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Abstract. We investigate stability of periodic and quasiperiodic solutions of linear
wave and Schrodinger equations under non-linear perturbations. We show in the case
of the wave equations that such solutions are unstable for generic perturbations. For
the Schrodinger equations periodic solutions are stable while the quasiperiodic ones
are not. We extend these results to periodic solutions of non-linear equations.

1. Introduction

It is well known that the world is non-linear. However, most of our knowledge about it
is derived from analysis of its linear approximations. Though non-linear perturbations
are usually extremely weak, they can alter the linear behaviour qualitatively. Thus it
is important to understand how the most elementary and fundamental properties of
linear systems are affected by non-linear perturbations.

Consider problems concerning the time evolution. Once existence of solutions
is established the next goal here is classification of the orbits (= solutions) w.r. to
their localization in the configuration space of the system in question, namely, into
bounded and unbounded. In the case of linear Schrodinger and wave equations the
Ruelle theorem allows us to identify bounded orbits with periodic and quasiperiodic (in
time) ones, produced by eigenfunctions of the Schrodinger or wave operator involved,
and their linear combinations. Thus the problem: investigate stability of the (quasi)
periodic solutions of the linear equations under non-linear perturbations. This problem
was posed by J. Frohlich and T. Spencer several years ago and is the subject of the
present paper.

In this paper we show that periodic and quasiperiodic solutions of the linear wave
equation are unstable under generic non-linear perturbations. For the Schrodinger
equation some of the periodic solutions are stable while the others as well as certain
quasiperiodic solutions are not.

* Partially supported by NSERC under Grant NA7901
** LW. Killam Research Fellow
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Now we explain the term generic used here. Our theorems contain spectral
condition on the linear problem which guarantees instability. It is satisfied for an
open set of the linear problems and non-linearities in a certain explicit metric. We
expect the latter set to be dense and moreover its complement to be meager in some
reasonable measure. However, we cannot prove this and leave it as an open problem.
Instead we verify the condition in some simple cases.

Finally we also establish a condition for instability of periodic and quasiperiodic
solutions of non-linear wave equation. Though this condition is expressed in terms of
a linear problem it is harder to verify than in the cases listed above. Nevertheless we
believe it can be done for simple equations such as the sine-Gordon equation.

In a sequel paper we address the question of what happens to those periodic and
quasiperiodic solutions which disappear under non-linear perturbation. To answer it
we develop the theory of resonances for non-linear wave equations. We show that the
above mentioned solutions turn, under non-linear perturbations, into resonances. We
estimate the life-time of the corresponding solutions.

The paper is organized as follows. In Sect. 2 we state the problem, formulate the
main result and present its discussion for the case of wave equation. In Sect. 3 we
discuss the genericity of the condition of our main theorem. In Sect. 4 we analyze
an example (a square well potential well known in Quantum Mechanics) in which
this condition is verified. In Sect. 5 we prove the main theorem modulo technical
statements demonstrated in Sects. 6-8. Our main tools here are the Mourre estimate
and the Fermi Golden Rule for non-elliptic and non-linear equations. In Sect. 9 we
show instability of certain quasiperiodic solutions of the linear wave equations, in
Sect. 10, periodic solutions of non-linear wave equations, and in Sect. 11, certain
periodic and quasiperiodic solutions of linear Schrodinger equations.

2. Statement of the Problem and Results

In this section we consider a family of non-linear wave equations of the form

02u

~W~
(2.1)

where u: R x Rn —>• R is an unknown function, H is a real, symmetric differential
operator on W1 and fε: R —» R is a family of 3 times continuously differentiable
non-linear functions, once continuously differentiable in ε and obeying

Λ(0) - 0. (2.2)

We assume that all derivatives of fε are continuous in ε. In all sections, except of
Sect. 10, we assume that

fo(u) = 0. (2.3)

We suggest thinking about H as a self-adjoint Schrodinger operator

H = -A + V(x)

on L2(Rn), but it could be also the operator,

H = c(x)2ρ(x)Vρ(xΓlV + V(x) (2.4)

on L2

 2 _1//2(Rn) arising in the wave propagation, etc. The conditions we impose are

rather general. In what follows we consider H on I/2(Rn).
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By a periodic solution to (2.1) we understand a function u, periodic in t and
belonging to H2(Q, T) ® D(H), where H2 is the Sobolev space of order 2 and T is
the period of u, which solves (2.1). The linear, (ε = 0)-problem has periodic solutions
of the form

, (2.5)

where ω$ and χ are an eigenvalue of H and the corresponding eigenfunction

We do not normalize χ. Because of the ί-translational invariance of (2.1), all the
statements below extend immediately to χ(x) sm(ωQt + α) for any a. The period

of #0 is — = T0. Note that such periodic solutions are stable under reasonable
α;0

linear perturbations (see e.g. [Kato]). Our main task is to investigate stability of
such solutions under non-linear perturbations. Before proceeding note that the Froese-
Herbst theory and Harnak inequality imply under conditions on H formulated below

\X(x)\ < Ce~bW (2.6)

for some b > 0 (see [CFKS]).
Denote by D the class of functions u: Sl x Rn — > C obeying

sup \(x Vx)
nu\ < oo

for n = 0, 1, 2. Equipped with the norm \\\u\\\ = max \\(x - V^nH^, D becomes a
n=0,l,2

Banach space.
We introduce the functions

W£(u) = fε(u)/u (2.7)

and
Uε(u) = Wε(u)/ε. (2.8)

Due to the restrictions of /ε, Uε(ψ) is twice continuously differentiable in φ and,
together with its derivatives, continuous in ε.

Definition 2.1 A periodic solution, #0, of the (ε = 0) problem is said to be stable
under a perturbation fε if for an infinite sequence of ε ^ 0 converging to 0, Eq. (2.1)
has a periodic solution gε of a period 2π/ωε s.t. as ε — »• 0,

(i) ωε — > α;0, where 2π/ω0 is the period of g0,

(ii) gε { — , x ) — > g0\ — , x I in eb\x\L°° for some sufficiently small b and weakly
Vωε / \ωO J

inL 2,
(iii) gε is uniformly (in ε) bounded in D.

Now we formulate our technical restriction on H. Instead of isolating an explicit
class of operators we constrain H by imposing some estimates known to be satisfied
for various classes of operators. First we distinguish a compact subset of cont spec
H of measure zero, which we call the threshold set of H. For a Schrodinger operator
for which V(oo) — lim V(x) exists, this is {V(oo)}. It is a standard practice in the

x — >oo

theory of Schrodinger and related operators to avoid this set.
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The next condition allows us to apply the powerful Mourre method to study
embedded eigenvalues. Let

-1) 2, (2.9)
Δ

where p = —gradx. We say that the Mourre estimate holds for H in an interval A if

EΔ(H)i[H, A\EΛ(H) > ΘEΔ(H)2 + K, (2.10)

where θ > 0 and K is a compact self-adjoint operator. We say that the Mourre estimate
holds for H if it holds for any compact interval A c cont spec H\ thresholds of H.
The Mourre estimate is proven for a large class of Schrodinger and related operators
[Mou, PSS, FHel, FHi, FS]. Self-adjoint Schrodinger operators with potentials V(x)
obeying

(x V)nF(x) is /^-compact (2.11)

for n = 0,1 form such a class. There θ is any number satisfying

θ < dist(/\, thresholds of H on the left from Δ).

Moreover, K can be chosen there so as to obey

K < C(H + IΓ6 for some δ > 0. (2.12)

We assume in this paper that
(α) ad^Cff) are bounded for n = 1,2 (on L2(Rn)),
(/?) the Mourre estimate with K obeying (2.12) holds for H. Moreover, there is
EQ > 0 s.t. θ > 0 can be chosen to be independent of Δ, provided A C [EQ, oo).

Consider the function /1(χ(x)sinί), where

fι(u) = — fε(u) |e==0= UQ(U)U.

Since it is periodic of the period 2π it is entirely determined by its Fourier coefficients

2π

\(χ(x)smt)e~m dt. (2.13)

o

The main result of this paper is the following

Theorem 2.2. Let H have a positive, isolated eigenvalue ω$ s.t. for any n > I,

n2ωl g disc spec H U thresholds H. (2.14)

2π

Let fn = / f{(χ(x)smt)e~mtdt. If there is n > 1 s.t. fε obeys
o

then the periodic solution gQ = x sin ω0t of the linear, ε = 0, problem is unstable
under non-linear perturbation fε.

Discussion 2.3. (i) The restriction that ω^ is an isolated eigenvalue is not necessary
but this is the most interesting case.
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(ii) The necessary condition for (2.15) to hold is

n2cυ>Q G cont spec H for some n > 1. (2.16)

This relation states that "cj0-photons" connect the eigenvalue ω^ to the continuous
spectrum so that the corresponding transition ("ionization") is possible. This condition
is obviously satisfied if H has a continuous spectrum in a neighbourhood of +oc.
(iii) Clearly, the restriction

n2ujQ £ disc spec H for every n > 1 (2.17)

can_fail only in exceptional cases. The result extends to those cases if H is replaced by
HQn and fn by Qn/n, where Qn is the orthogonal projection onto (Null(H—n2^))-1.
(iv) Due to assumption (2.17) the non-negative operator δ(H — n2ωfy is well defined

forn > 1 (see e.g. [CFKS, FS]). The finiteness of the l.h.s. of (2.15) will be established
later, in the course of the proof of the theorem.

(v) In case when

fn = 0 for all n > 1 s.t. ω^n2 G cont spec H,

there is a refinement of (2.15) involving Fourier coefficients of more complicated
functions (higher order perturbation theory).
(vi) The instability described in the theorem is due to the coupling of disc spec H

with cont spec H, not with cont spec d2/dt2. The same phenomenon would persist if t
were confined to a finite interval so that d2/dt2 would have purely discrete spectrum.
On the other hand, if the resonance condition fails, i.e. if

ω^n2 £ cont spec H for all n > 1,

then periodic solutions to the linear problem are expected to be stable under non-linear
perturbations.

Example. fε(u) = εu3. Using that

sin3 a — —sinα sin3α, (2.16)
4 4

we obtain
1 1f(χsint) = —x sint y sin3£. (2.17)
4 4

Thus we obtain

Corollary 2.4. Let x be an eigenfunction of H with an eigenvalue ω2). If

then for ε sufficiently small the non-linear equation

d2u „

dt2 (2.19)

has no periodic solutions generated by the periodic solutions x sin ωGt of the corre-
sponding linear problem in the sense of Definition 2.1.



302 LM. Sigal

3. Genericity

To verify condition (2.15), one has to compute the spectral projector or the Green
function of the linear operator H at the points n2ω^, n > 1. Below we check this
condition in special cases. We expect it to be satisfied for generic non-linearities fε

and for generic Schrόdinger operators H with continuous components in their spectra.
We define the topological space ̂  of non-linearities / as follows: / E C 3 ,

f(o) = 0 and f(u)/u maps bounded subsets into bounded subsets with the topology
determined by the seminorms

\\f\\L = sup \f(u)/u\. (3.1)
\u\<L

Denote by & the class of operators H obeying condition (α) of Sect. 2 with A defined
in (2.9) and with the norm defined accordingly.

Theorem 3.1 For given n and H G &, either (2.15) holds for an open and dense set
of ί\s ΪH ̂  or it fails for all f γ ' s in &. For given n and fl G ^, (2.15) holds for
an open set ofH's in &.

Proof. By Eq. (2.6) and Theorem 7.1 of Sect. 7, the l.h.s. of (2.15) is continuous in
H e & and in /j e &. Hence the set of all £Ps in Sϊ for which (2.15) holds for
fixed n and fv ^ ̂  and the set of all //s in ̂  for which (2.15) holds for fixed n

and H G & are open. Now we claim that, given n and H £ £$, if there is fl G 3?
for which (2.15) holds, then (2.15) holds for a dense set of //s. Indeed, let (2.15)

fail for f λ . Introduce flδ = fι + δj\ G &. Then by the linearity in f l 9 (2.15) holds
for all /M with δ ± 0 and flj6 -» fλ in & as δ -> 0. D

[AHS] show that for a wide class of Schrodinger operators (besides of H £ &
some kind of decay at oo is assumed)

δ(H - λ) φ 0 (3.2)

if λ e cont spec ff \ (thresholds U eigenvalues). We conjecture that a similar relation
holds for wave operators (2.4) and for other differential operators from the class ^.
However, this relation does not suffice to show that the class of iΓs and /'s for which
(2.15) holds is sufficiently rich. We believe that the set of H e ® and of /j G ̂
for (2.15) fails is rather meager but there is no proof so far of this fact.

4. Explicit Example

In this section we verify condition (2.18) for f ( u ) — u3 and for H, the Schrodinger
operator H — — Δ+V(x) in the dimension n — I with V(x\ the square well potential:

.
α for either x < 0 or x > π.

Of course, this potential does not satisfy conditions (i) and (ii) of Sect. 2. However,
it will be clear that the analysis below holds for smooth versions of V(x) as well as
for multi-dimensional square wells and their smooth descendants.
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Let χEo be an eigenfunction of (4.1) with an eigenvalue 0 < EQ < a and ψE,
the scattering (generalized) eigenfunction corresponding to a point E > a of the
continuous spectrum. Then condition (2.18) is equivalent to

Theorem 4.1. Leta<~. Then (4.2) holds.
36

Proof. If α < -, then H has only one eigenvalue EQ obeying

i α < £ 0 < α < i (4.3)
2 4

Since this is the lowest eigenvalue, χEQ > 0. The scattering (generalized) eigen-
function ψE can be decomposed into the real and imaginary parts (i.e. two real
eigenfunctions) with the real part being

ί cos(</Ez) 0 < x < π
cos(VE - ax) x < 0 (4.4)

cos(\/E — a(x — π)) x >π

Due to (4.3), u9E (x) > 0 for 0 < x < π, provided α < —. Hence for such α's0 36

dx > 0.

The remaining part of / u9E χ3

E dx can be easily computed. Since

x <

>

0 - α

with A > 0, a normalizing constant, we compute

0 oo\

1 α

x—oo π '
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5. Proof of Theorem 2.2

Assume (2.1) has a periodic solution with a period Tε = 2π/ωε. Then gε solves the
"linear" equation

Put differently, gε is an eigenfunction of the operator

K(ε} = —^ + H + We(u) on L2(ω~lSl x Rn), (5.2)

where ω~lSl is the circle of radius ω~l, with the eigenvalue 0:

K(ε)gε = 0. (5.3)

In order to get rid of the ε-dependence of the space on which Kε is defined we scale
the time variable as

*-v- (5 4)

This generates a unitary transformation under which K^ is mapped into Kε ω , where

Kε,ω = ̂ ^2 + H + W^e) ™ L2(Sl X Rn), (5.5)

with

ε 'X ~^εVα;ε '
Xy (5.6)

e L2(Sl x Rn).

The scaled periodic solution ψε obeys

i.e. ^ε is an eigenfunction of Kε^ωε with an eigenvalue 0.
Recall that

Wε(u) = εUε(u).

Lemma 5.1. The function U£, considered as a composition map ψ -> Uε o ψ, is a
bounded map from D into D, norm continuous in ε.

Proof. Denote by U'ε and Uε the derivatives of Uε(φ) w.r. to ψ. The statement follows
from the relations

(x V)C7e(^(x)) - U'ε(φ(x))(x

and

(x - V)2C/ε(^(x)) - Uε( φ(x))(x - V

and the fact that f/ε is continuous in ε uniformly in n € any compact interval of R.
D
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Assume now that gε is born out of the periodic solution #0 = χsinc<;0t of the
(ε = 0)-problem in the sense of Definition 2.1. Then by Lemma 5.1, Uε(ψε) is
uniformly bounded in D. Moreover, Definition 2.1 implies

as ε —> 0, where b is the same as in Definition 2.1. Remembering that by Definition
2.1 ψε — * ΨQ weakly in L2, we conclude that Kε ω obeys the conditions of Theorem
8.4 of Sect. 8. The latter, applied to the case at hand, implies that

, o WιW> 0 ) = 0, (5.8)

where a is the same as in Definition 2.1,

ψQ(t, x) = 0o ( — , x } = χ(x) sin ί ,
\ωo /

PQ = orthogonal projection onto (Null KQ )±

and
K0,ω = K0<ωP0. (5.9)

On the direct sum of the eigenspaces of d2/dt2

n>0

and

where

and

P0 n = id for n

P0)1 =: 1 <g> proj. onto (Null(# - ωj))) .

Consequently, on Ran P0,

"*" - r)2ij)2} (*> 11")/i UΛ)/' V^ 1 A /

where fl"ω = HP . Expand now (remember (2.13))α;0

Substituting this and (5.11) into (5.8) and using the orthonormality of {emt}, we derive

δ(H - n2ωl)fn = 0 (5.12)

for all n ^ 1. The latter relation contradicts condition (2.15). Consequently, there are
no periodic solutions in a neighbourhood of ψQ. D

In conclusion of this section we explain the origin of relation (5.8). Consider the
unperturbed, linear problem and note that ^0(£,x) = χ(x)sint is an eigenf unction
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of KQ)UJQ with the eigenvalue 0. Using the separation of variables one determines the
spectrum of

Namely,

point spec K^ω = point spec H — {n2ω2},

and

cont spec K^ω = I) (—n2ω2 + cont spec H).

Since by resonance condition (2.16)

n2ω^ G cont spec H for some n > 1 ,

the eigenvalues 0 of KQ is embedded into the continuous spectrum of ^o,u>0 (
see

Fig. 1, where it is assumed that cont spec H = [Σ, oo)).

Fig. 1

We consider now K£ωε as a perturbation of KQω . Extrapolating result on the

Schrodinger equation (see e.g. [Sim, How, HoS, Yaj, Sig, AHS]) one expects that
the eigenvalue 0 of KQ ω disappears under the perturbation and becomes a resonance

of Kεω The expansion in ε for the imaginary part of this resonance starts with

ε2 times a coefficient given by the Fermi Golden Rule and which turns out to be
exactly the l.h.s. of (5.8) multiplied scalarly by fι(ψQ). Thus (5.8) is a consequence
of the assumption that the eigenvalue 0 survives the perturbation and remains to be
an eigenvalue of Kε . Consequently, the imaginary part of this eigenvalue must
vanish.

In the case when fλ(χ sinωt) has only finite number of the Fourier coefficients, say
n0, as it happens when f\(u) is a polynomial, the leading in ε term in the imaginary
part of the resonance is the ε2m-term, where m is the smallest integer obeying

(mn0(J0)
2 G cont spec H.

In this paper we consider the case when m = 1. For m > 1, the leading coefficient
is again given by the Fermi Golden Rule in which /j(^0) on the l.h.s. of (5.8) is
replaced by a more complicated function.
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6. The Mourre Estimate for K0,ω

In this section we consider the operator

K°>« = "2w+H (6 1}

acting on L2(Sl x M2). We derive the Mourre estimate for K0 ω from the Mourre
estimate for H. This result is used in the next section in order to obtain estimates on
the resolvents of K0 ω and of its perturbations, needed later.

We say that the strong Mourre estimate (SME) holds for self-adjoint operators T
and A acting on the same Hubert space and for an interval Δ if

EΔ(T)i[T, A]EΔ(T) > ΘEΛ(T)2 (6.2)

for some θ > 0. Whenever it is clear which operator A is used as is the case below, we
will not mention it explicitly. In this section A is given by (2.9) but on L2(Sl x En)
(we will not distinguish between A and 1 0 A).

By Operator Calculus and properties of compact operators, the usual Mourre
estimate (ME) on Δ and the absence of eigenvalues in Δ imply the strong Mourre
estimate on a smaller interval, say Δ{. Conversely, the strong Mourre estimate on
Δ implies the absence of eigenvalues in Δ and Holder continuity of the resolvent,
acting between appropriate weighted spaces, in Δ (see e.g. [CFKS,FS]).

The main result of this section is

Proposition 6.1. Assume H obeys the conditions of Sect. 2. Then there are_an interval
Δ containing 0 and 6 > 0 so that the strong Mourre estimate holds for K0 ω, A and
Δ, provided \ω — ω0\ < δ.

Proof. By non-degeneracy condition (2.14) H has no eigenvalues in some intervals
around n2ω^ for n > 1. Hence by the remark made in the paragraph before the
proposition there are open intervals Δn containing n2ω^, n> 1, in which the strong
Mourre estimate holds. Moreover, due to condition (2.12) there is El > 0 s.t. the
strong Mourre estimate holds for H and any interval in [£71? oo).

Let n0 be s.t. n^ >El-\-\. Pick δ > 0 so that

Δ= p| (Z\ n -nV)^0 (6.3)
n<n0

\LJ — Cc>0| <<5

and, for \ω — ωQ\ < δ and n < n0,

n2ω2 E cont spec H <-»• n2ω^ G cont spec H. (6.4)

Then the strong Mourre estimate holds for H in the intervals Δ + n2ω2, where n > 1
and \ω — ω0\ < δ, with a positive constant θ independent of n.

Now we expand over the eigenspaces of d2/dt2:

ί - n2ω\ (6.5)

where, recall, HωQ = HPωQ with PωQl the orthogonal projection onto (Null(# —

ωfy)^. Using this relation and the non-degeneracy condition, we get for Δ around 0
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and sufficiently small

EΔ(K0tJ = φ EΔ(H - nV) = φ EΔ+n2ω2(H).
n>l Δ+n2ω2Ccontspec H

Using the last two relations, we derive

Δ(K0tJ

EΔ+n2ω2(H)i[H, A]EΔ+n2ω2(H).

Δ+n2ω2Ccont spec H

This, combined with_the conclusion of the previous paragraph, implies the strong
Mourre estimate for K0 ω and the interval Δ described in that paragraph. D

Since EΔ(K0ω)KQω[P0,A] is compact, Proposition 6.1 yields

Corollary 6.2. Under the assumptions of Proposition 6.1 the Mourre estimate holds
for K0^ω and Δ.

1. Operator Kε,ω

In this section we study the resolvent of Kε ω. Our main tool is the Mourre estimate
derived in the previous section. In fact, we consider more general self-adjoint operators
of the form

KK = K0 + IK (7.1)

acting on L2(Sl x Mn), where

/ i TT7" f~Ί O\

« = α "OTΪ + W (7 3)

and
κ = (W,a). (7.4)

Here H is the same as before, but W here is the potential

W : Sl x Rn -* R, (7.5)

zάn

A(W) are bounded forn - 0,1,2 (7.6)

[on L2(Sl x Rn)]. Let |||WΊ|| be a norm generated by (7.6) and

|/c| = |||WΊ|| + |α|. (7.7)

Let P0 be as before, the projection onto (NullKo)-1, and

Kκ = P0KKP0. (7.8)

The main result of this section is

Theorem 7.1. Let Kκ be defined in (7.1) with W obeying (7.6). Then there are an
interval Δ containing 0 and z/ > 0 depending on Δ) s.t. for \κ\ < v the following
holds
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i) Kκ has no eigenvalues in Δ,
ii) (Kκ — z)"1 : P$L\ — > P0L

2_l is bounded and continuous in K and z, Rez G Δ.

The proof of this proposition goes along standard lines (see e.g. [AHS, CFKS,
PSS, FS]) and we present here just a sketch of it.

Sketch of proof of Theorem 7.L Let Δλ be the interval given in Proposition 6.1 (and
denoted there by Δ): Δ{ 3 0 and the strong Mourre estimate for K0 ω holds on Δl9

provided ω — ωQ\ < 6 for some δ > 0.

Lemma 7.2. Given Δ C Δl s.t. άis^dΔ.ΘΔ^ > 0 there is v > 0 s.t. the strong
Mourre estimate holds for K κ and Δ, provided \κ < v.

Proof. The result follows from the relation

[KK,A] = [KKO,A] + \W,A], (7.9)

where KO = (0, a), and the estimates

\\[Kκo,A]\\<C, (7.10)

||[W,Λ]||< CHI W|||, (7.11)

and _ _
\\EΔ(KK)-EΔ(KKO)\\<C\\W\\. (7.12)

The second estimate is straightforward, the first requires some simple but tedious
commutator estimates. To prove the third estimate one uses the Fourier representation

00

f(T)= ί f(s)e*Tsds, (7.13)

— 00

where / is the Fourier transforms of /, and the Duhamel formula

0

Note that (7.13) holds for any self-adjoint operator T and any function / with
00 ^

/ |/(s)|ds<oo. D
— oo

Lemma 7.2 implies that Δ contains no eigenvalues of Kκ for κ\ < v, and hence
(i) holds, and that (Kκ — z)~l : PQL\ — > P0L

2__l is bounded and Holder continuous

in z, Rez G Δ, of the order - (see the paragraph before Proposition 6.1). It remains

to show that the latter map is Holder continuous in K. We sketch this proof. Let

Bκ = EΔ(Kκ)i[Kκ, A]EΔ(KJ. (7.15)

Then (7.9H7.12) yield

\\BK,-BK\\<C\\\W'-W\\\, (7.16)

where «' = (a, W) and K = (a, W). Introduce the family

-zΓl. (7.17)
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This is the resolvent of the affine approximation to the family esAKκe~sA, introduced
in [Mo] (see also [PSS]). Using the second resolvent equation

' -W- isBK, + ίsBκ)R(^ (7.18)

and (7.16), one estimates on u G L\,

|<«, (7#> - tf?yu) < C\\\W - W\\\ \\R(fu\\ ||7#>«||. (7.19)

Using now the Mourre estimate, we obtain

(7.20)

Using that for u G L\ and Re z £ Δ the inner product on the r.h.s. is bounded, we
obtain

\\tffu\\ < -2=. (7.21)
v 5

This together with (7.19) yields

Kti, (R% - R(?)u)\ < -\\\W - W|||. (7.22)
s

Next, as in [PSS] we have

(7.23)

We sketch the proof of this estimate. Let EΔ = EΔ(KK) and EΔ = 1 - EΔ(KK),
the complementary spectral projectors so that EΔEΔ = 0. We compute

R^BKR^ = B + C, (7.24)

where _
B = R%)i[KK,A\R%) (7.25)

and _ _ _ _
C = -R^ί[Kκ,A]EΔR^ - R(?EΔί[Kκ, A]EΔR

(*\ (7.26)

Remembering definition (7.17) of R^\ we transform

B = i[A, R(*}] + sR(*\[BK, A]R(*\ (7.27)

Hence, due to (5.21) and for u e L\,

\(Bu,u}\ < const(s~2 + ||[BΛ, A]||). (7.28)

Next, using EΔEΔ = 0, we estimate

\\(KK - isBK - z)u\\ > \\EΔ(KK - isBK - z)u\\

= \\ΈΔ(Kκ-zyu\\>6\\EΔu\\,

which implies _
P^ll < C. (7.30)
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Equations (7.21) and (7.30) yield now that

\(Cu,u)\ < const||[J^, AlH/Λ/5. (7.31)

Finally, using the definition of A,

\ ~ jf ' .f ""/ \- — ' / "ί V ' ^ ̂ -ι)

the relation

and the restrictions on H and W, we obtain that

||[jBΛ, A] 1 1 < const|||W||| (7.34)

and
(7.35)

Relations (7.24), (7.28), (7.31), (7.34) and (7.35) yield that

(7.36)

which in turn implies (7.23).
Now let Rκ = R®\ Using the identity

R«> -R« = R«> - &$ + W ~ R« + ̂  - Ή\ (7-37)
and estimates (7.22) and (7.23), we obtain

I {«, (βκ, - Λκ)w) I < Csϊ + - I I I W - Wl. (7.38)
s

Picking now

S = \\\W'-W\\\\ (7.39)

we conclude that

\(u,(RK, - Λ»| < C|||W - W|||5. (7.40)

Now we prove the continuity in the first entry of K : a. To this end it suffices to
prove

||J(Λ(α,5θ)-^(α)0))Ji|^0 (7.41)

as a' —> α, where J = (x)~l. To demonstrate this relation we expand Λ(αj0) along

the eigenspaces of —Θ2/dt2:

,̂0) = ®^ <7'42)
n>0

[cf. (6.5)], where

R(a} = (Hωo-^2-zΓl (7.43)

and
= (H - nV - z)"1, n ^ 1, (7.44)
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with ω = Jωl + α. Let accordingly / = 0/n. Then

_!

= (Σ ιι J<^ - ̂ rv/jή ~2

) (7.45)

< sup \\J(B!$-B!£>)J\\ \\f\\.
n>0

By a standard Mourre theory (see e.g. [GFKS, FS]) and high energy estimates

n>0

as a' —> a. This together with (7.45) yields (7.41). This completes the proof of
Theorem 7.1. D

du ΊRemark 7.3. For u G Li with — G Li we have
σt

I <(%,<)) - %',o)K «> I < C\a' - αp. (7.47)

Indeed, the relation

together with (7.21) yields

7~)w) \ \ I ^ /^Ί\ t I / f~l Λ C\\/ i )?/ ?/ ) \ ( / Cv Cv / S I / 4:7 i

2

This together with (7.23) and the choice s= a' - α|3 yields (7.47).

8. Fermi Golden Rule

In this section we derive the key condition related to the Fermi Golden Rule (cf.
[Sim, How, HoS, Yaj, Sig, AHS]), necessary for the eigenvalue 0 of K0 to persist
under the perturbation Kκ. First, using the Feshbach projection method we derive a
convenient expression for eigenvalues of Kκ and then study asymptotic behaviour of
this expression as κ\ — > 0. Both steps use the resolvent estimates of the previous
section. Henceforth we adapt definitions (7.1)-(7.8) and the restrictions of Sect. 7.
We let, besides, _

^o = l- Λ»

the orthogonal projection onto NullX0. The first result of this section is

Theorem 8.1. Let Kκ, defined in (7.1), obey (7.6). Let Xκ be an eigenvalue of Kκ

branching out of the eigenvalue 0 of K0, i.e. Xκ —> 0 as K — > 0. Let ψκ be the

corresponding eigenfunction. Then f eε\x\\ψκ\
2 < oofor some ε > 0 and

\κ = a- ||P0 |̂|-2((^K -Xκ- iOΓlφκ,φκ), (8.1)

where (W, α) = K, φκ = P^WP^^ and the inner product on the r.h.s. is well defined
due to Theorem 7.1 and restriction (7.6) on W.
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Proof. Since E^(J^Λ)/fΛ[P0, A] is compact, Lemma 7.2 implies:

Lemma 8.2. Under assumption of Theorem 7.1 , there are an interval A containing 0
(and independent ofκ) and v > 0 s.t. the Mourre estimate holds for Kκ in Δ, provided

\κ\ < v.

This lemma and the Froese-Herbst theory (see [FH, CFKS]), adapted to the operator
Kκ imply exponential decay of the eigenf unctions of Kκ with eigenvalues in Δ.

Now we prove (8.1). We project the eigenequation

KK ΦK = \KΦK (8.2)

onto the subspaces RanP0 and RanP0:

(\κ - X0)P0ψκ = P0Iκψκ (8.3)

and _ _ _
(Kκ - \K)PQΨK = PO^PO^- (8.4)

In order to emphasize the structure of the equations we have written here λ0 for 0.
Next, we observe

and consequently,
IKP0 = (W- ά)P0. (8.6)

The latter relation implies in turn

P0IKP0 = P0WP0 (8.7)

and
P0/KP0 = P0WP0 - aP0. (8.8)

Equation (8.7) and Theorem 7.1 imply that (8.4) can be solved:

PoΨ* = -(*« - λΛ - ίOΓlP0WP0ψκ. (8.9)

Note that we could have taken here also +^0 instead of -iO. Both expressions are
equal. Now writing

P0Iκψκ - P0IKP0ΦK + P0IKP0ΨK, (8. 10)

and substituting here (8.8) and (8.9) and then plugging the result into the r.h.s. of
(8.3), we obtain

(Xκ - λ0 + ά)PQ<ψκ = -P0WP0(KK - λκ - iΰΓlPoWPQψκ. (8.11)

Multiplying this equation scalarly by ψκ, we derive (8.1). D

Taking the imaginary part of (8.1), we obtain

Corollary 8.3. Under the conditions of Theorem 8.1,

δ(Kκ-λκ)P0WP0ψκ=0. (8.12)

The main result of this section is

Theorem 8.4. Let Kκ, defined in (7.1), obey (7.6). Let Xκ be an eigenvalue of Kκ

and ψκ, the corresponding eigenf unctions s.t.

λκ^0, (8.13)
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and

as K — » 0 in such a way that for b sufficiently small,

W

in eb^L°°,for some U0 € eb^L°°. Then ψϋ obeys

δ(K0)P0U0ψ0 = 0. (8.16)

Proof. By Proposition 7.1 and since Xκ — » 0 as ft| — > 0, we have

βΛ = JR0 + o(|«|°), (8.17)

as maps from P0^ι to P0L
2_l, where

Λ lς = (^ις-λκ + iOΓ1. (8.18)

Denote
W

(8.19)

A special case (K = 0) of the first statement of Theorem 8.1 asserts that

RanP0 c D(eblx\) (8.20)

for some ε > 0. Hence for any δ > 0,

\\(x)δ(U-U0)PQ\\ ίClKU-UJeWH^. (8.21)

Equations (8.14), (8.15), (8.17) and (8.21) yield

Combining this equation with (8.12) and (8.19) we arrive at (8.16). D

9. Quasiperiodic Solutions

In this section we consider stability of quasiperiodic solutions to the linear wave
equation ((2.1) with ε — 0). Let g$(t,x) be a quasiperiodic in t and L2 in x solution
to (2.1) with ε = 0. Then there are an integer m > 2, positive numbers ωly... ,ωm

and a function G 0 (t l 5 . . . , ίm, x) periodic in ί 1 ? . . . , tm with the period 2π and L2 in
x s.t.

) — Goίu iί,... ,ω t, x). (9.1)

Moreover, G0 solves the equation

8
(9.2)

i=ι OTV

G0 will be called the generating function of gQ. The last statement follows from
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Lemma 9.1. Let gQ be a quasίperiodic solution to (2.1), ε = 0. Then it is of the form

+ α-)χ; , (9.2)

where ω\ and χi are eigenvalues and corresponding them eigenf unctions of H:

HXi = ω2

ί

Consequently, the generating function of gQ is

= ω2

ίXl. (9.3)

and it obviously obeys (9.2).

Proof. By a spectral theorem and since gQ is a solution to (2.1) with ε = 0, <?0 can be

written as #0 = #o°ιnt+#oont> wnere #o°mt *s °f form (9.3) (possibly, with m = oo) while
</o°nt is a solution with initial conditions from the continuous spectrum subspace of H.
Conditions (α) and (/?) of Sect. 2 imply that .ff has no singular continuous spectrum
(see e.g. [PSS]). The measure theory yields that J g™niddx — >• 0 as \t\ — > oo for any

/ G L2(Rn). Since ^omt is uniformly almost periodic, then so is gc

0

ont as a difference
of two such functions. By the property of uniformly almost periodic functions there
is a sequence Tn s.t. Tn — » oo as n — > oo and sup | $ όffi f dx — / #o°nt/dx| — > 0

as n — » oo, where gfg^f is a time shift of <7§ont by T. This and the conclusion above

yield that f g™ntfdx = 0 and therefore ^ont = 0. So (9.3) is true, but with m < oo.
However, sinced g0 is quasiperiodic, m < oo. D

Note that if H has infinite discrete spectrum, then (2.1), with ε — 0, has also
uniformly periodic solutions. They are obtained by setting m = oo in (9.3). The
stability of such solutions is an open problem.

Consider now the non-linear equation

-(Ωe - VT)2G - EG + fε(G) (9.4)

with Ω = Ojj, . . . ,ωm), T - (t1? . . . ,tm) and G G #2(Tm) 0 D(ff), where Tm is
the m-torus.

Definition 9.2 A solution G0 of (9.4) with ε = 0 is said to be stable under a
perturbation fε if for an infinite sequence of ε ̂  0 converging to 0, there are ω^ε > 0
and Gε solving (9.4) and obeying

(i) ωit£ -> ω ΐ>0,

(ϋ) for Gε -> G0 sufficiently small b > 0 in eb\x\L°° and weakly in L2,
(iii) Gε is uniformly bounded in D.

Definition 9.3. A (quasi-) periodic solution gQ of the ε — 0 problem described above
is said to be stable under the perturbation fε if the corresponding generating function
G0 is stable as a solution to (9.4) with ε = 0 under the perturbation fε.

Given G0 G L°°(Tm x Rn), we consider the function /(G0). Since it is periodic
in ί1? . . . , ίm of the period 2π it is entirely defined by its Fourier coefficients

ι(G0)e-ίΛΓ 'τdmT, (9.5)
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m m

where N = (nt, . . . ,nm), N T = £ Π&. Let |ΛΓ| = Σ ̂  and (#•/?) = £ n^2.
i=l ΐ=l

Theorem 9.4. L^ί fjΓ /zαve positive isolated eigenvalues ω2 , . . . , u;̂  s.ί. for any N,
\N\ > 1,

(N Ω)& disc spec 77 U thresholds H.

Let gQ be a (quasi-) periodic solution to (2Λ)for ε — 0 with a generating function G0.
If f obeys

JN)ΪO, (9.6)

where fN = f /1(G0)e'ΛΓ ' TdrnT, at least for one N with \N\ > 1, then #0 is unstable
under the perturbation fε .

Proof. The proof follows along the lines of the proof of Theorem 2.2. Definition 9.3
allows us to reduce investigation of (2.1) to that of (9.4). The latter is reduced as in
the proof of Theorem 2.2 to the study of the operator

+ H + Wε(Gε)

on £2(Tm x IRn) analogous to the operator Kε ω defined in (5.5). The rest of the proof
repeats the corresponding part of the proof of Theorem 2.2. D

10. Perturbations of Non-linear Equations

In this section we study stability of periodic solutions of non-linear wave equations
under non-linear perturbations. Thus we consider the equation

82u
-—=Hu + fε(u) (10.1)

in which /0 φ 0 is a non-linear function. Here H is assumed to satisfy all the
conditions of Sect. 2 and fε(u) is supposed as before to obey (2.2) and, as a
function of u and ε, to be four times continuously differentiable in u and two
times in ε. In particular, fε might be independent of ε, in which case the problem
under consideration is one of stability (bifurcation) w.r. to perturbations of the initial
conditions. We define as before

We strengthen the key Definition 2.1 of stability of periodic solutions by adding the
conditions that ω. is differentiable at ε — 0, that

in D and that

in (x)L2 as ε —> 0.
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Let #0 be a periodic solution to (10.1) for ε = 0 with a period 2π/ωQ. Let

(10.4)
\ωo /

Then ^0 G L2(Sl x Mn). Define

and denote by P0 the orthogonal projection onto (NullA"0 ω )-L. Let K0 ω = KQ ωQP0.
The main result of this section is

Theorem 10.1. Let H and f£ be as described in the beginning of this section. Let
g0, ωQ and ψQ be as above and let for any n > 1,

(nu;0)
2 0 disc spec H U thresholds H. (10.6)

If for any real a f obeys

(10.7)

then the periodic solution g0 of the (ε = 0) -problem is unstable under the perturbation

fe

Proof. We follow the proof of Theorem 2.2 except that we omit the last step in the
latter, the connection between the conditions in terms of the function fι(ψQ) and in
terms of its Fourier coefficients. Thus we assume on the contrary, that g0 is stable in
the sense of the definition described above. Then there is a family of periodic solutions
to (10.1) of periods 2π/ωε, described in that definition. We rescale this equation in
time as t — » t/ωε and rewrite it as

\

(10.8)

where ψε(t,x) = gε(t/ωε,x). First, we give a formal derivation of (10.7), which
differs from the corresponding derivation of (5.8). Differentiating Eq. (10.8) w.r. to
ε at ε = 0, we obtain

#0,0^0 = -α£^o - /iW, (10.9)

where α = — ω2

ε |ε=0 and ̂  = ̂ ε lε=o APP!ying ^(^o,α;0)^o to this equation,

we arrive at (10.7).
To prove (10.7) rigorously one rewrites (10.9) in terms of differences rather than

derivatives. This as above leads to the condition

where Kε = PQK£P0 with

δ(Kε)F=0, (10.10)

(10.11)
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and Xε = (φε - ψ0Γ
l(fM ~ ΛWo)). and where

with Yε = -(/ε(V>0) - /O(VΌ)) Next' we observe that, due to (10.2),

r\

foWo) (10-12)

in D, and that, since fε(u)/u is Cl in ε and ^o ^ (%)L2,

yε -> Λ w
in (x)L2 as ε — » 0. (Weighted estimates on ψQ can again be obtained using an analogue
of the Froese-Herbst theory). The last relation together with (10.3) yields that

Fe-*αa^0 + /1(^0) (10.13)

in (x)L2 as ε -> 0. Next, Eq. (10.12) and Theorem 7.1 yield

(xΓlδ(Kεtωe)(x)-1 = (xΓl6(K^ωo)(x)-1 + o(\ε °). (10.14)

This together with (10.13) yields that

l.h.s. (10.10) - (KK^PMΨo), PO/I W> + °(N°) (10.15)

Comparing this with (10.10), we conclude that

which contradicts (10.7). D

Remark 10.2. We expect that either a in (10.7) is 0 or KQω has non-trivial zero
eigenfunctions, besides those generated by the symmetries of (10.1). In the latter
case, α = — {^^Q,^}"^/^^),^), where φQ is such an eigenfunction.

11. Non-linear Schrόdinger Equation

In this section we consider briefly the non-linear Schrδdinger equation

dt

Here ψ: R x Rn -» C, H is the same as in Sect. 2 and

with Wε(s) smooth in s and ε, and obeying

WQ(S) = O. (11.3)

A standard bifurcation theory shows that periodic solutions

<7o = e"α*X,
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where λ is an isolated eigenvalue of H and χ, the corresponding eigenfunction, are
stable under a non-linear perturbation fε. The problem in this case is reduced to the
stationary bifurcation problem

Hψ -f /εC0) = Xψ

(See [AF] for some interesting related results.) However, the situation changes for
(quasi-) periodic solutions of the form

ra

~~ ~< λ < tXt, (11-4)

where λ^ are isolated eigenvalues of H and χi9 the corresponding eigenfunctions,
provided

λ^ — Xj g 2πZ for some i ^ j. (11.5)

Adapting the definitions, notation and techniques of Sect. 9, and denoting
771

Λ — ( X l , . . . , λm), and TV Λ — ̂  niXi we obtain
i=\

Theorem 11.1. Let H have isolated eigenvalues λ 1 ? . . . , λm obeying (11.5) and s.t.
for any TV, \N\ > 1,

N A G disc spec/ί U thresholds^.

Let #0 be a solution to (11.1) with ε — 0 having a generating function GQ. If fε obeys

at least for one N with \N\ > 1, then g0 is unstable under perturbation fε.
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