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Abstract. In this paper we study the diatomic molecular scattering by reducing
the number of particles through Born-Oppenheimer approximation. Under a non-
trapping assumption on the effective potential of the molecular Hamiltonian we
use semiclassical resolvent estimates to show that non-adiabatic corrections to the
adiabatic (or Born-Oppenheimer) wave operators are small. Furthermore we study the
classical limit of the adiabatic wave operators by computing its action on quantum
observables microlocalized by use of coherent states.

1. Introduction

In this work, we are concerned with a mathematical study of the scattering process
that a diatomic molecule dissociates into two ions. A direct mathematical study of this
problem may be rather difficult, since the number of particles can be arbitrarily large.
However, there is a folk-theorem in molecular scattering theory (see e.g. [Ch, De,
WO]) that the contribution of electrons can be taken care of by effective potentials
and the motion of nuclei can be well approximated by classical dynamics. This
indicates that one can reduce the number of particles and thus considerably simplify
the problem. This beautiful physical intuition dates back to Born-Oppenheimer [BO]
and is based on the existence of a natural small parameter in molecular Schrodinger
operators: the ratio of the mass of the electron to the mass of the nucleus. It is
surprising to us that until now, there is no rigorous mathematical work on Born-
Oppenheimer approximation in scattering theory, unless the attempt made in [Ra]
where no quantitative result was given. Concerning mathematical works on Born-
Oppenheimer approximation in spectral theory, the reader can track back from the
reference quoted in [KMSW].
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The purpose of this paper is to provide a mathematical justification of Born-
Oppenheimer approximation in scattering theory for a simple, particular scattering
quantity: the two-cluster wave operators in diatomic molecular scattering. To begin
with, let us introduce some notations. Consider the Schrδdinger operator P obtained
after the removal of mass center from the energy operator

~ 1 1 N+2 1

1 2 j=3 ι ι<j

of a diatomic molecule with N electrons. Here xvx2 (resp., mllm2) denote the
position (resp., the mass) of the two nuclei in R n and xj9 j > 3, (resp., m) denote
the position (resp., the mass) of electrons, the Planck's constant h being put to 1.
In the following, we assume that ml>m2 are of the same order and are all large
enough compared with m. In this paper the interaction potentials V^ix) are assumed
to be short-range (a precise definition will be given below). Let C — (CVC2) be
a two cluster decomposition of {1,2,..., iV + 2} with j 6 Cj, j — 1,2. \C \ will
denote the number of particles in the cluster Cj. Then the total Hamiltonian P can
be decomposed as

P = PO + P C + /C, (1.2)

where Po is the kinetic energy of the relative motion of the centers of mass of the
sub-systems Cx and C2\

G V ^ K xeRn> (L3)

where Mj = πij + (\C3\ - l)m, j = 1,2, is the total mass of cluster Cj9 Pc is
the cluster Hamiltonian whose detailed expression depends on the choice of cluster
coordinates associated to C = (CUC2) and Ic is the intercluster interaction:

J

c= Σ ^ - ^ - ) o 4)

expressed in the coordinates (x,y), x G Rn,y G RNn, where y are the intra-cluster
coordinates. Since ml1m2 ^> m, it is natural to regard the inverse of reduced masses
as a small parameter. We henceforth set m = 1 and put

2Mλ 2M2

= h\ ft>0, (1.5)
\ΔlVlχ ^1V12 J

and
PC = PQ + PC = -h2Δx + Pc. (1.6)

In this paper, we regard h > 0 as a small parameter and we want to study the Born-
Oppenheimer approximation (i.e. the limit h —> 0) of the two-cluster wave operators

βi=s-lim eitPe-UPcE(Pc) (1.7)
t—+±oo y

in L 2 (R n ( Λ Γ + 1 ) ), where Ep(Pc) is the spectral projection in L 2 (R n ( Λ Γ + 1 ) ) associated
to the point spectrum of Pc. Analogous to the Born-Oppenheimer approximation in
spectral theory (see [CSD, KMSW]), we denote by Pe the electronic Hamiltonian

Pe = Pc + Ic(χ,y), (1.8)
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which can be decomposed as a direct integral in x-variables. But, in contrast to the
Born-Oppenheimer approximation in spectral theory, x now is not the relative position
between the nuclei, but that between the two centers of mass of the subsystems Cγ

and C2 In addition, because of the choice of cluster coordinates, the intercluster
interaction Ic is now /ι-dependent. Thus we have to analyze the /ι-dependence of the
eigenvalues of Pe(x) — P c + /c(x, •)•

Let us now explain our approach to the Born-Oppenheimer approximation of
Ω±. Fix an eigenvalue Eo of the cluster Hamiltonian Pc. Assume that Eo is in
discrete spectrum of Pc with multiplicity m and that there exist exactly m curves
of eigenvalues of Pe(x), λ^x) , . . . ,λ m (x), counted according to their multiplicity,
which converge to Eo as x —> oo. Let i70 and Π(x) denote the spectral projections
of Pc and Pe{x) associated to Eo and λjOr), . •, Am(x) respectively. Denote by Πo

and Π the projections in the total space L 2 (R n ( i V + 1 ) ) induced by the action of Πo and
Π(x), x e Rn, in the space L2(RnN) of the intra-cluster coordinates. Note that Πo

(acting on L2(Rn ( i V + 1^)) is always of infinite rank, since it commutes with translations
in x. Define the adiabatic and non-adiabatic parts of P by

PAD = ΠPΠ, QAD = ΠPΠ, Π=1~Π. (1.9)

Under appropriate assumptions on the potentials, we can show that on the range of
770, the cluster wave operators Ω± have a decomposition:

ΩC

±ΠO = Ω^ADΩ^D, (1.10)

where

= s- lim

and

where EΆC{PAD) is the spectral projection onto the absolutely continuous spectral
subspace M, ΛPAD) of PAD. It can be shown under rather general conditions that
ΩAD and Ω±AD exist and are complete (see Theorem 2.3 and also [Ra]). With these
preparations, the main results of this paper can be summarized as follows:

• Under a non-trapping assumption on PAD, one has:

ΩNAD _ ! = Q ( h )

in the norm of bounded operators (Theorem 4.1).
• If Π is of rank one, ΩAD "converges" in the limit h —• 0 to the classical

wave operators of the classical effective Hamiltonians (Theorem 5.3, 5.4).
The first part of the results shows that ΩAD gives a good approximation of i?±i70,
while the second part justifies the physical intuition that the motion of heavy particles
can be well approximated by classical mechanics. Combining these two parts, we
obtain a quantitative result of the cluster wave operators Ω± in the limits h —• 0 (see
Theorem 5.5).

This work is organized as follows. In Sect. 2, we formulate some results on
adiabatic and non-adiabatic wave operators. These results are stimulated by the
unpublished work [Ra]. In Sect. 3, we establish semiclassical resolvent estimates
for PAD{h) and P(h). We need a non-trapping assumption on the classical effective
Hamiltonian. This condition is satisfied according to [DH] in a slightly different
situation. In Sect. 4, we derive the adiabatic approximation of the cluster wave
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operators. Our result is strong, since we obtain a remainder estimate in the operator
norm. But we need the non-trapping condition to control the /ι-dependence of quantum
dynamics. In Sect. 5, we study the classical limit of the adiabatic wave operators. The
method is similar to [W3]: We construct incoming and outgoing parametrices with
operator-valued symbols to approximate the adiabatic wave operators. We remark that
we use the phase function constructed in [W3], which is different from that of [IK]
and has the advantage of being directly related to the classical wave operators. In the
main part of Sect. 5, we do not need the non-trapping assumption, except for the last
result Theorem 5.5.

The methods used in this paper vary with sections. Those in Sects. 2-4 are
relatively elementary: We mainly use methods from functional analysis, except for
Corollary 3.3, where the symbolic calculus of h-pseudo-differential operators enters.
Therefore we expect that the main results of these sections could be understood
by those having a knowledge of quantum two-body short-range scattering theory
(including Mourre's estimates and Kato's local smoothness theory). However, we
require in Sect. 5 a more developed mathematical tool: theory of outgoing and
incoming h-parametrices. The proofs in Sect. 5 rely heavily on the results of earlier
works [IK] (for h = 1), [Wl] and, especially, [W3]. We suggest that the reader who
is interested in the details of this section read these works.

2. Some Preliminaries

In this section, we establish the decomposition for the cluster wave operators:

Γ>c ΓT ryNAD Γ)AD

The similar problem was studied in [Ra] for Coulomb potentials with specific nuclear
charges: One of the ions is assumed neutral. Our framework is slightly different: We
treat general, short-range potentials.

To study the Born-Oppenheimer approximation of the cluster wave operators, it
is necessary to investigate the relationship between the electronic Hamiltonian Pe(x)
and the cluster Hamiltonian Pc. We shall write down the expressions of Pe(x) and
Pc in clustered atomic coordinates. One could equally well use clustered Jacobi
coordinates instead. But then the parameter-dependence in the potentials becomes
more complicated (see [Ra]). Let C — (C l 5 C 2 ) be a cluster decomposition with
j e Cj, j = 1,2. Let Cj — C \{j}. In the center-of-mass subspace

i / N+2 \
R = — ( πiγXγ + m2x2 + ^ xA =0

of KnN x R n x Rn, we introduce new coordinates (y,x) G RnN x R n by setting

y3 = x3 -xk, for j eC'k, k = 1,2, (2.1)

m rp I X iγ \ Ά/f <γy\ I (J η 1 /

J J / J Λ j J J ' 'J ' ' u

keCJ '

Here the mass of electrons is set to 1. Recall that xx and x2 stand for the position
of the two nuclei. Thus, in the (y, x) coordinates, we measure the position of the
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electrons inside each ion (= cluster) by their relative position with respect to the
nucleus. With this choice of coordinates, we have

^ ^ (23)

(2.4)

Σ Kifei - I / i

Pe(χ)

pc

Ic{x)

=PC + Ic(x),

= Σ ^

iVj)) +
mk \

+ /2)

\—̂
/ ^ ΊJj

• iec'k ,

+ V V + /i - Λ - 2/P

+ Σ V x - Λ + Λ - 2/j) + ̂  - Λ + Λ) (2 6)

Here

Note that fJ is of the order O(h2\y\).

Using the notation (x) — (1 + x 2) 1/ 2, our general assumptions on the potentials
Vιj9 1 < i, j < N + 2, are the following:

V^ is smooth on R n \ {0} and is of short-range:

\d^Vi3(x)\<Ca(x)-ρ-^, V α e N n , |x| > 1, for some ρ > 1, (2.7)

Vτj is Z\-compact. (2.8)

This in particular covers the case of Coulomb singularities V-{x) ~ l^l"1 for
x near 0 in Rn, n > 3. Conditions (2.7) and (2.8) will be replaced by a stronger
condition (3.1) later on. As a first result, we state the following

Lemma 2.1. Under the assumptions (2.7) and (2.8) one has

lim Pe(x) = Pc

|:c|—>oo

in the sense of strong resolvent convergence in L2(RnN).

Proof. It suffices to remark that s- lim Ic(x)(Pc + i ) " 1 = 0 in L2(RnN). D
|a;|->oo

Let Σ(x) = infσe s s(Pe(x)). Put Σ o = liminfΣ(x). Let Eo e σd(Pc) be an
eigenvalue of Pc with Eo < Σ o . Assume that EQ is of multiplicity m. By Lemma
2.1, every point in the spectrum σ(Pc) is a limit of elements in σ(Pe(x)) (see [K]). In
addition, by the exceptional decay of eigenfunctions of Pc associated with eigenvalues
EQ (see [A]), we can show that there are at least m curves of eigenvalues of Pe(x),
counted with their multiplicity, which tend to Eo as x —> oo. In this paper, we make
the following stability assumption on Eo. We shall say that Eo is stable, if

there are exactly m curves of eigenvalues of Pe(x) which converge to Eo. (2.9)

Note that this assumption is satisfied by a iί^-like molecule with generic unequal
nuclear charges. See Appendix A in [Ra].
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Under the assumption (2.9), we can find an ε > 0 sufficiently small such that

σ(Pe(x)) Π{zeC; ε/2 < \z - Eo\ < 2ε) = 0 , for \x\ > Ro ,

with RQ sufficiently large. Consequently we can define the spectral projections

(z-PcΓιdz, (2.10)

\z-E0\=ε

(z-Pe(x)Γιdz (2.11)

\z-E0\=ε

for \x\ > Ro. Lemma 2.1 gives that s- lim Π(x) = Πo. We have the following

much stronger result.

Theorem 2.2. Under the assumptions (2.7), (2.8) and (2.9), one has

\\d«(Π(x) - Πo)\\ = O((x)-^-ρ) (2.12)

for \x\ > Ro, a G N n with \a\ < 2. Here ρ > 1 is the same as in (2.7).

Proof. We begin with proving that

\\d*{Π{x) - Π0)Π0\\ = O((x)~^-ρ) (2.13)

for \x\ > RQ, a e Nn with \a\ < 2. To do this, we use the identity

Π(x) -Πo = ̂ - φ (z- Pe(x)ΓιIc(x)(z - PcΓι dz. (2.14)
2πz J

\z-E0\=ε

Since \\(z - Pe(x))~ι \\ < 2/ε uniformly in x and by the exponential decay of the
eigenfunctions of P c , | |/c(x)i70 | | < C(x)~Q, we obtain (2.13) for a = 0. The result
for a G N n with \a\ < 2 follows from the arguments used above and the conditions
(2.7) and (2.8). Note that the argument of [CDS] shows that the map x h-* Π(x) is
twice continuously differentiable for \x\ > Ro.

To prove (2.12), we use the equalities:

Π(x) -Πo = (Π(x) - Π0)
2 - 2Π0 + Π(x)Π0 + Π0Π(x)

= (Π(x) - ΠQ)2 + (Π(x) - Π0)ΠQ + i70(77(a;) - Πo). (2.15)

According to the stability assumption, we have: lim \\(Π(x)—Π0)\\ = 0. See [K]. So
|z|-*oo

| | ( i7(x)-7I 0 ) 2 | | < l/2 | | i7(x)-7I 0 | | for \x\ large enough. Since \\(Π(x)-ΠQ)Π0\\ =
\\Π0(Π(x) - iJ 0) | | , we obtain from (2.15) that

for x\ large enough. Equation (2.12) for a — 0 follows from (2.13). Equation (2.12)
for a\ < 2 can be derived from (2.13) by differentiating (2.15). D

Let λj(x),..., Am(x) denote these eigenvalues of Pe(x) that converge to Eo as
\x\ —> oo. From Theorem 2.2, we derive that:

\3{x) -Eo = O((x)-Q), j = 1, 2,..., m ,
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for \x\ large enough. We assume that the map x J—>• λ •(#) G σd(Pe(:r)) is globally
defined on R n for j = 1,.. ., m (in particular, there is no absoφtion into the essential
spectrum of Pe(x)) and

dist(σ(Pe(z)) \ {\{x\ . . . , λm(x)}, {X{(x),..., λm(x)}) > 5 > 0 (2.16)

for all x G R n . It then follows from the argument in [CDS] that the associated
projection Π{x) is of class C2 on R n . Note that we can always take \3(x) to be
continuous and, if ra = 1, to be of class C2.

Now let PAD,QAD and Ω^D, J ? ^ A D be defined as in the Introduction. We shall

say that the wave operators ΩAD (resp. Ω±AD) are complete if the range of ΩAD

is equal to the absolutely continuous spectral space of PAD: R(ΩAD) = J$SiC(PAD)

(resp., if R(Ω^ΛDEΆC{PAD)) = R(Ω^Π0)). In the following, we shall only consider

the case t —> +oo and therefore omit the subscripts ±.

Theorem 2.3. Under the assumptions of Theorem 2.2, assume in addition (2.16). Then
the wave operator ΩAD and ΩNAD exist and are complete and one has:

ΩCΠO = ΩNADΩAD.

Proof. The method is similar to usual two-body short-range scattering theory.
Therefore we shall only sketch the argument. To study the existence and the
completeness of ΩΛD, we note that, using [Δx, Πo] = 0 and Theorem 2.2,

(PAD _ pc)Ijo = _ h2(iIjiχ) _ πo)ΔχΠ(χ) + ΔxΠ0(Π(x) - Π0))Π0

+ (Π(x)Pe(x)Π(x) - E0)Π0 = O((x)-β) (2.17)

on the range of (~ΔX + i)~ι, with ρ > 1 given by (2.7). This shows that PAD is
a short-range perturbation of P c . The existence of ΩAD then follows from Cook's
method. To prove the completeness of ΩAD, we note that the continuous spectrum
of PAD is given by: σc(PAD) = [Eo, oo[, and on this interval we can use Mourre's
commutator method to establish the limiting absoφtion principle (see [Ra] and Sect. 3
of this paper). The asymptotic completeness of ΩAD follows from stationary methods.

To study ΩNΛD, we indicate that since the range R(Eac(PAD)) C R(Π), we have

(P - PAD)Eac(PAD) = -h2ΠΔxΠEac(PAD)

= h2[Δx,Π]ΠEac(PAD). (2.18)

Theorem 2.2 shows that [Δx, Π(x)] is a first order differential operator with short-
range coefficients. Thus the existence of the wave operator again follows from Cook's
method. To show the completeness of ΩNAD, we need to show that the limit

Km eιtpADe~ιtpφ , \/φ e R(ΩCΠO) (2.19)

exists and is in the absolutely continuous subspace y^ΆC(PAD) of PAD. But since
φ G R(ΩCΠO), one has that \\e~ίtpφ - e-itPcΠoψ\\ -+ 0 for some ψ. Thus the
completeness of ΩNAD follows from the existence of the limit

lim eupADe~UPφ= lim JtpAD e~itp°Π0<ψ ,

which in turn follows from the existence of ΩAD. D
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Theorem 2.3 says that we can split the two-cluster scattering in two processes:
adiabatic and non-adiabatic scattering. To justify quantitatively the usefulness of the
adiabatic (or Born-Oppenheimer) approximation in scattering theory, we shall study
in the remaining sections the wave operators ΩAD and ΩNAD in the limit h —> 0.

3. Resolvent Estimates

As remarked in the Introduction, in the framework of two-cluster scattering the
electronic Hamiltonian Pe(x) is /ι-dependent: not only there is a perturbation of the
kinetic part in Pe(x) of order O(/ι2), but also the parameter h appears in the interaction
potentials, given by (2.6). To analyze the /^-dependence of the eigenvalues of Pe(x)9

we shall in this section impose the stronger hypothesis

All potentials Vιy 1 < z, j < N + 2, are smooth and short-range:

\dχViά(x)\ < Ca(x)-ρ-\a\ for s o m e ρ>l,\/xe R n . (3.1)

The case of potentials with Coulomb-like singularities will be discussed elsewhere.
We denote Pe(x) and Pc by Pe{x,h) and Pc(h), respectively, to single out the h-
dependence of the Hamiltonians, and we refer to (2.4) for an explicit expression for
Pe(x, h) and Pc(h). Put

where

and

jc(x,o) = J2 vιM - yj + x^ +
jec[
Σ

Since fό = O(/ι2|y|), we have formally: Pe(x, h) = Pe(x,0) + O(h2). It is therefore
natural to expect that the leading terms of the eigenvalues of Pe(x, h) are given by
those of Pe(Xj 0). The following result justifies this intuition.

Proposition 3.1. Assume (3.1) and let \x(x, 0 ) , . . . , λm(x, 0) be the m eigenvalues of
Pe(x,0) satisfying (2.16) with δ > 0 independent of x e Rn. Then, for h sufficiently
small, there exist exactly m eigenvalues λ^x, / ι ) , . . . , λn ι(x, h) of Pe(x, h) such that

λJ(x,h) = λJ(x,0) + O(h2), for j = l , . . . , m ,

uniformly in x. In particular (2.16) is satisfied by Λ^x, / ι ) , . . . , Am(x, h), uniformly in
x G R n (̂ /tJ h > 0. Here all eigenvalues are counted according to their multiplicity.

Proof. Let Γ(x) be a family of complex contours such that

dist(σ(Pe(Xj0)),Γ(x))>δ/2
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and AJOEJO), . . . ,λm(x,0) are in the interior of Γ(x). Then it follows from a
perturbation argument in h that the spectral projections

( z - Pe(x, 0))-1 d*, (3.2)

Γ(x)

are well defined if h > 0 is sufficiently small. Making us of the exponential decay of
eigenfunctions and the Taylor expansion in fvf2 of the interaction Ic(x, h) [defined
in (2.6)], one obtains: \\Pe(x,h) - Pe(x,0))Π(x,0)\\ < Ch2, uniformly in x e Rn.
Consequently we derive from (3.2) that

\\(Π(x,h) - Π(x,0))Π(x,0)\\ < Ch\ (3.3)

uniformly in x. In the same way, we can prove that

\\{Π(x,h) - Π(x,0))Π(x,h)\\ < Ch2,

uniformly in x e R n . Now the desired result follows from the arguments of [HS1].
See Proposition 1.4 and 2.6 in [HS1]. D

In the case m = 1, we can show that \{(x,0) and \{(x,h) are smooth and

\d*{\x(x, h) - \x{x, 0))| = O(h2(x)~ρ) for any a e Nn, a φ 0. (3.4)

Next, let PΛD(h) denote the adiabatic Hamiltonian defined as before. Let
RAD(z,h) = (PAD(h) - z)~ι denote the resolvent of PAD(h). To estimate the
boundary values of the resolvent, we use Mourre's commutator method. Recall that
the notion of conjugate operator was introduced by Mourre in [M].

Theorem 3.2. Assume that A is a conjugate operator of PAD(h) at E G R, which in
addition satisfies

i[PAD(h), A]>Ch>0, on Ran(£ 7 (P A D (/0)) (3.5)
Λ D (/ι) , A], A](PAD(h) + i)- 11| < Ch2.

Here I is a small interval around E, and Ej(-) denotes the spectral projection
associated with I. Then one has

\\{A)-sRAD(\±ίO,h)(A)-s\\ <Ch~ι (3.6)

for s > 1/2, λ sufficiently close to E and h > 0 sufficiently small.

Theorem 3.2 is just a parameter-dependent version of Mourre's result (see [GM,
M]). We do not give the details of the proof here. To check the condition (3.5) we
need some non-trapping assumption on the eigenvalue curves λ(x, h) of Pe(x, h) (see
[RT]). We shall say that a classical Hamiltonian q is non-trapping at the energy E if
the classical trajectories satisfy:

lim |etH«(a;,OI = + ° o , V(z,0 G q~\E).
|t|-oo

Here Hq is the Hamiltonian vector field of q. In the case q(x,ξ) = ζ2 + V(x) with
V a two-body potential tending to 0 at the infinity, the non-trapping assumption is
satisfied at the energy E > 0 if IE - 2V(x) - x • VV(x) > 0 for all x.
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Corollary 3.3. Assume that rank Π(x,h) = 1. Let \(x,h) and λ(x,0) denote the
corresponding eigenvalue of Pe(x, h) and Pe(x,0). Assume that the classical Hamil-
tonian p(x,ξ) = ζ2 + λ(x,0) is non-trapping at the energy E e R. Then there exists
a conjugate operator A of PAD(h) such that (3.5) is satisfied.

Proof. Making use of the non-trapping assumption, we can construct, by the method
of [GM], a symbol α(x, ξ) such that a{x, ξ) - x • ξ is a bounded symbol and

{ p , α } > C > 0 , for (x,ξ)€P~l(I),

where / is a small interval around E and {•, •} denotes the Poisson bracket. Let
A — Πaw(x^ hD)Π, where aw(x, hD) is the /ι-pseudodifferential operator with Weyl
symbol a(x, ξ) defined by:

x, hD)u)(x) = (2πΓrι [ [ el{x~y)' ^a((x + y)/2, hξ)u(y) dy dξ ,

for u G y . Since Π commutes with A and with the multiplication by λ(x, h), on can
check that

i[PAD, A] = i[Π(-h2Δx)Π -f Λ(x, h)Π, A]

= iΠ[-h2Δx + λ(x, /ι), A]Π . (3.7)

To simplify notations, we write: aw = aw(x,hD). Then

M[-h2Δx + \(x,h),A]Π

= iΠ[-h2Δx + λ(x, /i), α^J/7 -f /7[-/i2zA, TJJα^ϋ + Πaw[-h2Δ, Π]Π .

Making use of results on symbolic calculus of h-pseudo-differential operators (see
[Ro]), we derive from the positivity of the Poisson bracket {p. a} and the fact that
λ(x, h) — λ(x,0) -f O(h2) the following lower bound on the first term in the above
equality:

iΠ[-h2Δx + λ(x, h), aw]Π >Ch, C > 0

for h > 0 small enough, on the range of Ej(PAD(h)), where J c / is a small
interval containing E. To estimate the other two terms, we remark: [—/i2Z\,i7J =
—2hVΠ • (hDx) + O(h2), where OQi2) is a bounded operator with norm bounded by
Ch2. Since Π(VΠ)Π = 0 and [77, α™] = O(/ι), we obtain:

Π[-h2Δ, Π]awΠ + Πaw[-h2Δ, Π]Π = O(h2).

This proves that i[PΛD,A] > Ch, C > 0, on the range of Ej(PΛD), for h > 0
small enough. The second estimate in (3.5) can be readily verified. A is clearly a
conjugate operator of PAD. See the definition in [MJ. D

We derive from Corollary 3.3 that for any s > 1/2, one has

\\(x)-sRΛD(λ±iO,h)(x)-s\\ <Ch~\ for λ near E (3.8)

By the method of multiple commutators, we can derive as in fW2] the high order
estimates, Vs > k + 1/2:

\\(x)-sdk

λR
AD(λ±i0,h)(x)-s\\ <Ckh~k-\ (3.9)

for λ near E. This allows to obtain the decay estimates on semiclassical wave
functions: Vs > 0, Vε > 0, one has

itpADm/h(x)-8\\ < C£Sh-ε(t)-s+ε, (3.10)

for all t e R.
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Let now e^ft),..., ek(h) be the first k points (counted from below) in σd(Pc(h))
with total multiplicity m. Assume that:

e^ft),..., ek{h) are all stable [cf. (2.9)]. (3.11)

Let λλ(x, ft),..., λm(x, ft) be the first m eigenvalues (counted with their multiplicity)
of PJx, ft) with lim XΛx.h) = e-(ft) for some 1 < j < k. Assume that

dist(σ(Pe(x, ft)) \ {\x(x, ft), . . . , λm(x, ft)}, {X^x, ft), . . . , λm(x, ft)}) > δ > 0,
(3.12)

uniformly in x and ft > 0. In view of Proposition 3.1, this just requires (2.16) to be
satisfied by \x(x, 0 ) , . . . , λm(x, 0).

Theorem 3.4. Assume the conditions (3.1), (3.11), and (3.12). Let Π{x,h) be the
spectral projection associated to the first m eigenvalues A}(x, ft),..., λm(x, ft) of
Pe(x, ft). Let PAD(h) be the adiabatic part of P(h) defined as before. Let Λo e R
be such that

λ0 < inf inf(σ(Pe(x, ft)) \ {λ^x, ft),..., λm(x, ft)}), (3.13)

and that for |λ — λ o | sufficiently small

\\{x)-sRAD(λ±iO,h)(x)-s\\ <Ch-\ ^ <s< | . (3.14)

Then we have

\\(x)~-sR(λ±i0,h)(x)~s\\ <Ch'1. (3.15)

Here R(\ ± iO, ft) = lim(P - (λ ± iε))~λ denote the boundary values of the resolvent

of P, and s and λ are as in (3.14).

Proof. Recalling (1.9) and setting

V = P-PAD -QAD, (3.16)

and
RAD(z, ft) = (PAD(h) - zΓιΠ, R(z, ft) = (QAD - zΓιΠ,

one finds the following identity

R(z, ft) = RAD(z, ft) + R(z, ft) - R(z, h)(ΠPRAD(z, ft) + ΠPR(z, ft)).

Applying this equality once more, we obtain:

R(z, ft) =RΛD(z, ft) + R(z, ft) - (R(z, h)PRAD{z, ft) + RAD{z, h)PR(z, ft))

+ R(z, h)(ΠPRAD(z, h)PR(z, ft) + ΠPR(z, h)PRAD(z, ft)) (3.17)

for z = λ + is, ε φ 0. Note that (3.13) implies

\\R(z, ft) 11 < C , uniformly in ft > 0, λ near λ0 and e e [-1,1]. (3.18)

Since
77P17 = -h2ΠΛxΠ = hO({x)~Q)hDx + ft2θ((x}^)

on Rani7(x, ft), we obtain

A D % Λ D ~ s | | < Cft, (3.19)
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uniformly in z = λ+iε with λ and ε as in (3.18). This shows that for h > 0 sufficiently

small, one has an expression for R{z, h) in terms of RAD(z, h) and R(z, h):

R(z, h) = (RAD(z, h) + R(z, h) - (A(z, h) + A(z, hf))

x(l-B(z,h)Γ\ for ε ^ O , (3.20)

where

A(z, h) = R(z, h)PRAD(z, h), B(z, h) = ΠPA(z, hf + ΠPA(z, h).

The estimate (3.15) follows easily. D

We remark that according to Corollary 3.3., the estimate (3.15) on the boundary
values of the resolvent holds if the first eigenvalue of Pe(x,0) is non-trapping at the
energy

λ0 < inf inf(σ(Pe(x, 0)) \ {λ{(x, 0)}).

It is however clear that Theorem 3.4 applies to more general situations. Assume for
instance that there exist globally defined smooth sections of eigenfunctions υ,j(x,h)
with

Pe{x,h)uό{x,h) = \3(x,h)u3{x,h), j = 1,2,. . . , m .

Then PAD(h) can be smoothly diagonalized up to the order O{h). Assume that
for Pj = ξ2 + λ^(x,0), j — l , . . . , m , we can construct a same symbol a such

that {Pj,a} > C > 0, for (x,ξ) G pjι(λo), j = l , . . . , m . Then we can
construct a conjugate operator A so that (3.5) holds. In this case, (3.15) is still true.
Equation (3.14) is a kind of non-trapping condition on the effective Hamiltonians
ξ2 + λjOz^O),... ,ξ2 + λm(x,0). Theorem 3.4 can be interpreted as follows: if the

local energy of the adiabatic dynamics e~%tp lh has a uniform (in h > 0) time-
decay, so does the total dynamics e~

ιtPjίh. See Lemma 4.2 and also [W2] for two-body
problems.

4. Born-Oppenheimer Approximation of Wave Operators

The purpose of this section is to show the usefulness of the Born-Oppenheimer
approximation: Under the assumptions of Theorem 3.4, the adiabatic wave operators
Ω±D are good approximations of the cluster wave operators Ω±. Let us first study
the non-adiabatic wave operators Ω±ΛD. Setting

U(t, h) = e'UP'h, UAD(t, h) = e~
itpAD'h

and denoting by EΆC(PΛD) the projection onto the absolutely continuous spectral
subspace of PAD, we have

Ω£AD(h) = s- lim U(t, hfUAD(t, h)EΆZ(PAD). (4.1)
t—>±oo

The main result of this section is the following

Theorem 4.1. Let λo,P
AD be the same as in Theorem 3A. Let χ e C0°°(R) with

support sufficiently near λ0, such that QAD(x) > supsuppx, on R(Π(x,h)) for all
x G Rn. Then, under the assumptions of Theorem 3.4, we have

\\(Ω^AD(h)-l)χ(PAD)\\ = O(h), as fo->0. (4.2)

Here ||. || denotes the norm of bounded operators on L 2 (R n ( i v + 1 ) ) .
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Remark. In Theorem 4.1, we use, among other things, the assumption (3.14) which
is a kind of non-trapping condition. This condition is used to establish the uniform
time-decay: (4.3) and (4.4). For semiclassical N-body Schrodinger operators, it is
proven in Sect. 4 of [W4] that an estimate of the form (4.4) uniform in h > 0 implies
that the classical Hamiltonian and all classical sub-Hamiltonians are non-trapping at
energy E, ME G supp</>. This leads us to believe that a non-trapping condition is
necessary in establishing (4.2).

To prove Theorem 4.1, we need some preparations.

Lemma 4.2. Assume that for some s > 1/2 and 6 > 0,

\\(x)-sRAD(λ±iO,h){x)-s\\ <Chr\ for λ e (λ0 - M o + δ).

Then, for any φ G C^°((Λ0 — <$, λ0 -f- δ)), we have

(x)-sUAD(t,h)φ(PAD)f\\2dt < C\\ff, (4.3)

and if λ0 satisfies the assumptions of Theorem 3.4,

(x)-sU(t, h)φ(P)f\\2 dt < C | | / | | 2 , (4.4)

for all f £ L 2 (R n ( i V + 1 ) ) , uniformly in h e (0, h0).

Proof By Theorem 3.4, (x)~s is locally PAD- and P-smooth. The results (in
particular, the uniformity in h > 0) follow from the arguments used in the proof
of Lemma 2.1 in [W2]. D

Lemma 4.3. Let χ e CJ°((o, b)). Assume b < infσ(QAD). Then we have

\\(χ(P)-χ(PAD))(x)ρ\\<Ch. (4.5)

Proof For any self-adjoint operator A and any real function χ G CJ°(R), one has
the formula (see Eq. (13) in [HS2]):

X(A) = - / -φ{z)(A - zΓιL(dz), (4.6)
π J dz

where L(dz) is the Lebesgue measure over C, χ denotes an almost holomorphic
extension of χ with compact support, i.e.
(i) x e C0°°(C) with χ(x) = χ(x), for xeR.

(ii) d-zχ(z) = O(\lmz\°°).
Admitting the existence of such an almost holomorphic extension (see the references
in [HS2]), the reader can check the formula (4.6) by using Stone's formula and an
integration by parts in z variable. Making use of (3.17), we get

R(z) = RAD(z) + R(z) + B(z),

where the remainder term B(z) satisfies the estimate

\\B(z)(x)ρ\\ < Ch\lmz\~N° for z 6 suppx,
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with No eN being independent of z and h. Here we just used the self-adjointness of
PQi) and PAD(h) to conclude that

\\(x)QR(z)(x)-g\\ <C\Imz\-Nή, \\(x}cRΛD(z)(x)-ρ\\ < C l l m ^ - ^ , imz^O,

for some NQ depending only on ρ. Since R(z) is holomoφhic on the support of χ
for an appropriate choice of χ9 Lemma 4.3 follows easily. D

Now we are ready to give the

Proof of Theorem 4.1. Under the assumptions of Theorem 4.1, we can choose δ > 0
such that λ0 + δ < inf σ(QAD) and the resolvent estimate (3.15) of Theorem 3.4
is valid on the interval [λ0 - δ, λ0 + δ]. Let χ £ CQ°((\0 - δ, λ0 + δ)). Take
φ G CQ°((A 0 - <5, λ0 -f δ)) with φ(\) = 1 on suppχ By the intertwining property of
wave operators,

φ(P)Ω^ADχ(PAD) = Ω^ADχ(PAD).

This allows us to derive:

{Ω»AD - \)χ(PAD) =~ ί <KP)U(t,h)*VUAD(t,hMPAD)dt

o

+ (φ(P) - l)χ(PAD) (4.7)

According to Lemma 4.3 one has

(φ(P) - l)χ(PAD) = (φ(PΛD) - l)χ(PAD) + O(h) = O(h)

in the space of bounded linear operators i^(L 2 (R n ( i v + 1 ) )) . To estimate the first term
of the rhs of (4.7), we recall that

V = -h2(ΠΔxίϊ x

= - 2hΠ(dxΠ)hVx + O{h2{x)-Q), (4.8)

on Ran Π. Take ψ e Cg°((λ0 - δ, λ0 -f δ)) with ψ(\) = 1 on supp φ. Combining (4.8)
with Lemma 4.3, we get

φ(P)V = -2φ(PAD)hΠdxΠhVx + O(h2(x)-ρ)

= O(h2(x)~ρ), on Ran iT, (4.9)

since φ(PAD)Π = -0(0)77 = 0. Applying Lemma 4.2, we see that

φ(P)U(t,hfVUAD(t,h)χ(PAD)udt, υ

forall u.v G L2. Therefore we can conclude that

+ OO

fVU(th)χ(PAD)%- ί φ(P)U(t,hfVUAD(t,h)χ(PAD)dt

0
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defines a bounded operator with norm bounded by Ch. Equation (4.2) for
follows from (4.7). Using the same arguments, we can obtain a similar bound for the
operator (Ω^AD(h) - l)χ(PAD). D

As a consequence of Theorem 4.1, we obtain the following

Corollary 4.4. Let \x(x,h) be the first eigenvalue of Pe(x). Denote by PAD the
adiabatic approximation of P associated to \x(x,h). Let λ0 G R with Λo <
mϊσ{QAD). Assume that λ0 is non-trapping for p(x,ξ) = ξ2 -f λ^α^O). Then there
exists δ > 0 such that for any χ G C§°((λ0 — δ, λ0 + δ)) we have

\\(Ω^AD(h) - ί)χ(PAD)\\ < Cχh . (4.10)

For the cluster wave operators Ω± we have according to Theorem 2.3

nc rj ΓΛNAD f}AD

Theorem 4.1 gives the adiabatic approximation of the wave operator Ω± up to order
O(h).

Corollary 4.5. Under the assumptions of Theorem 3.4, there exists δ > 0 such that
for any χ G C^°((λ0 - δ, λ0 + δ)) one has

\\Ωc

±-ΩAD)χ(Pc)Π0\\<Cχh. (4.11)

Proof It suffices to use the intertwining relation of the wave operators and the results
of Theorem 4.1. Take φ G Cg°((λQ - δ, λ0 + δ)) with φ(λ) = 1 on suppx. Then

Ωc

±χ(Pc)Π0 = Ω^ADφ(PAD)ΩADχ(Pc)Π0 = ΩADχ(Pc)Π0 + O(h)

in J^ '(L 2 (R n ( N + 1 ) ), by Theorem 4.1. D

5. The Classical Limit of the Adiabatic Wave Operators

It is a well known principle in the physics literature that the dynamics of heavy
particles in molecular collisions can be well approximated by classical mechanics. In
this section we shall verify this assertion in studying the classical limit of the adiabatic
wave operators ΩAD(h). Our approach is parallel to [W3]: Since PAD essentially is a
two-body Hamiltonian, we can construct a good approximation of ΩAD(h) by use of
Fourier integral operators. The new point now is the existence of a spectral projection,
Z7(x, h), which enters into the leading term of the amplitude. In the following we shall
concentrate on clarifying the leading terms of various approximations and only skip
over the details of the remainder estimates which are often the same as in [W3]. Note
that the similar results to Theorem 5.3 for the classical limit of wave operators for
usual two-body Schrodinger operators have not been explicitly stated in the literature.
See however a remark in the Introduction of [W3] and also [Y] in other framework.

Let Eo be a simple eigenvalue of Pc. Eo is /^-dependent, but assuming (3.1) one
can easily verify that E0(h) = Eo has an asymptotic expansion

1=0
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Assume that E0(h) is stable (see (2.9)). Let \λ(x,h) be the eigenvalue of Pe(x,h)
such that

λjίz, ft) - E0(h) = O((x)~ρ), as \x\ -> oc , (5.2)

with ρ > 1 as in (3.1). Assume that

x, ft), σ(Pe(x, ft)) \ {λ^x, ft)}) > δ > 0 , (5.3)

uniformly in x £ R n and ft > 0. Under the assumption (3.1) we can show that
λjOr, ft) possesses an asymptotic expansion

hZ3Λ3(x) (5.4)
3=0

uniformly in x. In particular, Λ0(x) is an eigenvalue of Pe(x,0) (in fact Λ0(x) =
λj(a;,O), see Proposition 3.1) and one has:

\Λ3(x)-e3\<C3(x)-Q. (5.5)

We want to study the relation between Ω±D{h) and the classical wave operators

Ω±(x,ξ) = n m $ ~ t o $ o ( ^ 0 5 £ ^ 0 ? (5.6)

where Φ t and ΦQ denote the classical Hamiltonian flows associated to p(x,Q =
ξ2 + Λ0(x) - en and po(x,ξ) = ξ2. We shall only study the outgoing wave operator
ΩAD(h) = i? (ft).

Given a phase φ(.,.), we denote by J(α) the Fourier integral operator defined by:

eι{φ(x,ξ)-χ • O/ha^ ξ. h)f(χf) dxr dξ (5.7)

with a G C°°(R2?\, S{L2(R™N)) with bounded derivatives and / in the Schwartz
space ^(Rx,L

2(RyN)). We refer the reader to Appendix in [Wl] for results on
the calculus and continuity of this class of Fourier integral operators but with scalar
amplitude a. When a is J^(L2)-valued, we can establish the same results in replacing
\a\ by ||α|| in the proofs.

We want to construct φ and a so that we can compare UAD(t, ft) with
J(a)U0(t, h)ΠQ(h) for t -> +oo. Here Π0(h) is the spectral problem of Pc(h) as-
sociated to E0(h) and the free evolution is

As usual, we determine the phase function φ and the amplitude a by considering
the formal identity

77(z, h)(-h2ΔxII(x, ft) + λ{(x, h))(eτφ/ha(h)) = eιφ{x>0/ha(h)(ξ2 + E0(h))

and requiring that φ(x, ξ) - x ξ is small when x —• oo. We look for α(x, ξ; ft) in the
form:

α(x, ξ; ft) = Π(x, h)b(x, ξ; ft)

with b(h) satisfying

(-h2Δx - h2[Δx,Π(x, ft)] + \{(x, ft) - (ξ2 + E0(ft)))e^//ι6(ft) = 0 . (5.8)
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To determine b(h) ~ Y^h^b , we expand Π(x,h), X^x^h) and E0(h) in powers of
(h):

oo

i=o

Substituting these expressions into (5.8) and setting the resulting coefficient of hk

equal to 0 for k e N, we obtain the following equations

\Vxφ(x, ξ)\2 + Λ0(x) - e0 - ξ2 = 0, (5.9)

(2Vxφ • V , + 2 V ^ Vxπ0(x) + Δxφ)b0 = 0, (5.10)

-Vx + 2 V x φ - V x π 0 ( x ) + Δ x φ ) b k = fk, k>l, (5.11)

where fk depends only on the amplitudes b- with 0 < j < k — 1.
Since Λ0(x) - e0 is short-range, we can use the phase function φ constructed in

[W3] to solve the eikonal equation (5.9) in the outgoing region

G R 2 n \ x • ξ > ( - 1 + ε)\x\\ξ\, \ξ\ > d,\x\ > R } .

Here ε, d > 0 are arbitrary, while R = Λ(ε, d) should be large enough. Note that this
phase function differs from that constructed by Isozaki-Kitada in [IK] by a function of
ξ. It has the advantage of being related to the classical wave operators in an explicit
way: It is a generating function for the classical wave operator acting as a canonical
map on phase space (see [W3] and Eq. (5.25) below). In particular, one has

\d^d^(φ(x,ξ)-x-ξ)\ < CaβR-δ>(x)-δ2-W, (5.12)

for any δι, δ2 > 0 with <5j + δ2 = Q — 1.
To construct a solution of (5.10), we use the method of characteristics. Let

ργ{t\ x, ξ) denote the gradient flow of φ(x, ξ):

~τ;Q\(t> χi 0 = Vφiρfo; x, ξ\ 0 , ρ^O; x,ξ) = x.

Here ξ is considered as a parameter. For the properties of ρx{t\ x, ξ), we refer to Sect.
2 in [Wl]. Put

x x (5.13)

o

where G o is to be determined by solving

Vxφ • VxG0(x,ξ) + (Vxπo(a0 • Vxφ)G0(x,ξ) = 0. (5.14)

Let π 0 0 denote the spectral projector of P c(0) associated with e0. Then we have
(see Theorem 2.2):

l l
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Using the outgoing properties of the flow ρ{(t;x,ξ) (see [Wl]), we obtain:

for (x,0 e Ω(ε,d,R). Put

d
l = G0(Qι(t; x, 0 , 0 , 7Γ* = ~πo(Qι(t; x, 0 )

Along the flow Q\(t\x,ξ), Eq. (5.14) is transformed into an ordinary differential
equation:

— Gι πtGί-0

Adding the condition
lim | | G o - / | | = 0 ,

t—>oo

this equation can be solved by a series of Dyson:

OO OO OO

Gi = 1+ / π*1 dt{ + ' + / / ττtι - - - πtn dtn dt, + .
J J J J
t ί t! t n _ !

It can be checked that the norm of the general term in the above series is bounded
by:

(X) OO OO

for (x, 0 G i7(ε, d, R). This shows that the series of Dyson is norm-convergent if
x\> R with R large enough. Setting now

one can verify that Go( , •) is a smooth operator-valued solution of (5.14) and

\\G0(x,ξ)-I\\<C(x)ι-°

in any outgoing region Ω(εf, ό!, R') with ε' > ε, d! > d, R' > R. The higher order
transport equations (5.11), k > 1, can be solved by using the same arguments and an
induction on k. Introducing a suitable cut-off \ and taking a C°° -realization of the
amplitude

Σb^x.O , (5.15)

we obtain a temporally global approximation of UAD{t1 h) in outgoing regions.

Proposition 5.1. For any d > 0, let a(h), φ be constructed as above. The we have

ΩAD(h) = s- lim UAD(t, h)*J(a)U0(t, h)Π0 (5.16)
t—*oo

on Ran E2d(P0(h)). Here P0(h) = —h2Δx and E2d( ) denotes the spectral projection
onto the interval (2d, +oo).
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Proof. It suffices to show that

s- lim U0(t, h)*J(a)UQ(t, h) = Πo on Ran E2d(PQ(h)). (5.17)

Since J(a) can be regarded as a pseudo-differential operator with symbol

e-ι(Φ-x • OΛα> this can be proven as in [W3] by making use of an Egorov's Theorem
and the estimates (5.13), (5.14), and (5.15). The details are omitted (see [W3]). D

By Proposition 5.1, we have, at least formally

oo

ΩAD(h) = W(t, h) + %- ί UAD(s, hfj(r)U0(s, h)Π0 ds , (5.18)
^ J

t

where
W(t, h) = UAD(t, h)*J(a)U0(t, h)ΠQ

and J(r) is defined as in (5.7) with amplitude given by

r(h) = e-ιφ/hPAD(eιφ/ha(h)) - a(h)(ξ2 + E0(h)).

Due to the choice of α(/ι), we see that

\\d^d^r(x,ξ;h)\\ < CMaβh
M{x)~M

1 for any M > 1 , (5.19)

for (x ,0 G i?(2ε, 2cZ, 2R). To give a meaning to the formal identity (5.18), we
establish the following

Proposition 5.2. Let

S+ ={b e C°°(R2 n); b is a bounded symbol with supp6 C β(ε, d, i?)

for some ε > 0, d > 0, R > 0} .

Let J(a) be a parametrix constructed as above such that the estimate (5.19) holds in
the region β(ε/2, d/2, R/2). Then, for any b e S+, with supp6 C Ω(ε, d, β), ίA r̂e is
Γ > 0 5wc/z ίAαί

| |(βΛ i )(/ι) - W(t,h))b(x,hD)\\ < CMhM(tyM (5.20)

for all M e N, £ > Γ. Furthermore, the estimate (5.20) /s α t o ίrw^ //" we replace
beS+byboe C0°°(R- x (R£ \ {0})).

Proof We use the identity (5.18) combined with microlocalized decay estimates on
the free evolution of C/0(ί, h) (see [W3, Corollary 2.2]). D

According to Proposition 5.2, to study the semίclassical approximation of ΩΛD(h),
we only need to study W(t, h) for a fixed t > T. Recall that in Proposition 5.2, no
non-trapping condition on the effective Hamiltonian is needed, because we only used
estimates on the free evolution i/0(£, h) in the proof.

Now let S = S+ U C0°°(R£ x (R£ \ {0})). To relate ΩAD(h) to the classical wave

operators Ωcl in the limit h —» 0, we shall study the action of ΩAD on quantum
observables. To this end we first observe that, using perturbation theory, one can
show that Π0(h) possesses an asymptotic expansion

j=0
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where πOj G J£(L2(RnN)) are ^-independent and in particular, τr00 is the spectral
projector of P c(0) associated with a simple, stable eigenvalue e0.

Theorem 5.3. Assume the conditions (3.1), (5.3) and the stability of E0(h). For any
ί>i, 62 6 S, c a bounded symbol over R 2 n, put

W(h) = bx(x, hD)ΩAD{hγc(x, hD)ΩAD(h)b2(x, hD). (5.21)

Then W(h) is an h-admissible operator (i.e., an h-pseudodijferential operator modulo
an error of order 0{h°°), see [Ro]), and its leading symbol is given by

wQ(x,0 = bfaO^faOci&faξVGfaξ). (5.22)

Here Ωcλ{x1ξ) is the outgoing classical wave operator for the classical Hamiltonians

(£2, ξ2 + A)(χ) ~ eo) and G(χ, 0 € S?(L2(RnN)) is defined by

G(x, 0 = π0 0G*(y, ξ)πQ(y)G0(y, ξ)π00 , y = y(x + 2tξ, 0 , (5.23)

for t > T, with Go given by (5.14) and y(x,0 denoting the inverse of the global
diffeomorphism x \-> Vxφ(x,ξ).

Proof We construct J(a) such that (5.20) holds for b{ and b2. Then one has for t > T,
T sufficiently large

Wih) = b{(x, hD)W(t, h)*c(x, hD)W(t, h)b2(x, hD) + O(h°°).

By Egorov's theorem and the calculus of Fourier integral operators (see [Wl]), one
sees that W(t, h)*c(x, hD)W(t, h) is an /ι-pseudodifferential operator with operator-
valued symbol. To compute the leading symbol of W(h), we proceed as in [W3,
Proposition 4.5]. The difference from [W3] is that we now have to consider the
operator-valued symbol G0(x,ξ) defined in (5.14). Note that for fixed t > T the
leading symbol of J(a)*UAD(T)c(x,hD)UAD(t)*J(a) is

dt(x, 0 = αo(y, ξ)*ao(y, ξ)\dxy(x, ξ)\c(Φ~\y, Vxφ(y, ξ))), y = y(x, ξ),

where φ(x, ξ) is a solution of the eikonal equation (5.9). For (x,ξ) G supp bj9 j = 1,2,

Φ o ^ ( χ Ό ^s m t n e o u t g° m g region Ω(ε,d,R). It then follows from the computation
in [W3] that

dt(Φl(x, 0) =H(x + 2tξ, ξ)c(Ωc\x, 0 ) ,

for ( X , Q G suppbj9 j = 1,2, and t > T.
In the derivation of (5.24), we used the following expression for the classical wave

operator:

ί?cl(x, 0 = (y(x, a , (VxΦ)(y(x, a , O , (^, a e ί2(2ε, 2d, 2Λ). (5.25)

We refer to [W3] for a proof of this relation. Now Eq. (5.22) follows easily. D

One can verify that the leading symbol w0 of W(h) is in fact independent of t for
t > T, if T is sufficiently large (see the proof of Theorem 5.4 below, which gives
G(x, a — πoo f° r ^ * a rg e enough and for ξ φ 0).

To obtain the classical limit of the adiabatic wave operators, we study its action
on coherent states. Let Uh denote the dilation

U frj\X) — ίl JK'I %) •> J ^ Li \i\χ i LJ \\X )) .
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F o r ( : r O I ξ 0 ) e R 2 n , ξo^O, put

Wh(x0,ξ0) = j7he t f c~1 / 2 ( l ί °- I °"- ι H (5.26)

Take χ e C0°°(R+) with χ(ξ0

2) = 1.

Theorem 5.4. Assume (3.1) and (5.3). Let ΩAD(h) be the adiabatic wave operator
associated to the simple eigenvalue \{(x, h) of Pe(x, h) such that

lim λjOc, h) = E0(h),
| x | K 5 OK5O

where E0(h) is a stable eigenvalue of Pc(h). Then, for any bounded symbol c and any
(x0, ξ0) <E R2n, ξ0 φ 0, one has

l i m ί W = c(Ωcl(xo,ξo))πoof, f e L 2 ( R n ( i V + 1 ) ) , (5.27)

where

F(h) = Wh(xo,ξofχ(Po(h))ΩAD(hfc(x,hD)ΩAD(h)χ(Po(h))W^

and Ωcl is the outgoing classical wave operator for the classical Hamiltonians

(ί2i ί2 + A)(x) ~ eo) and P<s(h) — -h2Δ.

Proof It suffices to prove (5.27) for / in the dense subset C0°°(Rn(iV+1)). Let χx be in
C0°°(R£) with χx(x) = 1 for \x\ < 1. Put χh(x) = χx{h^2x). For / G C0°°(Rn(iV+1))
we can verify that

Km(χhF(h)χhf-F(h)f) = 0.

Since
Wh(xo,ξo)χhWh(xo,ξof = χx(x - x0)

and since Xι(x-xo)χ(ξ2) is in 5, we can apply Theorem 5.3 to approximate χhF(h)χh

and conclude as in [W3] that

limF(ft)/ =

= c(Ωcl(x0Jξ0))G(x0,ξ0)f. (5.28)

This proves the existence of the strong limit s-lim F(h). To show that G(x0, ξ0) = π 0 0 ,
h—>0

we note that F(h) is t-independent and we can take the limit t —> oo in the definition
(5.23) of G(xO)ξo). Combining (5.14) and the fact that πo(x) —> π 0 0 as x —+ oo, we
get that lim ό(x o ,ξ o ) = π 0 0 . This proves the theorem. D

Note that the argument used in the proof of Theorem 5.4 shows also that w0 in
(5.22) is in fact t-independent for t > T.

We emphasize that the non-trapping condition on the classical effective Hamilto-
nian is not needed in Theorems 5.3 and 5.4. This should not be surprising, since the
classical wave operator i?cl(x, ξ) is always well defined on R^ x (R^ \ {0}). Note that
the main assumption in Theorems 5.3 and 5.4 is that Π(x, h) is a globally defined
spectral projector with rank one. In particular, these results apply to excited states
E0(h) = e0 + O(h2), where e0 is a simple, stable eigenvalue of P c(0). Returning
now to the cluster wave operators Ω±(h), we easily derive from Corollary 4.5 and
Theorem 5.4 the following
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Theorem 5.5. Under the assumptions of Theorem 3.4 with m = 1, let (x0, <ξ0) <E R 2 n

with £Q = λ0, where λ0 > 0 is a non-trapping energy ofp(x,ξ) = ξ2 + Λ0(x) — e0.
Then we have, for any bounded symbol c on R2? and any χ £ CQ°(R) with support
near λ0 and χ(λ 0) = 1, that

j-lim Wh(x0,ξofχ(Po(h))Πo(h)Ωc

±(hf c(x, hD)Ωc

±(h)Πo(h)χ(Po(h))Wh(xo,ξΌ)

where Ω± are the classical outgoing wave operators associated to the effective
Hamiltonian p(x,ξ) and π 0 0 is the spectral projection of Pc(0) associated to its first
eigenvalue e0.

To conclude this paper, we remark that we have only treated a restricted
class of potentials (smooth short-range potentials) with a stability assumption on
the eigenvalue of the cluster Hamiltonian Pc. Many problems related to Born-
Oppenheimer approximation of molecular scattering theory remain open. We hope
that this work could serve to initiate a mathematical study of Born-Oppenheimer
approximation in molecular scattering, a subject which is of interest in molecular
physics.

Acknowledgements. M.K. wants to thank R. Seiler for helpful discussions and J.M. Combes for
explaining a long time ago at Berlin how the coordinates used in this paper and in [Ra] could be
useful for discussing the Born-Oppenheimer approximation in scattering theory.
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