2 | | times; on the other hand, this value must be equal to the
mass m which is at the point A. Therefore,

m ~ v m i + m2 + 2mιm2coshr . (11)

Thus, the mass m which is at the point A is equal to the length of vector
mιzι + ra2z2 in the pseudoeuclidean metric. Hence,

OA — z — (?n1z1+m2z2)/ 'm — (m1z1+?τι2z2)/ '\jm\ + m\ -f 2m1?n2coshr . (12)

The formulae (11), (12) show us that the motion of hyperbolic centroid is invariant
with respect to the space's An motion group. We now introduce the hyperbolic rule
of the lever.

If a} is the distance in the Lobatchevsky metric between Aι and A, then

cosh ax = [Zj, z] = (mι [z1, z j + m2[z1, z2])/ra = (mλ + m2 cosh r)/m ,

and similarly
cosh α2 = (m2 + mι cosh r)/m .

Hence,

m = m2/m = (m2 + m 2 + 2771^2 cosh r)/m

= mι(mι + m2 coshr)/m + m2(m2 + rrij coshr)/m

= mj cosh αj + m 2 cosh α2 . (13)

From

y - / ( m i + m 9 c o s h r ) 2 m 9 s i n h r
cosh α, - 1 = W —« -~ — — 1 = —

y m\ + m2 + 2mιm2 coshr m
and

sinhrsinhα9 =
1 m

we obtain
mι sinh α{ = m2 sinh α2 (Fig. 6b). (14)
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Fig. 6

m = m-, cosh (a-|) + m2 cosh (a2)
sinh (a-|) = Aπ2sinh (a2)

Formulae (13) and (14) - "hyperbolic rule of lever" - completely coincide with
formulae (6) and (5) respectively. Thus, the fact that the points systems relative
centroid coincides with the hyperbolic one in An is shown. Therefore both are defined.

Note that the mass which is situated at the centroid according to the formulae (11)
and (13) exceeds the sum of the particle masses. But in the case when the distance
between points are small, the mass of centroid is roughly equal to the sum of masses
of these points; however, the greater the distance between points the greater the mass
in centroid. The mass at the centroid rises exponentially as r —> oo.

3.3. Spherical Centroid. The model of n-dimensional spherical space of constant
positive curvature 1 is a sphere, Sn, located in the space R n + 1 with the center in the
origin O, with equation x\ + . . . + x\ = 1.

The distance between two points is induced by euclidean metric in R n + 1 and
equals the length of arc on the great circle which connects these points. If the distance

between the sphere's Sn points A and B is equal to r, 0 < r < π, and OA = x,

OB = y, then
cos r = (x, y), (15)

We willwhere (x, y) = xoyo + xxyx + . . . + xnyn is vector dot product in R n + 1

denote the length of vector x e R n + 1 by |x| = V(x, x).
The motions of sphere Sn are induced by rotations of space R n + 1 around the

center O with respect to which the sphere is invariant.
Let (Ax, ra^U.. .U(Ak,mk) be a fc-material points system on sphere Sn. According

to general definition (7) the point (A,m) is defined on the sphere. We will call
the point (A, m) "spherical centroid" of this system (Fig. 7a). Let us now calculate
the spherical centroid of two points A{,A2 e Sn having masses mvm2. Denote

OAX = z1? OA2 = z2, |zxI = |z2 | = 1. The distance between points Ax and A2 is
determined by the formula

cosr = (z l 5 z 2 ) .

Calculations similar to those made in the hyperbolic case show that the mass which
is located at the point A 6 Sn is equal to the length of mxzx -f

m = rn2
2mxm2 cos r. (16)
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Fig. 7

centroid

a 2

{ m = /τ?i cos a-| + m2 cos a 2

mi sin a-| = m 2 sin a 2

Let aγ be the spherical distance between A and Av a the spherical distance between
A and A2. Then

cos 04 = (zv(mιz1 + m2z2)/m) = (mι + m2 cos r)/m,

and hence

cos α2 —

m = m

c o s r )

m 2 cos r)/ra + m2{τn2 + rrij cos r)/ra

= mj cos αι + m 2 cos α2

mx sin αj = m 2 sin α2 (Fig. 7b).

(17)

Formulae (17) give a spherical rule of lever, together with formula (16) they prove
that the definition of spherical centroid is invariant with respect to the action of the
group of spherical motions. The mass which is located at the centroid is always less
than the sum of the composing points masses and the greater the distance between
points Ax and A2 the less it is: the value of m is minimum when r = π and equals
|m 1 — m2\. When the points are close the mass m becomes roughly equal to the sum
of the points masses (spherical geometry approaches the Euclidean one). It should be
noted that unlike the Euclidean and Lobatchevsky spaces, in the spherical space the
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points centroid is not always be defined. Namely, it can not be defined for two points
if they have equal masses and are antipodal: for more than two points their centroid

can not be defined if m 1 OAX + . . . + mk0Ak = 0. It is more suitable however to
consider that (in these cases) centroid is defined but a zero mass is located there;
therefore, to point the centroid's geometric position is impossible. To be in analogy
with Λn we shall consider Sn as velocities space of some abstract "mechanical" points
system in some abstract space K: since AX,A2 G Sn are the points with distance a
between them, we shall introduce a formal notation for "relative" particles AVA2

velocities in the "space" K according to the formula υ = υA \A — tanα. Then the
particle's A2 momentum of pulse with respect to "frame of reference" connected with
the "particle" Ax can be inscribed in a form p = m sin α, and in the centroid's "frame"
A is fulfilled an equality mιsinaι = ra2sinα2, where aλ and a2 are the distances
from A to Ax and to A2 respectively. The particle's A "energy" in the frame of
reference connected with the particle A can be inscribed in a form E — m cos α. The
formulae for "momentum of pulse" and "energy" by means of the velocity can be
inscribed in a form:

p = m sin a = mυ/ y\ + υ2 , E = m cos a = m/ y 1 + υ2 .

When a —> π/2, then υ —> oc; therefore the "velocities" in this " mechanics" are not
limited. Is there any physical reality to this model? That is a problem for physicists.

4. The "Axiomatic" Centroid

The notion of centroid can be axiomatized in a natural way. Before giving the
necessary axioms we shall introduce some general definitions. The couple a = (A, m)
where A G X is geometric point, m is a mass concentrated in the point A shall
be called a material point in space X. The couple (A, 0) is considered as empty
set according to definition. Thus, the set of material points in space X is a cone,
i.e. the right product X x R+, in which X x {0} is contracted to one point:
\/A, B e X => (A, 0) = (B, 0). We shall denote the material points by small Latin
boldface letters.

A set of material points we shall call a material system which we shall denote by
some Gothic letter: 21 = { a j = {(Ai,mi)}. In particular, one material point (A,m)
is a (one-point) system.

We shall define now the multiplication operation of material points system by the
real non-negative numbers: if λ G R is a real non-negative number, let be according
definition:

λ a = λ (A, m) = (A, λm), and λ » = { λ a j = {(A , λm )} .

Thus when multiplied by λ every material points mass increases λ times although its
geometric position does not change.

Let us define the union of two material systems. Let 21 = {a^} = {(Ai,πιi)} and
03 = {bj} — {(Bj.πij)} be two arbitrary systems; generally speaking, the points
sets {Ai} and {B^} may have common elements and the common elements masses
should not coincide necessarily. We set by definition:

2t U 33 = { a j U {b,.} = { c J = {(Ck, mk)} ,
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where

{Ck} = {Ai}U{Bj},

ί
mi, if point Ck coincides with the point Ai and Ck φ {Bj}\

mJ , if point Ck coincides with the point Bj and Ck φ {Aτ}
mi + πij , if point Ck coincides with the coinciding points Ai, B-.

In other words, the common material points masses in the system 21 and 03 are added.
On the set of systems {21} a natural topology induced by the right product [excepting
points in form 04,0)] can be introduced: two material points ( i ^ m i ) and (A2,m2)
are considered as close ones if points AX,A2 G X are close in the topology of space
X and the numbers m{ and m2 close ones in straight lines R topology (i.e., \mι —m2

is small); all the points of form (A, 0) naturally are considered as close ones. Two
systems 21 = { a j and 03 = {b{} with the same number of material points in them
are considered as close ones if material points â  and b^ they consist of are close.
Closeness of systems 21 and 03 in the indicated topology we shall denote by the
mark ~.

The "axiomatic" centroid of the material points system 21 is a material point a
posed by the special map U:{2t} —» {a} (from all material points systems set to all
material points set). The mapping U satisfies the natural axiom's system as follows:
Axiom 1 (immovability axiom). U{(A, m)} = (A, m): the centroid of a one material
point system coincides with this point.

Axiom 2 (induction axiom). U(2l U 03) = U(U(2l) U U(03)): the centroid of sum of two
material points systems 21 and 03 coincides with two points system's centroid, where
the first point is the systems 21 centroid, and the second is the systems 03 centroid.

Axiom 3 (multiplication axiom). U(λ 21) = λ U(2l): the geometric position of any
material points systems 21 centroid coincides with material points systems λ 21 one,
every mass of which is increased with respect to the systems 21 points masses the
same number λ of times and the mass of which is being located in systems 21 centroid.

Axiom 4 (invar iance of centroid with respect to the space's motions). Let G:X —•» X
be the motion group (group of isometrics) of space X. Then for all elements g G G,

U O g = g oU:

the centroid of a system of material points 21 goes, by the motion g, to the point of
X such that the centroid of #(21) is situated, i.e. U(#(2l)) =

Axiom 5 (continuity axiom). If 21 ~ 03, then U(2l) ~ U(03): close systems have close
centroids.

Theorem 1. In a given space X with constant curvature (Rn,yln or Sn) a unique
mapping U exists, which satisfies Axioms 1-5.

The proof of existence is, in a fact, given above. Actually, it is evident that the
model centroid of points system in the space X satisfies all these axioms. Thus, the
nontrivial part of the theorem is the assertion of uniqueness of the mapping U. In
other words, an assertion coinciding the system's 21 axiomatic centroid with the model
one. To prove this assertion the next item serves.
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m'= 2m - f(r)

Fig. 8

5. Proof of the Theorem (the Uniqueness of Mapping U)

The proof of the theorem will be fulfilled by a few steps. When proving, unless
otherwise stipulated, we consider the "axiomatic" definition of the centroid.

Step 1: Two-point System Equal Masses. We shall consider the system 21 of two points
(Ax, m), (A2, m) with equal masses m, situated in the ends of the segment AXA2 with
its length 2r. Let this system's centroid be U(2i) = (A, mr).

Lemma 1. a) Point A is the midpoint of the segment AιA2.
b) The function f = f(r) exists dependent on the distance r only, such that

ra' = 2ra /(r) (Fig. 8). (19)

Proof a) Denote the midpoint of segment AXA2 as B and let us prove that A = B.
For proving it we shall consider the space X rotation about the point B such that the
points Ax and A2 exchange places with each other. In every space Rn,An,Sn such
a rotation exists, and moreover the point B remains fixed: we shall denote such a
rotation by R1B°°. Then Rψ°% = a. According to Axiom 4,

hence
^80° » A =

therefore, the points A and B coincides and assertion a) is proven,
b) Let us prove the second part of the lemma. Generally speaking, the function
/ = ml/m depends not only on the distance r but on the segment's AXA2 position in
the space as well as the mass m. However, Axiom 4 (centroid invariance with respect
to X motions) implies that mf does not depend on the segment's AXA2 position and
consequently the function / does not either.

We shall consider now two systems: %x — (A1,m1) U (A2,m1) and 2l2 =
(Aχjm2) U {A21 m2) and prove that f(mvr) — f(m2, r).

Actually, 2l2 = m2/mx%x, and from multiplication Axiom 3 we have

= m2/mx

then m2 = (πι2/mx)mf

x. Therefore,

2m2/(m2,r) = m2/mx 2mxf(mx,r) =^ f(m2,r) = f(mx,r).

Lemma 1 is proved. D

Later on it will be natural to consider the function / as an even one: /(—r) = /(r).
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L P K centroid M Q N

AP = AQ=rλ

(PL=PK=r2

Fig. 9 \QM=QN=r2

Step 2. The System of Equations for Function f

Lemma 2. The following equality holds:

/ / - r 2) + f{rx + r 2 )) . (20)

Proof. Let us consider r 2 < rv Let P Q be a segment with its length 2τλ and A
its midpoint. Lay aside on the straight line PQ from the both points P and Q the
segments PL, P i f and QM, QN with their length r 2 (points K and M lie inside
the segment PQ). We shall put to the points L,K,M,N the same masses equal
to m and obtain the four point system 21. Let us find the centroid U(2l) two ways
(Fig. 9).

We shall use the induction Axiom 2, Lemma 1 and the immovability Axiom 1:

U(2t) = U{U{(L, m) U (K, m)} U U{(M, m) U (iV, m)}}

= U{(P, 2m/(r2)) U (Q, 2m/(r2))} = (A, 4m/(r 2)/(r 1))

On the other hand,

U(2l) = U{U{(L, m) U (TV, m)} U U{(K, m) U (M, m)}}

- U{(A, 2mf(rι + r2)) U (A, 2mf{rγ - r2))}

- (A, 2m(/(r1 + r 2) + /(r ! - r 2 ))).

Comparing the right parts of the obtained equalities we get formula (20). Lemma 2
is proved. D

Lemma 3. lfτx, r 2 are the legs of a right triangle and I is its hypotenuse in the space
Xthen

fd) - M)/(r2). (21)
Proof Consider two-dimensional plane π containing a right triangle with its legs
rι,τ1 and hypotenuse I. We shall mark on an arbitrary segment PQ in the plane π
with its length 2rλ its midpoint A. Then we shall draw in the plane π the straight
lines through points P and Q which are perpendicular to the line PQ. Put off the
segments with their length r 2 on these lines at both sides from the points P and
Q:PK = PL = r2, QM = QN = r2. In the obtained rectangle Π = KLMN,
the diagonals KM and LN intersect at point A and are divided by it in halves (this
follows from rectangle 77 central symmetry with respect to the point A). The half of
the length of each diagonal we shall denote by I. All the right triangles AKP, APL,
AMQ, and AQN have the same legs r1 and r2, and hypotenuses I (Fig. 10).
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Fig. 10

Let us locate the same masses m at all vertices K, L, M, TV of rectangle Π and
find the centroid of obtained four point system 21.

Axiom 2 and Lemma 1 imply:

V{(K, m) U (L, m)} = (P, 2m/(r 2 )), U{(M, m) U (JV, m)} = (Q, 2m/(r 2 )).

Now we can find the system's 21 centroid from Axiom 2:

U(2t) = U{P, 2m/(r2)) U (Q, 2m/(r2))} = (A, 4m/(r 2 )/(r 1 )) .

Let us do it another way:

U(2l) - U{U{(L, m) U (JV, m)} U U{(M, m) U (K, m)}}

, 2m/(0) U (A, 2m/(0)} = (A, 4m/(0)

Comparing right parts of the obtained equalities we obtain the assertion of Lemma 3.
Lemma 3 is proved. D

Thus, function / satisfies the system of Eq. (20) and (21).

Step 3. Possible Forms of the Function f. Let us find the all possible solutions of
Eqs. (20) and (21). As far as we are concerned, the masses will be non-negative,
and hence, we have /(r) > 0 for any r > 0. Axiom 1 implies /(0) = 1. Then the
continuity Axiom 5 implies that / is continuous: a slight displacement of one system
points brings a slight centroid change, i.e., the slight change of the mass located in
the centroid. Let rx = r 2 = r in formula (20). Then

/ 2 (r) = = 1/2(1 (22)

Continuity of the function / implies the existence of a neighborhood of the point
r — 0 in which f(r) > 0 for any r. Two cases are possible:

Case 1. There is a point x0 such that 0 < f(x0) < 1. Then there is a G [0, ττ/2] such
that f(x0) = cos a. Substituting r = x$/2 in formula (22):

/2(x0/2) = (14- cos α)/2 = cos2 a/2.

Hence, f(xo/2) — cosα/2 [as far as f(xQ/2) > 0]. Similarly

f(xo/4) = cos α/4, /(xo/8) = c o s «/8> • , / ( V 2 * ) = c o s α / 2 ^ '

Setting c = a/x0, we have that for any x = xo/2k, k = 1,2,3,..., /(x) = cos ex.
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Lemma 4. For any x = xo/2k, k — 1,2,..., the equality

f(nx) — cos(c nx)

holds for any positive integer n.

Proof. Induction by n. When n = 1 the formula is correct. Let it be correct for given
positive integer n. We shall set r1 — nx, r2 = x in formula (20):

f(nx)f(x) = l/2(/((n - l)x) + /((n + l)x)),

then

/((n + l)x) = 2 cos(c nx) cos(cx) - cos(c (n — l)x) = cos(c (n + l)x). Q.E.D.

Thus, the fact that for any x in the form x = x0 m/2k, where m and k are arbitrary
positive integers f(x) = cos(cx), where c = a/x0. If /(^ 0) = 1 = cosO, then
f(x) = 1 for any value of argument in the form x = x0 m/2k. Hence the continuity
of function / implies

Assertion 1. In Case 1 for any x, fix) = cos ex where c = a/x0. When a = 0,

/(£) = 1.

Case 2. There is a point x0 such that f(x0) > 1.

Assertion 2. In the Case 2 for any x, /(x) = cosh(cx) where c = α/x0.

The proof is similar (with substitution of cosh for cos) to the proof of Asser-
tion 1.
Step 4. The connection between the Space X and the Function f. We shall render
concrete the space X now and use Lemma 3.

I X = Rn. For Euclidean space / =

equality

fiJrj + r\) = f{rx)f{r2).

(Fig. lla). Lemma 3 implies the

(23)

We shall prove that the solution of Eq. (23) is f(r) = 1 only.
Indeed, let f(r) - g(r2), then from (23),

g(r] + r\) = g(r])g{r\).

Setting x = t\, y = τ\ we obtain that for any non-negative x,y,

g(x + y) = g(x)g(y) • (24)

Fig. 11
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All the solutions of Eq. (24) in the class C(R) have the form g(x) = eλx, λ G R,
hence

fir) = eXr2. (25)

On the other hand the Assertions 1 and 2 imply that/(r) can have either the form

fir) = cos(c r) (26)

or the form

fir) = cosh(c r). (27)

Comparing function (25) growth rate and one of any of functions (26), (27) it is
simple to get λ = c = 0, hence fir) = 1. Q.E.D.

Thus the fact that for space R the centroid of two points with equal masses at the
midpoint of the segment connecting them and the mass which is located at the centroid
is equal to the points' masses sum is proved.

II. X = Sn. For a right triangle with legs rλ and r 2 and hypotenuse I in the space
Sn the next equality is fulfilled

cos I = cos r{ - cos r2 (Fig. l ib) . (28)

On the other hand, the formula (21) holds: /(/) = /(r 1 )/(r 2 ) . We shall substitute
f(r) — cos(cr) into it:

cos(c Z) = cos(c rx) cos(c r 2 ) . (29)

Given the values of Z, rl9 and r2 close to zero we shall expend cos(c I), cos(c r),
and cos(c r 2) into Taylor series until the fourth order term,

cos(c Z) = l/2(cZ)2 - l/24(cZ)4 + Oϋclf),...

(second degree members are not sufficient for proving!) and then substitute these
series into (29). With regard to (28), after some calculations, we obtain:

c2-c4 = 0;

hence either c = 0 oτ c = 1. If c = 0 then f(r) = 1; if c = 1 then f(r) = cos r and
Eq. (29) is converted into Eq. (28).

In case fir) = cosh(c r), substituting this function into (21) we obtain the equation

cosh(c Z) = cosh(c r{) cos(c r2) • (30)

After expanding the functions cosh(c Z), cosh(c Γj), cosh(c r 2) via Taylor series
until the fourth order term, we get the following equation for c:

cos / = cos rλ cos r2

Fig. 11
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hence, c — 0: in this case /(r) Ξ 1. We shall prove that the case f(r) =:• 1 appearing
twice must be excluded.

The formula (19) for / = 1 implies that the mass being located in centroid
of two-point system is equal to their sum. Consider, on the sphere, the isosceles
triangle ABC (AB = BC) with a small base AC and the material system:
21 = {(A, m) U (C, m) U (B, m) U (B, m)}. Let D be the middle of segment AC, K
- the middle of AB, L - the middle of BC, E - the middle of BD, M - the middle
of KL. Then with regard to / = 1,

U(δl) = U{CD, 2m) U

and, on the other hand,

,2m)} = (£?, 4m)

U(2l) = U{U{(A, m) U ( 5 , m)} U U{(C, m) U (S, m)}}

, m) U (L, m)} - (M, 4m).

This implies the coincidence of points E and M, which is false for the spherical
triangle ABC. Therefore the case / = 1 must be excluded. We get that for spherical
space Sn the mass which is located at U{AX, m), (A2, τn) | is equal to mr — 2m cos r,
where r is a half of segment length AXA2.

III. X = An. For a right triangle with its legs rγ and r 2 and hypotenuse / in the
Lobatchevsky space Λn the next equality is valid:

cosh(ί) = cosh^) cosh(r2) (Fig. l i e ) . (31)

Again, from formula (21): /(/) = f(rx) f(r2) with regard to the fact that either
f(r) = cos(c r) or f(r) = cosh(c r) or /(r) Ξ 1. By the reasoning that has been
done in the previous item, we obtain that the solution of Eq. (21) may be only

f(r) = cosh(r).

Thus the fact that in the case of space An the mass being located at the points (Aι,m)
and (A2)m) centroid is equal to ml = 2mcosh(r), where r is a half of distance
between these points, is proved.

Step 5. General Case of Two Different Masses. Let us consider, in the space X,
the material points ( i , m j ) and (B,m2) forming the system 21. Hence by the
formulae of item 3 we can define this system's model centroid - the material point
Umod(2l) = (C, m) the position C of which is determined by the formulae (1), (2),
(13), (14), (17) depending on the space's X form. We shall prove that by the same
formulae the axiomatic centroid can be calculated. We shall denote the axiomatic
centroid as Uax(2i).

Let a i and α2 be the lengths of the segments which the segment AB by the point
C is divided to.

Fig. 11

cosh / = cosh rλ cosh r2

c)
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Assertion 3. Suppose that the segments ax and α2 are dyadically dependent, i.e.
/ ax = k - a2 = Ik a (k and I are positive integer), and k + I = 2q. Then

Proof. We shall prove the assertion by induction on the exponent q. For q = 1,
α1 = α2 and m 1 = m 2, it is established in Step 4 that for such a system
Uax(2t) = (C,m).

Let this assertion be correct for the exponent q — 1 > 1. We shall prove it for the
exponent q. Considering k < I we have ax < a2 and mx > m2.

Let us represent the system 21 = {A,mλ)D {B,m2) in the form 21 = (A, mx -
ra2) U (A, m 2) U (£?, m 2). Then according to Axioms 2 and 1 we have

2 - m 2) U U a x{(Λ m 2) U (B, m2)}} .

The result obtained in Step 1 implies

Uax{(Λ, m2) U (B, m2)} = φ , 2m2 / ( ( f l l + α2)/2)),

where D is the middle of segment AB, f is either the function cosh, or cos or
identically 1 (for the spaces An, Sn, and R n correspondingly). Therefore,

Uax(20 = Uax{(^L, mx - m 2) U (ZJ, m ;)} ,

where m' = 2m2 f((aι+a2)/2). It should be noted that the points' (A,mι —m2) and
(D,mf) model centroid coincides with the initial points (A,m{) and (J5, m2), i.e., is
equal to (C, m). However, the segment AD is divided by the point C to the segments
ax and α2 = α2 — \/2{aι + α2) = l/2(α2 — aγ) for which ax — ka, a2 = Va, where

k + l' = k+ 1/2(1 -k)= 1/2(1 + k) = 2q~x.

Hence the induction's supposition implies:

U a x{(Λ mx - m2) U (D, m')} = Umod{(A, m i - m 2) U (D, m')} = (C, m),

hence, Uax(2l) = (C, m), Q.E.D. D

For finishing the proof we use Axiom 5 only which asserts the continuity of
mapping U a x. Thus we obtain that for any value of the relation ax/a2, rational or
irrational,

Uax(2l) = Um o d(2l).

The Theorem is completely proved. •

6. The Spaces in which Centroid can be Defined

Let us pose a QUESTION: what are the spaces X (smooth manifolds) where a centroid
satisfying Axioms 1-5 can be defined?

From this moment on we shall use "centroid" without the "axiomatic" because
only such ones will be considered below.

Let X be a smooth real manifold of dimension rc, G its motion group assumed
to be a Lie group (of course, another supposition can be done, in particular we can
suppose the group G to be missing; see below). We do not consider X to be a metric
space as we did it in the previous items. The "motion group" of X we consider as
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a group G operating transitively on X. Among all the manifolds X we select these
in which the centroid of any material points system can be defined. We shall give a
description of such manifolds.

Toward this goal we shall extend the definition of a material point introduced
in item 4. Besides the points with non-negative masses m > 0, we shall consider
points with negative masses. All the old points and new ones introduced we shall call
"material" as before. We remember that all the material points with zero-mass are
identified with the point (A,0), where A is an arbitrary point of the manifold X. The
operation of scalar multiplication can be extended as well: now the product operation
introduced in item 4 can be fulfilled by any real number λ G R - positive or negative.
All the definitions introduced in item 4 remain the same and can be extended for
imaginary material points in a natural way.

Now we shall do a simple but important methodological step - in the set of all
material points we introduce the operation of addition " + " : we shall call the two
point centroid (which exists and belongs to manifold X according to our supposition)
their sum, i.e.,

{Aλ, mλ) + (A2, ra2) = (A, ra^U^, mx) U (A2, ra2)} .

Hence the set E of all material points is converted into linear space over the field
of real numbers R:E's zero is the arbitrary material point with mass m = 0 (in other
words, the set {(A,0)}, where A is any point from manifold X); the negative vector
of a = (A, ra) is the vector — a = 04, — ra) because

a + (-a) = (A, ra) + (A, -ra) = U{(A, ra) U {A, -ra)}

All the axioms of linear space can be verified.
More strictly, consider the set E of all possible differences {A, ra) - (B, ra/), where

ra,ra/ > 0. On this set we introduce the equivalence relation ~: we shall say that
a - b ^ c - d i f a + d = c + b, where the " + " operation is finding the centroid
of points with positive masses. It should be noted that all differences (A, 0) — (B, 0)
can be identified with the points (C,0) and all differences (A, ra) — (I?, 0) - with the
point (A, ra). The addition operation on the equivalence classes is defined as follows:

[(A^mJ - (A2,ra2)] 0 [(Bum[) - (B2,m
r

2)]

= [{Ax,mx) + (Bx, ra;)] - [(A2, ra2) + (J32, m'2)}.

This operation Θ converts E into space. As far as manifold X is n-dimensional, the
following assertion holds.

Assertion 4. Dimension of space E is equal to n + 1.

Proof. Let us consider a set K = {(X, ra)} = X x R/ ~ (A, 0). This is a cone which
has dimension n-f 1, and is a convex cone because for all a = (A, ra) and b = (B, ra)
the segment λa + (l — λ)b belongs to KVλ e [0,1]. Besides, the space E is generated
by all differences a — b, where a, b G K, i.e., E is generated by the cone K. It implies
that as a basis for E we can choose vectors e 1 ? . . . , e s € K. Hence, the convex hull

ί s 1
of these vectors, Y = <̂  Σ \ei\^\ > ° f > belongs to K:Y C K, and on the other

U=i J
hand, dimY = dimE = s > n. Thus n + 1 = dimK > dimY = dimE = s > n.
Therefore, s = n + 1, i.e., dimE = n + 1, Q.E.D. D
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(X, m)

(X, 1)

Fig. 12

The set of material points with mass 1 forms in the space E = R n + 1 a smooth
n-dimensional manifold identified with the manifold X under the natural enclosure
p:X —> E which maps the point A G X to the vector a = (A, 1) G E. Thus X
is an n-dimensional manifold which is enclosed into the linear space, and we shall
denote for obvious reasons (X, 1). It should be noted that for fixed number m G R
the manifold {(A,m)}, where A passes through all points of manifold X, comes out
from manifold (X, 1) by its homothety with the center in origin of E = R n + 1 and the
coefficient of homothety equal to m.

Thus the space E = R n + 1 is stratified to manifolds (X, m) with their codimen-
sion 1 where m passes through all real numbers (Fig. 12). Further it would be a
natural focus to confine ourselves to non-negative m > 0 only, that corresponds to
the initial material points. This remark enables us to define visualized the centroid of
points system on the manifold X.

Let (Aι,mι), {A2,m2) be material points on the manifold X. We shall consider
the vectors άλ = (Al1mι) G (X,??^), d2 = CA2,ra2) G (X,ra2) in the space E. Their
sum d = άλ + d2 is the vector corresponding to the material point located in the
system { ( i ^ m ^ U (τ42,ra2)} centroid. This vector lies on a certain ray going out
from the origin 0 G E to the end of the vector d and intersects the manifold (X, 1)
at a certain point a = (A, 1). Then the vector d comes out from the vector a by the
multiplication by the number m = |d |/ |a | (where |d| and |a| are the length of the
vectors d and a in the arbitrary metric in the space E, euclidean for example).

As far as the point d lies on the manifold (X,m), it is the number m which
is the mass to be located in the centroid of the system (Aι,mι) U (^42,ra2), i.e.,
in the point (A, if) defined above. This construction resulting from Axioms 1-5
explains completely the Correctness of the choice of the geometric definition of the
model centroid for the spaces Rn, 5 n , and Λn. However, this construction does not
necessarily prove the uniqueness of the definition of the centroid in this (and m.b.
other) spaces because generally speaking other enclosers of manifolds Rn, Sn, An into
the linear space R n + 1 and hence other solutions are a priori possible. We may take
as an example the manifold X = R1 on which for the same material points system
its centroid can be defined by infinitely many ways; the centroid is defined by the
enclosure of X = R1 into the two-dimensional linear space E = R2. For example, if
(X, 1) is the straight line y = 1 we obtain the Euclidean centroid; if (X, 1) is enclosed
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Fig. 13
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in R as one branch of the hyperbola y — 1/x, the centroid of the same points system
is defined by the formulae (13), (14) relating to one-dimensional Lobatchevsky space.
Generally, the straight line X = R1 may be enclosed into R2 as part of graph y = xa,
a G R; then the centroid of the point system is defined by the construction described
above, and for every a G R there is its own centroid (for a = 0 it is an Euclidean
one, for a = - 1 it is a hyperbolic one, Fig. 13). However, all geometries of the
straight line R are isometric; nevertheless, there are uncountable set of centroids of
(one and) the same points system. Starting from dimension n = 2 for Euclidean space
and Lobatchevsky space the centroid is defined uniquely, as it was proven in item 4.

The motion group G of manifold X induces the following transformation group of
linear space E which we denote by G as well. Namely, the group G only affects the
first component (X) of the space E = {(X,m)}: if A G X, g G G, a = (A,ra) G E,
then

ga = g(A, m) ~f (gA, m).

It should be noted that the action of the group G:E —> E is linear because for
a1 = (Aι,mι), a2 = (A2,m2) we have:

λaj + μa2 = a = (A, m),

g{\2Lx + μa2) = ga = g(A, m) = (gA, m),

g(Mλ) = g(Aι,\mι) = (gAuλm{), #(μa2) = g(A2, μm2) = (gA2,μm2),

and the centroid's invariance with respect to the group G (Axiom 4) implies:

= U{(gAι,λmι) U (gA2,μm2)} — (gA,m) = ga.

Consequently, the group G is a group of linear transformation of the linear space
E; therefore, E is a space of representations of the group G. Then the manifold
(X, 1) C E [as well as all the manifolds (X, m)] transfer into itself under the influence
of the group G\ G(X, 1) = (GX, 1) = (X, 1); moreover, G acts transitively on the
manifold (X, 1) (i.e., for any two points of the manifold there is a group element
transferring the manifold into itself and the first point into the second one).

The manifold (X, 1) can be constructed in E from its point a as follows: an arbitrary
vector (A, 1) G (X, 1) is taken and all the elements of the group G are applied to it.
Then the point (A, 1) is spread in the space E, transforming the surface (X, 1):

Thus (X, 1) is an n-manifold orbit of the group G in the (n + 1)-dimensional linear
space E.

As a result we have the following
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Problem. Describe all the Lie groups for which in their certain representation theory
there is an orbit with co-dimension 1.

Another formulation:
Which of the manifolds X with co-dimension 1 of the linear space E transfers into

itself under the influence of a certain group of linear transformation?
This problem is not completely solved yet. The solution for n = 1: X is one of

the following curves on the plain R: either a circle or the right part of the graph
y = xa, x > 0 and a φ 0 or the straight line y — 1 or the spiral r = e

const'φ.
The solution for arbitrary n > 1 is simple when the group G is compact. In this
case, according to representation theory, G acts in the representation space as an
orthogonal transformations subgroup SO in), thus its orbit is a submanifold of n-
dimensional sphere Sn. However, since co-dimension of orbit is equal to 1, then the
groups G orbit coincides with Sn. Therefore it is proved:

Theorem 2. Suppose it is known that for material points system on the manifold X
with the compact motion group G the notion of the centroid satisfying Axioms 1-5 can
be introduced. Then X is a sphere and the centroid is defined by the unique construction
described in item 3. The centroid can not be defined on any other compact manifold.
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