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Abstract. We compute the dynamical entropy in the sense of Connes, Narnhofer
and Thirring of space translations of the CAR and CCR algebras in v-dimensional
continuous spaces with respect to invariant quasi-free states. It turns out that the
dynamical entropies are equal to the corresponding mean entropies of the systems
under consideration. Computing the mean entropies explicitly we derive the entropy
formulas for the systems.

1. Introduction

In their recent paper [7] Connes, Narnhofer and Thirring extended the notion of a
dynamical entropy of classical dynamical systems introduced by Kolmogorov and
Sinai [9, 18] to the case of automorphisms of C* -algebras invariant with respect to a
given state. The dynamical entropy is the maximal entropy increase of a subalgebra
per unit time and measure how chaotically the system evolves. As in the classical
ergodic theory [5], the concept of the entropy should be mathematically useful to find
a classification of quantum chaotic evolutions. Some attempts have been undertaken
in this direction [10, 12, 13].

In order to find a classification of automorphisms of C* -algebras, it should be
important to develop the methods which enable to compute the entropy for quantum
systems. There have been some results in this field. The dynamical entropies of space
translation for the Gibbs state of one dimensional bounded quantum lattice systems
[7, 11] and the quasi-free evolutions of the CAR algebras [19] have been computed
by utilizing continuity properties of the entropy [7, 19]. Recently the chaotic behavior
of automorphisms on the rotation algebra [10] and noncommutative 2-shift [13] were
investigated. In [16] we have extended the continuity [7] of the Kolmogorov-Sinai type
for AF-algebras to non-AF situations and applied it to the unbounded quantum spin
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systems with product states. In this paper we shall compute the dynamical entropy of
space translations of the CAR and CCR algebras in z/-dimensional continuous spaces
with respect to invariant quasi-free states. The main methods we use will be a further
extension of the entropy results in [16] and a careful investigation of the entropy
defects.

We shall work within the framework of quantum statistical mechanical systems
where we start from strictly local algebra J&A indexed by bounded regions A in W.
The norm closure of | J ^SA is the C*-algebra ^ of quasi-local operators. For each

A

bounded region A dW, let ,AA be the CAR algebra (resp. the CCR algebra) of local
observables satisfying the canonical anticommutation relations (resp. the canonical
commutation relations). Let K: W —» R be an integrable function and let K be its
Fourier transform:

K(k)=

where k x = Σ Kxί We assume that 0 < K(k) < 1 for the CAR algebra and

0 < K{k) < M < oo for the CCR algebra, respectively. Let A be the bounded
operator on L2(R") given by

(400*0= I K(x-y)f{y)dvy.

Then the gauge invariant quasi-free state ωΛ on j& is translational invariant. For
more details, see Sect. 3. Denote by θ the representation of W-action on ^β. Then
(tτS,θ,cϋA) is the C*-dynamical system we are considering. Let hωA(θ) be the
dynamical entropy of θ with respect to ωA [7]. Let η denote the real function on
[0, oo) defined by 7/(0) = 0, η(t) = -tlogt for t G (0, oo). We shall prove the
formulas

ί{{η(K(k)) + 7/(1 - K(k))}duk (CAR) (1.1)
\Δ,Ί\y j

and

W # ) = 7 T ^ ίivi&fr)) - 7/(1 + #(AO)Kfc (CCR) (1.2)

under appropriate conditions on A. For more details, see Sect. 3.
It may be worth to give some comments on the dynamical systems we are dealing

with. Our result in this paper can be viewed as the first step in the study of the
dynamical properties of interacting particle systems in quantum statistical mechanics
in continuous spaces [14, 17]. The main difficulty involved in the derivation of the
formulas (1.1) and (1.2) is the fact that each local algebra J&A is infinite dimensional,
which is contrasted to the bounded quantum lattice systems studied in [7, 11]. In [19]
Stόrmer and Voiculescu derived a formula similar to that in (1.1) for the entropy of
Bogoliubov transformations of the CAR algebra when the operator A in the quasi-
free state ωA has pure point spectrum. But in our case the operator A has continuous
spectrum and so our result for the CAR algebra may be considered as a complement
to that in [19]. Because of the reasons stated above, the derivation of the formulas
in (1.1) and (1.2) turns out to be technically more complicated than the previous
calculations [6, 7, 10-13, 19].
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We organize the paper as follows: In Sect. 2, we recall the definition of the
dynamical entropy of (7*-algebras in [7] and describe briefly an entropy result on
quasi-local algebras in [16]. We then extend the result of [16] to the CAR algebras
which will be needed in the sequel. In Sect. 3, we review the notion of quasi-free
states on CAR and CCR algebras. After listing the basic assumptions (Assumption
3.1) we state our main result (Theorem 3.3) which says that the dynamical entropies
of the systems are equal to the corresponding mean entropies. The proof of the main
result is divided into several parts. In Sect. 4, we use the general entropy results
in Sect. 2 to show that the dynamical entropies of the systems are bounded by the
corresponding mean entropies. We then introduce a specific decomposition of the state
ωA and reduce the proof of the main result to that of vanishing of the mean entropy
defect (Proposition 4.3). In Sect. 5 we collect basic apriori estimates. Sect. 6 is the
heart of the paper where we show that the thermodynamic limit of the average of
entropy defects vanishes, and so complete the proof of the main result. We compute
the mean entropies of the systems explicitly in the Appendix, and derive the entropy
formulas (1.1) and (1.2).

2. Dynamical Entropy and Some General Results

As a preparation, we review the definition of the dynamical entropy of C* -algebras
and then collect some entropy results which do not involve quasi-free states and which
are needed in the sequel. Throughout this section we consider a C* -dynamical system
(^,θ,φ) where ^ is a unital C*-algebra, θ is an automorphism on J& and φ is a
state over ,/S which is invariant with respect to θ.

Let ,yβ be a finite dimensional (7*-algebra and let φ and ψ be states on ,/£. The
density operators corresponding to φ and ψ are denoted by ρφ and ρ^, respectively.
The relative entropy for the states φ and ψ is defined by

S(φ I ψ) = Tr(^(log ρφ - log ρφ)), (2.1)

where Tr denotes the trace.
We recall the definition of the CNT entropy in [7]. Let <A be a unital C* -algebra,

JV^ . . . , JV^ finite dimensional C* -algebras and η3 :JV^ —> j& a completely positive
unital map, j = 1, . . . , k. Let φ be a state on Jβ and P:^ —•> 33 a completely
positive unital map of ^ into a finite dimensional abelian C* -algebra 3d such that
there is a state μ on 3Θ for which μoP = φ. If pχ, . . . , pr are the minimal projections
in &, then there are states φi9 i = 1, . . . , r, of ^β such that

xeΛ. (2.2)

Since μ o P = φ,
r

Y φ i . (2.3)

That is, φ can be written as a convex combination of the φ{. As in [7], let

Σ t ) . (2.4)
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The entropy defect is given by

Sμ(P) = S(μ)-εμ(P). (2.5)

r

where S(μ) = — Σ /LL(Pi)l°S/J'(Pi) *s m e entropy of μ.
ί=l

Let J?3,j = 1, . . . , &, be C*-subalgebras of Jffi and let E3-:J?-+ J$3 a μ-invariant

conditional expectation. Then the quadruple (Jβ5, Ej, P, μ) is called an abelian model

for (,/ ,̂ 0,71, . . . , 7fc) and its entropy is defined to be

where ρ3 = E3; o P o 7̂  : ̂ * —>• ^ . is a completely positive map from Jί^ to ̂ ? . The
supremum of the entropies of all such abelian models is denoted by

If θ is ^-invariant automoφhism of Λ, let 7 : y/7" —> ̂  be a completely positive
unital map of a finite dimensional C* -algebra ^ ' to ̂ , and denote by

hφ , ( 7 ) = lim i Hφ(j, θoΊ,..., θk~ι o 7 ) . (2.7)

The dynamical entropy of θ with respect to 0 is defined by

hφ(θ) = suphφθ(Ί). (2.8)
7

For the details, we refer the reader to [7].
Next we recall an entropy result on quasi-local algebras from [16] which will be

applied to the CCR algebra. We work exclusively within the framework of quantum
statistical mechanical systems where we start from strictly local algebras ,/&A indexed
by bounded regions A in R^ (or Zu). The norm closure of (J ,ΛA is the C*-algebra

A

,/& of quasi-local operators. For the general definition of quasi-local algebras indexed
by directed sets, we refer to [3]. Let ,/& be a quasi-local algebra whose generating net
{-^Λ} ^s f Q r m e d of von Neumann algebras ^SΛ in separable Hubert spaces J$fΛ. A
state φ on y& is said to be locally normal if φ is normal in restriction to each Jf^.
Then φ in restriction to each ,/&A is determined by a density matrix ρA on a Hubert
space . ^ 4 . We list some assumptions on quasi-local algebras.

Assumption 2.1. Let {,A, {ΛΛ}) be a quasi-local algebra indexed by bounded open
regions A C R^ (or Έy) and let φ be a state on ̂ S. We assume that the following
properties are valid:
(a) For each A, ,./3Λ is a von Neumann algebra in a separable Hubert space 3@A.
(b) Tensor product property: Let Aλ c A. Then there exists A2 C A such that
Aχ Π A2 = 0 and t ^ Λ = ̂ Λ i 0 yόArχ.
(c) Locally normal property: φ is locally normal and for each A the corresponding
density matrix ρA belongs to ΛA.

For a given Λ, let \,i = 1,2, ..., be the eigenvalues of the density matrix ρA

listed in decreasing order (counting multiplicities), and let 3SA n be the subspace
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of 3$A spanned by the eigenvectors corresponding to eigenvalues λ 1,λ 2, . . . , λn .
Denote by Pn the projection operator from 3@A to 3@A n and

Λn^^/nβC ^ , (2.9)

where P^ — 1—Pn. Then from Assumption 2.1(c) it follows that each *AAn is a finite
dimensional unital subalgebra of y&A. For each A and n, let τA n be the embedding
map of *AA into J&A. Throughout the paper we will adapt the convention that
A \ W indicates A increases to W so that A eventually contains any bounded region
of Ru. The following is the main result in [16]:

Theorem 2.2 [16, Theorem 3.2]. Let (<A, {^A}) be a quasi-local algebra indexed
by the bounded regions A c W (or Ί/), θ an automorphism on ̂  and φ a state on
,/& invariant under θ. Under the assumptions in Assumption 2.1, one has

Here the convention that the subalgebra *ΛA is standing for the inclusion map

J&A n —> j& has been used.

Remark 2.3. (a) The tensor product in Assumption 2. l(b) is the von Neumann algebra
tensor product [8].
(b) In the most quantum statistical mechanical systems the equilibrium states obtained
via thermodynamic limits of local Gibbs states turn out to be locally normal [3, 14,
15, 17].
(c) There was a small gap in the proof of the above theorem in [16]. We shall discuss
it precisely and fill up the gap at the end of this section. See Remark 2.5.

We shall apply Theorem 2.2 to get an upper bound of the entropy for the CCR
algebra. In the case of the CAR algebra we do not have the tensor product property in
Assumption 2.1(b). Thus in order to get the result analogous to Theorem 2.2 for the
CAR algebra, we have to modify slightly the method used in the proof of Theorem
2.2 in [16]. For each A C W, let <AA be the CAR algebra over L2(Λ). See Sect. 3 for
the details. Then y&A is isomorphic to J ^ ( ^ ) , where 3fA is the (antisymmetric) Fock
space [3]. Let ^ be the norm closure of (J ΛA. Then ( ^ , {^A}) is a quasi-local

A

algebra [3]. The following is an extension of Theorem 2.2 to the CAR algebra.

Theorem 2.4. Let (^?, {^A}) be the CAR quasi-local algebra indexed by bounded
open region A dW, θ an automorphism on ̂  and φ a locally normal state on >A
invariant under θ. Then one has

where y£A n is the subalgebra defined in (2.9).

Proof. If we are able to show that for each A aW there is a completely positive
unital map σA : *Λ —> ^&A such that

jim \\rΛoσA(x)-x\\=0 (2.10)

for each x e Λ [16, Lemma 4.1], where rΛ :,y£A —> Λ is the inclusion map, the
proof of the theorem will be exactly the same as that of Theorem 2.2 in [16]. As in
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[16], we first define σΛ on the norm dense subalgebra (J ,ΛAι as follows: For each
A'

A' with A C Λ\ let ¥y

A, be the family of finite linear combinations of elements in
{yz I y β ΛΛ, z e ΛA,,}, where A" = \nt(Λ'\Λ). Since L\Λ') = L2(A) Θ L\Λ"\
it follows that S^A, is weakly dense in ,ΛA,, ^&A, — 5%{^Λ,). Let Ω be the Fock
vacuum vector [3]. For each y e ΛΛ and z G ̂ S&An, define

σΛ(yz) = (Ω,zΩ)y. (2.11)

Since (i?, zi?) = 0 for each odd element z G ̂ 4 " ' it follows that σΛ(yz) = σΛ(zy),
and so σΛ is well defined. By linearity, σA extends to 5^,. An inspection shows
that σA(bιab2) = bισA(a)b2, bτ G ~^v[, α G J^/. Thus σA is a unital conditional
expectation from 5^Λ, to ^ Λ , and so it is a completely positive unital map. Any
vectors φ, ψ G i ^ can be considered as vectors in i^/, Λ. c A!. By (2.11) it is easy
to check that

(φ,σA(x)ψ) = (φ,xψ), xeyA,. (2.12)

Thus by a corollary of Hahn-Banach theorem it turns out that σA is a contraction.
Next we extend σA to .y^/, A C /I7. Let an element x in ^ Λ / with unit norm

(||x | | = 1) be given, and let jβχ be the closed unit ball in <AA,. Since yA, n.&x is σ-
strong* dense in ,ΛA, T)JSX by the Kaplansky denisty theorem, there exists a sequence
{xn} in 3*A, C\J9X which converges to x in the σ-strong* topology (and so in the weak
topology). By (2.12), {σΛ(xn)} converges to an element y e ^βA. Put σA{x) = y.
Since σA is a contraction on ̂ / , it follows that | |σΛ(x)| | < lim | |σ Λ (x n ) | | < 1.

n—>oo

Thus we have extended σΛ to ̂ Λ , as a contraction. By continuity σΛ extends to ̂ 4.
We next show the convergence in (2.10). For any x G ̂  and ε > 0, there exists

yV and x7 G J&A, such that ||x - x'\ < ε/2. Notice that τA o σ^ίa O = x7 for Λ7 c Λ.
For given x G ̂ ? and ε > 0 we choose yl; and xr G ./^/ as above. Then for any A
with TI7 C Λ, it follows that

\rΛ o σ .W - ^J| < \\τΛ o ̂ ( x - x')

This proves the convergence in (2.10) completely. The remainder of the proof is
exactly same as that of Theorem 2.2 in [16]. For details, we refer to [16]. Q.E.D.

Remark 2.5. As stated in Remark 2.3(c), there was a small gap in the proof of Lemma
4.1 in [16]. The lemma stated that under Assumption 2.1, there is a completely
positive unital map σA\^4 —• ̂ SA such that the convergence in (2.10) holds.
For A C A\ let 5"A, be the family of finite linear combinations of elements in
{y 0 z I y G ̂ A,z G *AA,,}. Since ,/&A, = ^4Λ 0 ^An, S^A, is weakly dense in
L/&Ai. In [16], we defined σA as

σA(y®z) = φ(z)y, y G ^ ^ G ^ , (2.13)

where φ is a state on ̂ S. The state 0 should be the locally normal state in Assumption
2.1 (a). Then the conclusion in [16, Lemma 4.1] holds by the following arguments:
By linearity σΛ extends to 3*A,. Since φ is locally normal and so the restriction of
φ to J&An, φ\/έ f/, is normal. For any ψl9 ψ2 G 3@A, let ω^ ^ be the state on <AA

defined by ω^^^ix) = (ψι,xψ2), x e ^£A. Then ω^χ^ §§φ\y6 n is a normal state on

^A> — *^A ® ̂ An - ̂ y using the Kaplansky density theorem and the argument used
in the proof of Theorem 2.4, σA extends to ̂ 4A, as an completely positive contractive
unital map. This fills the gap in the proof of Lemma 4.1 in [16] completely.
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3. Quasi-Free States on CAR and CCR Algebras and Main Result

In this section we briefly review the notion of quasi-free states on CAR and CCR
algebras, and then state our main result. For detailed descriptions on the CAR and
CCR algebras, we refer the reader to [2, 3, 20]. Since these algebras are uniquely
determined by the appropriate form of commutation relations [3], we shall deal with
the CAR and CCR algebras in the Fock spaces.

Let iζ . (resp. $?_) be the symmetric (resp. antisymmetric) Fock space over L2(W).
For each bounded region A C W, let J ^ ± be the corresponding Fock space over

L2(Λ). Denote by a±(f) and α±(#), /, g G L2(RV), the annihilation and creation
operators on .ίζ. respectively. These operators satisfy the canonical commutation
relations (CCRs)

[α+(/), a+(g)] = 0, [α*(/), α* (<?)] = 0 , [o+(/), α* (g)] = (/, g) 1, (3.1)

and the canonical anticommutation relations (CARs)

{α_(/), a_(9)} = 0 , {α* (/), α* (g)} = 0, {α_(/), α* (g)} = (/, g) 1, (3.2)

where we used the notation [A, B] = AB - BA and {A, B} = AB + £ A Notice
that | |α_(/) | | = | |α* (/)|| = | |/ | | . For details, see [3]. From now on, we suppress ±
in the notation if there is no confusion involved.

The CAR algebra is defined as follows: For each bounded region A cRu, define
ΛΛ as the von Neumann subalgebra generated by {α(/), a*(g) \ f,g G L2(Λ)}, where
a(f) and α*(/) satisfy the CARs in (3.2). Let ^& be the norm closure of (J ^ Λ . It
then follows that (^?, {^Λ}) is a quasi-local algebra. Λ

In order to describe the CCR algebra, let Φ{f) be the closure of (α(/) + α*(/))/2,
where α(/) and α*(/) satisfy the CCRs in (3.1). Then for each / G L2{W\ Φ(f)
is a self-adjoint operator on the symmetric Fock space 3?. Let W(f) denote the
unitary operator exp{iΦ(/)}, / G L2(R ι /). These operators satisfy the Weyl form of
the CCRs:

W(f)W(g) = exp{-iIm(/,0)/2}W(/ + 0). (3.3)

For each bounded region A c W, define ^&A as the von Neumann subalgebra
generated by {W(f) \ f G L2(A)}> and let ^4 be the norm closure of \J <AA.
Then ( ^ , {^A}) is a quasi-local algebra. Λ

Next we recall the gauge invariant quasi-free states on the CAR and CCR algebras
[3]. If 0 < A < 1 is an operator on L2(R^), then the quasi-free state on the CAR
algebra is defined by

ωA(a Urn) ' a (fl)a(9\) α(0n)) = δnm d e t ( f e 5 ^/j)) (3-4)

If A is a bounded positive operator on L2(RU), the quasi-free state on the CCR algebra
is defined by

ωA(W(f)) = exp {- i (/, (1 + 2A)f)} . (3.5)

A simple calculation shows that

for any /, g G L2(Mr/), and any higher order truncated functionals equal to zero [3].
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In the rest of the paper we only consider the gauge invariant quasi-free states ωA

described above. For a given bounded positive operator ^4(0 < A < 1 for the CAR
algebra) on L2(W), let B be the operator defined by

B = A/(l + σA), (σ = ± l ) . (3.7)

Throughout this paper we shall use the convention that σ = +1 (resp. σ — - 1)
stands for the CCR (resp. CAR) algebra. Equivalently, for given bounded positive
oeprator B(0 < B < 1 for the CCR algebra) on L2(R"), let A be the operator defined
by

(3.8)

and let ωA be the quasi-free state corresponding to A. It will be convenient to
give conditions on B, instead of A. We assume that there exists an Lι function
KB : W -• K such that

(Bf)(x) = ί KB(x - y)f{y)d»y (3.9)

and let

KB(k)= ( KB{x)e-ik χdux. (3.10)

Similarly, let KA be the kernel function of A:

(Af)(x)= fκA(x-y)f(y)d"y (3.11)

and KA the Fourier transform of KA:

KA(k)= I KA(x)e-ik χdvx. (3.12)

Throughout this paper we assume that the following conditons hold:

Assumption 3.1. We assume that the following conditions are satisfied:

(a) There exist constants 0 < Mx < 1 and 0 < M2 such that 0 < KB < Mι for the

CCR algebra and 0 < KB < M2 for the CAR algebra.
(b) There exist constants 0 < M3 and 0 < a such that the bound

3

holds.
(c) Let KB\/2(x) be the kernel function of the operator Bxl2, i.e., the inverse Fourier
transform of (KB)

1/2. There exist constants 0 < M 4 and 0 < a such that the bound

holds.

Remark 3.2. (a) Assumption 3.1 (a) implies that 0 < B < Mx < 1 for the CCR
algebra and 0 < B < M2 for the CAR algebra,
(b) Since

&A = KB/{\ - σKB), (σ = ±1). (3.13)

Assumption 3.1 (a) and (b) imply KA is integrable.
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(c) We impose Assumption 3.1(c) to obtain a key technical estimate (the last

inequality in Lemma 5.2). If Dβ

k\ . . . D^(KB)
1/2 e Lι for any β = (βv . . . , βv)

with βτ < 3, i = 1, . . . , v, then the assumption holds. Since the condition is imposed

on KB\/2 instead of KB, it would be nice if one can replace it by a condition on KB.
(d) Since KB{x) = (KB\/2 *KB\/2) (x), it follows from Assumption 3.1(c) that there
is a constant M5 such that the bound

holds.
(e) The states for ideal Fermi and Bose gases at inverse temperature β = 1/Γ with
activity z = eμ are the quasi-free states corresponding to

KB(k) = exp(-βk2 + μ) (μ < 0 for the CCRs).

Obviously all conditions in Assumption 3.1 are satisfied in these cases.

We consider the unit step space translations (Z1"-action) on the CAR and CCR
algebras. We will use the following notation:

n = ( n l 5 n 2 , . . . ^ J G Z " ,

B(k) = B(ku . . . , K) - {n e ΊT \ 0 < n3 < fy, j = 1, . . . , i/} .

For each n eZu, let £7(n) be the unitary operator on L2(M*0 defined by

(f/(n)/)(x) = / ( x - n ) .

Then U(n) induces an automoφhism ΘH on the CAR and CCR algebras by

0Λ(α*(/)) = α*(C/(n)/). (3.15)

Obviously the quasi-free states ωA are invariant under ΘH, n £ Zu. For a completely
positive unital map η\yV —• ^ from a finite dimensional C* -algebra ./F to ,ŷ , and
for the Z^-action ^: ,Λ —> .^ , denote by

Mm , ! , H(ψHoΊ):neB(k)). (3.16)
k K K

The above limit exists by the subadditivity of the entropy functional HωA (jι, . . . , 7n).
The dynamical entropy of the space translations with respect to the quasi-free states
ωA on the CAR and CCR algebras is defined by

= sup ft ,(7). (3.17)
7

It may be worth to compare the above definition to that in (2.7) and (2.8).
For any bounded region τl c M ,̂ let χΛ denote the projection operator from

L2(RU) onto L2(Λ), and let
(3.18)

and let \Λ\ be the volume of A From (3.11),(3.12), Assumption 3.1(b) and Remark
3.2(b), it follows that

Λ) = (2π)- I / | il | ίKA(k)d"k < oo. (3.19)
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and so the state ωA is a locally normal [3]. Let ρA be the density operator on J ^
corresponding to ωA = UJA\^A. The local entropy for the state ωA is defined by

(3.20)

and the mean entropy is defined by

(3.21)

The above limit exists by the subadditivity of S(ωA) [3]. We now state our main
results:

Theorem 3.3. Let (Λ, {^A}) denote the CAR and CCR quasi-local algebras, θ the
space translation automorphism on <A and ωA the quasi-free state on ^. Under the
assumptions in Assumption 3.1, the dynamical entropies hω (θ)for the CAR and CCR
algebras are equal to the corresponding mean entropies s(ωA).

Theorem 3.4. Let s(ωA) be the mean entropy for the quasi-free state ωA. Under
Assumption 3.1 the following results hold:
(a) For the CAR algebra the formula

s(ωA) = -(2πΓ» J{KA(k)logKA(k) + (l -KA(k))\og(l - KA(k))}d»k

holds.
(b) For the CCR algebra the formula

s(ωA) = - (2πΓu J{KA(k)logKA(k) - (1 + KA(k))log(l + KA{k))}dvk

holds.

The main part of the paper will be devoted to proof of Theorem 3.3. The proof of
Theorem 3.4 will be given in Appendix.

4. Reduction of the Proof of Theorem 3.3

In this section we reduce the proof of Theorem 3.3 to the vanishing of the mean
entropy defect (Proposition 4.3). We first derive a upper bound for the dynamical
entropy and then state Proposition 4.3 which implies that the average entropy defects
tend to zero as A tends to W. Using Proposition 4.3 we derive a lower bound for
the dynamical entropy, which completes the proof of Theorem 3.3. The proof of
Proposition 4.3 will be postponed to the following sections. The following is the
upper bound for the dynamical entropy.

Proposition 4.1. Let hωA(θ) and s(ωA) be the dynamical and mean entropies defined

in (3.17) and (3.21) respectively. For both CAR and CCR algebras, the bound

KA(Θ) < s(ωA)
holds.

Proof. As a consequence of Theorem 2.2 for the CCR algebra and Theorem 2.4 for
the CAR algebra, it follows that

lim
->oo
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where

KAA^Λ,n)= lim ^ V ( i , ) n ) : i G # ) ) . (4.1)

3 = 1,...,is

We assert that the algebra ,Λ(A\ B(k)) generated by {θn(^A^n): n G B(k} is finite

dimensional. Let ,d(Λ\ {fh}) be the algebra generated by {(^Λ,n)^^(^Λ,n)} W e

first show that ^&{A\ {fh}), m E Z^, is finite dimensional. Denote by 3^A n the finite

dimensional subspace of β^ spanned by eigenvectors {φλ, . . . , φn} of ρΛ, and denote

by PA n the projection operator from 3^A (and also from $F) to Jζ^ n . Recall from

(2.9) that

^Λ,n = PA,n^APA,n Θ C ' PA,n '

Obviously *y&A n is generated by the finite dimensional algebra PA n^APA n and the
identity 1. Let ^{A\ {fh}) be the finite dimensional subspace of & spanned by the
vectors in either <FA n or ^ ^ ( P ^ n ) i Γ . Then the algebra J?(Λ; {rh}) generated by
PA,n^APA,n a n c^ ^(PA n^APA,n) ^s ̂ n^Q dimensional represented C*-algebra on
3^{Λ\ {fa}). Since ^A{Λ\ {fh}) is also generated by &(Λ; {fh}) and the identity 1, it
is finite dimensional. The argument employed above shows that <s$(Λ; B(k)) is finite
dimensional. This proved our assertion.

By the monotonicity of the entropy functionals [7, Proposition III.6(a)] and by [7,
Proposition ΠL6(b)] it follows that

: n e B(k)) <

(4.2)

We choose A by A = (-L/2,L/2)U. Denote by A(k) the set {x + n \ x G A,n G

. As a consequence of Proposition 4.4 of [16], it follows that

< lim

< lim S ( ^ Λ ( j E ) n ) , (4.3)

where ^ ( ^ ^ ( ^ n ) is the entropy for the state ωA\ ^ .To get the second inequality

we have used the fact that H(^An) < S(*s&ΛjTl) for any A.

Let { λ j be the eigenvalues of ρΛ(j\ listed in the decreasing order. A direct

computation shows that

(4.4)
2 = 1

where S(ωΛ^) is the local entropy defined in (3.20). Thus from (4.1)-(4.4) it follows

that
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where s(ωA) is the mean entropy defined in (3.21). This proved the proposition
completely. Q.E.D.

We consider the entropy functional H defined in Sect. 2 in more details. For multi-
index / = (z1? . . . , in), let {ujjjj be a decomposition of the state ω\

J2
Denote that η(x) = — x log x. Let

. Xk) _ V ^
ω = 1 ω

if~ '. fixed

Let t ^ , i = 1, . . . , n, be finite dimensional subalgebras of ^ . Then the entropy
function can be written as

Hω(^Sι, . . . , ,/&n) = sup

Σ ωj=ω

n

k=\ k=\ ik J

For details, see [7].
In order to get a lower bound for the entropy functional, one has to choose a

decomposition of the state, ω = Σ ^ 7 , as much as close as possible to the optimal
decomposition. In general a decomposition can be written

ωj(a) = uϋix'jά) = ω(σi^2(xI)a)

with x'j G π ω ( ^ ) ; , x 7 G πω(y$)", σt the modular automorphism of ω [1, 3]. In our
case, we shall choose Xj to be the projection operator Pj consisting of the spectral
projections of the local density operator ρΛ.

To be more precise, let BΛ be the operator on L2(Λ) defined by

BΛ = AΛ/(1 + σAA), (σ = ±1), (4.6)

where AΛ = χAAχΛ. Let B the operator related to A by (3.7). Let h and /λΛ be the
self-adjoint operators defined by

— a (e / ) , f t L (K ),

respectively, where σf be the modular automorphism of ωΛ = ω\/$ . From the KMS

conditions ω(xσ_i(j/)) = ω(ί/x) and ω^tCx'σ^ίy')) = ^Λ(2/'X ')< it follows that

^ / ' ) ) = ωΛ(a*(f')a(g')), f,g' G i 2 ( . l

and so by (3.1), (3.2), and (3.6)

(g,(l + σA)e-hf) - (g,Af), f,g€ L2(W),

(g1, (1 + σAΛ)e-hΛf) = (g1, AΛf), f',g' G L \ Λ ) ,
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respectively. From (3.7), (4.6) and the above relations, we conclude that the relations

B = exp(-ft), BA = exp(-hΛ) (4.8)

hold. Thus the operators B and BΛ are closely related to the modular automorphisms
σt and σf respectively. The argument used above can also be found in [22].

Now we are in the position to give a decomposition of the state ωA. By Assumption
3.1(b), it can be checked that the operator BΛ defined in (4.6) is of trace class. See
Lemma 5.2 in the next section. Let { 7 ^ } ^ be the eigenvalues of hΛ listed in
increasing order and counting the multiplicities, and let {fk}^={ be the corresponding
normalized eigenvectors. We describe the family of projection operators {PJ}J, which
will give a decomposition of ωA, separately for the CAR algebra and for the CCR
algebra.

The case of the CAR algebra: Denote for k G N

N(fk) = o*(/fc)o(/fc), N(fk) = 1 - N(fk) = α(/fe)α*(/fe), (4.9)

and

PkΦ) = N(fk), Pfc(l) = N(fk). (4.10)

By the CARs, Pk(0) and Pk(\) are projection operators with Pk(0) + Pk(\) = 1. For
given (fixed) J V G N , let

/ = ( z 1 , z 2 , ...,iN)e{0,l}N (4.11)

be a multi-index, and let

Pj = P1(iι)P2(i2). •. PN(iN) (4.12)

Then {Pj :I e {0,1}^} is a family of mutually commuting orthogonal projections
satisfying

Σi = ι- ( 4 1 3 )

Denote by J?^ the finite dimensional abelian C*-algebra generated by {Pj'.I G

{0,1}^}. Clearly one has that ^ ] c ΛA.

The case of the CCR algebra: As in (4.9), let N(fτ) be the number operator for the
state /•, N(ft) = α*(/ )α(/ ). Then for each i e N, N(fτ) has pure point spectrum
Z + , where Z + = NU {0}. Let {Q^n): n G Z + } be the family of spectral projections
of Nifj). Denote for given (fixed) N G N,

= Q.(A:), 0 < fc < N, i G N,

N-l (A λΔλ

( 4 1 4 )

k=0

For given (fixed) N G N, let

/ = ( * ! , . . . , % ) € {0 ,1 , . . . , J V } " (4.15)

be a multi-index, and let

Pj = P^P^iJ... PN(iN). (4.16)
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Then {Pj :I e {0,1, . . . , N}N} be a family of mutually commuting orthogonal

projections satisfying ^ Pi — l Denote by ^4^ the finite dimensional abelian

C*-algebra generated by {PJ}J.

We come back to the entropy functional in (4.5). From now on, we choose A as

A — (0, L)u, where L is a positive integer. Let B(k) be defined as in (3.14) and let

B(Lk) = {n = (nu . . . , nu) eΈu\0<nj <Lkvj = 1, . . . , v} .

Let . ^ ^ V ) be the abelian C*-algebra generated by {PJ}J defined as above. Then from
[7, Proposition IΠ.ό.d] it follows that

Hω«β%/£*P)): n e B(Lk)) > HJiθ^US^)): n e B(k)).

From (3.16), (3.17) and the above inequality, we conclude that the bound

hω(θ)> lim lim * ffM#a(i;)):n6#)) (4.17)
L k ( L k ) L k )

holds. We choose the decomposition of the state ω, Σ ωj ~ ω> a s follows: Let
j

J = (IH:n e B(k)) be a multi-index, where for each n e B(k), In G {0,1}N for
the CARs and In e {0,1, . . . , N}N for the CCRs. Let

ωj(a) = ω(σi/2(xj)a), (4.18)

where for J = (In:n e B(k))

XJ= Π ( ^ " ( ^ ) ) (4 19)

Notice that Σ xj = 1» an<^ s o (4-18) is a decomposition of the state ω.
j

Remark 42. (a) A comment on the decomposition of the state ω given above is in
order. Since σi,2(N(f)) is not defined as an element oi^S if / is not in D(B~1^2), one
may think that there is a domain problem in the decomposition. But there is no domain
problem by the following reason. Let (J^,, τrω(^S), Ωω) be the cyclic representation of
^ , and let A and J be the modular operator and the modular conjugation associated
with {TΓ^C^)", Ωω} respectively [3, Sect. 2.5.2]. By ω(σi^2(x)y) we really mean that
for any x, y G ,τβ,

ω(σi/2(x)y) = (Ωω;

Since πω(Λ$)"Ωω C D(A1/2), the r.h.s. of the above is well-defined. Throughout
this paper we use the above notation. Notice that the r.h.s. of the above equals
(Ωω,πω(x)Jπω(y)JΩω) and so (4.18) defines a positive linear functional on ^ .
(b) Using the above notation, (4.7) and the modular condition [3], it can be checked
that for any y e Λ> and / e L2(W),

ω(σι/2(a*(f)a(f))y) = ω{(a(Bι>2f)ya*(Bι'2f)).

This is one version of the KMS conditon which will be used frequently in the sequel.
Even if N(f) is a unbounded operator for each / G L2(RU) in the case of the CCR
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algebra, the above relation make sense by the fact that quasi-free states are regular
[3].

Using the decomposition in (4.18) and (4.19), we obtain from (4.5) that

J=(IH:fίeB(k)) \ ^n<ΞB(k)

- (kλ ... ku) ^2 ω(Pi)S(ώi\ySm) > (4.20)
/ Λ

where ώj(a) = ω(σi/2(PI)a)/ω(PI). Here we have used the fact that

'/JΛ

which follows from the definitions of Px and ^ ^ V ) in (4.12) (resp. (4.16)) and the
below of (4.13) (resp. (4.16)). To simplify the notation, let us write

E(Λ,N,k)= Y" η(ω( TT (θLn(Pr
^n£B(k)

Then the inequality (4.20) becomes

H{(θLfί{^{P)): n G B(k)) > E(Λ, N, k)-{kx...ky) D(Λ, N). (4.22)

The quantity E(Λ, TV, k) is the entropy of the state ω on the finite dimensional abelian

C*-algebra generated by {θ^i^S^)): n e B(k)}, and D(Λ, N) is the entropy defect

of the decomposition (4.18) of the state ω on ^^\

Proposition 4.3. Let D(Λ,N) be the entropy defect defined as in (4.21). For both
CAR and CCR algebras, there exists a constant c independent of A and N such that
the bound

L~U\D(A,N)\ <cL~ι/s

holds.

Recall that A — (0, L)v. Thus the above proposition implies that the average of
the entropy defects tends to zero as L -» oo. We postpone the proof of Proposition
4.3 to Sect. 6.

In the remainder of this section we shall prove our main result, Theorem 3,3 by
using the above proposition and Proposition 4.1. First we have the following result:

Proposition 4.4. Let E(Λ,N,k) be the quantity defined in (4.21). For given A =
(0, L)v C W and ε > 0, there exists No e N such that for N > No the bound

holds for both CAR and CCR algebras, where Λ(Lk) = {x: 0 < x < Lk3, j =

l , . . . ,z/}.

Proof of Theorem 3.3. From (4.17), (4.22), Proposition 4.3 and Proposition 4.4 it
follows that

hω(θ) > \Λ(Lk)\-ιS(ωA(Li)) - ε - cL~^%,
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where ωΛfT A = ω\ * . We choose L sufficiently large so that c L " 1 / 8 < ε and

\\Λ(Lk)\-ιS(ωΛ(m)-s(ω)\ <ε.

The above inequalities imply that for any ε > 0,

hjθ)>s(ω)-3ε.

Now Theorem 3.3 follows from the above bound and Proposition 4.1. This proved
Theorem 3.3 completely. Q.E.D.

In the rest of this section we prove Proposition 4.4.

Proof of Proposition 4.4.(a) The case of the CAR algebra: For given i V e N , denote
that

N) = {neN:n> N} . (4.23)

( 4 2 4 )

h

For any finite

Notice that

(<N) =

Jc/(>

{1,

N)

2, . ,

, let

=π

Σ

TV}

N(
keJc

Σ *

•N)

c-

^ JCI(>N)

We define a density operator on ̂ ( L ^ by

^ £ = Σ Σ »( Π

θhn(PInPjJ. (4.26)

We use the inequality

- Tr(A(log A - log B)) < Ύr(B - A) (4.27)

for any positive operators A and B [3] and the fact that Tr(ρΛ^L^x) = α (x) for any

x e i ^ r A t o obtain that

= ̂ Σ ; Σ
nGB(k)
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It follows from the concavity of η(x) = — x log x and (4.25) that

fieB(k)

(( Π
JHCI(>N)

, TV, fc) + £(Λ, TV, fc), (4.28)

where E"(Λ, TV, k) is defined to be the second term in the r.h.s. of (4.28). By using
the concavity of 77(00 again, it follows that

E(Λ,N,k)<(kι...kι/) Σ ^W/))- ( 4 2 9 )
JCION)

Let {7^} be the eigenvalues of the operator hΛ defined in (4.7). Let r = e~Ίi /(I +

e~7^). By (4.24) and (3.6), it can be checked that

ω(Pj)=Y[r3 [J (l-r fc).
jeJ fceJc

Thus it follows that

Σ η(ω(Pj)) = -ΣIiri Π ( 1 - r P [Σlogrfc + Σ log(1 -
Jci(>N) J ieJ jeJc [keJ ieJc

Following the procedure used in [20], we obtain

00 00

] Γ η(ω{Pj)) = - J2 rtlogrt- J ] ( l - r^logd - r t ) .
JCION) i=7V+l 2=7V+1

Since we know that [20] (see also Appendix)

00 00

S(ω\.,Λ) = -Yjrι\ogrτ - ]Γ(1 - r<)log(l - r.), (4.30)
ι = l ΐ = l

we conclude that
^ η(ω(Pj)) -> 0 as Â  ̂  oo .

The proposition follows from (4.28), (4.29) and the above convergence.

(b) The case of the CCR algebra: As before, let {Qi(ή):n = 0, 1,2,...} be the
spectral projections of NifJ, i = 1,2,.... Let Z + = {0,1,2,...}. Denote by
,^(Z + ; /(> N)) the set of multi-indices J e Z^>N) which have all but finite number
of elements zero. For multi-indices

( l 7 2 , , N) ^ , J = (j

denote by
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Define the density operator QA{L^ on ^ ( L £ ) by

= Σ Σ ω ( Π (̂ W/* ,̂
HeB(k) neB(k)

J J θLft(QIaQJfi). (4.31)

We then follow the procedure used to obtain (4.28) and (4.29) for the CAR algebra
to obtian that

<h+h, (4-32)

where

Ί = Σ (
j j

(4.33)

Σ
We assert that

/2 < E(Λ, N, k) + (^ . . . fcj £7(Λ, TV), (4.34)

where E(Λ, TV, ̂ ) has been defined in (4.21), and

N oo

E'(Λ, N) = J2J2 vMQjik))) (4-35)

In order to show the idea of the proof of our assertion, consider

Using the concavity of η(x) and the Jensen's inequality, it can be checked that

oo oo

Σ Σ vMQi
j=0 i=N

OO

v—^
) ) - Σ Σ ω(Q1(i

+ Σ V(ω(Pι(N)Q2(j))) -
i=N 3=0

oo _

where PX(N) = Σ Qχ(i). See the notation in (4.14). Thus / is bounded by

JV oo oo

Σ v(.^(
i=0 j=0 k=N
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Employing the procedure used in the above again, we conclude that

N N 2 oo

i=0 j=0 t=l k=N

By using the method employed in the above (fcj . . . fc^ΛΓ-times, we proved the
assertion in (4.34).

We next consider I2 and E\A, N) defined in (4.33) and (4.35) respectively. Notice
that for any multi-index V = (ix, i2, ...) e ZΓ^,

ω{Qv) =
ιkei'

Thus it follows that

oo

jf 9 —— \rv 1 . . . π > 7 . ) /
Δ 1 V / j

k=N+l

A direct computation shows that

oo Γ oo

(4.36)

Thus it follows that I2 —> 0 as TV —> oo. From (4.35) and (4.36) it also follows that
E'(Λ, N) -+ 0 as TV -> oo. The proposition now follows from (4.32), (4.34) and the
above conclusions. Q.E.D.

5. Basic Estimates

In this section we derive some basic estimates which will be used in the sequel. As
before, let χΛ be the projection operator from L2(R^) onto L2(Λ) and let σt (resp.
σf) be the modular automorphism of ω (resp. ωA — ω\ χ/ ). Recall the definitions of
B and BΛ in (3.7) and (4.6) respectively:

B = A/{\ + σA), BA = AΛ/{\ + σAΛ).

Recall also the result in (4.8):

According to the notation in (3.18), we write that

BΛ

 Ξ XΛBXΛ = XΛ^HXΛ (5-1)

We first have the following result:

Lemma 5.1. For any bounded region A c W, the relation

BΛ = XΛBV\\-σBV\ΪBWrιBWχΛ

holds, where σ = +1 (resp. σ = — I) stand for the case of the CCR (resp. CAR)
algebra.
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Proof. The above result was stated in [7] without detailed proof. We produce the
proof. For any fi,gJ e L2(A), i, j = 1,2, . . . , n, denote by

n—\

Then by the KMS condition ω(xy) = ω(σt(y)x) and the fact that στ(a(g)) = a(Bg),
one has that

ω(Ga(gn)) = ω(σz(a(gn))G)

= ω(a(Bgn)G)

= ω(a(χΛBgn)G) + ω(a(χj[Bgn)G)

= ω(a(χΛBgn)G) + σω(Ga(χ\Bgn)).

Here we have used the CCRs and the CARs to get the last inequality. From the
method used above, it follows that

ω(Ga(χ\Bgn)) = ω{a(χΛBχ\Bgn)G) + σω{Ga{

Iterating the above process, one has that

ω(Ga(gn)) = ω(a(χΛBχΛgn)G)

+ σω{a{χΛBχ\BχΛgn)G)

+ σnω(a{χΛBχ\B ... χ\BχΛgn)G)

Here we have used Assumption 3.1 (a) and (b) to show the convergence. The above
relation holds for any gn e L2(Λ). On the other hand, by the KMS condition for σf
we have that ω(Ga(gn)) = ω(a(BΛgn)G) for any G G ΛΛ, gn e L2(Λ). This proved
the lemma completely. Q.E.D.

We next derive some estimates on the operators BΛ and BΛ defined in (5.1) and
(4.6) respectively:

Lemma 5.2. There are constants cx, c2 and c3 independent of A such that the bounds

Ύτ(BΛ)<Cι\Λ\, Tr(BΛ) < c2\Λ\,

hold for any A — (-L/2, L/2)u, where Tr is the trace on L2(A), and dA the boundary
of A.

Proof, (a) The case of the CCR algebra: Assumption 3.1(b) implies that KB is
integrable and so the first bound follows from the result analogous to that in (3.19).
Lemma 5.1 implies that

BΛ<BΛ. (5.2)

Thus the second inequality follows from (5.2) and the first inequality in the lemma.
We next prove the last inequality. Notice that

< BΛ . (5.3)
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From (5.2), (5.3) and the fact that 0<A<B^0< Aχl2 < B1/2, it follows that

(βΛγ/2 < jgl/2 ( 5 4 )

and

χΛB
ι/2χΛ < Bf. (5.5)

Denote by S(Λ) the term in the l.h.s. of the inequality in the lemma:

S(A) = Tτ(χΛ(B1/2 - (BΛγl2fχΛ). (5.6)

Notice that

S(Λ) = Ύτ(BΛ + BΛ) - 2Ύr(χΛB
γl2χΛ{BΛ)λ'2χΛ). (5.7)

Using (5.4) and (5.5) we obtain that

J dvy JJ
Xj -<c

A Λc

( Ψ 7 \k

<cJ2ak( / dx dy(l + \x-y\-*ι+aA
k = l ^-L/2 L/2 '

, L/2 L/2 n - k

x I ί dx ί dy(l + \x - y\-2(l+aA
^-L/2 -L/2 ^

Λ)Bψ) + Ύr(BΛ) by (5.4)

> - Tr(BΛ - {χΛB
λ'2χΛf) + Ύr(BΛ). by (5.5)

Thus from (5.6) and the above bound it follows that

S(Λ) < Ύv(BΛ - BΛ) + 2Ύτ(BΛ - {χΛB
ι'2χΛ)

2).

Using Lemma 5.1, the fact that

B Λ = ( χ Λ B ' l 2 χ Λ ) X A χ \

Assumption 3.1(c) and Remark 3.2(d), we conclude that

S(Λ) < Ύr(χΛBXΛ-BχΛ)

Here we have decomposed Λc into several regions to obtain the third inequality. This
proves the last inequality for the CAR algebra.

(b) The case of the CCR algebra: The first inequality follows from the argument for
the CAR algebra. The second inequality follows from (4.6) and Remark 3.2(b). Recall
the notation in (5.6). Lemma 5.1 implies that

BΛ>BΛ
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and so from (5.7), the above bound and (5.5), it follows that

S(Λ) < Ύv(BΛ + BΛ) - 2Ίr{(χAB^2χA)
2)

= Ύr(BΛ - BΛ) + 2Ίr{χΛB
ι/2χ\Bιl2χA).

We now use Lemma 5.1 and the fact that \\Bχ/2χAB
[/2\\ < Mx < 1 by Assumption

3.1 (a) to conclude that

S(Λ) < cΊx{XABχ\BχA) + 2Ίτ(χAB
ι'2χiBι'2χA)

for some constant c independent of A As in the case of the CAR, the last inequality
follows from Assumption 3.1(c) and Remark 3.2(d), and the above bound. Q.E.D.

Recall the definitions of the operators BA and hA in (4.6) and (4.7) respectively.
By (4.8) these operators are related as BΛ = exp(—hΛ).

Lemma 5.3. Let A = (-L/2, L/2)u c W. Then there exists a constant c independent
of A such that the bound

\Ίr(hΛB
Λ)\<c\Λ\

holds, where Tr is the trace on L2{A).

Proof. Let {gn :n = (nv . . . , nv) <E I/} be the orthogonal basis of L2(A) given by

9n(x) = Π {L~1/2 exp(i2πnJ a;j/L)} (5.8)
i=i

and let AA P be the Laplacian operator on L2(Λ) with periodic boundary conditions
on dΔ. It follows that

~ΔΛ,p9n =
2πn

L
9n , (5-9)

where \n\2 — n\ + . . . + nj,. Let a be the constant in Assumption 3.1(b). For given
(fixed) constant af satisfying 0 < 2af < a < 1, we denote by

Λ (-ΔΛpr'}. (5.10)

Using the inequality (4.27) we obtain that

Ίτ(hΛB
Λ) = -Ίr{BΛ\og(BΛ))

= - Ύr[BΛ(\og(BΛ) - log(DΛ))] - Ύτ(BΛ \og(DΛ))

< Ύr(DΛ -BΛ) + Tr((-ΔΛιP)a'BΛ)). (5.11)

Using Lemma 5.2 and (5.9), it can be checked that

\Ίx{DA-BΛ)\<cι(a')\A\ (5.12)

for some constant cλ(af) independent of A.
We denote for any n G Z^,

W f c ) Ξ l l \-ή=φ s i n U \ki--Γ / *;--7Γ ( 5 '1 3 )
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Since by (4.6) and Assumption 3.1(a) one has that BΛ < c'AA for some constant d
independently of Λ, it follows that

(-ΔΛiP)
a'BA) < crΎτ{{-AAPTAΛ). (5.14)

On the other hand it follows from (3.11), (3.12) and (5.9) that

2cί' C

U f k (5.15)

Using Assumption 3.1 (a) and (b), and the fact that

V

\XΛ n(k)\ < c I T (1 -h \k- — 2πn

for some constant c independent of A, it is easy to show that

r v

I (χA{k)fkA{k)dvk < Λf JJ(1 + \2τmά/L\)

for some constant M independent of A. From (5.14), (5.15) and the above bound, we
conclude that

TT((-ΔAPΓ'BΛ) < c2(af) \A\. (5.16)

The lemma follows from (5.11), (5.12) and the above bound. Q.E.D.

From Lemma 5.3 and Assumption 3.1 (a) and (b) we get the following result:

Lemma 5.4. Let A be as in Lemma 5.3. Then there exists a constant c independent of
A such that the bound

\Ύv(hψBΛ)\<c\Λ\
holds.

Proof. Since BΛ = exp(—hΛ), we have that

Ύr(hψBΛ) = -2Tr(hιfBΛ\og((BΛ)1/2)).

Let DΛ be defined as in (5.10). From the above, it follows that

ψ Y - \og((BΛ)1/2 + Dιf)])

= EΛΛ+EA2. (5.17)

As before, let {7fc} be the eigenvalues of hΛ and {fk} the corresponding normalized
eigenvectors. Then we have that

EΛ,ι = - 2

By Jensen's inequality we obtain that

f)f) < log(e-̂ /2 + (fDιfDf)fk) < log(e-^/2 + (fk,D
ιffk))
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By taking x — exp(—7fc/2), y — (fk1D
ιJ fk) and using the fact that -xilogx —

\og(x + y)) <y for any positive x and y, we obtain that

E < 2
k=\

oo

V (-vl/2p-^/2( f Γ)l/1

< 2{Ίr{hΛ{BΛ))γl\Ίϊ(DΛ)γl2.

Thus from Lemma 5.3 and the fact that TY(DΛ) < c\Λ\ for some constant c
independent of Λ, it follows that the bound

EΛΛ<cf\A\ (5.18)

holds uniformly in A.
We next consider EΛ 2 defined in (5.17). Notice that

ι/2BΛ= Ύr(hι/2BΛ(-ΔΛtPr')

We choose oί so that 0 < Aa' < a. Then by using the same method as that in the
proof of (5.16) we get that

Tr((-ΔΛiP)
2a'BΛ)) < c\Λ\

for some constant c. Thus from Lemma 5.3 and the above bound we conclude that

uniformly in A. The lemma follows from (5.17), (5.18) and the above bound. Q.E.D.

6. Control of Entropy Defect: Proof of Proposition 4.3

We are now in position to show that the average of the entropy defects tends to zero
as A tends to R" (proposition 4.3) and so complete our main result (Theorem 3.3).
Recall the entropy defect defined in (4.21):

where <s$A (C <y&j\) is the algebra generated by {P 7} 7, and

ώj(a) = ω{σιι2{Pi)o)/oj{PI). (6.1)

See the definition of P 7 in (4.12) and (4.16).
We first describe briefly the reason why Proposition 4.3 should hold. Let ώf

be the state defined by replacing a^2 with σΛ2 in (6.1). Then one may check that

S(ωf\ JN)) = 0, and so the corresponding entropy defect equals zero. One may
' A

expect that the difference, (ώ7 — ώf)(ά), a G ̂ A \ should be bounded by a term
which depends only on the surface dΛ of A.
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The proof of Proposition 4.3 will consist of several steps. Let us try to make

the entropy defect D(Λ, N) bounded by a sum of terms which can be estimated

eventually. Recall that ,/&^ is the finite dimensional abelian algebra generated by

{P 7} 7 . Thus ,A^ can be represented by an abelian algebra on a finite dimensional

Hubert space M^\= C M ) such that T Γ ^ ( N ) ( P 7 ) = 1. Denote by ρ{^\ the density

operator on J ^ corresponding to the state ώj\ JN). Then for any a G ̂ SΛ \

• /j>A

. 4 A,I x/2 I I ^ j * A Λ,I

and
D(Λ, N) = - V^ ω(Pj) Tr

/

From now on, we suppress M^ in the notation Tr^N) for notational simplification.

For a given multi-index I (I e {0,1}N for the CAR algebra and I e {0,1, . . . , N}N

for the CCR algebra), we define

$} = Σ {ω{σι/2{PI)PIf)lω{PI)}Pv = ]Γ {Tr(^P7/)}P7, (6.4)

on J&^K Notice that Tr(ρ^j) = 1 by the fact that Tr(P7,) = 1 for any multi-index

Γ'. Using the inequality (4.27) and the relation (6.2), we get

DΛιN K-Σωi

j v L "(Pi) V "(Pi)

= ^Λ,iV+^Λ,ΛΓϊ (6-5)

where
TΛ,N = Σ "(σ^P^P^logiωiσ^iP^P^/ωiPj))

1

We first consider IΛ N defined in the above. We shall use the inequality

x ~ \og(x + y)) <y (6.7)

for any positive numbers x and y. Take x — ω{σiι2{Pi)Pi)/^{Pi) and y =
ω(σi/2(Pj)(l - Pj))/ω(Pj). Notice that x + y =1. From inequality (6.7), it follows
that — xlogx = — x(logx — log(x + y)) — x\og(x + y) < y. Thus we conclude that
the bound

holds.
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We next consider IIA N defined in (6.6). For notational convenience, denote that

for any subset J c {1,2, . . . , N) = /(< N),

{O,1}J (CAR),

l, . . . , iV} J (CCR).

Let, / ,/ ' e &(I(< N)) such that / φ Γ(Pj φ Pv). Then there exists a subset
J c {1,2, . . . , TV} = /(< TV) with Jc φ 0 such that

where for given /2 = ((i fc): A: G J c ) , /2 belongs to the following set:

/2) = K):4e{0,l}-{i tμe/} (CAR),
J c } (CCR).

Notice that in the case of the CARs, 17(Jc: I2) is singleton. For instance, let
Pj = γi Pk(ik). Then Pv = ]J (I - Pk(ik)) in the case of the CARs. Thus

keJc 2 keJc

the term IIΛ N defined in (6.6) can be written as

"Λ,N = - Σ Σ ΣΣ
Jd(<N):

PT,

' 2

As before, let {7^,}^! be the eigenvalues of hΛ and {fk} the corresponding
eigenvectors. For any J C /(< TV), let ^ ^ j be the algebra generated by the spectral
projections of N(fk), k e J. Define a state ωΛJ on ΛΛJ by

/(l - σ\Λ\-ιe-^),ke J,

= Π »ΛjWfk)) ( 6 1 3 )

where σ = +1 (resp. σ = — 1) stands for the CCR (resp. CAR) algebra. Define

7 7 ( 1 ) - V V V
JCI(<N): IX£.7{J) l'2e7(Jc\I2)

( 6,4)

/(2) _ V

JCI(<N):

x
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The above quantities are defined so that the relation

holds by (6.12).

m ( i / 2 ( i i 2 ) i i 0

We consider the term IΓrN defined in (6.14). Taking x = ' π — ι—L-
ω(piλ

pi2)
ωΛMPhϊ

and y = ^A,JC^PI')^ a n c* using the inequality (6.7) and - \og(x + y) < — log(y), we
obtain that

where

Σ ΣΣ Σ Σ
Jd(<N):

1ΛiN = ~~

Jci(<N):

From (6.5), (6.15) and (6.16), it follows that the bound

D(Λ, N) < IAiN + (Π^β + Π«$) + / / ^ (6.18)

holds.
In the rest of this section we estimate each term in (6.18). Remember that

A = (-L/2, L/iγ c M'. We first have the following result:

Proposition 6.1. Let IΛ^N be defined as in (6.6). There exists a constant c independent
of A and N such that the bound

holds.

Proof, (a) The case of the CAR algebra. We use the notation in (6.9)—(6.11). By the
bound in (6.8) we have

= Σ Σ Σ
JCU<N):

Recall the definition of P 7 in (4.12). Since Jc φ 0, there is k G Jc such that
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where I2 e ̂ {Jc - {k}) and /£ e ̂ (Jc - {k} : 73). Thus it follows from (6.19) that

h,N< Σ Σ Σ Σ
Jd(<N): x ^ { } 3 )

Jcψb i3e.7(Jc~{k}) *fe=o,i

x {ω{σι/2{PhPhPk(ik))PIλPIf3{\ - Pkdk)))}

N

<EΣ Σ ω{σι/2(PIPk(ik))PI,{\--Pk(ik)))
k=\ ife=0,l

N

Σ Σ ω(σ i / 2(P f e(i f c)) (1 - Pk(ik))). (6.20)
k=l ik=0,1

We shall use the KMS condition of the following form [3]:

ω{σι/2{a*(f)a{g))x) = ω(σi/2(a(g))xσ_i/2(a*(f)))

= ω(a(Bι/2g)xa*(Bι/2f)) (6.21)

for any /, g € L2(R") and x e πω(Λ)". To obtain the second equality, we have used
(4.7) and (4.8). See also Remark 4.2(b).

We recall that Pk(0) = 1 - N(fk) = N(fk), Pk{\) = N(fk) and N(fk) =
* ) U s i n g t h e K M S condition (6.21), we have

/2_(BΛγ/2)h)}

+ ω{a{{BΛ)x'2fk)N{fk)a\{BΛγ/2fk)). (6.22)

Since a((BΛγ/2fk) = exp(-7 fc/2)o(/ fc) and a(fk)
2 = 0, the last term in the above

equals to zero. Using the fact that \ω(ABC)\ < \\A\\ \\B\\ \\C\\, we obtain from the
above relation that

N

Σ ω(σι/2(N(fk))N(fk))
fc=l

oo

Σ \\{{BX'2 - (Bψ2)fk\\ (WB^fJ + \\(BΛγ'2fk

k=\

(6.23)

Here we have used Lemma 5.2 to obtain the last inequality. Notice that

ω(σi/2(N(fk))N(fk)) = ω(σι/2(N(fk))N(fk))

by the KMS condition and so from (6.23) we conclude that

/v
^α;(σ V 2 (7V(/,))7V(/,))<

k=\
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Thus the lemma in the case for the CAR algebra follows from (6.20), (6.23) and the
above bound.
(b) The case of the CCR algebra: In the case for the CCR algebra, the number
operators, N(fk), k e N, are not projections and so one has to modify the method
used in the proof of the proposition for the CAR algebra so that it can be applicable
to the CCR algebra. Notice that the spectral projections Qk(n) of N(fk) can be
expressed as

Q An) = — : φ (z- (N(fk) - n))~ιdz . (6.24)
2ττι J

\z\ = l/2

7V-1

Recal l that Pk(ή) = Qk(n) if n < TV, and Pk(N) =1- Σ Qk(n)- I f o n e e m p l o y s
71=0

the method similar to that used to obtian (6.20), one can obtain the bound

N N N N oo
IA N < y " y y ω(σι/2(Pk(l))Pk(n)) < V V ω(στ/2(Qk(l))Qk(n)).

k=\ 1=1 n=0 k=l l,n=0:

(6.25)
We write that

n=0
oo oo

n=0 l=n+2

AAN{k) = A{\]N(k) + A%]N(k).

It follows from (6.25) and the KMS condition ω(σljί2(A)B) = ω(σt/2(B)A) that

N

IΛiN < 2 Σ AΛM® ' ( 6 2 7 )

fc=l

Let us estimate AΛN(k). By the CCRs we have that

and so from (6.24) it follows that

a(fk)Qk(n) = Qk(n ~ l)α(/fc) (6.28)

Using the above relation and the method employed in (6.22), we obtain

ω(σi/2(N(fk)Qk(n+l))Qk(nj)

= ω(σi/2(Qk(n))a(Bι/2fk)Qk(n)a*(Bι/2fk))

= ω(σι/2(Qk(n))a((BΛγ/2fk)Qk(n)a*((BΛγ/2fk) + Q%n(k), (6.29)

where

Q™n(k) = ω(σι/2(Qk(n))a((B^2 - (BΛ)ι/2)fk)Qk(n)a*(B^2fk))

+ ω(σi/2(Qk(n))a((BΛγ/2)fk)Qk(n)a*((B1/2 - (BΛ)x'2)fk)). (6.30)
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Since N(fk)Qk(n) = nQk{ή) and (BΛ)ι/2fk = exp(-7fc/2)/ife, it follows from (6.29)
and (6.28) that

ω(σι/2(N(fk)Qk(n+l))Qk(n))

= txV(~Ίk)nω(σι/2(Qk(n))Qk(n - 1)) + Q{}]n(k). (6.31)

From (6.26) and the above relation, we obtain

OO

4ί!n(fe) < Σ ω(σi/2(W(fk) ~ n)

oo

< Σ {exp(-7fc) (n + 1) - / ^
n=0 n=0

< exp(-7fe) A%n{k) + Σ Q(Λ,n(k) • (6-32)
n=0

Here we have used the fact that exp(-7A;) < | | ^ Λ | | < 1 by (4.8) and (4.6) to get the
third inequality. We note that by (4.6), and Assumption 3.1 (a) (see Remark 3.2(a))

- exp(-7fc))}

, (BΛ/(l -BA))fk)

uniformly in A. Using the above inequality, we obtain from (6.23) that

N N oo

Σ 4ί!n(fe) ^ ( ! + M l ) Σ Σ ^!n( f c ) <6 3 3 )

We use the Schwarz inequality twice, and the facts that HQ^OΌll = 1 and
oo

Qk(n) = 1 to obtain from (6.30) and (3.6) that
n=0

N oo

Σ Σ O*) ̂
fc=l n=0

x {(TrίB^1))1/2 + (TrίB^))1/2} . (6.34)

Thus from (6.33), (6.34) and Lemma 5.2, it follows that the bound

N

J2l]n (6.35)

holds uniformly in A.
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We next consider the term A^n{k) defined in (6.26). Using the methods employed
in (6.29) and (6.31), one can check that

oo

53 ω(σi/2(N(fk)Qk(l))Qk(n))
l=n+2

l=n+2
oo

= exp(-7fc) Σ nω(σt/2(Qk(l-l))Qk(n-l)) + Bfn(k), (6.36)
l=n+2

where

l=n+2
oo

+ Σ
l=n+2

(6.37)

Thus from (6.26), (6.36) and the fact that exp(~7fc) < 1, we obtain

oo oo

Σ ω(σz/2((N(fk)-(n+l))Qk(l))Qk(n))
n=0 l=n+2

n=0

We use a method similar to that used to obtain (6.34) to conclude that

N

k=l

The proposition follows from (6.27), (6.35) and the above bound. This proves the
proposition completely. Q.E.D.

We next consider the term //^'iv defined in (6.17). We first state our result:

Proposition 6.2. There exists a constant c independent of A and N such that the
bound

μ r 1 / / ^ < C\Λ\~1

holds.

Proof (a) The case of the CAR algebra: Summing over P 7 and using ω(Pj ) < 1,
one has

< v
- 2^JCI(<N): 1

JV0
2G.^(JC) J
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Recall that Pk(l) = N(fk) and Pk(0) = 1 - N(fk) = N(fk) in the case of the CAR
algebra. Thus from the definition of ωA j in (6.13), it follows that

nAN < Σ Π {^ΛjΛN(fk))ωΛJC(N(fk))}
JCI(<N): k£jc

< Σ J ] {2\Λ\~ι exp(-7,)/(l + \A\~ι exp(-7,))2}
JCI(<N): keJc

< Σ Π {2M|-1exp(-7fc)}
JCI(<N): k£Jc

= Π {l+2|yl|-1exp(-7fc)}
keI(<N):

<exp{Ύr\og(l+2\Λ\-ιBΛ)}

<exp{c\Λ\-[Tr(BΛ)}

for some constant c independent of A and TV. The proposition for the CAR algebra
now follows from the above bound and Lemma 5.2.
(b) The case of the CCR algebra: From (6.11), (6.13), and (6.38), it follows that

ί oo

Σ ^Λ,jc(Qifc(O)α;Λ>Jc(Qfc(n)) I . (6.39)

l,n=0: (
Iφn }

Since for any positive function /(/, n),

/,n=0: /,n=l /=1 n=l
Iφn

CO

and Σ Q fc(0 < N(fk), we obtain from (6.39) that
/=i

4'j< Σ Πκ^w)2}+ Σ Π
JCI(<N): keJc Jtl(<N): keJc

We now use (6.13) and the fact that \Λ\~ι exp(—ηk) < M < 1 uniformly in A (see
the inequality below (6.32)) to conclude that there exists a constant M independent
of A such that

I^β < Σ Π (MIΛΓ1*-7*) < txp{c\Λ\-1 Tr(BΛ)} .
JCI(<N): kβJc

Here we have used the method same as that for the CAR algebra to obtain the
second inequality above. The proposition follows from Lemma 5.2. This proves the
proposition completely. Q.E.D.

Finally we consider the terms //^TV a n d I^ΛN defined in (6.17) and (6.14)
respectively. We state our result:
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Proposition 6.3. For sufficiently large L, there exists a constant c independent of A
and N such that the bound

holds.

Proof, (a) The case of the CAR algebra: By a symmetry argument (Pj <->

II^'N = IIAN a i κ * s o w e o n ly need to consider IIΛ'N- Let Pp be of the form

^ = ( π W ) ( π Λ̂fc>)
\k=0 / \fc=m+l /

where J c = {Zl5 Z2, . . . , Zn}. Then from (6.13) it follows that

m n

ωΛ,jc(Pψ = Π d^l"1 exP(-7z,)) Π (1 + H " l

fe=0 /c=l

If 771 = 0, then the first factor in the r.h.s. equals to 1. Thus

k Σ log(l +
fc=0 fc=l

k=0

where in the case m = 0, the first term in the r.h.s. equals to zero. Since
Tr(log(l + \A\-[BΛ)) < c\Λ\-ιΎτ(BΛ) < M uniformly in A by Lemma 5.2, we
have

771

-logίc^ J C(P7/)) < Σ<riιk + l o s Î D + M

fc=0

We substitute the above inequality into II^'N in (6.17) to obtain that

I JCI(<N)

= IIIΛN + M , (6.40)

where
771

IIIAiN= Σ Σ
JC/(<ΛΓ)

We note that, if m ^ 0, there exists Zfc G J c such that P7/ contains A/"(/z ). Thus we

may write



530 Y. M. Park and H.H. Shin

where I3 e ^(Jc - {lk}) and Γ3 e ^(Jc - {lk}): J3). Notice that ^{Jc -{lk}: I3)
is singleton. From (6.41), it follows that

N

y y y
fc=l Jd(<N)-{k} Iλe.7{J)

I3(Ξ.7(JC)
x ω(σι/2(PhPhN{fk))PhP^N(fk))(ΊkΛ-\og(\Λ\))

N

= Σ Σ v(σ%/2(PiN(fk))Pi>M(fk)) (Ίk +
k=l I.

N

= Σω{στ/2(N{fk))N{fk)){Ίk-
k=\

= IHΛjN + I1I\\N ' (6.42)

where
TV

k~l

 N (6.43)

l(\Λ\)Σω(σι/2(N(fk))N(fk)).
k=\

Using methods similar to those employed in (6.22) and (6.23), it can be checked that

ω{σι/2{N{fk))N(fk)) < \\(Bι/2 - (BA)ι/2)fk\\ (\\Bι/2fk\\ + \\(BΛ)ι/2fk\\). (6.44)

Thus it follows from (6.43), (6.44) and Lemma 5.2 that

<2]N < \og(\Λ\)Ύr(χΛ(B^2 - {BAγl2)2χAγ/2

x {(Tr(BA))l/2 + (Tr(BA))l/2}

(6.45)

We next consider ΠI^N defined in (6.43). Writing ηk = ηl

k Ύk and using the
Schwarz inequality, we obtain

\ k=l

( N

k=\

/ N \ ι/2 / N(
5 ] *y3

k

/2ω(N(fk))
(

fe=l

/ TV
X Σ
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We use (6.44) and the fact that ω(σi/2(N(fk))N(fk)) < ω(N(fk)) < exp(-jk) to
obtain from the above bound that

(6.46)

Here we have Lemma 5.2-5.4 to get the last inequality. The proof of proposition
follows from (6.40), (6.42), (6.45), and (6.46).

(b) The case of the CCR algebra: As before, we only need to consider II ΛI^ For

given Γ2 = (jk :k e Jc)e ^(Jc:/2), Pv has the form

Pi'= Π PkUk).

Let Mk be the Hubert space spanned by {(α*(/ fc))ni7: n = 0,1,...}. One may check
that

"Λ,jc(Qk(n)) = T r ^ ( e x P { - ( 7 ^ + log(\Λ\)N(fk)}Qk(ή))/NΛtk ,

where NΛ k is a normalization factor. A direct calculation shows that

Λ i j k i f e 7 f e ) ) n (6-47)

for any k G Jc and n = 0,1, . . . . Notice that by (6.47)

Λ j k N 7 f c ) ) i V (6.48)

From (6.47) and (6.48) it follows that

-log{α; y l j J C(P //)}=

keJc

Σ Jk(7k+^g(\A\))Y (6.49)
keJc )

Notice that |̂ 11^1 H^H < M < 1 for sufficiently large |Λ| by (4.6). Since the first
term in the r.h.s. of (6.49) is bounded by

Tr(-log{(l - IΛI"1^)}) < M ' T r d ^ l Γ 1 ^ ) < M

uniformly in A, we have

- log{ω^JC(Pj,)} < M + Σ JkiΊk + log(|Λ|)). (6.50)
keJc

Substituting (6.50) into //^'iv m (6-17) and employing methods similar to those used
to obtain (6.40) and (6.42), it can be shown that

% % Ί N + M, (6.51)
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where

N N N

ΪHΛ,N Ξ Σ Σ Σ n^k + log(\Λ\))ω(σι/2(Pk(l))Pk(n)). (6.52)
k=l 1=0 n=0

nφl

It follows from (6.52) and the fact that ω(σi,2(A)B) = ω(σi,2(B)A) that

N oo oo

I , N < Σ Σ Σ n(lk+log(\A\))ω(σi/2(Qk(l))Qk(n))
k=\ 1=0 n=l :

nφl
N

We now use the method employed in (6.36) to obtain

Σ lω(σι/2(Qk(l))Qk(n)) < ] Γ ω(σz/2(N(fk)Qk(l))Qk(n))

= exp(-7fc) Σ nω(στ/i(Qk(ι ~ V)Qk(n ~ !))

n=0

oo

where QA^n{k) is defined by replacing ^ with ^ in the definition of QΛn(k)
l=n+2 l=n+\

in (6.37). The above inequality implies that

0 0

lω(σι/2(Qk(l))Qk(n)) < (1 - exp(~7/c))-1 ^ QΛ,n( fc) ( 6 5 4 )

We substitute (6.54) into (6.53) and then use the bound at the below of (6.32) to
conclude that

N

1 1 1 Λ,N < M' Σ ^k '
k=l v n=0

Employing a method similar to that used to obtain (6.34), it can be shown that

QA,n(k) < M"\\{B"2 - (BΛγ'2)fk\\ (\\Bι/2fk\\ + \\{BΛγ'2fk\\). (6.56)
OO

Σ
n=0

By the arguments used in (6.43)-(6.46), one obtains from (6.55) and (6.56) the
following bound:

ί
The proposition follows from (6.51) and the above bound. This proved the proposition
completely. Q.E.D.

Proof of Proposition 4.3. The proposition follows as a corollary of (6.18) and
Proposition 6.1-6.3. Q.E.D.
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Appendix. Estimate of Mean Entropy

In this appendix we study the thermodynamic limit of the local entropy S(ωA)
introduced in (3.20), and produce the proof of Theorem 3.4. We remark that the
mean entropy of the Fermi lattice system with respect to quasi-free states have been
calculated in [21] by using a method which differs from that in this paper. We first
estimate the local entropy.

Proposition A.I. Let S(ωA) be the local entropy defined by (3.20). One has that

S(ωΛ) = - Ίv(AA log AΛ + (1 - AA) log(l - AA)) (CAR)

and

S(ωA) = - Tr(AΛ log AΛ - (1 + AΛ) log(l + AΛ)) (CCR)

for any bounded region A C W, where Tr is the trace over L2(A). Under Assumption
3.1 (a) and (b), the r.h.s. of the above expressions are finite.

Proof. We first consider the case of the CCR algebra. For any bounded operator G
on L2(Λ), denote by Γ(G) the second quantization of G [3]. Notice that

Γ(G)α*(/) = α*(G/)Γ(G), / G L2(A). (A.I)

We assert that the density operator ρA corresponding to ωA and the operator BA

defined in (4.6) are related by

ρA=Γ(BΛ)/Tr(Γ(BΛ)) (A.2)

where Tr is the trace on ^A.
From the CCRs and (A.I), it follows that

Tr(Γ(BΛ)a*(f)a(g))/ Tτ(Γ(BΛ))

= Ύr(a(g)a*(BΛf)Γ(BΛ))/Tr(Γ(BΛ))

= (g, BΛf) + Tr(Γ(BΛ)a*(BΛf)a(g))/ Ύτ(Γ(BΛ)).

By taking / = (1 - BΛ)~ιh, we have that

Tr(Γ(BΛ)a*(h)a(g))/Ίr(Γ(BΛ)) = (gΛBΛ/(l - BΛ))h) = (g,AAh).

Since the above relation holds for any g, h G L2(Λ), we proved our assertion. Let
{λ J be the eigenvalues of BΛ counting multiplicites. Let ^ ( Z + ; N ) be the family
of multi-indices / G Z^ which have all but finite number of elements zero. A direct
computation shows that [3]

Ίτ(Γ(BΛ))= Σ Π Kk

) rnkel

3

= exp{- TrL 2 ( Λ )(log(l - BΛ))} (A3)
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and

τr(Γ(BΛ)logΓ(BΛ))= £ ( JJ λΓΛlogf Π
kel J \mkel

OO

m=0

[Π i Ί \ , -A,)"2. (A.4)

Thus it follows from (A.3) and (A.4) that

OO

2=1

- ^ - logλ,

and so by (A.2) and (A.3)

S(ωΛ) = -Tv ( γ ^ χ logβ^ 1) - Tr(log(l -

= - Tτ(AΛ log AΛ) + Tr((l + AA) log(l + A Λ )) . (A.5)

This gives the expression in the proposition for the CCR algebra. In the case of the
CAR algebra one may obtain the corresponding expression by replacing ^ ( Z + ; N )
with ^({0,1}; N) in (A.3) and (A.4). For the details, see [20].

We next show the flniteness of S(ωΛ). Consider the case of the CCR algebra. By
Assumption 3.1(a) and (4.6), \\BΛ\\ < Mx < 1 and so

BA/(\-BA)<cxB
A,

-BΛ)<c2B
Λ

uniformly in A. Notice that Ίx(BΛ log BΛ) = Ίr(hΛB
Λ). Thus the flniteness of SΛ(ω)

for the CCR algebra follows from (A.5), Lemma 5.2 and Lemma 5.3. The method
similar to that used in the above gives the proof for the CAR algebra. This proved
the proposition completely. Q.E.D.

We recall the notation in the proof of Lemma 5.3. Let A = (—L/2, L/iy and let
{gn} be the orthogonal basis of L2(A) given by (5.8). Denote by pn the projection
operator onto the one-dimensional subspace spanned by the vector gn. We introduce
an operator EΛ on L2(A) by

where KA is the Fourier transform of KA given in (3.12). Assumption 3.1 (a) and (b),
and (3.13) imply that there exists a constant c independent of A such that the bound

(A.7)
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holds. Define

S(ωΛ) = - Tτ(EΛ log EA) - Tr((l - EΛ) log(l - EA)), (CAR)

5(CJ Λ ) = - Ύτ(EΛ log E Λ ) + Tr((l + EA) log(l + £ Λ ) ) . (CCR)

We then have the following result:

Proposition A.2. For both CCR owd CAR algebras, the equality

lim — S(ωΛ) = lim — S(ωΛ)
L—>oo |/L| L^oo |/L|

holds.

The proof of Theorem 3.4 follows as a corollary of the above result:

Proof of Theorem 3.4. Since KB e L1(RI/), Assumption 3.1(a) and (3.13) imply that

KA is continuous. Notice that

- - Σ KA(2nπ/L)log(KA(2nπ/L)).

Using the continuity of KA and the bound in (A.7), one concludes that

1 1 ί
- — Ίx(EA\ogEA) -> / KA(k)\ogKA(k)duk

as L —» oo. The second terms in (A.8) give the corresponding second terms in
Theorem 3.4 Q.E.D.

The rest of this paper is devoted to the proof of Proposition A.2.

Proof of Proposition A.2. We first consider - Tr(AA logAA). Let DA be the operator
on L2(Λ) defined in (5.10). Let a(L) be a positive number satisfying

lim α(L) = 0. (A.9)
L—s-oo

We shall specify the number a(L) later. For 0 < la' < a < 1, denote

FΛ = EΛ + a(L)DΛ. (A. 10)

Notice that

- {Ύτ(AΛ log AΛ) - Ύτ(EΛ log EΛ)}

= - Tr(AΛ log AΛ - AΛ log FΛ) - Ίr({AΛ - FΛ) log FΛ)

- {Ίτ(FΛ log FΛ) - Ίr(EΛ log EΛ)}

= IΛ + IIΛ + IIIΛ. (AM)

We assert that

as L —> oo. Under the assertion we conclude that

lim \Λ\-1(-Tr(AΛlogAA))= lim ^ - ' ( - - m ^ l o g ^ ) ) . (A.13)
L—^oo L—>oo

We prove our assertion in (A. 12). Using inequality (4.27), we obtain

\IΛ\<\τr(FΛ-AΛ)\

+ a(L)DΛ-AΛ)\.
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Since l^l"11 Ίr(EΛ - AA)\ -> 0 and a(L) \Λ\~ι Ίr(DΛ) -> 0 as L -> oo, we conclude
that jyll"1!/^ —> 0 as L -> oo. Similarly it is easy to show that \Λ\~ι\IΠΛ\ —> 0 as
L —> oo.

We next consider // Λ . Notice that if (#n, ( £ Λ + a(L)DΛ)gn) < 1,

and if (0n, ( £ Λ + a(L)DA)gn) > 1,

| (^ , log(E Λ + α(L)23^)^)1 < const

uniformly in Λ by Assumption 3.1 (a), (3.14) and (A.6). Thus we have that

\Λ\-ι\IIΛ\ < \Λ\~ι Σ \(9nΛAΛ-EΛ)gn)\ \2πn/L\2a'
nezu

- log(a(L))\A\-ι\Ίv((AΛ - EΛ)\

+ a(L)\Λ\-ι\Tr(DΛlog(a(L)DΛ))\

= & ! ( £ ) + 62(L) + 6 3 (L). (A. 14)

Since a(L) —> 0 as L —>• oo, a direct computation shows that 63(L) —> 0 as L —> oo.
We now choose the number α(L) as α(L) = \Λ\~ι \ Tr(AΛ - EΛ)\. Then a(L) -> 0
as L —>• oo, and so b2(L) —>• 0 as L —> oo. The term ^ ( L ) defined in (A. 14) can be
written as

where x^ n has been defined in (5.13). Change of variables yields that

KL,n = f \χΛ,n{k)\2KA(k)d»k

ύr^ik^/k) J KA((2k/L) + (2πn/L))duk .

Notice that π " 1 /(sin2 k)k~2dk = 1. For given £/ e Λ^, take L —> oo and |n| —> oo
such that lim(2nπ/L) = /c7. Then the dominated convergence theorem implies
that KLn -^ KA(k'). If one uses the bound (A.7), 2a' < a and the dominated
convergence theorem, one can show that bλ(L) —> 0 as L -> 0. We leave the details
to the reader. Thus from (A. 14) and the above results it follows that I/LI"1]//^ —> 0
as L —> 0. This proved (A. 12) completely.

It is clear that a straightforward application of the method used in the proof of
(A. 13) shows that

\Λ\~ι I Tr((l ± AA) log(l ± AA) - Tr((l ± EA log(l ± £7Λ))| -^ 0

as L —> oo. We again leave the detailed proof of the above result to the reader. This
completes the proof of Proposition A.2. Q.E.D.

Acknowledgements. We thank the referee for useful comments and also for providing the references
[21] and [22].



Dynamical Entropy of Space Translations 537

References

1. Accardi, L., Cecchini, C : Conditional expectations in von Neumann algebras and a theorem of
Takesaki, J. Funct. Anal. 45, 245-273 (1982)

2. Araki, H., Shiraishi, M.: On quasi-free states of the canonical commutation relations I. Publ.
R.I.M.S., Kyoto UNiv. 7, 105-120 (1971)

3. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vols. I, II.
Berlin, Heidelberg, New York: Springer 1979

4. Choi, M.D., Effros, E.G.: Ann. Math. 104, 585 (1976)
5. Confeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. Berlin, Heidelberg, New York: Springer

1980
6. Connes, A., Stormer, E.: Acta. Math. 134, 289 (1975)
7. Connes, A., Narnhofer, H., Thirring, W.: Dynamical entropy of C*-algebras and von Neumann

algebras. Commun. Math. Phys. 112, 691 (1987)
8. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, Vols. I, II. New

York: Academic Press 1986
9. Kolmogorov, A.N.: Dokl. Akad. Nauk. 119, 861 (1958)

10. Narnhofer, H.: Quantized Arnold cat maps can be entropic K systems. UWThPh (1991)
11. Narnhofer, H., Thirring, W.: Dynamical entropy and the third law of thermodynamics. Lett.

Math. Phys. 15, 261-273 (1988)
12. Narnhofer, H., Thirring, W.: Quantum K-systems. Commun. Math. Phys. 125, 565-577 (1989)
13. Narnhofer, H., Thirring, W.: Chaotic properties of the noncommutative 2-shift. UWThPh (1991)
14. Park, Y.M.: Quantum statistical mechanics for superstable interactions; Bose-Einstein statistics.

J. Stat. Phys. 40, 259 (1984)
15. Park, Y.M.: Quantum statistical mechanics of unbounded continuous spin systems. J. Korean

Math. Soc. 22.1, 43-74 (1985)
16. Park, Y.M., Shin, H.H.: Dynamical entropy of quasi-local algebras in quantum statistical

mechanics. Commun. Math. Phys. 144, 149-161 (1992)
17. Ruelle, D.: Statistical Mechanics. New York: Benjamin Inc. 1978
18. Sinai, Ya.G.: Dokl. Akad. Nauk. 124, 768 (1959)
19. Stormer, E., Voiculescu, D.: Entropy of Bogoliubov Automorphisms of Canonical Anticommu-

tation Relations. Commun. Math. Phys. 133, 521-542 (1990)
20. Verbeure, A.: Normal and locally normal quasi-free states of Fermi systems. In Cargese Lecture

in Physics, Vol. 4 (1970)
21. Fannes, M.: The entropy density of Quasi-free states. Commun. Math. Phys. 31, 279-290 (1973)
22. Herman, R.H., Takesaki, M.: States and automorphism groups of operator algebras, Commun.

Math. Phys. 19, 142-160 (1970)

Note added in proof. After making the preprint of this paper we received the following preprint:
23. Narnhofer, H., Thirring, W.: Dynamical Entropy of Quantum Systems and Their Abelian

Counterpart. UWYhPh (1991)
which contains the result similar to that of the CAR algebras in this paper. However the method
employed in [21] is the momentum space analysis which differs to the position space analysis we
used.

Communicated by A. Connes






