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Abstract. We discuss gauge theory with a topological N =2 symmetry. This theory
captures the de Rham complex and Riemannian geometry of some underlying
moduli space .# and the partition function equals the Euler number y(.#) of 4.
We explicitly deal with moduli spaces of instantons and of flat connections in two
and three dimensions. To motivate our constructions we explain the relation
between the Mathai-Quillen formalism and supersymmetric quantum mechanics
and introduce a new kind of supersymmetric quantum mechanics based on the
Gauss-Codazzi equations. We interpret the gauge theory actions from the Atiyah--
Jeffrey point of view and relate them to supersymmetric quantum mechanics on
spaces of connections. As a consequence of these considerations we propose the
Euler number y(.#) of the moduli space of flat connections as a generalization to
arbitrary three-manifolds of the Casson invariant. We also comment on the
possibility of constructing a topological version of the Penner matrix model.
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1. Introduction

The purpose of this paper is to investigate in some detail the properties of gauge
theories with an N=2 topological supersymmetry (models of this type have
appeared previously in [58, 12, 62]). As we will show, these theories describe the
de Rham complex and Riemannian geometry of some underlying moduli space .#,
in contrast with the standard N=1 gauge theories [57] which model the
deformation complex of .# and capture the geometry of the Atiyah-Singer [6]
universal bundle (see e.g. [9, 38, 12, 11]). The most important property of this class
of theories is that formally the partition function of the corresponding N =2
action S, equals the Euler number of .#,

Z(S.u)= (M),

i.e. the Euler characteristic of the de Rham complex of .#. That N =2 theories may
have this property was first suggested by Witten [ 607, who has recently shown [61]
that the twisted Kazama-Suzuki models [39] calculate the Euler number of vector
bundles over the moduli space of Riemann surfaces.

All this is, of course, quite reminiscent of the properties of supersymmetric
quantum mechanics [56]. That N =2 topological gauge theory is indeed closely
related to supersymmetric quantum mechanics on spaces of connections is seen
most clearly within the framework of the Mathai-Quillen formalism [44] (as
applied to topological field theories by Atiyah and Jeffrey [5], see also [16]). As
pointed out by Atiyah and Jeffrey, this formalism (whose relation with supersym-
metric quantum mechanics we will explain in Sect. 2) can be used to define some
kind of regularized Euler number y(E) of a vector bundle E, depending on a section
s of E, in cases where the classical (co)homological or differential geometric
definitions are not terribly useful, e.g. when E is infinite-dimensional. Moreover,
the integral expression for y(E) can be interpreted as the partition function of a
topological field theory.

In order to illustrate this we will briefly review the classical Mathai-Quillen
formalism (Sect. 2.1) and then apply it formally (in the spirit of Atiyah and Jeffrey)
to the infinite-dimensional loop space LM of a manifold M and its tangent bundle.
We will show that for a special class of sections s the regularized Euler number
1(LM) is precxsely the partition function of supersymmetric quantum mechanics
and hence, in particular, equal to the rigorously defined Euler number y(M) of M
(Sect. 2.2). Conversely, it is possible to derive the general form of the Mathai-
Quillen representative of the Euler character of a finite-dimensional vector bundle
from supersymmetric quantum mechanics and these two observations allow us to
clarify considerably the meaning of the regularized Euler number of an infinite-
dimensional vector bundle.

There is yet another way of obtaining the Euler number of some manifold from
supersymmetric quantum mechanics whose classical counterpart is based on a
combination of the Gauss-Bonnet theorem with the Gauss-Codazzi equations.
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These describe the curvature of some embedded submanifold in terms of the
curvature of the ambient manifold and the extrinsic curvature (second funda-
mental form) of the submanifold. The idea is thus to embed the manifold M into
some space Y (e.g. Euclidean space R* for k sufficiently large) whose curvature is
known and to combine supersymmetric quantum mechanics on the latter with a
supersymmetric delta function imposing the restriction to M. As this construction
appears not to have been discussed in the literature before, and as it is the
prototype of the procedure we will adopt when considering gauge theories, we
explain it in the case of S2CR? in Sect. 2.3 (see [17] for the general case).

Having recreated supersymmetric quantum mechanics, which can be regarded
as the simplest example of a topological field theory [13, 10, 11], in this way it is
tempting to apply these ideas to spaces of connections to construct topological
gauge theories. Precisely, this has been done by Atiyah and Jeffrey [ 5] who showed
that the action of Donaldson theory [57] can be interpreted as the Mathai-Quillen
realization of the Euler number of an infinite-dimensional vector bundle of self-
dual two forms over the orbit space «//% of gauge equivalence classes of
connections.

Our main interest here will be in theories where the bundle in question is
(related to) the tangent bundle of «//%. In this context Atiyah and Jeffrey have
shown that the three-dimensional topological gauge theories of [58, 14, 8, 12] can
be interpreted as Lagrangian descriptions of the Euler number y(<//%) for the
section s(4)=x*F , of T(oZ/%). In the case that the underlying three-manifold M isa
homology three-sphere (so that the non-trivial flat connections, the zeros of s, are
irreducible) this is in agreement with Witten’s identification of the partition
function of these theories with the Casson invariant [1] and Taubes’ observation
[52] that the Casson invariant can be interpreted as the Euler number of «//%4
defined by (a suitable perturbation of) the vectorfield *F ,.

This theory is already an N =2 model in disguise [ 58, 12] and we will show that
it has the feature in common with supersymmetric quantum mechanics that its
partition function can be identified with the Euler number y(.#) of some finite-
dimensional space .#, in this case the moduli space of flat connections. In
conjunction with the considerations of [58, 52] this suggests that also the Casson
invariant could in general be defined as y(.#). We will come back to this proposal
in Sect. 4.3.

It will become clear in the course of this paper that there are a number of
features peculiar to the case of flat connections in three dimensions. However, the
construction of N =2 actions with the property that the partition function Z is
equal to the Fuler number of some moduli space .# is (formally, i.c. ignoring
analytical questions) completely general and not limited to this example. To
illustrate this we will also construct these N =2 gauge theories in the somewhat
simpler, although perhaps geometrically less transparent, context of flat connec-
tions in two dimensions and instantons. The “simpler” here refers to the fact that
the deformation complex is “short” in these examples.

As our proof that Z = y(.#) will be based on the Gauss-Bonnet theorem and the
Gauss-Codazzi equations (i.e. we show explicitly that Z reduces to an integral over
A of the exponential of the Riemann curvature £ , of .#, determined from the
embedding of ./ into «//%) we will review some of the more elementary aspects of
Riemannian geometry of «//% and .# in Sect. 3.1.

We then show (Sect. 3.2) how to construct Lagrangian descriptions of these
geometries in terms of N =2 superfields (see [37] for the superfield formulation of
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topological field theories). The actions will essentially consist of two parts. One is
universal, i.e. common to all N =2 topological gauge theories, and describes the
Riemannian geometry of «//%. It is the counterpart of the supersymmetric
quantum mechanics action for Y or R* mentioned above. The other part depends
on the choice of moduli space .#. It serves to restrict the theory to .# C.%//% in an
N =2 invariant way and corresponds to the delta function imposing the restriction
to MCY.

As in the N=1 theories there is a considerable degree of freedom and
arbitrariness in the specific choice of Lagrangian. And as the construction of N=1
Witten type topological field theories, Lagrangian realizations of cohomological
field theories defined by intersection theory on some moduli space, is well
understood [41, 9, 14, 45, 12] (and the significance of having a particular
Lagrangian realization at one’s disposal should not be overemphasized) we will be
rather brief about these matters here. A fairly detailed analysis of these actions, in
particular with regard to questions of gauge fixing, can be found in the
lectures [53].

In Sect. 4 we complete the circle of ideas involving N =2 topological gauge
theories, the Mathai-Quillen formalism and supersymmetric quantum mechanics.
We interpret the topological actions of Sect. 3.2 from the Atiyah-Jeffrey point of
view (Sect. 4.1) and show that they also can be regarded as Mathai-Quillen
realizations of Euler numbers of certain infinite-dimensional vector bundles,
regularized to give (as in the case of supersymmetric quantum mechanics) the
Euler number of some finite-dimensional space, in this case of the moduli space .#
in question.

In order to understand the emergence and role of de Rham cohomology in
these theories we also explain their relation with supersymmetric quantum
mechanics on «7/%. In particular, we will see that the quantum mechanics theory
associated with the space «//% of gauge orbits on a three-manifold M (and a
particular section of the tangent bundle of the loop space of .//9) is nothing other
than Donaldson theory on M x S, as could have been anticipated from [3]. In the
topologically trivial sector this theory in turn is equivalent to a three-dimensional
topological gauge theory as (in accordance with general properties of supersym-
metric quantum mechanics) only the time-independent modes contribute to the
partition function. As we will explain in more detail in [17] this theory is, as
expected, precisely the previously constructed N=2 gauge theory of flat
connections. This gives an alternative demonstration of the relation between Floer
(instanton) homology and the Casson invariant.

We then turn our attention to the Casson invariant itself (Sect. 4.3). We review
the intersection theory definition of the Casson invariant [1] and its relation with
Taubes’ gauge-theoretic definition [52]. We comment on the generalizations
suggested in the mathematics literature and then make some remarks on the
structure of the moduli space .# of flat connections in three dimensions. In the
light of this, we then look at the status of our suggestion that y(.#) be regarded as
an appropriate generalization of the Casson invariant to arbitrary three-
manifolds.

Finally, let us point out that the property Z = y(.#) also immediately brings to
mind the Penner matrix model [49, 23] and suggests the possibility of constructing
a topological version of this theory. This is work in progress and we will comment
on this possibility, as well as on other possible applications and generalizations,
only briefly in Sect. 5.
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2. The Mathai-Quillen Formalism and Supersymmetric Quantum Mechanics

We will now briefly explain the Mathai-Quillen formalism in the finite-
dimensional case (see [44] for details and [5, 11, 16] for discussions in the context
of topological field theories). We then explain the relation between the Mathai-
Quillen formalism and supersymmetric quantum mechanics (Sect.2.2) and
describe the Gauss-Codazzi form of supersymmetric quantum mechanics
(Sect. 2.3).

2.1. The Mathai-Quillen Formalism

We start with some classical material (see e.g. [18]). Recall that an oriented 2m-
dimensional real vector bundle E over a manifold X has an Euler class
e(E)e H*™(X,Z). If dim X =2m, this class can be evaluated on (the fundamental
class [X] of) X to give the Euler characteristic (or Euler number)

AE)=e(E)[X].

In particular, if E= TX, the tangent bundle of X, y(TX)= y(X)is the Euler number
of X. There are two concrete ways of thinking about y(E). On the one hand, the
Gauss-Bonnet-Chern theorem provides one with an explicit differential form
representative ey(E) of e(E) constructed from the Pfaffian of the curvature
Q=0 of a connection ¥ on E, such that

HE)= | es(E). 21

On the other hand, y(E) can be computed as the number of zeros of a generic
section s of E (counted with signs),

wWE= % +1. 22
x:8(x)=0
If E=TX (and hence s a vector field on X) this is the content of the classical Hopf
theorem. A more general formula,

HE)= [ esp(E), (23)

obtained by Mathai and Quillen, interpolates between the two quite different
descriptions (2.1) and (2.2). Here e,  is a closed 2m-form on X, depending on both a
section s and a connection V, with the following properties: if s is the zero section of
E, then e, , =e, and (2.3) reduces to (2.1); if one replaces s by ts, with teR, and
evaluates (2.3) in the limit ¢— oo using the stationary phase approximation, (2.2) is
reproduced. Moreover, e, , =e, (we will suppress the dependence on the connec-
tion ¥ in the following) is the pullback to X via s of a closed form U on the total
space E of the vector bundle, e,=s*U. U is a representative of the Thom class [18]
of E but, unlike the classical Thom class which has compact support in the fibre
directions, U is Gaussian shaped along the fibres [cf. (2.4) below].

At this point it will be necessary to introduce some more notation: we let &
denote fibre coordinates of E, y, corresponding Grassmann odd variables, and
the curvature two-form of E, and we regard E as a vector bundle associated to the
principal G bundle P with standard fibre V, E= P x4 V. Then the Mathai-Quillen
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form U can be written as a fermionic integral over the x’s,
U=7n"Te ¢ ) dxexaﬂ"”xb/‘l +idgaya (2.4)

U is a representative of the Thom class in the G-equivariant cohomology HZ™(V)
of ¥ and can be regarded as a G-equivariant form on P x ¥V whose horizontal part
descends to the Thom form on E. In our (somewhat careless) notation s*U is
obtained from U simply by replacing & by s(x). We can now see explicitly that if we
take s to be the zero section of the tangent bundle TX, (2.4) coincides with the
standard Gauss-Bonnet integrand as the fermionic integral over y serves to pick
out the highest form part ~ ()" of exp 3,2y, which can then be integrated over
M to yield y(E). We will explain in Sect. 2.3 how to obtain the general Mathai-
Quillen formula (2.4) from supersymmetric quantum mechanics.

2.2. Supersymmetric Quantum Mechanics
from the Mathai-Quillen Formalism and vice versa

In finite dimensions (2.4) may perhaps be regarded as an unnecessary complication
since one has the simple classical formula (2.1) at one’s disposal. But, as Atiyah and
Jeffrey have pointed out, (2.4) acquires particular significance in the case of infinite-
dimensional bundles where expressions like (2.1) are quite hopeless but where it
may be possible to give a meaning to (2.3) for a suitable choice of section s.
Equation (2.3) can then be regarded as defining a regularized Euler number y(E),
which is, however, no longer necessarily independent of s. If s is a section
canonically associated with E, y(E) may nevertheless carry interesting (topologi-
cal) information. Indeed, in all the examples to be discussed in this paper we will
find that y(E) is actually the (rigorously defined) Euler number of some finite-
dimensional vector bundle and, as such, certainly has topological significance [sce
e.g. Eqgs.(2.11,4.2,4.6)]. We will see later that this is a general feature (and, in a way,
the quintessence) of the Mathai-Quillen formalism whenever the zero set of the
section s is finite-dimensional.

Clearly, the Mathai-Quillen formalism is closely related to supersymmetric
quantum mechanics. To make this analogy more precise let us consider, as our first
infinite-dimensional example, the case where X is the loop space X =LM
={x(t):S' >M} of a finite-dimensional Riemannian manifold M and E is its
tangent bundle T(LM). The fibre T,(LM) at a loop x(t) can be identified with the
space I'(x*(TM)) of sections of the pullback of the tangent bundle of M to S, i.e.
with the space of vector fields on M restricted to the image of theloop x(t). Hence a
natural section of the tangent bundle T(LM) is so(x)(t)=x(t) which we will use to
tentatively define the regularized Euler characteristic y(LM) of LM. With this
choice of section the exponent in (2.4),

& — 12" /4 —1d &%, 2.3)
(summation over the fibre indices now includes an integration over t) becomes

S(x)= z dt[x(t) = ZPLORYOW OP'OP D) + 20OV ()] - (2.6)

Here we have replaced Lorentz by tangent space indices using the vielbein e
corresponding to the fibre metric implicit in (2.5), 9, = efx,/2 [this also converts the
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prefactor in (2.4) to (2r)"™], and we have replaced dx¥() by the anticommuting
variable y*(t) [so that (2.3) will now also include an explicit integral over y*]. But
(2.6) is nothing other than the standard action of N =2 supersymmetric quantum
mechanics (see e.g. [ 56, 2]).! The action usually considered is actually slightly more
general, depending on a potential function W on M, and can be obtained from (2.5)
by choosing, instead of the above section sy(x), sy(x)(t)=X(t)+ W'(x(t)). This
option will turn out to be essential in our considerations in Sect. 4.2. More
generally still, one can replace W’ by an arbitrary section V of TM (vector field)
and this will allow us to rederive (2.4) (valid, after all, for an arbitrary section s of
E=TM).

In either case the regularized Euler number of LM, defined via the Mathai-
Quillen formalism, is precisely the partition function of N =2 supersymmetric
quantum mechanics on M which, as is well known, is the Euler number y(M) of M.
The standard way of seeing this is to start with the definition of y(M) as the Euler
characteristic of the de Rham complex of M,

2m
AM)= k;()(_)kbk(M ) 2.7

[here by(M)=dim H*(M, R) is the k™ Betti number of M], and to rewrite this as the
Witten index

M) =tr(—) e PH (2.8)

of the Laplace operator H=A on differential forms (or of its generalization,
defined by the twisted exterior derivative dy=e~"de” [56]). One then uses the
Feynman-Kac formula to represent this as a supersymmetric path integral with
the action (2.6) (or its generalization) and periodic boundary conditions on the
anticommuting variables p* [due to the insertion of (—)F in (2.8)]. Using the
p-independence of (2.8) it can be shown that only the zero modes of the action
contribute to the partition function (the contributions from the non-zero modes
cancelling exactly between the bosonic and fermionic fields), and the evaluation of
the remaining finite-dimensional integral then gives the right-hand side of either
(2.1) or (2.2), i.e. a path integral proof of either the Gauss-Bonnet or the Poincaré-
Hopf theorem. It is interesting to note that these two rather different classical
formulae for y(M) simply correspond to a different choice of section (with fixed
connection V) in the Mathai-Quillen expression e, ,(LM) for the Euler number
1(LM) of the loop space of M.

So far we have derived the action of supersymmetric quantum mechanics by
formally applying the Mathai-Quillen formalism to LM, and we have indicated
how to rederive the classical formulae (2.1, 2.2) for the Euler number y(M) from the
resulting action. What is still lacking to complete the picture is a derivation of the
general (finite-dimensional) Mathai-Quillen formula (2.4) from supersymmetric
quantum mechanics and this can be done along the following lines. Consider the
quantum mechanics action corresponding to the section s(x)(t)=x(t) + aV(x(t)),
where V is a vector field on M and «€R is some real parameter. Introduce a

! Thereis a slight clash in notation here. In the literature on supersymmetric quantum mechanics
this model is usually referred to as N =1. In the context of topological field theories, however, it is
more convenient and conventional to count Majorana charges. In the same way the standard
N =1 topological gauge theories are the field theoretic cousins of the N = 4 (Dirac operator) model

of [2]
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]
multiplier field B to write the bosonic part of the action as [ (X +aV(x))B— B?/2.
0

The rest of the action is as in (2.6) with the addition of the term o,V Viy*=ap - dV
(in our notation we will not distinguish between the vector field V and its metric
dual one-form). Now scale B and { by p~ /2. Setting « =~ !/?, the contributions
from all the non-zero-modes can again be shown to cancel identically in the limit
f—0 and one is left with an action of the form

B2 +(VB+1 - dV)+(curvature terms) 2.9

which — upon integrating over B — reproduces precisely the Mathai-Quillen
formula (2.3, 2.4).

In light of the above let us now make a few more comments concerning the
Mathai-Quillen formalism and the significance of the regularized Euler number
1(E) of an infinite-dimensional vector bundle E. First of all we want to draw
attention to the fact that what is a section in the Mathai-Quillen formalism is in
other contexts called a Nicolai map. All Witten type topological field theories have
acomplete Nicolai map [13, 11] and it is known that in these theories the partition
function can be reduced to a sum (integral) over the zeros of the Nicolai map. In the
present case this is either (so(x)(t)=x(t)) the space M of constant paths x=0 or
(sw(x)(t)=x(t)+ W'(x(t))) the set of critical points of W. Indeed, by squaring and
integrating one sees that x + W'(x)=0 implies x = W'(x) =0 (this we will refer to as
the “squaring argument” in the following). In this case one obtains the Euler
number of M in the form

HM)=3 (M W) (2.10)

where the M{p are the connected components of the critical point set of W and
relative orientations are to be taken into account. In (2.10) the critical point set of
W can also be replaced by the zero set of any (not necessarily gradient) vector field
V on M. The corresponding quantum mechanics action also has a Nicolai map.
The above squaring argument fails, however, as the cross-term x-V does not
necessarily integrate to zero. Thus the partition function reduces not to a delta
function onto the critical points but only to a Gaussian [as in (2.4, 2.9)], albeit
arbitrarily sharply peaked around the critical points of V. The analogue of (2.10) is
then reproduced in the limit ¢— 0.

Whichever section (action) we use, what we have found is that the Mathai-
Quillen formalism reproduces supersymmetric quantum mechanics when applied
formally to the loop space LM of a finite-dimensional manifold M, and that the
regularized Euler number of LM (in the sense of Atiyah and Jeffrey) is

x(LM)= x(M). (2.11)

Conversely, we have seen that we can derive the Mathai-Quillen generalization
e,y (2.3, 2.4) of the Gauss-Bonnet integrand from supersymmetric quantum
mechanics.

Equation (2.11) shows that (2.10) is in a way also the essence of the definition of
the regularized Euler number y(LM). One defines y(LM) to be equal to the Euler
number of the zero set of some vector field on LM. In the finite-dimensional case
this is, according to (2.10), not a definition but an equality. Here, if one chooses the
section of T(LM) to be any of those discussed above one recovers the result (2.11).

This is a'general feature of the Mathai-Quillen formalism in the context of
infinite-dimensional bundles: any “reasonable” definition of the regularized Euler
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number (any choice of section with a finite-dimensional zero-set) will equate it to
the Euler number of some finite-dimensional vector bundle over the zero-locus of
the section. The latter is, of course, well-defined and unique, while it is the
identification of the former with the latter which is not unique. In fact, there is no
good reason for different choices of sections s making y (E) well-defined to give the
same result in general. We will encounter examples of this in later parts of this

paper.

2.3. The Gauss-Codazzi Form of Supersymmetric Quantum Mechanics

There is yet one more form for the Euler character that can be obtained from these
supersymmetric quantum mechanics models. We could wish to determine the
Euler character of a manifold M by embedding it into an ambient space Y whose
curvature tensor is known (e.g. into Euclidean space R* with k large enough) and
then use the Gauss-Codazzi equations (cf. below) to determine the curvature
tensor of M, the Gauss-Bonnet theorem then giving an explicit result for the Euler
character of M.

The Gauss-Codazzi equations express the curvature of M in terms of the
curvature of the ambient space Y and the second fundamental form (extrinsic
curvature) of the embedding i: M ¢, Y of M into Y. The second fundamental form
of (M, i) is a section K of Sym?(T*M)®N,, (N,, is the normal bundle to TM in
TY|,,=i*TY) defined by

KX, V)=V, xi, V)', (2.12)

where X, Ve TM, V is the Levi-Civita connection on Y, and (-)*:i*TY—N,, the
projection. The Gauss-Codazzi equations? now state that in terms of K, and the
curvature %y of Y the curvature %,, of M is given by

(RAXVVZ, Wy =L Ry X, V)Z, W)
+ (K KulV; 2), Ky X, W)) —(X = V). (2.13)

The supersymmetric quantum mechanics action S,, yielding y(M) in terms of the
integral of (2.13) will itself have a form resembling that of the Gauss-Codazzi
equations. It will consist of the standard action S=Sy (2.6), describing the
curvature of Y and corresponding to the first line of (2.13), and of a term S9
performing the restriction to M C Y in a supersymmetric way and giving rise to the
extrinsic curvature terms. This idea is easily carried out in general [17] and will
also underly our construction of gauge theory actions in Sect. 3.2 (with M —.# and
Y—.//%). Here we will, for concreteness, consider first the example of S?
embedded in R>.
In the case of Y=R? (2.6) becomes

Sy(x)= [ dt[2ix(t)B(t) + B(t)* + ip,(t)0."(t)], (2.14)

where we have introduced a multiplier field B(¢). The path integral associated with
this action is ill defined, being the product of infinity [due to the presence of x(t)
zero modes] and zero (due to the y and 9 zero modes). Now we wish to cut out the

2 Actually, the Gauss part of the Gauss-Codazzi equations; the Codazzi equations express the
normal part of the curvature [We N,, in (2.13)] in terms of K,, and its derivative
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loop space of $2, LS?. To do this we work with N =2 superfields,

Xi(t, 0,0)=x'(t) + Oy'(t) + Op'(t) + 00B(r) (2.15)
and
b(t, 6, 8) = A(t) + Oa(t) + B () + 00b(t), (2.16)
and add to the action (2.14) the following (M = S?)
S, = [ dtd0dBb(t, 0, B)(X(t, 0,02 — 1). 2.17)

In terms of components this addition is essentially a delta function constraint on
the paths so that they liein LS? & LR3, plus similar constraints on the tangents. By
standard arguments we need only restrict our attention to the zero mode sector of
the theory, and in this limit the partition function becomes

fd®exp[ib(x*—1)+ B> +2iox - p—2iGx - w+2il(x-B—y-p)], (2.18)

where @ designates all the constant modes. The integral over b restricts us to S2
while the integrals over ¢ and & restrict y and  to be tangents to S2. Finally, the B
and A integrals yield the exponent

) ), (2.19)

which is the curvature term appearing in (2.6) with the Gauss-Codazzi constant
curvature that S? inherits from R>. In this case the connection with the Mathai-
Quillen construction arises at the level of taking the section so=x of T(LR3)|.s>
after the pullback from T(LR3)viai:S? & R3. This will be explained in more detail
in the gauge theory context in Sect. 4.2.

More generally, assume that M CY is (locally) given by

M={xeY: F{(x)=0, a=1,...,dim(Y)—dim(M)}

(the relation between the formulae arising from this implicit description and that in
terms of an explicit embedding is explained e.g. in [15]). Introducing coordinate
and Lagrange multiplier superfields X* and 4, as above, one finds [17] that the
action

Sucy=Sy+a[dt[dodiat,6,0F(X(t,06,0), (2.20)
can be reduced to
SMC Y= (%RZ; + %guagvﬂ VaaQFa(F - 1)ab Vﬂao‘Fb)lﬁuwalpvwa (221)

by manipulations analogous to those performed in the case of S%. Here y* and §,
are now tangent to M and F* is the matrix F**=9,F°0 F’g"". The description of
M CY in terms of the F*is valid at points where det(F**)=%0 so that F* is indeed
invertible there. The right-hand side of (2.21) is precisely the Gauss-Codazzi
expression for the curvature of M.

The upshot of this is that we have indeed recovered the Euler characteristic as
the Gauss-Bonnet integral via the explicit Gauss-Codazzi form for the curvature.

Finally, we mention that one can also construct quantum mechanics actions
Sz for Riemannian submersions Z— M instead of embeddings, deriving the
O’Neill equations [48] in this case instead of the Gauss-Codazzi equations —for an
illustration of this in the gauge theory context see [17].
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There is one subtlety in the above prescription which we have ignored so far.
Namely that the introduction of the constraint (2.17) has actually lowered the
symmetry of the theory from N =2 to N =1. The easiest way to see this is to note
that (2.14) is invariant under the simultaneous interchange y— ¢ and p—1y while
(2.17) has the symmetry p—9 and p— —1p (one also needs to swap ¢ and 6).
Nevertheless, the Hamiltonian (which has no time derivatives) keeps the N=2
symmetry of the superfields manifest. This property will arise again in our analysis
of the Euler character of moduli spaces of flat connections over 3-manifolds.

3. N=2 Topological Gauge Theories
and the Euler Characteristic of Moduli Spaces of Connections

In this section we will construct a topological gauge theory with the property that
its partition function is the Euler characteristic of some underlying moduli space
. We begin with a brief review of the Riemannian geometry of the spaces of
connections involved (see e.g. [7, 33, 47, 51]). We then construct the actions
roughly according to the recipe explained in Sect. 2.3 without worrying too much
about the geometrical origin of the action and its relation with supersymmetric
quantum mechanics. The connection with the various ideas of Sect.2 will be
explained in Sect. 4.

3.1. Riemannian Geometry of Spaces of Connections ...

Let (M, g) be a compact, oriented, Riemannian manifold, P—M a principal G
bundle over M, G a compact semisimple Lie group and gits Lie algebra. We denote
by o/ the space of (irreducible) connections on P, by ¢ the infinite-dimensional
gauge group of vertical automorphisms of P (modulo the center of G), by Q(M, g)
the space of k-forms on M with values in the adjoint bundle ad P: = P x ;g and by
d, the covariant exterior derivative. The spaces Q¥M,g) have natural scalar
products defined by the metric g on M (and the corresponding Hodge operator *)
and an invariant scalar product tr on g, namely

X, Y)=[tr(X*Y), X, YeQM,g). (3.1)

The tangent space T,/ to o at a connection A4 can be identified with Q'(M, g). At
each point A € o7, T,.o/ can be split into a vertical part ¥, =Im(d ,) (tangent to the
orbit of ¥ through A) and a horizontal part H,=Ker(d%) [the orthogonal
complement of V, with respect to the scalar product (3.1)]. Explicitly this
decomposition of X € Q'(M,g) into its vertical and horizontal parts is

X =d,GYd*X +(X —d ,G%d%X), (3.2)

where G =(d%d,) ™! is the Green’s function of the scalar Laplacian (which exists if
A is irreducible).

Working with appropriate Sobolev spaces of connections (we will not indicate
this explicitly in the following) it can be shown that the space .7/¥4 of gauge
equivalence classes [ 4] of connections is a smooth Hausdorff-Hilbert manifold. It
is often convenient to identify the tangent space T{,.//% with H, for some
representative A4 of the gauge equivalence class [4]. ¢ acts on .o isometrically and
preserving the above decomposition so that (3.1) induces a metric on //%4 making
the principal projection 7:.o/ —».¢//% a Riemannian submersion.
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The Riemannian curvature of .«//% can now be computed straightforwardly in
a variety of ways and is [51, 7, 47] :

+2(x[W, *Z], G+ [X,*Y]) (3.3

(With W, X, Y, Ze T, ,,//% and W, X, Y, Z local horizontal extensions of their lifts
to H ).

We now turn our attention to certain finite-dimensional (moduli) subspaces .#
of //%. Obvious examples that come to mind are moduli spaces of flat
connections (F ,=dA+ 3[4, A]=0), Yang-Mills connections (d%F ,=0) and (in
dimension 4) instantons (P, F ,=3(1 + *)F ,=0). Following Groisser and Parker
[33], who discussed the case of instantons, we will describe the Riemannian
curvature %, of ./ in terms of %, (3.3) and the second fundamental form
(extrinsic curvature) of the embedding i: . # & o//%, using the Gauss-Codazzi
equations (cf. Sect. 2.3). At this point it is rather awkward to continue in this
generality and we will therefore deal explicitly now with the moduli spaces .#, and
M, of flat connections in two dimensions and instantons. Afterwards we will treat
the moduli space /5.

The formal (Zariski) tangent space T; g3 M, (T; 4 #}) can be identified with the
subspace of Tj,#/%~H, ={XeQ'(M,g): d,* X =0} satisfying the linearized
equations d 4X = 0 (respectively P, d X =0). Put differently, one has T; a ~H},
where HY is the k™ cohomology group of the flat connection or instanton
deformation complex,

0—— Q°M, g) 24> QY(M, g) 245 Q*(M,g) —— 0, (3.4)
0— Q°(M, g) "4 QY(M, g) =24 (M, g), — 0 (3.5)

[note that d% =0 (P, d%=0) for A flat (an instanton)]. Although we shall not be too
concerned with the analytical properties of these moduli spaces (see, however,
Sect. 4.3 for remarks on the structure of the not so well understood moduli spaces
;) we mention that the zeroth cohomology groups of (3.4) and (3.5) as well as the
second cohomology group of (3.4) (by Poincaré duality) are zero for A4 irreducible,
and that the second cohomology group Hi=KerP d (P .d )* of (3.5) can be
shown to be zero at irreducible connections for partlcular [4] and generic [29]
metrics. This allows to establish the local smoothness of .# in the neighbourhood
of irreducible connections via the implicit function theorem. In particular, at
smooth points of .# the dimension of .#, the dimension of H} and the index of (3.4,
3.5) all agree. For more information see [25, 31, 11].
Vectors in Tj,.# can be represented by elements X ,€ 2'(M, g) of the form

X—AzXA_diGidAXA > (3.6)
X,=X,—(P d)*GiP d X, 3.7

where X ;e H, and G is the Green’s function of the second Laplacian d ,d%
(PydyP.d A)*) of the deformation complex (3.4, 3.5). Indeed, one easily verifies
thate.g. X , as given by (3.6) satisfies d , X ,=d*X ,=0. Using (3.6, 3.7), the extrinsic
curvature K , can be computed to be

K (X, Y)= —d%G3[X, Y], (3.8)
K X,Y)=—(P,d)*GiP.[X,Y]. (3.9
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Together with the Gauss-Codazzi equation (2.13), Eq. (3.3) and

K uY, 2), K (X, W)y=<[Y, Z], GA[X, W1), (3.10)
KAMY, Z), K (X, W))=<P.[Y, Z],G3P.[X, W]}, (3.11)

this allows us to express the Riemann curvature tensor of .#, and .#, entirely in
terms of the Green’s functions G and G%. And it is in precisely this form that we
will derive # , from a suitable Lagrangian in the next section.

So far we have dealt with two examples of moduli spaces of connections whose
deformation complexes (3.4, 3.5) are “short” and where the obstructing coho-
mology groups HY, k=1 are (generically) zero. This will, of course, not always be
the case and one may wonder how much of the above nevertheless remains valid
under more general circumstances. For concreteness let us consider the moduli
space My =M+(M,G) of flat G-connections on a three-manifold M. Its deform-
ation complex is [like (3.4)] the twisted de Rham complex of M,

0— Q%M,g)-™ Q'(M, g) % Q¥(M,g) 25 Q¥ (M,g) — 0. (3.12)

In this case, however, significantly less information can be extracted from it than in
the examples discussed previously. In particular, although the formal tangent
space Tj,.# can still be identified with H}, the index of (3.12) (being zero by
Poincaré duality) provides no information on the dimension of .#. The coho-
mology groups H and H3 of (3.12) are zero at irreducible connections, but there
will certainly be no vanishing theorem for HZ in general as H3 ~H4 and H, #0isa
necessary condition for having a non-zero-dimensional moduli space. General
results on the structure of the smooth and singular parts of .#; appear not to be
known. In Sect.4.3 we shall mention some partial information that can be
extracted from the existing literature on representation varieties of finitely
generated groups. In the following we simply assume that we are working with the
smooth part of .#; only.

Turning now to Riemannian geometry let us first look at the analogue of (3.6) in
the present case. Although the Laplacian on two-forms, 4% =d*d , +d ,d*, whose
Green’s function enters into (3.6), has a non-trivial kernel, (3.6) makes sense in three
dimensions as it stands since 4, is certainly invertible on Imd , (hence in particular
ond X ,). Thus Egs. (3.8) and (3.10) also remain valid provided that one thinks of
G? as including a projection onto the orthogonal complement [with respect to
(3.1)] of H3 in Q*(M, g)=Imd ,®Imd%@®H?3. In conclusion we see that despite the
additional complications present in the case of flat connections in three (and
higher) dimensions, (3.8) and (3.10) remain valid and the expression for the
Riemann tensor £, is formally identical to that given above for the moduli
space A,.

3.2. ...and its Lagrangian Realization

We will now explain how to construct the topological action S, capturing the
geometry of some moduli space .# described in the previous section. In analogy
with the Gauss-Codazzi equation (2.13) and the considerations of Sect. 2.3 S , will
essentially consist of two parts. One of them, S 4, is universal, i.e. common to all
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gauge theories with a topological N =2 symmetry, and describes the Riemannian
geometry of //¥9 (much in the same way as N =1 topological gauge theories all
have a part in common which describes the geometry of the Atiyah-Singer [6]
universal bundle [9, 38, 12, 11]). The other, S, [corresponding to the extrinsic
curvature contribution in (2.13)] will depend on the particular moduli space
chosen.

We introduce an N =2 superconnection [58, 12]

A=A (x,0,0)dx" + A,(x, 0,0)d0 + Ay(x, 0, )0 (3.13)
with components

A(x,0,0)=A,(x)+ 0y, (x)+ 0P (x)+ 002 (x),

Ay(x, 0, 0)= E(x)+ 0¢(x) + Bo(x) + 60n(x) , (3.14)

Ag(x, 0,0)= E(x) + 03(x) + OP(x) + 607(x) .

In this formulation the fields carry a natural trigrading (a, b, c), where the first entry
is the conventional form degree while the second and third entries correspond to
the 0 and 8 weights, respectively. For our purposes, however, it will be sufficient
and more convenient to assign a bigrading to the fields in such a way that
A=A, (x)dx*, 0 and @ are (1,0)-, (0, —1)-, and (0,1)-forms, respectively. This
determines e.g. y=1y,dx" and ¢ to be (1,1)- and (0, 2)-forms, which is in agree-
ment with the ghost number assignments of the standard N=1 theories.

From A we can construct the supercurvature form F as
F=dA+1i[A4, 4] (3.15)

(d=dx"d,+d0d,+ dB0g), which transforms homogeneously (F=[F, A]) under
the supergauge transformation

0A=dA+[A,A1]. (3.16)

We will use this supergauge transformation to set ¢ =&=g—g=0. This reduces
(3.16) to the ordinary gauge symmetry (44 =dA) which we will keep manifest
together with the N =2 symmetry. As a consequence of the above gauge choice the
N =2 generators s and § are now the superspace derivatives J, and 03 supplemen-
ted by field dependent gauge transformations. For instance, instead of s4 =1,
s=0 one now has sd=y, sy=—d,¢$, which is the familiar equivariant
supersymmetry of Donaldson theory [57, 38] and any other N=1 topological
gauge theory.

We pause here to explain the relationship between the equivariant and non-
equivariant versions of topological field theories (for any N). By standard gauge
covariance arguments the calculation of any gauge invariant observable does not
depend on the gauge chosen. If one therefore calculates expectation values of
observables that are both shift supersymmetric and gauge invariant, in either
version of the theory the results will necessarily be the same. In particular, for the
theory at hand the partition function may be viewed as the expectation value of 1,
which is certainly gauge and shift invariant. The alternative of keeping the
complete set of fields [plus the N =2 multiplets of Faddeev-Popov ghosts required
to gauge fix the symmetry (3.16)] has been worked out in [53] and the results, of
course, agree with those presented here.
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From the supercurvature F with components

Fo=4F,(x,0,0)dx"dx’

=F ,—0d qp—0d 2p+00(d 2 + [, P]), (3.17)
Fy=F 4(x,0,0)dx"
=(p—0d ¢ +0(2 —d 40)+00(d 477+ [$, ] — [0, ¥])), (3.18)

we can construct topological actions from the various contributions to the super
Yang-Mills action f FxF (where * is a suitably defined super Hodge

(M.0,0)
operator). As in conventional N =1 topological theories most of these terms are
inessential and have no influence on the dynamics or calculation of correlation
functions. The one term that will be important for us is

Syg= [ dOdOF,* F (3.19)
M

which provides propagators for all the components of 4, and 4. The “dynamics
for A,(x,6,8), which, of course, depends on the choice of M, will be specified in
terms of F, or A(x,0,0) [cf. (3.24) and (3 30) below]. S 2/9 is manifestly gauge
invariant and N =2 supersymmetric and given explicitly in terms of components
by

Syg= ifldﬂ)*dAgﬁ_dAQ*dAQ*‘ﬂdA*lP‘*'ﬁdA*‘l—’

+ 0P, «P] + Lw, ] —20[w, *P]+ 2+ 2. (3.20)

Let us now analyze this action. The equations of motion of # and 7 tell us that
d,*yw=d,*p=0so that y and p can be interpreted as horizontal tangent vectors
to </, i.e. elements of H , (cf. Sect. 3.1). The Gaussian integral over ¢ generates a
term [y, *p]GY * [y, xip], and similarly the integrals over ¢ and ¢ contribute the
term [, *( |GG * [, *y]. Away from reducible connections there will be no
scalar zero modes to worry about so that effectively the action S, now takes
the form

Sajg= 1&([1.0, #PIGL* [, Pl + [P, +PIGG * [y, xp] + 2+ 2),  (3.21)

where yp and ¥ are gauge fixed pointwise at A, i.e. satisfy d, *p=d *p=0. The
important observation is now that the first two terms of (3.21) are precisely the
combinations of Green’s functions appearing in the expression (3.3) for the
Riemann tensor # 4 so that (by slight abuse of notation) we can rewrite (3.21)
more succinctly as

M

It is in this sense that the universal contribution S, to the action of any N =2
topological gauge theory captures the Riemannian geometry of .«//%.

We will now explain how to construct the .#-dependent part S% of the action.
The role of S% is to restrict the gauge fields to .# C.«//%. Performing this
restriction in an N =2 invariant way automatically provides the extrinsic
curvature contribution to the Gauss-Codazzi equation (2.13).
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We will first discuss the example .#, of flat connections in two dimensions. The
obvious way to impose the condition F ,=0 in the path integral is to introduce a

term ~ | BF , into the action where B is a scalar field. In order to do this in a
M

manifestly N =2 invariant way we introduce a scalar superfield

B=u+0y+0j+00B (3.23)
and consider the action
%= d0doBF (3.29)
M

[F, is the two-form part of the supercurvature as given in (3.17)]. Written out in
components (3.24) is

Su= I{{ BF y—xdp+1d s +u(d 2 + [, P]). (3.25)

We see that the B-integral (or equation of motion) forces A4 to be flat while the -
and j-integrals tell us that g and  satisfy the linearized flatness conditions d 4
=d p=0. Together with the previously established conditions d, * p=d % $=0
this means that the solutions p, and P, to these equations represent elements of
Tt .-

Adding 8% to S, with an arbitrary coefficient «,

Su=S s+ aS% (3.26)

(this action should, of course, still be supplemented by gauge fixing terms which we
will, however, not write explicitly) and integrating over 2 and u one finds that the
only contribution from S9% to the action S , (in addition to the above constraints
on the fields 4, v, and ) is the a-independent term — [y, P] * Gi[y, %] (it can be
checked that « also drops out of the measure, as it should by supersymmetry). This
is precisely the term (3.10) quadratic in the extrinsic curvature which appears in the
Gauss-Codazzi equation (2.13). Thus what we have achieved so far in this section
can [with the same caveat as that preceding (3.22)] be summarized by the equation

SA, v, P)=2R 4 (3.27)

with A representing a point [A] of .#, and p=vy, and Pp=1p, representing
tangents to that point.
The evaluation of the partition function

Z(S.u)= » [ DLAI[Dp4f Dip jeiu v a 00 (3-28)

Je

is now straightforward and proceeds exactly as in the case of supersymmetric
quantum mechanics [2, 30]. There are an equal number d(.#)=dim.#, of v and
Grassmann-odd zero modes which can be soaked up, provided that d(.#) is even,
by expanding the exponential to (d(.#)/2)" order. The remaining integral is then of
the Gauss-Bonnet form | #9;*/2 1f, on the other hand, d(.#) is odd (this does not
occur for two-dimensiongl surfaces) the partition function is zero. Moreover, if 4

is not connected (as will frequently be the case) then care has to be taken with the
relative signs of the contributions from the connected components of ..
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In any case one finds (possibly up to a numerical factor depending only on the
dimension but not on the nature of .#)> that the partition function of the N =2
topological gauge theory defined by the action (3.26)=(3.20)+(3.25) is the Euler
characteristic of the moduli space .#,,

Z(S.p)=x(M>)! (3.29)

In the case of instantons all that needs to be changed in the above derivation is to
replace the scalar superfield B by a selfdual two-form superfield B, [giving rise to
(3.11) instead of (3.10)]. And for flat connections in n>2 dimensions one could use
the action (3.24) with B an (n—2)-form. In that case, however, additional gauge
fixing terms are required because of the “Bianchi” symmetry 6B, _,=d 4, 5 of

the action | B,_,F,+.... This is a manifestation of the extended length of the
M

deformation complex (the twisted de Rham complex in n dimensions) and will give
rise to a plethora of new zero modes (corresponding to the cohomology groups
HY, k> 1 of the deformation complex). Nevertheless, ignoring these complications
one will then formally find Z(S )= y(#,) as well. But it should be borne in mind
that this result is on a much less secure footing than (3.29) where the zero modes are
under control and their significance (reducibility) is well understood.

In three dimensions, however, another procedure is available, technically
because of the fact that the required multiplier B is a one-form so that it can be
incorporated into the N =2 multiplet of 4. This is a feature shared by topological
gauge theories based on the moduli space of Yang-Mills connections in any
dimension [12] because (like F , in n=3 dimensions) d , * F ,is an (n — 1)-form. This
also means that the “obvious” N =1 topological theories associated with these
moduli spaces will automatically have an underlying N =2 symmetry.

Thus in three dimensions, instead of introducing B and using the analogue of
(3.24), one can use a super Chern-Simons action [58] and we will choose

S% =1 [ d6dAA(x, 0, 0)dA(x, 6, 0)+ 2 A(x, 0, 0)
M
= | BF 4+%pd,p (3.30)
M

[we have now called the 88-component of A(x, 6, ) B instead of X as it plays the
role the multiplier field B,_, plays in the formulation (3.24)]. For the theories
based on the Yang-Mills moduli space the appropriate action would, of course,

have been the super Yang-Mills action [ d0dfF,* F, [cf. (3.17)].
M

The classical equations of motion that one obtains from the action (3.30) are
(none too surprisingly) F,=0. In particular, the gauge fields are flat while the
classical v and  configurations represent, as above, tangents to the moduli space
M 5. Note that in addition to the A4, yp, and { zero modes we will have an equal
number of B zero modes as the solution to the equation of motion d ,B+ [y, p]=0
will only be unique up to the addition of one forms X € Q(M, g) satisfying the
linearized flatness equation d X =0.

The above considerations have to be modified slightly once we add (3.30) to the
action S 4 (3.22). The only essential modification is that the X2 = B term in the

3 Following the analysis of the normalization of the zero mode integrals in [2, 30] this factor can
be shown to be 1
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action S, now implies that the path integral is only Gaussian (and not delta-
function) peaked around the moduli space .#; (although this Gaussian can be
arbitrarily close to a delta-function since the coefficient « of S is arbitrary). This
will be reflected in the fact that the quantum fluctuations of 4, which did not make
any appearance in the delta-function examples discussed previously, will play an
important role in the analysis below. The presence of the B> term also ensures that
the B zero modes are damped in the path integral, only contributing to its overall
normalization — a rather welcome feature at this point as all the relevant geometry
is already encoded into the zero modes of A4, y, 1 and undamped Grassmann even
B zero modes would have just been a nuisance.

With these remarks in mind let us now complete the analysis of this action. We
expand A, v, and { about their classical configurations

A=A +A;, Y=0+v,, P=P.+P,. (3.31)
The only terms of interest in the action are
e%d/g + .f (B *B + aBdAch + d[l]}c, wc}Aq) . (332)
M

Integrating over the B and A, fields allows us to write the action in its final form
Su=Rag+ 1{4 [P, w1 * GLIP, w1=R 4, (3.33)

leading, as above, to the result
Z(S )= x(M3). (3.34)

4. Geometry of N=2 Topological Gauge Theories

In the previous section we discussed the geometry of moduli spaces of connections
and constructed topological actions which describe this geometry. At this  point,
however, it may not yet be clear why these actions do the job. By linking the
construction of Sect. 3.2 with the ideas of Sect. 2, we will now try to provide a more
geometric explanation of the origin of these actions. In particular, we will interpret
these actions from the Atiyah-Jeffrey point of view as being Mathai-Quillen
representatives of regularized Euler numbers of certain infinite-dimensional
bundles. These we can then, according to the calculations of Sect. 3.2, identify with
some finite-dimensional Euler number [as in the case of supersymmetric quantum
mechanics, cf. (2.11)]. Although this interpretation “explains” the actions to a
certain extent, it does not immediately shed any light on the question in which way
these theories can be regarded as arising from some infinite-dimensional
supersymmetric quantum mechanics theories, and this we will try to remedy in
Sect. 4.2 and, from a more computational point of view, in [17]. These
considerations will naturally lead us to the generalization of the Casson invariant
mentioned in the introduction (Sect. 4.3).

4.1. The Atiyah-Jeffrey Interpretation

Here the idea is to show that the action S, =S 4 + 5% (3.20, 3.25, 3.30) has the
form of the Mathai-Quillen exponent (2.5) for a suitable bundle E and section s.
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This can be done in either of two ways: by exploiting the geometry of the principal
fibration P— X (o »//%) and its associated vector bundles to manipulate (2.5)
into the form (3.20) +(3.25, 3.30) with the complete field content, or (more simply,
but also less elegantly) by reducing S , to the form (2.5). The former has been
explained in great detail by Atiyah and Jeffrey in the case of Donaldson theory and
the three-dimensional theory of flat connections discussed above. For simplicity
we will focus on the latter here, which essentially amounts to performing the
manipulations of Sect. 3.2 [or, equivalently, those leading to (2.9) in the case of
quantum mechanics].

We begin with the three-dimensional theory. This is the richest of the models
discussed in Sect. 3 and also geometrically the most transparent (reflected in the
fact that no auxiliary fields were required in the construction of the action).
Recalling (3.22) and (3.30) we see that we can already write S, in reduced form as

M

M M

This is precisely of the form (2.5), i.e. of the form
— &+ 22 ,/A+1d 8,

for s(A)=+F e Q'(M, g) provided that we rescale { appropriately [to identify the
third term of (4.1) note that 0 F , =d ,04 and that  plays the role of y]. sis a section
of the tangent bundle T/ of o/ which passes down to a section of T(<//¥9) as
d% = F =0 by the Bianchi identity d F ,=0. In fact, s(4)=+F, is the gradient
vectorfield of the Chern-Simons functional and as such enters into the definition of
Floer cohomology [27] as well as into Taubes’ interpretation of the Casson
invariant [52]. Recalling the discussion of Sect.2, we see that the partition
function Z(S ,) can be regarded as the regularized Euler number y(o//¥) of o//%.
On the other hand, from the previous section we already know that Z(S ) localizes
onto the zeros of s, i.e. onto flat connections, and yields the Euler number of .# via
the zero section of T.# and the Gauss-Bonnet theorem. Thus here we have yet
another example in which the (ambiguous) regularized Euler number of an
infinite-dimensional vector bundle equals the Euler number of a finite-
dimensional vector bundle [cf. (2.11)],

1A [G) = y(M). 4.2)

Moreover, we know from [52] that for M a homology three-sphere (see Sect. 4.2
for the definition) and G=SU(2)

1A |%)=UM), (4.3)

where A(M) is the Casson invariant [1] of M (in accordance with more recent work
on the Casson invariant [21, 55] we have dropped a factor of 1/2 in the definition
of A(M)). This identification as well as the implications of (4.2, 4.3) will be discussed
further in Sects. 4.2 and 4.3.

In two dimensions the relevant part of the (reduced) action is

Su=Ry¢+ | BF +u(d 2+ [, p])+2* 2 +pd 41
M

=R g+ | BF 4+ uly, p]—4d u*du+pd . 4.4
M
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As we have had to introduce a scalar superfield B in addition to the superconnec-
tion A, we expect the base space of the bundle in question to be something like
A x Q%M, g) instead of o/. The tangent space to o7 x Q%M, g) at a point (4, u) is
T (A x Q°(M,g))=Q'(M,g)@Q%M,g), and (4.4) suggests the section s(4,u)
=(*d 4u, *F ,). However, this is strictly correct only if we add a B*-term to the
action (4.4) (which can be done in an N =2 invariant way).

In the present case (the “delta function gauge,” cf. [12, 11]) the correct
geometrical picture is obtained by integrating out B and working directly with the
bundle T.<f|zx TQ(M,g), where # ={Aes/: F,=0} is the space of flat
connections. The above section now becomes s(4, u) = (*d 4u, 0). It gives rise to the
s>~ [ du*d,u term of (4.4) as well as to the remaining two terms

M

[ uly, p]+pd = — [ Po(d4u) (4.5)
M M

which correspond to the third term ~ yds of (2.5), with é = 3, denoting the exterior
derivative A=, du=y on o/ x Q°(M, g).

Away from reducible connections the zeros of this section are precisely the flat
connections: s(A4,u)=(0,0) < F,=0, u=0. It passes down to a section of
T(A /%) 4 as d%(xd ,u)=0 for Ae #. Note that s does not define a section of T.#,
but rather of the normal bundle N , of T4 in T(<//%)| ,. Thus the action (4.4) of
our two-dimensional N =2 topological gauge theory can be regarded as the
Mathai-Quillen representative of the regularized Euler number y(N ,) of the
normal bundle N ,. Again, by the calculation of Sect. 3.2, we know that this choice
of section regularizes this Euler number to be

XN )= x(M). (4.6)

In the case of instantons in four dimensions everything runs as above provided
that Q%(M, g) is replaced by Q*(M, g),.

4.2. N=2 Topological Gauge Theories, Floer Cohomology,
and Supersymmetric Quantum Mechanics on </ |%

The considerations of the preceding section show that N =2 topological gauge
theories are based on the tangent bundle geometry of &//%, in agreement with the
calculations of Sect. 3.2 which exhibited a relation between these theories and the
Riemannian geometry of .«7/%. This already makes these theories much closer to
supersymmetric quantum mechanics than, say, Donaldson theory where the
bundle in question [5] is not related to the tangent bundle of «//%.

However, the analogy is not yet perfect. In order to gain a better understanding
of the emergence of de Rham cohomology in our N=2 models we will now
construct supersymmetric quantum mechanics on &//% along the lines of Sect. 2
(i.e. via a section of the tangent bundle of the loop space of .« /%). Alternatively, we
can use the Gauss-Codazzi form of supersymmetric quantum mechanics (Sect. 2.3)
to get to the desired moduli space not via the zeros of a section but by means of a
supersymmetric delta function in the path integral. For the space of gauge orbits
/*/%> on a three-manifold M we find that the resulting quantum mechanics
model for a particular choice of section is precisely N =1 Donaldson theory on
M x S* which reduces to the three-dimensional N =2 theory in the limit that the
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circle (time) shrinks to zero (in particular, their partition functions are equal). This
gives a relation between the N =2 symmetry, de Rham theory on .#; and Floer
cohomology. As all this is really just a reinterpretation of the transition from the
Hamiltonian [3] to the Lagrangian [57] description of Donaldson theory, we will
not construct the quantum mechanics action in detail (see [17]), concentrating
instead on the features relevant for us here. Analogous considerations can be
carried out, mutatis mutandis, in other dimensions.

We begin with the space <> of connections on a (trivial) principal G-bundle
over a three-manifold M and would like to interpret its loop space as the space of
connections on some bundle over M x S'. The first thing we should decide is
whether to work with L./ (eventually modded out by L%?) or with L(./3/%°). The
difference between the two is that in the latter case the connections are required to
be periodic in time only up to a gauge transformation, and it is that space we have
to work with if we are interested in non-trivial bundles on M x S!. To see this, note
that L(s/> x %°) is not connected if there are large gauge transformations on M,

(L% /%°) =1)(%°),

and these can be used as clutching functions to construct non-trivial bundles over
the mapping cylinder M x S* of M. L(/3/%?) represents the disjoint union of gauge
equivalence classes of connections on all isomorphism classes of bundles of
M x S and contains L.s/3/L%? as its trivial component. Since we are not going to
worry about gauge fixing in the following it is most convenient to work
equivariantly on Ls/3. However, the difference between the two spaces will
occasionally be crucial and we will draw attention to it when that occurs.

The obvious section to start off with is (as in Sect. 2) so(4)(t)=A(t). The
corresponding Mathai-Quillen action (2.5) [i.e. the action (2.6) with x(t) replaced
by A(t)] has, however, still got a divergent partition function. In fact, it would
regularize the Euler number of o/*/%*=Ls/>/L%> to be y(A*/9*)=y(A43|9?),
which is not yet well defined. An alternative way of seeing this is to note that the
dimensional reduction of this action gives precisely what we called S s/ in
Sect. 3.2 — thus our four-dimensional action still requires addition of a term
corresponding to S .

The most natural way to try to do this is to change the section s, to sy, for some
gauge invariant potential function W on .o/>. In the setting of Sect. 2 this did not
change the result: the partition function of supersymmetric quantum mechanics is
well defined and independent of the choice of W, a statement equivalent to the
classical formula (2.10). In the present case the left-hand side of (2.10) is not yet well
defined, but we can make sense of it (regularize it further) by defining it to be equal
to the right-hand side of (2.10) for some choice of W (cf. the discussion at the end of
Sect. 2.2).

A natural candidate for W is the Chern-Simons functional

W(A)=CS(4)= [ AdA+1A4[4,A]. @.7)
M

CS(A) is not quite gauge invariant (it changes by a constant proportional to the
winding number under large gauge transformations) but its derivative is, and this
is sufficient for our purposes. This choice of potential defines the section scs(A4)(f)
= A(t)+ *F 4 of T(LsZ3).
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By general results on supersymmetric quantum mechanics [11] (or explicit
calculation) one finds that the partition function of the action corresponding to scg
localizes onto the zeros of scg (in the present case possibly modified by terms
required for four-dimensional gauge invariance which is not guaranteed by the
Mathai-Quillen formalism — this will not affect any of our conclusions). If A(z) is
periodic in ¢ (this means that we are in the topologically trivial sector) the same
“squaring argument” as in Sect.2 shows that these are precisely the time-
independent flat connections on M. In the topological non-trivial sectors the
“squaring argument” fails and there are non-trivial solutions to the equation (the
gradient equation of the Chern-Simons functional)

d
E A(t) = *FA(t) . (4.8)

Equation (4.8) (usually read as an equation on M x R) is nothing other than the
instanton equation in the 4, =0 gauge and plays a fundamental role in defining the
relative Morse indices of Floer’s instanton (co)homology [27, 3] and also provides
the link between the three-dimensional Floer cohomology groups and the four-
dimensional Donaldson invariants [24] associated with the moduli spaces of
instantons (see also [3, 11] for the definition of these invariants and their relation
with Floer theory).

This already suggests that we have just reinvented the wheel and that the four-
dimensional topological gauge theory we have constructed here is nothing other
than Donaldson theory. That this is indeed the case becomes immediately obvious
by noticing that the Hamiltonian of the corresponding quantum mechanics action
is the Laplacian of dc, the exterior derivative 6 on /3 twisted by the Chern-
Simons functional, and hence precisely the Hamiltonian of Donaldson theory [3,
57]. Alternatively, this can, of course, be seen directly at the level of the action [17].
There are some things that we ought nevertheless to check to be sure that all the
pieces fit. Firstly, we know from the four-dimensional standpoint that the partition
function of the Donaldson theory vanishes if the index of the deformation
complex (the formal dimension of the instanton moduli space) is not zero. An
essential ingredient in the construction is then that this index be zero. On the other
hand, to get sensible results for the three-dimensional theory the only sector in the
four-dimensional theory which contributes must be the one with trivial second
Chern class. We will now see how these two requirements take care of each other.
The index is equal to [4]

p1—2dimG((M4)+0(M,). 49)

Here p, is the first Pontryagin number of the adjoint bundle ad P [equal to 8k, k the
instanton number, for G=SU(2)] and o(M,) is the signature of M,. This is the
signature of the intersection form on H%(M,, Z) or the number of self-dual minus
the number of anti-self-dual harmonic two-forms on M,. The Euler characteristic
of a four-manifold of the form M, =M, x St iszero as y(M 3 x S*) = y(M3)x(S!)=0.
By the same multiplicative property of the signature [36, Theorem 8.2.1]
o(M, x S') also vanishes. Explicitly, this can be seen as follows: the Kiinneth
formula tells us that H*(M; x S*; R) is isomorphic to H'(M;; R)\@H'(M ;; R), and
if {w;} form a basis for H'(M 3; R) then (symbolically) a basis for H¥ (M3 x S*; R) is
{0;@w;, 0;® —w;}. The first entry forms a basis for the space of self-dual
harmonic two forms H% while the second is a basis for that of anti-self-dual
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harmonic two forms H? : they necessarily have the same dimension.* Hence we
find that the index is non-zero for all p, 0. Notice that while the dimension
formula (4.9) tells us that the instanton moduli space is formally zero for p, =0 it
tells us nothing about the dimension of the space of flat connections. In fact, the
index of the flat connection deformation complex is the sum of the instanton and
anti-instanton indices for p; =0 and is given by —dim Gy(M,) (the index of the
twisted de Rham complex) which is zero for M ,=M; x S*.

This also settles the question raised above whether we should work with
L(s73/%3) or Lo/ 3/L%>: the theories are identical in the sector with p, =0, which is
(according to the above) the only one that will contribute to the partition function,
so for our purposes both alternatives are equivalent. In the topologically trivial
sector the partition function reduces to an integral over the moduli space
M+(M, G)for an arbitrary three-manifold M. There the twisted exterior derivative
Ocs=0+ | F,0A reduces to the ordinary exterior derivative, the Hamiltonian to

M

the Laplacian on .#;, and the partition function is (independently of the radius of
the circle) the Euler characteristic y(.#) of the de Rham complex of .Z.

That this agrees with the partition function of the three-dimensional N =2
theory is no coincidence. In fact, we can expand all fields in Fourier modes along
the circle. Integrating out the non-constant modes the resulting three-dimensional
action is precisely the action constructed in Sect. 3.2. In the light of our previous
considerations and those of [58, 14] (the three-dimensional theory is the
dimensional reduction of Donaldson theory) this is not very surprising and the
calculational details can be found in [17]. This finally also establishes the sought-
for direct relation between this N =2 topological gauge theory and supersym-
metric quantum mechanics on spaces of connections.

Another part of the puzzle that fits in place is that ignoring time derivatives the
N =1 symmetry of Donaldson theory extends to an N=2 symmetry which is
enjoyed by the Hamiltonian (i.e. the Lagrangian of the three-dimensional theory)
just as we found when embedding S? into R® in Sect. 2.3. Indeed, as H ~ | Ty, and
Too=1{Q, Voo} for some V,, (by the fundamental property T,,={Q,V,,} of
topological field theories [57]) we could imagine that H={Q, Q}, where Q is
nilpotent and leaves the Hamiltonian invariant. That this is indeed the case was
established by Witten in [57].

Returning to the three-dimensional discussion, let us momentarily assume that
M is a homology three-sphere, i.e. an orientable closed three-manifold with
H,(M,Z)=0, and that the gauge group is G=SU(2). In that case, non-trivial flat
connections are irreducible [in fact, a reducible connection, defined by a reducible
element of Hom(n,(M),G) would factor through to an element of
Hom(n,(M), U(1))~H,(M,U(1))=0]. In this setting the Floer cohomology
groups, the cohomology groups of (a perturbation of) the twisted exterior
derivative dcg, are well defined and coincide (as in ordinary supersymmetric
quantum mechanics) with the ground states of the above Hamiltonian. In
particular, therefore, the partition function of this theory is (ignoring problems
with the trivial connection) the Euler characteristic y-(M) of the Floer complex
which is known [3, 527 to be

xr(M)=AM). (4.10)

4 Alternatively, we note that Tr [ RR vanishes with the product metric which implies the vanishing
of o(M; x §*) by the Hirzebruch signature theorem
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Note that the calculation of the Euler characteristic of the Floer complex requires
only the topologically trivial sector (flat connections) although the definition of the
individual instanton homology groups depends crucially on all the topologically
non-trivial sectors (instantons). This is entirely analogous to ordinary supersym-
metric quantum mechanics on a manifold M: the Euler number y(M) can be
calculated in terms of the fixed points of some vector field alone whereas instanton
paths connecting these fixed points enter into the computation of the homology
groups of M [56].

The consequences of the intriguing equations yx(/3/%>)=y(M;) (4.2),
x(3/%%) = A(M) (4.3), and xp(M)=A(M) (4.10) will be explored in the following
section, after we have recalled the definition and some properties of the Casson
invariant.

4.3. The Casson Invariant and its Generalization

In this section we will deal exclusively with the three-dimensional theory defined
by the action (3.20)+(3.30). We have seen above that formally the partition
function of this theory yields the Euler characteristic of the moduli space .#; of flat
connections via the Gauss-Codazzi equations and the Gauss-Bonnet formula. On
the other hand, we will see below that (again formally) the partition function is the
Casson invariant if M is an integral homology three-sphere. Of course, these two
observations taken together immediately suggest a generalization of the Casson
invariant to arbitrary three-manifolds. But in order to substantiate this suggestion,
there are some problems that need to be overcome at a purely mathematical level
before one can try to assert whether y(.#) is a meaningful and useful generalization
of the Casson invariant. In particular, one needs to

a) define what one means by y(.#) when .# is not a smooth manifold but perhaps
(at best) an orbifold stratification (in the sense of Kirwan [40]), and

b) compare candidate definitions of y(.#) with already existing extensions of the
Casson invariant to certain more general classes of three-manifolds (rational
homology spheres [21, 55], homology lens spaces [19]).

We have no definite solutions to offer to these problems but we will provide
some background information and preliminary suggestions below which we
believe will play a role in the resolution of these issues.

In addition to these mathematical issues (which are completely independent of
the field theoretic considerations by which we were led to them) there are problems
with the field theoretic realization of these topological (differential) invariants. In
particular, in order to be able to assert that the partition function really calculates
the Casson invariant (in the simplest case of homology spheres) or the Euler
number, one needs to
¢) come to terms with the contributions from the trivial connection and other
reducible connections.

At first, however, our considerations will be formal. Let us assume for the time
being that there are no i and  zero modes (i.e. no non-trivial solutions p , to the
equations d ;i =d ,* p =0, etc.). Then the partition function will simply reduce to a
sum of contributions from the points of .# [cf. (3.28)], which — by supersymmetry —
are plus or minus one,

Z(8.0=Y +1 4.11)
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[the contribution of the trivial connection is ill-defined at this point and is

assumed to be excluded from the sum (4.11) until further notice]. A look at the

action S% = [ BF ,+{d p reveals that the relative signs are determined by the
M

(mod 2) spectral flow of the operator d,, the same spectral flow that defines the
relative Morse indices of Floer homology [27, 3]. Therefore, Z(S ,) equals the
Euler characteristic yz(M) of the Floer complex. Since d, is the Hessian of the
Chern-Simons functional whose first derivative defines the gradient vector field
*F ,on o/ /9, we also see rather directly that Z(S ,) can be regarded as defining the
regularized Euler number y(s//%), as we, of course, already know more generally
from Sect. 4.1.

Itis a result of Taubes [52] that this topological invariant agrees (possibly up to
a sign) with the Casson invariant [1] A(M),

Z(S_,)=MM) (4.12)

(again, provided that the trivial connection is excluded from the sum). Actually
Taubes also fixes the absolute sign. This requires considerations involving
perturbations of the trivial connection, and we will not enter into these here.

Casson’s original definition of (M) was somewhat different, involving Heegard
splittings of M along a Riemann surface X,, and intersection theory in
M(Z,, SU(2)). We will now show how his definition can be recovered from the path
integral point of view (this is taken from [11]). Imagine splitting M along a Rie-
mann surface X,, i.e. M= M #; M,, where M, and M, are handlebodies (solid
Riemann surfaces). Then — according to the general principles of quantum field
theory — the path integral over connections on the manifold M; with boundary
0M =X, will define a wave function ¥, having support on those flat connections
on X, which extend to flat connections on M, i.e. on the Lagrangian submanifold
(M, SU(2)) of the symplectic manifold .#(Z,, SU(2)). Likewise the path integral
over connections on M, will produce a wave function ¥, having support on
MM 5, SUQ2))C.M(Z,, SU(2)). The partition function Z(S ,) can then be computed
as the scalar product

Z(S.4)= § Yi¥,, (4.13)
M(Zg,SUR))

and evidently only receives contributions from flat connections on 2, which extend
to both M, and M, or — in other words — from flat connections on M. If these flat
connections are isolated, (4.13) is a sum over these points, their contributions being
determined as in [52]. The key point in Taubes’ work is to show that the relative
intersection numbers of .#(M,, SU(2)) and #(M,, SU(2)) in 4(Z,, SU(2)) can be
determined from the spectral flow of d ,. Denoting the total intersection number in
M by % ,, (4.12) then implies

AM) =% 45, suy (M (M, SUQ2)), M(M 5, SU(2))), (4.14)

which is precisely Casson’s original definition (up to the factor of 1/2 mentioned
above).

If the moduli space .#(M, SU(2)) is non-zero-dimensional, the Casson invariant
is defined as follows. As the dimension of .#(M,,SU(2)) is 3g—3 and that of
M(Z,S8U(Q2)) is 6g—6, the moduli spaces .#(M,,SU(2)) can be perturbed
(isotoped) into general position to intersect in isolated points, and the Casson
invariant is now defined as in (4.14). The significance of M being a homology three
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sphere is that the isotopies can be chosen to avoid the reducible connections. From
the gauge theory point of view this can be mimicked by a perturbation of the
vector field *F ,. On the other hand, the path integral is already well defined in this
case and calculates the Fuler number y(.#(M, SU(2))). This strongly suggests that,
for homology spheres, the Casson invariant is equal to the Euler number of the
moduli space (and thus has a definition which makes no reference to isotopies).’

In recent years some effort has gone into generalizing the Casson invariant to
other groups G or to more general classes of three-manifolds (see e.g. [21, 55, 19]).
One is then inevitably confronted with the presence of non-trivial reducible flat
connections. In Casson’s approach this is problematic because .#(M,,G)
NAM(M,, G) now meets the singularities of .#(Z,, G) and the definition of the
intersection numbers requires more care. Alternatively, in Taubes’ approach
(which has not yet been worked out in a more general setting) a more delicate
perturbation theory would be required to deal with the zero modes of d 4 at these
points. Important progress was made by Walker [55] who extended the definition
of the Casson invariant to rational homology three-spheres (H (M,Q)
=H (S3,Q)), and by Cappell, Lee, and Miller [21] who generalized it to arbitrary
semisimple Lie groups G. In all these generalizations, A(M) is no longer necessarily
an integer but a rational number.

From a different angle we have seen at various points in this paper that it is
natural to propose the Euler characteristic y(.#(M, G)) as a generalization of the
Casson invariant. In the case of isolated irreducible flat connections these two
definitions coincide [as the spectral flow of d , indeed measures the relative tangent
space (point) orientations]. Additionally, naive evaluation of (4.13) in the case that
the moduli space is non-zero-dimensional also yields y(.#(M, G)), independently
of any isotopies. Indeed, the same topological theory that formally gives us the
Casson invariant if the underlying three-manifold M is a homology sphere
formally computes the Euler number of .#(M) via the Gauss-Codazzi equations
and the Gauss-Bonnet theorem in general.

This suggestion by itself does, of course, not solve any of the technical problems
inherent in the definition of y(.#) for the types of spaces arising as moduli spaces of
flat connections on three-manifolds. Nevertheless, we hope that this proposal is
concrete enough to be useful and perhaps guide future investigations, as the
problem is now more specifically that of finding a “good” definition of y(.#). The
difficulties one encounters when trying to find such a definition are all related in
one way or another to the fact that the singularity-structure of the spaces .#(M, G)
is not well understood.

For instance, in three dimensions singularities are not only due to reducible
representations of =,(M) but also to the relations satisfied by the generators of
n,(M). For information about the fundamental groups of three-manifolds see [35,
28]. More generally, these moduli spaces have been studied in the context of
representation varieties of finitely generated groups (see the monograph [43] and
the contributions in [32]). However, again little is known about the nature of the
singularities away from irreducible representations.

Thinking now more concretely about defining the Euler number of singular
spaces we want to mention the encouraging result that there is a Gauss-Bonnet
theorem for V-manifolds (orbifolds) [50] which calculates the virtual Euler

5 Inthe case of Seifert fibered homology spheres it has indeed been shown by Fintushel and Stern
that the Casson invariant equals the Euler number — see the “Note Added” at the end of the paper
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characteristic of an orbifold as defined e.g. in [50, 20, 54, 46, 34] in various
contexts. The virtual Euler number is different from the topological Euler number
of an orbifold and is no longer necessarily an integer if the orbifold is not a smooth
manifold, but a rational number. This checks with the properties of the Casson
invariant away from integral homology spheres. And if the moduli space .# C &/ /%
is an orbifold then the metric induced on .# by the metric on .«//% will be an
orbifold metric (in the sense of [507]) and therefore the evaluation of the partition
function (i.e. of the Gauss-Bonnet integrand) will give rise to the virtual (orbifold)
Euler number of 4.

Additional circumstantial evidence in favour of our suggestion could be
provided by showing that — at least formally — the Euler number y(.#(M, G)) has in
general properties similar to those satisfied by the Casson invariant, e.g. under the
operations of connected sums or reversing orientations. One of the most
important properties of the Casson invariant (apart from being a differential
invariant) is its nice behaviour under Dehn surgery on knots and its relation with
the Alexander polynomial. This is a property that one may not wish to give up, but
unfortunately also one that seems to be rather difficult to prove for y(.#).

Whatever the outcome of these investigations will be, we hope that thinking in
terms of traditional differential-geometric concepts will contribute to the under-
standing of the Casson invariant and its generalizations.

5. Concluding Remarks: The Penner Model
and Other Open Questions and Generalizations

In this paper we have drawn together a number of threads to construct a
topological gauge theory with the property that its partition function is the Euler
number y(#) of some given finite-dimensional moduli space .# of connections.
Among these threads were supersymmetric quantum mechanics, its relation with
the Mathai-Quillen formalism, the Gauss-Codazzi equations for .#C//9, a
superfield construction of N =2 topological gauge theories, and the Atiyah-Jeffrey
interpretation of topological field theories.

Along the way we have also obtained some results which are potentially
interesting outside the context of topological field theories as well. In particular,
we have introduced a new kind of supersymmetric quantum mechanics based on
(or: deriving) the Gauss-Codazzi equations of classical Riemannian geometry. We
believe that we have also clarified the concept of the regularized (Mathai-Quillen)
Euler number y(E) of an infinite-dimensional vector bundle E, introduced by
Taubes and Atiyah-Jeffrey, by showing that under very general conditions y(E)
can be identified with the rigorously and unambiguously defined Euler number of
some finite-dimensional vector bundle. Combined with the fact that the Casson
invariant of a homology three-sphere can be interpreted as y(<//%) and with the
observation that the partition function of one and the same topological gauge
theory (formally) yields either the Casson invariant or the Euler number y(.#) of
the moduli space of flat connections, this led us to suggest y(.#) as a generaliz-
ation of the Casson invariant to other classes of three-manifolds.

In the previous section we have mentioned some of the technical problems one
encounters when attempting to a) make this suggestion more precise from a purely
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mathematical point of view, and b) put the field theoretic considerations on a
slightly more rigorous footing.

In addition to these technical questions there are a number of other open
problems and avenues for future research. In particular, we want to draw attention
to the possibility of constructing a topological counterpart of the Penner matrix
model [49]. This is a hermitian matrix model whose partition function calculates
the virtual (orbifold) Euler characteristic of the moduli space of Riemann surfaces
of genus g [34]. In analogy with Distler’s observation [22] that topological gravity
[42] is a bosonized form of Liouville theory coupled to ¢= —2 matter one may
speculate on the existence of a topological figld theory describing Liouville theory
coupled to the ¢ =1 model conjectured by Distler and Vafa [23] to describe the
continuum limit of the Penner model. Such a topological theory would be
characterized by the property that its partition function is the Euler number of
moduli space (which can be described in terms of connections), precisely the
property shared by the topological models discussed in this paper.

Another open problem in this context is whether this or other topological N =2
models in two dimensions can be described as “twisted” N =4 models. It is known
that N =2 models can be twisted to N =1 topological theories [59, 26] and that
twisted N =3 theories describe supersymmetric N =1 topological theories while
twisted N =4 theories in two dimensions appear to describe non-supersymmetric
topological N =2 theories [63]. We hope to report on progress along these lines in
the future.

More immediate generalizations of the models discussed in this paper are €.g.
supersymmetric extensions or a reformulation of the three-dimensional model of
flat connections on R? and the hyperbolic three-plane to describe moduli spaces of
monopoles (see [14, 8]). It is also possible to construct topological N =2 sigma
models and these have the expected property of describing the Riemannian
geometry of spaces of sigma model instantons. The details are in either case not too
difficult and are left to the reader.

Finally, we want to mention that it is possible to add a Chern-Simons term to
the three-dimensional N =2 action of flat connections. The resulting action has
still got a topological N=2 symmetry (albeit slightly different from the one
considered in this paper). The partition function is now not the number of flat
connections counted with signs but rather a sum over flat connections weighted by
signs and phases (the exponential of the Chern-Simons invariant of the flat
connection). This raises the question, with which we conclude this paper, if this is
an interesting refinement of the Casson invariant of homology spheres.

Note added (July 1992). In [64] (see also [65, 66]), Fintushel and Stern investigate the instanton
homology of Seifert fibred homology three-spheres. One of their results is that, in this case, the
Casson invariant indeed equals the Euler characteristic of the moduli space of flat connections
[64, Theorem 4.3]. We regard this as further circumstantial evidence in favour of our suggestion of
Sect. 4.3.
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