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Abstract. We investigate stability of periodic and quasiperiodic solutions of linear
wave and Schrédinger equations under non-linear perturbations. We show in the case
of the wave equations that such solutions are unstable for generic perturbations. For
the Schrodinger equations periodic solutions are stable while the quasiperiodic ones
are not. We extend these results to periodic solutions of non-linear equations.

1. Introduction

It is well known that the world is non-linear. However, most of our knowledge about it
is derived from analysis of its linear approximations. Though non-linear perturbations
are usually extremely weak, they can alter the linear behaviour qualitatively. Thus it
is important to understand how the most elementary and fundamental properties of
linear systems are affected by non-linear perturbations.

Consider problems concerning the time evolution. Once existence of solutions
is established the next goal here is classification of the orbits (= solutions) w.r. to
their localization in the configuration space of the system in question, namely, into
bounded and unbounded. In the case of linear Schrodinger and wave equations the
Ruelle theorem allows us to identify bounded orbits with periodic and quasiperiodic (in
time) ones, produced by eigenfunctions of the Schrodinger or wave operator involved,
and their linear combinations. Thus the problem: investigate stability of the (quasi)
periodic solutions of the linear equations under non-linear perturbations. This problem
was posed by J. Frohlich and T. Spencer several years ago and is the subject of the
present paper.

In this paper we show that periodic and quasiperiodic solutions of the linear wave
equation are unstable under generic non-linear perturbations. For the Schrddinger
equation some of the periodic solutions are stable while the others as well as certain
quasiperiodic solutions are not.

* Partially supported by NSERC under Grant NA7901
** 1.W. Killam Research Fellow
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Now we explain the term generic used here. Our theorems contain spectral
condition on the linear problem which guarantees instability. It is satisfied for an
open set of the linear problems and non-linearities in a certain explicit metric. We
expect the latter set to be dense and moreover its complement to be meager in some
reasonable measure. However, we cannot prove this and leave it as an open problem.
Instead we verify the condition in some simple cases.

Finally we also establish a condition for instability of periodic and quasiperiodic
solutions of non-linear wave equation. Though this condition is expressed in terms of
a linear problem it is harder to verify than in the cases listed above. Nevertheless we
believe it can be done for simple equations such as the sine-Gordon equation.

In a sequel paper we address the question of what happens to those periodic and
quasiperiodic solutions which disappear under non-linear perturbation. To answer it
we develop the theory of resonances for non-linear wave equations. We show that the
above mentioned solutions turn, under non-linear perturbations, into resonances. We
estimate the life-time of the corresponding solutions.

The paper is organized as follows. In Sect. 2 we state the problem, formulate the
main result and present its discussion for the case of wave equation. In Sect. 3 we
discuss the genericity of the condition of our main theorem. In Sect. 4 we analyze
an example (a square well potential well known in Quantum Mechanics) in which
this condition is verified. In Sect. 5 we prove the main theorem modulo technical
statements demonstrated in Sects. 6-8. Our main tools here are the Mourre estimate
and the Fermi Golden Rule for non-elliptic and non-linear equations. In Sect. 9 we
show instability of certain quasiperiodic solutions of the linear wave equations, in
Sect. 10, periodic solutions of non-linear wave equations, and in Sect. 11, certain
periodic and quasiperiodic solutions of linear Schrédinger equations.

2. Statement of the Problem and Results

In this section we consider a family of non-linear wave equations of the form

0*u
where u: R x R™ — R is an unknown function, H is a real, symmetric differential
operator on R™ and f.: R — R is a family of 3 times continuously differentiable
non-linear functions, once continuously differentiable in € and obeying

£.(0)=0. 2.2)

We assume that all derivatives of f, are continuous in . In all sections, except of
Sect. 10, we assume that

Jolw) =0. (2.3)
We suggest thinking about H as a self-adjoint Schrodinger operator
H=-A+V(x)
on L*(R™), but it could be also the operator,
H = ez’ o@)Vo(@) ™'V + V(z) Q.4
on L?czg)—l ,2(R™) arising in the wave propagation, etc. The conditions we impose are

rather general. In what follows we consider H on L*(R™).



Non-linear Wave and Schrédinger Equations 299

By a periodic solution to (2.1) we understand a function u, periodic in ¢ and
belonging to H,(0,T) ® D(H), where H, is the Sobolev space of order 2 and T is
the period of u, which solves (2.1). The linear, (¢ = 0)-problem has periodic solutions
of the form

9o(t, ©) = x(x) sinwyt, 2.5)

where w? and x are an eigenvalue of H and the corresponding eigenfunction
Hyx = w(z, X-

We do not normalize x. Because of the ¢-translational invariance of (2.1), all the
statements below extend immediately to x(z)sin(wyt + o) for any «. The period

. 2m L .
of g, is — =T,,. Note that such periodic solutions are stable under reasonable
W,

0
linear perturbations (see e.g. [Kato]). Our main task is to investigate stability of
such solutions under non-linear perturbations. Before proceeding note that the Froese-
Herbst theory and Harnak inequality imply under conditions on H formulated below

Ix(x)| < Ce b=l (2.6)

for some b > 0 (see [CFKS]).
Denote by D the class of functions u: S' x R® — C obeying

sup|(z - V) "u| < co
for n = 0, 1,2. Equipped with the norm |[||u| = max Iz - V) "ull . D becomes a
n=u,l1,

Banach space.
We introduce the functions

W () = f.(w)/u 2.7

and
U, (u) = W_(u)/e. (2.8)

Due to the restrictions of f., U_(1) is twice continuously differentiable in ® and,
together with its derivatives, continuous in €.

Definition 2.1 A periodic solution, g,, of the (¢ = 0) problem is said to be stable
under a perturbation f. if for an infinite sequence of € # 0 converging to 0, Eq. (2.1)
has a periodic solution g, of a period 27 /w, s.t. as € — 0,

(i) w, — wy, where 27 /w, is the period of g,

t t
(i) g, (w—’ x> — go(w—,ac> in eblIL°° for some sufficiently small b and weakly

€ 0

in L?,
(iii) g, is uniformly (in €) bounded in D.

Now we formulate our technical restriction on H. Instead of isolating an explicit
class of operators we constrain H by imposing some estimates known to be satisfied
for various classes of operators. First we distinguish a compact subset of cont spec
H of measure zero, which we call the threshold set of H. For a Schrodinger operator
for which V(oo) = wgngo V() exists, this is {V(co)}. It is a standard practice in the

theory of Schrodinger and related operators to avoid this set.
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The next condition allows us to apply the powerful Mourre method to study
embedded eigenvalues. Let

11 _1
A=H+1) 2E(Jc-p-l-p~oc)(15’+1) 2, (2.9
where p = —grad,,. We say that the Mourre estimate holds for H in an interval A if

EA(H)ilH, AJEA(H) > 0E,(H) + K, (2.10)

where 6 > 0 and K is a compact self-adjoint operator. We say that the Mourre estimate
holds for H if it holds for any compact interval A C cont spec H\ thresholds of H.
The Mourre estimate is proven for a large class of Schrodinger and related operators
[Mou, PSS, FHel, FHi, FS]. Self-adjoint Schrodinger operators with potentials V (z)
obeying

(- V)"V(z) is A-compact 2.11)

for n = 0, 1 form such a class. There 6 is any number satisfying
0 < dist(A, thresholds of H on the left from A).
Moreover, K can be chosen there so as to obey
K < C(H + 1)~° for some § > 0. (2.12)

We assume in this paper that
(o) ad’j(H) are bounded for n = 1,2 (on L2(R™)),
(B) the Mourre estimate with K obeying (2.12) holds for H. Moreover, there is
E, > 0 s.t. § > 0 can be chosen to be independent of A, provided A C [E, 0o).
Consider the function f,(x(x)sint), where

0
fl(u) = b—sfg(u) Igz()E U()(U)U-

Since it is periodic of the period 27 it is entirely determined by its Fourier coefficients

2T
[ (@) = / fi(x(x) sint)e ™ dt. (2.13)
0

The main result of this paper is the following

Theorem 2.2. Let H have a positive, isolated eigenvalue w% s.t. for anyn > 1,

nzwé ¢ disc spec H U thresholds H. (2.14)
27 .
Let f, = [ fi(x(z)sint)e ™ dt. If there is n > 1 s5.t. f. obeys
0

(6(H — *wi) f, [) # 0, (2.15)

then the periodic solution g, = X sinwyt of the linear, ¢ = 0, problem is unstable
under non-linear perturbation f,.

Discussion 2.3. (i) The restriction that w% is an isolated eigenvalue is not necessary
but this is the most interesting case.



Non-linear Wave and Schrodinger Equations 301

(i) The necessary condition for (2.15) to hold is
n*wi € cont spec H for some n > 1. (2.16)

This relation states that “w,-photons” connect the eigenvalue w} to the continuous
spectrum so that the corresponding transition (“ionization”) is possible. This condition
is obviously satisfied if H has a continuous spectrum in a neighbourhood of +o0.
(iii) Clearly, the restriction

n? wo ¢ disc spec H for every n > 1 2.17)

can fail only in exceptional cases. The result extends to those cases if / is replaced by
HQ,, and f, by Q,, f,,, where @), is the orthogonal projection onto (Null(H nwd))*.
(iv) Due to assumption (2.17) the non-negative operator 6(H —n’w?) is well defined
forn > 1 (see e.g. [CFKS, FS]). The finiteness of the Lh.s. of (2.15) w1ll be established
later, in the course of the proof of the theorem.

(v) In case when

f, =0 forall n>1s.t win® € cont spec H,

there is a refinement of (2.15) involving Fourier coefficients of more complicated
functions (higher order perturbation theory).

(vi) The instability described in the theorem is due to the coupling of disc spec H
with cont spec H, not with cont spec §?/0t. The same phenomenon would persist if ¢
were confined to a finite interval so that §?/0t*> would have purely discrete spectrum.
On the other hand, if the resonance condition fails, i.e. if

win* ¢ cont spec H for all n > 1,

then periodic solutions to the linear problem are expected to be stable under non-linear
perturbations.

Example. f.(u) = eu’. Using that

1 1
sin’ @ = ~1 sina — 1 sin 3q, (2.16)
we obtain
1 1
fxsint) = _ZXS sint — Zx3 sin 3t. (2.17)

Thus we obtain

Corollary 2.4. Let x be an eigenfunction of H with an eigenvalue w&. If

(6(H —9wi)x*, X) # 0, (2.18)
then for ¢ sufficiently small the non-linear equation

o*u ;
—WzHu-i—au (2.19)
has no periodic solutions generated by the periodic solutions x sinw,t of the corre-
sponding linear problem in the sense of Definition 2.1.
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3. Genericity

To verify condition (2.15), one has to compute the spectral projector or the Green
function of the linear operator H at the points n*w3, n > 1. Below we check this
condition in special cases. We expect it to be satisfied for generic non-linearities f,
and for generic Schrodinger operators H with continuous components in their spectra.

We define the topological space .# of non-linearities f as follows: f € C3,
f(0) =0 and f(u)/u maps bounded subsets into bounded subsets with the topology
determined by the seminorms

£l = sup [f(w)/ul. (3.1
lul<L

Denote by & the class of operators H obeying condition () of Sect. 2 with A defined
in (2.9) and with the norm defined accordingly.

Theorem 3.1 For given n and H € &, either (2.15) holds for an open and dense set
of fi’s in F or it fails for all f|’s in F . For given n and f, € &, (2.15) holds for
an open set of H’s in 9.

Proof. By Eq. (2.6) and Theorem 7.1 of Sect. 7, the Lh.s. of (2.15) is continuous in
H € & and in f; € % . Hence the set of all H’s in & for which (2.15) holds for
fixed n and f; € ¥ and the set of all f;’s in % for which (2.15) holds for fixed n
and H € & are open. Now we claim that, given n and H € &, if there is fl €7
for which (2.15) holds, then (2.15) holds for a dense set of f,’s. Indeed, let (2.15)
fail for f,. Introduce f; 5 = f; + (5}; € % . Then by the linearity in f;, (2.15) holds
forall fj; withé#0and f;; — fyin¥ asé6—0. O

[AHS] show that for a wide class of Schrodinger operators (besides of H € &
some kind of decay at oo is assumed)

S(H —XN)#0 (3.2)

if A € cont spec H \ (thresholds U eigenvalues). We conjecture that a similar relation
holds for wave operators (2.4) and for other differential operators from the class &.
However, this relation does not suffice to show that the class of H’s and f’s for which
(2.15) holds is sufficiently rich. We believe that the set of H € & and of f, € #
for (2.15) fails is rather meager but there is no proof so far of this fact.

4. Explicit Example

In this section we verify condition (2.18) for f(u) = u? and for H, the Schrodinger
operator H = —A+V(z) in the dimension n = 1 with V' (x), the square well potential:

0 forO<z<mw

4.1
a for either x < 0 or x > 7. @1

Viz)= {

Of course, this potential does not satisfy conditions (i) and (ii) of Sect. 2. However,
it will be clear that the analysis below holds for smooth versions of V(x) as well as
for multi-dimensional square wells and their smooth descendants.
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Let x o be an eigenfunction of (4.1) with an eigenvalue 0 < E, < a and 9,
the scattering (generalized) eigenfunction corresponding to a point £ > a of the
continuous spectrum. Then condition (2.18) is equivalent to

1
Theorem 4.1. Let a < 3% Then (4.2) holds.

1
Proof. If a < 1 then H has only one eigenvalue F|, obeying

1 1
se<Ey<a<y. (4.3)

Since this is the lowest eigenvalue, x g, > 0. The scattering (generalized) eigen-
function ¢ can be decomposed into the real and imaginary parts (i.e. two real
eigenfunctions) with the real part being

cos(\/Ex) 0<z<m
up(r) = ¢ cos(+/E — ax) <0 4.4
cos(VE —alx —7) x>7

1
Due to (4.3), ugEO(m) >0 for 0 < z < 7, provided a < 36" Hence for such a’s

™

/U9E0X3Eo dz > 0.
0

The remaining part of Uop X dz can be easily computed. Since
9EyXE, y
—o0

Ae,/a—Eoz <0
XE, = Aacos(‘/Eoﬂ)e_ fa—Fg@—m) o>
2E,—a -

with A > 0, a normalizing constant, we compute

0 0o
—E E
([ s (5050 o

2E)—a
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5. Proof of Theorem 2.2

Assume (2.1) has a periodic solution with a period T, = 27 /w,. Then g, solves the
“linear” equation

2
P = Hu+ W_(g,)u. 5.1

Put differently, g, is an eigenfunction of the operator
() & 20 —1¢al n
K = ol +H+W_(u) on L (w;' S xR"), (5.2)

where w151 is the circle of radius w_ !, with the eigenvalue 0:
K®g_ =o0. (5.3)

In order to get rid of the e-dependence of the space on which K is defined we scale

the time variable as .
t— —. 5.4)

We

This generates a unitary transformation under which K© is mapped into K, ,_, where

2
K., = wZ% +H+W.@) onL*S' xR, (5.5)
with
t
t,x) =g, —
Veltr2) =g <w5’x) (5.6)
€ LX(S' x R™).

The scaled periodic solution %, obeys
K, . v. =0, (5.7

i.e. 9, is an eigenfunction of K, with an eigenvalue 0.
Recall that
W_(u) = eU_(u).

Lemma 5.1. The function U_, considered as a composition map ¢ — U_ o, is a
bounded map from D into D, norm continuous in €.

Proof. Denote by U! and U/’ the derivatives of U, (1) w.r. to . The statement follows
from the relations

(@ - VU.(p(x) = UL @)z - V)b,
and
(- VYU.((@) = UL@p@))(@ - VYP(@) + U @)@ - Vb)),

and the fact that U, is continuous in ¢ uniformly in w € any compact interval of R.
O
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Assume now that g, is born out of the periodic solution g, = xsinw,t of the
(¢ = 0)-problem in the sense of Definition 2.1. Then by Lemma 5.1, U.(¢,) is
uniformly bounded in D. Moreover, Definition 2.1 implies

U.(1h,) — Uy(ty) in e?® L,

as € — 0, where b is the same as in Definition 2.1. Remembering that by Definition
2.1 9, — 1, weakly in L?, we conclude that K., obeys the conditions of Theorem
8.4 of Sect. 8. The latter, applied to the case at hand, implies that

6(1_(0’(”0)}—70f1 (¥y) =0, (5.8)
where a is the same as in Definition 2.1,

14 .
Yo, ) = gO<—,x> = x(x)sint,

“o
P, = orthogonal projection onto (Null Ko,wo)"L

and

Ky, = Ky, Py (5.9)

On the direct sum of the eigenspaces of 8% /0t?

K, = EDH — nw?) (5.10)
n>0
and B 3
Py = @ Po,nv
where 3
Py, =id forn # 1
and

Py, = 1® proj. onto (Null(H — wi))".
Consequently, on Ran P,

6(1?07“’0) = 6(Hw(] - U)g) @ 6(H - nzw(%)a (511)

n>1

where Hw0 =H Pwo. Expand now (remember (2.13))

AH@)sinty =Y f,(@)e™.
Substituting this and (5.11) into (5.8) and using the orthonormality of {e!™}, we derive
§(H — n*wd)f, =0 (5.12)

for all n # 1. The latter relation contradicts condition (2.15). Consequently, there are
no periodic solutions in a neighbourhood of v¢,. U

In conclusion of this section we explain the origin of relation (5.8). Consider the
unperturbed, linear problem and note that 1,(¢,z) = x(x)sint is an eigenfunction
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of K, with the eigenvalue 0. Using the separation of variables one determines the
spectrum of

2 &
K, 6 =w'— + H.
0,w w o2 +
Namely,
point spec K, = point spec H — {n*w?},
and

cont spec K, = U (—nw?* + cont spec H).
neZ

Since by resonance condition (2.16)
n*w} € cont spec H for some n > 1,

the eigenvalues 0 of K, , is embedded into the continuous spectrum of K , (see

Fig. 1, where it is assumed that cont spec H = [, 00)).
Spec K,

Fig. 1

We consider now K, , as a perturbation of K, . Extrapolating result on the
Schrodinger equation (see e.g. [Sim, How, HoS, Yaj, Sig, AHS]) one expects that
the eigenvalue 0 of Ko’w0 disappears under the perturbation and becomes a resonance
of K, , . The expansion in ¢ for the imaginary part of this resonance starts with
€? times a coefficient given by the Fermi Golden Rule and which turns out to be
exactly the Lh.s. of (5.8) multiplied scalarly by f,(1,). Thus (5.8) is a consequence
of the assumption that the eigenvalue O survives the perturbation and remains to be
an eigenvalue of K_ , . Consequently, the imaginary part of this eigenvalue must
vanish.

In the case when f,(x sinwt) has only finite number of the Fourier coefficients, say
ny,, as it happens when f;(u) is a polynomial, the leading in ¢ term in the imaginary
part of the resonance is the 2™ _term, where m is the smallest integer obeying

(mnywo)* € cont spec H.
In this paper we consider the case when m = 1. For m > 1, the leading coefficient

is again given by the Fermi Golden Rule in which f;(1);) on the Lh.s. of (5.8) is
replaced by a more complicated function.
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6. The Mourre Estimate for Ko,

In this section we consider the operator
K, =w—+H (6.1)

acting on L*(S' x R?). We derive the Mourre estimate for K , from the Mourre
estimate for H. This result is used in the next section in order to obtain estimates on
the resolvents of K, , and of its perturbations, needed later.

We say that the strong Mourre estimate (SME) holds for self-adjoint operators 1T'
and A acting on the same Hilbert space and for an interval A if

EA(T)lT, AIEA(T) > 0E (T 6.2)

for some 6 > 0. Whenever it is clear which operator A is used as is the case below, we
will not mention it explicitly. In this section A is given by (2.9) but on L2(S! x R™)
(we will not distinguish between A and 1 ® A).

By Operator Calculus and properties of compact operators, the usual Mourre
estimate (ME) on A and the absence of eigenvalues in A imply the strong Mourre
estimate on a smaller interval, say A,. Conversely, the strong Mourre estimate on
A implies the absence of eigenvalues in A and Hdélder continuity of the resolvent,
acting between appropriate weighted spaces, in A (see e.g. [CFKS,FS)).

The main result of this section is

Proposition 6.1. Assume H obeys the conditions of Sect. 2. Then there are an interval
A containing 0 and 6 > 0 so that the strong Mourre estimate holds for K, ,, A and

A, provided |w — wy| < 6.

Proof. By non-degeneracy condition (2.14) H has no eigenvalues in some intervals

around n?w} for n > 1. Hence by the remark made in the paragraph before the

proposition there are open intervals A containing nzwg, n > 1, in which the strong

Mourre estimate holds. Moreover, due to condition (2.12) there is E; > 0 s.t. the
strong Mourre estimate holds for H and any interval in [E,, 00).
Let ng be s.t. ndw? > E, + 1. Pick § > 0 so that

A= ﬂ (A4, —n*w?) #0 (6.3)
n<ng
lw—wp| <6
and, for |w — wy| < 6 and n < n,
n2w? € cont spec H « nzwg € cont spec H. (6.4)

Then the strong Mourre estimate holds for H in the intervals A +n’w?, where n > 1
and |w — wy| < 8, with a positive constant 6 independent of n.
Now we expand over the eigenspaces of §°/9t?:

Ky, = (H, - PH - n*u?), (6.5)
n#l

where, recall, H, = H Pwo with Pwo, the orthogonal projection onto (Null(H —
w(z)))i. Using this relation and the non-degeneracy condition, we get for A around 0
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and sufficiently small
ExBo)=@EsH - = D Eapm().
n>1 A+n2w2Ccont spec H
Using the last two relations, we derive
Ex(Ky)ilK g, AIEAK )
= P Ep 22 (HYH, A1E 5 2 2 (H).
A+n2w?Ccont spec H

This, combined with the conclusion of the previous paragraph, implies the strong
Mourre estimate for K, , and the interval A described in that paragraph. U

Since E (K 0,w) Ko [P, Al is compact, Proposition 6.1 yields

Corollary 6.2. Under the assumptions of Proposition 6.1 the Mourre estimate holds
for K, , and A.

7. Operator K,
In this section we study the resolvent of K ¢+ Our main tool is the Mourre estimate

derived in the previous section. In fact, we consider more general self-adjoint operators
of the form

K, =Ky+1, (7.1)
acting on L?(S' x R™), where
, 0
Ky =Wz + H, (71.2)
92
I = s +wW (7.3)
and
k=W, ). (7.4)
Here H is the same as before, but W here is the potential
W:S'xR" >R, (7.5)
ad’; (W) are bounded for n =0, 1,2 (7.6)
[on L2(S' x R™)]. Let || || be a norm generated by (7.6) and
|kl = Wl + lal. (7.7

Let P, be as before, the projection onto (NullK;)*, and
K, = P,K,_P,. (7.8)
The main result of this section is

Theorem 7.1. Let K, be defined in (7.1) with W obeying (1.6). Then there are an
interval A containing 0 and v > 0 depending on A) s.t. for |k| < v the following
holds
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i) K, has no eigenvalues in A,
ii) (K, —2)7': PyL? — P,L? , is bounded and continuous in x and z, Re z € A.

The proof of this proposition goes along standard lines (see e.g. [AHS, CFKS,
PSS, FS]) and we present here just a sketch of it.

Sketch of proof of Theorem 7.1. Let A, be the interval given in Proposition 6.1 (and
denoted there by A): A; 5 0 and the strong Mourre estimate for K 0 holds on A,
provided |w — wy| < & for some § > 0.

Lemma 7.2. Given A C A s.t. dist(0A,0A4,) > 0 there is v > 0 s.t. the strong
Mourre estimate holds for K . and A, provided |k| < v.

Proof. The result follows from the relation

[K,, Al = [I—(WA] + [W, A], (7.9)
where x, = (0, ), and the estimates
K s Alll < C, (7.10)
W, A1l < ClIwl, (7.11)
and _ _
IEAR,) - Ex(R,)] < CIW]. (7.12)

The second estimate is straightforward, the first requires some simple but tedious
commutator estimates. To prove the third estimate one uses the Fourier representation

(D) = / F(9)e'T* ds, (7.13)

where fis the Fourier transforms of f, and the Duhamel formula

S
s — ¢'28 = / e NE=(T, — Ty)e' ™" du. (7.14)
0
Note that (7.13) holds for any self-adjoint operator 7" and any function f with

T ]f(s)lds <oo. O

Lemma 7.2 implies that A contains no eigenvalues of K .. for || < v, and hence
(i) holds, and that (K, — 2)~! : PjL? — P, L%, is bounded and Hélder continuous

in z, Re z € A, of the order % (see the paragraph before Proposition 6.1). It remains
to show that the latter map is Holder continuous in x. We sketch this proof. Let
B, = E,(K )ilK,,AlEA(K,). (7.15)
Then (7.9)—(7.12) yield
B = Bl < ClIW" = W, (7.16)
where k' = (o, W’) and k = (o, W). Introduce the family
R® = (K, —isB, — 2" (7.17)
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This is the resolvent of the affine approximation to the family e*4 K,_e~*4, introduced
in [Mo] (see also [PSS]). Using the second resolvent equation
R® — R® = RY(W' — W - isB,, +isB,)RY (7.18)
and (7.16), one estimates on u € L2,
|(u, (RS — Ry) < CI[W' — W[ [|RS ul | RS u]|. (7.19)

Using now the Mourre estimate, we obtain
C
IROulP < ZIv/sB RO ull?

< =, (RY" = ROu)].

- s

(7.20)

Q

Using that for u € L% and Re z € A the inner product on the r.h.s. is bounded, we
obtain

R ul| < (7.21)

@l

This together with (7.19) yields
[, (RS~ RO < S~ wi, (122)
Next, as in [PSS] we have
[(u, (R — ROyu)| < C/s. (7.23)

We sketch the proof of this estimate. Let E, = EA(K,) and E, = 1 — E,(K,),
the complementary spectral projectors so that E,E 4, = 0. We compute

diRS) =R¥B.R® =B+C, (7.24)
S
where _
B = R¥i[K,, AIR® (7.25)
and _ _ o
C = —-R¥i[K,,AJE,R® — ROFE 4i[K ., AIE,RY. (7.26)
Remembering definition (7.17) of R, we transform
B =i[A, R®] + sR¥i[B,, A]R®). (7.27)

Hence, due to (5.21) and for u € L2,

1
|(Bu,u)| < const(s 2 + ||[B,, Al|) (7.28)
Next, using E,E 4 = 0, we estimate
I, ~ isB, - 2wl = |E 5K, ~ isB, - 2 .
= |EA(K, — 2)ull > 8[| E pull,

which implies _
IEARDII < C. (7.30)
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Equations (7.21) and (7.30) yield now that
(Cu,u)| < const||[K,, All|/V/s. (7.31)

Finally, using the definition of A,

A=(H+1)‘%%(z-p+p~x)(H+1)‘é, (7.32)
the relation
(K, Al=[H+ W, A] (7.33)
and the restrictions on H and W, we obtain that
(B, Alll < const|[[W]| (7.34)
and
ILK ., All| < const||W]]. (7.35)
Relations (7.24), (7.28), (7.31), (7.34) and (7.35) yield that
%(Rif’u, u)| < % (7.36)
which in turn implies (7.23).
Now let R, = R©. Using the identity
R, -R,=R,—R%+R®-R_+RY - RY, (7.37)
and estimates (7.22) and (7.23), we obtain
[, Ry — B )] < Cs7 + S W’ —w). (7.38)
Picking now
s= W - wip, 1.39)
we conclude that
[, By — Rou)| < CIIW — WP, (7.40)

Now we prove the continuity in the first entry of x : a. To this end it suffices to

prove
1T (Rar 0) = Ria0) /1l = 0 (7.41)

as o/ — a, where J = (z)~!. To demonstrate this relation we expand R, o along
the eigenspaces of —8?/0t%:

R0 = EPRY (7.42)
n>0
[cf. (6.5)], where
R =(H, —w’—2)" (7.43)

and
R =H-n*w* -2, n#l, (7.44)
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with w = y/w? + a. Let accordingly f = @f,. Then

1
T (Rior 0y = Bia,o) T fIl = (Z I J(RY) — Rﬁxn))an”Z) ’

n>0
< sup IR — RGO I£-

(7.45)

By a standard Mourre theory (see e.g. [GFKS, FS]) and high energy estimates
sup || J(RY) — RI™)J|| — 0 (7.46)
n>0

as o — «. This together with (7.45) yields (7.41). This completes the proof of
Theorem 7.1. O

0
Remark 7.3. For u € L? with 8—1; € L? we have
1

{(Ria0) — Rior oy)usw)] < Cla! — af. (7.47)

Indeed, the relation
13} 3}
R o)~ Rl = (@ = )5 R o Riloy 5 (7.48)

together with (7.21) yields

(R o) — B ou, w)| < Cla’ — al/s. (7.49)

2
This together with (7.23) and the choice s = |[o/ — a3 yields (7.47).

8. Fermi Golden Rule

In this section we derive the key condition related to the Fermi Golden Rule (cf.
[Sim, How, HoS, Yaj, Sig, AHS]), necessary for the eigenvalue 0 of K|, to persist
under the perturbation K. First, using the Feshbach projection method we derive a
convenient expression for eigenvalues of K, and then study asymptotic behaviour of
this expression as || — 0. Both steps use the resolvent estimates of the previous
section. Henceforth we adapt definitions (7.1)—(7.8) and the restrictions of Sect. 7.

We let, besides, _

the orthogonal projection onto NullK,. The first result of this section is

Theorem 8.1. Let K, , defined in (7.1), obey (1.6). Let A, be an eigenvalue of K,
branching out of the eigenvalue 0 of K, i.e. A\, — 0 as & — 0. Let v, be the
corresponding eigenfunction. Then [ esl*l|y,_|? < oo for some € > 0 and

A, =a— [Pyl HE, — A\, —i0) o, 0., (8.1)

where (W, a) =K, ¢, = }_5’0WP01,ZJ,’C and the inner product on the t.h.s. is well defined
due to Theorem 7.1 and restriction (7.6) on W.
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Proof. Since E A(I—( DK [Py, Al is compact, Lemma 7.2 implies:

Lemma 8.2. Under assumption of Theorem 7.1, there are an interval A containing 0
(and independent of k) and v > 0 s.t. the Mourre estimate holds for K, in A, provided
k] <w.

This lemma and the Froese-Herbst theory (see [FH, CFKS]), adapted to the operator
K, imply exponential decay of the eigenfunctions of K, with eigenvalues in A.
Now we prove (8.1). We project the eigenequation

Kt = Aty (82)
onto the subspaces RanP, and RanP,:
A = A B, = Bl (8.3)
and B 3 3
(K = APy, = Pol Fyi,. (8.4)

In order to emphasize the structure of the equations we have written here ), for 0.
Next, we observe

92
b—tEPO =—F, (8.5)
and consequently,
I.Py=W — o)F,. (8.6)
The latter relation implies in turn
P,I_P,= P,WP, (8.7)
and
By P, = F,WPF, — oF,. (8.8)
Equation (8.7) and Theorem 7.1 imply that (8.4) can be solved:
Py, = —(K, — X\, —i0)"'PyW Py, (8.9

Note that we could have taken here also +:0 instead of —70. Both expressions are

equal. Now writing 3
Bl = Byl Py, + Bl Py, (8.10)

and substituting here (8.8) and (8.9) and then plugging the result into the r.h.s. of
(8.3), we obtain

A\ — X+ )Py, = —PWP\(K, — )\, —i0)"'P,W Py, 8.11)
Multiplying this equation scalarly by 1., we derive (8.1). 0
Taking the imaginary part of (8.1), we obtain
Corollary 8.3. Under the conditions of Theorem 8.1,
8K, — N\ )P,W Py, = 0. (8.12)
The main result of this section is
Theorem 8.4. Let K, , defined in (7.1), obey (7.6). Let A\, be an eigenvalue of K,
and 1., the corresponding eigenfunctions s.t.
A, — 0, (8.13)
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and
Py, — ¢, € RanP, (8.14)
as K — 0 in such a way that for b sufficiently small,
w
—— 5 (8.15)
wir—°
in e¥1®I L, for some U,y € e®1®IL>. Then 1), obeys
8(K ) PyUythy = 0. (8.16)
Proof. By Proposition 7.1 and since A, — 0 as || — 0, we have
R, = Ry + o(|k]"), (8.17)
as maps from PyL? to P,L? |, where
R, =&, -\, +i0)"". (8.18)
Denote W
U= ——. (8.19)
Il
A special case (k = 0) of the first statement of Theorem 8.1 asserts that
RanP, C D(eb®l) (8.20)

for some ¢ > 0. Hence for any 6 > 0,
(2)2(U = UpRy|| < CIIU — Up)e®®!| . (8.21)
Equations (8.14), (8.15), (8.17) and (8.21) yield
(8K, — MNP U Py, BBUPy,.) = (8(K g)PoUytbg, PoUstho) + 0o(|6[%).  (8.22)
Combining this equation with (8.12) and (8.19) we arrive at (8.16). [

9. Quasiperiodic Solutions

In this section we consider stability of quasiperiodic solutions to the linear wave
equation ((2.1) with € = 0). Let gy(¢, ) be a quasiperiodic in ¢ and L? in z solution

to (2.1) with € = 0. Then there are an integer m > 2, positive numbers w,,...,w,,
and a function G,(t,,...,t,,, ) periodic in ¢,,...,t,, with the period 27 and L? in
x s.t.

9ot, ) = Gy(w;t, ..., w,,t, ). ©.1)

Moreover, G, solves the equation

2
U
- Zwi— G, = HG,. 9.2)
<i=1 ‘%")

G, will be called the generating function of g,. The last statement follows from
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Lemma 9.1. Let g, be a quasiperiodic solution to (2.1), € = 0. Then it is of the form

m
go = Z a; sin(w,t + a;)X;, 9.2)

i=1
where w? and x; are eigenvalues and corresponding them eigenfunctions of H:
Hx,; = wlx,. 9.3)

Consequently, the generating function of g is

m
Gy = Zai sin(w;t; + o,)X;

i=1
and it obviously obeys (9.2).
Proof. By a spectral theorem and since g, is a solution to (2.1) with ¢ = 0, g, can be
written as gy = gh° " +ge°™, where gb*™ is of form (9.3) (possibly, with m = o) while
g6°™ is a solution with initial conditions from the continuous spectrum subspace of H.
Conditions (&) and () of Sect.2 imply that H has no singular continuous spectrum
(see e.g. [PSS]). The measure theory yields that [ gé™ddz — 0 as [t| — oo for any
f € LA(R™). Since gi”™ is uniformly almost periodic, then so is g™ as a difference
of two such functions. By the property of uniformly almost periodic functions there
is a sequence T, s.t. T, — oo as n — oo and sup | [ g&°% fdx — [ g¢*f dz| — 0O

t »itn

as n — oo, where ggf’:';‘ is a time shift of g§°* by 7. This and the conclusion above
yield that [ g5 f dz = 0 and therefore g™ = 0. So (9.3) is true, but with m < oo.
However, sinced g, is quasiperiodic, m < co. [

Note that if H has infinite discrete spectrum, then (2.1), with ¢ = 0, has also
uniformly periodic solutions. They are obtained by setting m = oo in (9.3). The

stability of such solutions is an open problem.
Consider now the non-linear equation

—(2,-Vp)’G=HG+ [.(G) 9.4)

with 2 = (W, ...,wy,), T = (t,...,t,,) and G € HXT,)) ® D(H), where T,, is
the m-torus.
Definition 9.2 A solution G, of (9.4) with ¢ = 0 is said to be stable under a
perturbation f, if for an infinite sequence of € # 0 converging to 0, there are w; . > 0
and G, solving (9.4) and obeying

(1) w; o — w0,

(ii) for G, — G, sufficiently small b > 0 in e’/*/ L and weakly in L?,
(iii) G, is uniformly bounded in D.

Definition 9.3. A (quasi-) periodic solution g, of the ¢ = 0 problem described above
is said to be stable under the perturbation f. if the corresponding generating function
G, is stable as a solution to (9.4) with € = 0 under the perturbation f..

Given G, € L*(T,, x R™), we consider the function f(G,). Since it is periodic
int;,...,t,, of the period 2 it is entirely defined by its Fourier coefficients

fy(@) = / fi(Gpe N TamT, (9.5)
Tm
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m m
where N = (n,...,n,,), N-T =Y n;t,. Let [N| =3 |n;| and (N - 2) = 3_ n2w?.
i=1 i=1
Theorem 9.4. Let H have positive isolated eigenvalues w?, . ..,w?, s.t. for any N,
|[N| > 1,
(N - 2) ¢& disc spec H U thresholds H.

Let g, be a (quasi-) periodic solution to (2.1) for € = 0 with a generating function G,
If f obeys
(6(H = (£2- N)fy» fn) # 0, 9.6

where fr = [ fi(Gye™N Td™T, at least for one N with |N| > 1, then g, is unstable
under the perturbation f..

Proof. The proof follows along the lines of the proof of Theorem 2.2. Definition 9.3
allows us to reduce investigation of (2.1) to that of (9.4). The latter is reduced as in
the proof of Theorem 2.2 to the study of the operator

2
K, o= <Q- %) +H+W.(G,)

on LZ(Tm x R™) analogous to the operator K, e w defined in (5.5). The rest of the proof
repeats the corresponding part of the proof of Theorem 2.2. O

10. Perturbations of Non-linear Equations

In this section we study stability of periodic solutions of non-linear wave equations
under non-linear perturbations. Thus we consider the equation
0*u

in which f, # 0 is a non-linear function. Here H is assumed to satisfy all the
conditions of Sect. 2 and f,(u) is supposed as before to obey (2.2) and, as a
function of u and ¢, to be four times continuously differentiable in u and two
times in e. In particular, f. might be independent of €, in which case the problem
under consideration is one of stability (bifurcation) w.r. to perturbations of the initial
conditions. We define as before

0
fiw) = gfe(U) le=o -

We strengthen the key Definition 2.1 of stability of periodic solutions by adding the
conditions that w, is differentiable at € = 0, that

t t
g€<w—,m> —->g0<w——0,a:> (10.2)

in D and that
t
8fga(i,x) — afgo(—,x> (10.3)
We “o

in (z)L? as € — 0.



Non-linear Wave and Schrodinger Equations 317

Let g, be a periodic solution to (10.1) for € = 0 with a period 27 /w,. Let

t
Yo(t, ) = go<—,m>. (10.4)
“o
Then 9, € L*(S' x R™). Define
o Y
_ 20" 9o
KO,w =w 8t2 + H + 8'¢) ("/}0) (105)

and denote by P, the orthogonal projection onto (NullK,, , )*. Let K, = K, P
The main result of this section is

Theorem 10.1. Let H and f. be as described in the beginning of this section. Let
9o» Wy and P, be as above and let for any n > 1,
(nwo)2 ¢ disc spec H U thresholds H. (10.6)

If for any real o f obeys

_ P
0(K )P0 (fl(%) + agﬁ%) #0, (10.7)

then the periodic solution g, of the (¢ = 0)-problem is unstable under the perturbation
e

Proof. We follow the proof of Theorem 2.2 except that we omit the last step in the
latter, the connection between the conditions in terms of the function f,(3),) and in
terms of its Fourier coefficients. Thus we assume on the contrary, that g, is stable in
the sense of the definition described above. Then there is a family of periodic solutions
to (10.1) of periods 27/w,, described in that definition. We rescale this equation in
time as ¢ — ¢/w,_ and rewrite it as

62
<W§@ + H) be + £ =0, (10.8)

where ¢_(t,z) = g.(t/w,, ). First, we give a formal derivation of (10.7), which
differs from the corresponding derivation of (5.8). Differentiating Eq. (10.8) w.r. to
€ at ¢ = 0, we obtain

/ o
Kowy¥o = —a@% = f1(Wy), (10.9)

5} 0 - =
where o = %wg |e—o and 9y = a% le—o- Applying 6(K , )P, to this equation,

we arrive at (10.7).
To prove (10.7) rigorously one rewrites (10.9) in terms of differences rather than
derivatives. This as above leads to the condition

(K, )F. =0, (10.10)
where K, = PyK_P,, with

2
K6=w(2,—gt—2 +H+ X, (10.11)
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and X, = (¢, — 1)~ (f.(%h,) — f.(1y)), and where
- [1 52
F. =P, E(wg — wg)ﬁwo +Y,
with Y, = é(fe(wo) — fo(%y)). Next, we observe that, due to (10.2),

d
X, — %fo(%) (10.12)

in D, and that, since f.(u)/u is C! in € and 9, € (z)L?,
Y, — f1(%)

in (z)L? as € — 0. (Weighted estimates on 1), can again be obtained using an analogue
of the Froese-Herbst theory). The last relation together with (10.3) yields that

F. — ad%y + f1(t,) (10.13)
in (z)L? as € — 0. Next, Eq. (10.12) and Theorem 7.1 yield
(@) '8, ,)(@)™ = (2) 716K ) (@) " + o(le]”). (10.14)
This together with (10.13) yields that
Lhas. (10.10) = (8(K ) Pofi(%0), Pofi (%)) + o(le[)- (10.15)
Comparing this with (10.10), we conclude that
(8(K g y)Pofi(o)s Po fi(4g)) = 0 (10.16)

which contradicts (10.7). O

Remark 10.2. We expect that either o in (10.7) is 0 or K, has non-trivial zero
eigenfunctions, besides those generated by the symmetries of (10.1). In the latter
case, a = — (02, o) " {(f1(¥y), ¢o), Where ¢, is such an eigenfunction.

11. Non-linear Schrédinger Equation

In this section we consider briefly the non-linear Schrodinger equation

z%—f =Hy+ f.(¥). (11.1)
Here ¢: R x R™ — C, H is the same as in Sect. 2 and
@)y =W (9 (11.2)
with W_(s) smooth in s and ¢, and obeying
Wy(s) = 0. (11.3)

A standard bifurcation theory shows that periodic solutions
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where A is an isolated eigenvalue of H and Y, the corresponding eigenfunction, are
stable under a non-linear perturbation f,. The problem in this case is reduced to the
stationary bifurcation problem

Hy + f. () = M.

(See [AF] for some interesting related results.) However, the situation changes for
(quasi-) periodic solutions of the form

m
9=y e N, (11.4)
=1

where \; are isolated eigenvalues of H and X;, the corresponding eigenfunctions,

provided
A, —A; € 2nZ for some ¢ # j. (11.5)

Adapting the definitions, notation and techniques of Sect.9, and denoting
m
A=, ..., A,),and N - A =3 nA\, we obtain

i=1
Theorem 11.1. Let H have isolated eigenvalues A, ..., )\, obeying (11.5) and s.t.
forany N, [N| > 1,
N - A € disc specH U thresholdsH.

Let g, be a solution to (11.1) with € = 0 having a generating function G,. If f. obeys
(6(H =N -Dfy, fn) #0 (11.6)
at least for one N with |N| > 1, then g, is unstable under perturbation f..
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