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Abstract. The equivalence of Dirac quantization and intrinsic quantization for
arbitrary observables not preserving the vertical polarization is examined for
systems with first class constraints that may be considered as the vanishing of the
momentum map to a lifted group action. Using a generalized Weyl ordering
prescription applicable to arbitrary cotangent bundles we derive necessary and
sufficient conditions for the equivalence of the two approaches for different classes
of functions. A strong obstruction is found if one requires equivalence for all
invariant functions, essentially only admitting trivial bundles. By a restriction
to an adequate class of "strongly admissible functions", equivalence can always
be obtained in the case of a free group action. Implications for the case of
non-free actions and the dependence on the particular quantization scheme are
discussed.

1. Introduction

Systems with first class constraints can be quantized in essentially two conceptually
different ways: One may impose the constraints classically, divide out the gauge
transformations generated by the constraints and quantize the resulting uncon-
strained system ("intrinsic quantization"). On the other hand, one may try to
quantize the original system without the constraints and then impose the con-
straints as conditions on the physical states ("extrinsic quantization," in particular
Dirac quantization [4]).

Normally, first class constraints arise as a consequence of "redundancy sym-
metries" of the Lagrangian of the theory, i.e., the presence of time-dependent
symmetry transformations which do not relate different physical states but differ-
ent redundant descriptions of the same state (as in gauge theories, where true
physical states correspond to gauge equivalence classes of gauge potentials). If this
symmetry is supposed to be a redundancy symmetry on the quantum mechanical
level as well, the intrinsic method is conceptually preferable. On the other hand, the
extrinsic quantization scheme is often preferable from a practical, computational
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point of view: First, the structure of extended configuration and phase space is
often much simpler than that of the reduced spaces, which generally are not even
manifolds [7]. Secondly, it is often easier in relativistic theories to maintain
manifest Lorentz covariance in the extrinsic formalism, as for practical com-
putations in the intrinsic scheme one usually chooses a gauge fixing, i.e., one locally
embeds the reduced space, consisting of equivalence classes of redundant states
related by redundancy transformations, into the extrinsic space.

Thus, the question arises whether extrinsic and intrinsic quantization are
equivalent. As the more elaborate quantization scheme of BRST quantization is
known to be equivalent to Dirac quantization for a wide class of systems [6], this
question is of particular importance. It has two aspects: First, one has to find
a natural isomorphism of the Hubert spaces, and secondly, one has to check
whether this isomorphism intertwines the operators corresponding to the same
observable ("Dirac equivalence condition for observables").

Concerning the first aspect, there exist several positive results of different
generality and strength within the framework of geometric quantization using the
vertical polarization on cotangent bundles for the cases when the constraints are
linear in the momenta; in some cases (i.e., the cases of nonunimodular groups and
structure functions instead of structure constants) some slight modifications are
needed [1, 5, 8, 16, 17]. Especially, in the case of a compact Lie-group acting on
phase space by the lifting of a free action on configuration space, the complete
program of geometric quantization with its different steps (prequantum bundle,
metalinear frame bundle, half-form bundle, . . . ) can be carried out and strict
equivalence may be shown [8], whereas the analysis in the more general cases is
usually restricted to the study of half-densities corresponding to a trivial prequan-
tum line bundle.

Concerning the second aspect, equivalence results are established in the articles
mentioned above for a very restricted class of observables, namely for those which
preserve the vertical polarization, i.e., which are at most linear in the momenta, the
restriction occurring due to the problems of geometric quantization in the quantiz-
ation of not-polarization-preserving functions. On the other hand, for particular
examples and for special quadratic observables the equivalence is known not to
hold in general, or to need some additional care and adapted quantization schemes
[10, 13, 14]. Since in most applications the Hamiltonian is quadratic in the
momenta the equivalence question for observables which do not preserve the
vertical polarization is of particular importance.

In this article we are going to examine the equivalence question for observables
which are arbitrary polynomials in the momenta. The main problem for such an
examination is the need for a definite quantization scheme which assigns to
arbitrary functions (or at least a sufficiently large class of functions) operators on
the respective Hubert spaces. Within the framework of geometric quantization, the
only existing procedure for functions not preserving the polarization is the use of
BKS-kernels [15]. This scheme is much less stringent than the quantization
method for polarization preserving functions and has two major disadvantages:
First, some rather complicated regularity conditions have to be fulfilled, and
secondly, there is in general no guarantee that the resulting operators are even
formally selfadjoint.

For these reasons we shall use a special ansatz for the quantization of systems
whose phase spaces are cotangent bundles. This ansatz, which is due to Underhill
[18], allows the quantization of arbitrary observables which are polynomial in the
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momenta, yielding quantum operators which are differential operators of the order
of the polynomial and which are guaranteed to be at least formally selfadjoint. (A
generalization of this ansatz to more general orderings as well as the connection to
the methods of [19, 20] using the symbol calculus for pseudodifferential operators
is discussed in [12].) Furthermore, this quantization scheme guarantees that the
sum of two classical observables is quantized by the sum of the corresponding
operators, which is not true for the BKS-kernel procedure even in those cases in
which it yields well defined formally selfadjoint operators.

In order to concentrate on the equivalence problem for observables and not to
overload the exposition with additional technical problems we shall restrict our-
selves to the situation where the first aspect of the equivalence problem, that of
a natural isomorphism of the respective Hubert spaces, is particularly simple,
namely the case of lifted free group actions of a compact connected Lie-group G of
dimension r on a cotangent bundle Γ*P. In this case, the constraints have the form
of the vanishing of the corresponding canonical momentum map J.

In this situation, the following theorem guarantees that the reduced phase space
is a cotangent bundle again, with the reduced configuration space Q = P/G [11, 8]:

Theorem 1. Let a Lie-group G act properly and freely on a manifold P, and let
/ denote the canonical momentum mapping to the lifted group action on Γ*P, i.e., β \
j*P _> ̂ *? ^ ,_> / ( α j With </(αJ, A) = QLq(A*(q))for Ae^, where A* denotes
the fundamental vector field of AerS. Then there is a canonical isomorphism:

/ - ^ O J / G ^ T*(P/G). (1)

Via this isomorphism any weakly G-invariant function on T*P, i.e., any
φe^(T*P) with (R*φ - φ)\f-^(Q) = 0, corresponds to a function on Γ*(P/G),
whereas the function on Γ*P corresponding to a given φ e ^(T*(P/G)) is only
determined up to the addition of a function in </'>, the ideal in # (T*P) generated
by the components of the momentum mapping. In more mathematical terms this
means that for a free group action (or more generally, if 0 is a weakly regular value
of /') there is an isomorphism

.^(Γ*(P/G)) ^ ( W * P ) / < / » G , (2)

where we denote by <Q/Q the G-invariant elements in the algebra <$/. For a compact
group any weakly invariant function can be made invariant without changing its
values on the constraint surface by averaging over the group with the invariant
Haar-measure. Hence, we get an isomorphism:

.^(T*(P/G)) * .^(Γ*F) G /</> G . (3)

In any case, there is a whole class of functions on extended phase space correspond-
ing to the same function on reduced phase space. Thus, it will be necessary to fix the
class of admissible functions on T*P corresponding to the same observable on
T*(P/G).

In the following section we shall first present the generalized Weyl ordering
prescription on arbitrary cotangent bundles developed in [18] and a modification
of it particularly suitable for our purposes. Tn Sect. 3 we shall describe the extrinsic
and intrinsic Hubert spaces and give a very explicit representation of the natural
isomorphism between them. In the next section we shall finally prove some



518 C. Emmrich

necessary and sufficient conditions for the validity of the Dirac equivalence condi-
tion for different classes of polynomial functions for our modified Weyl ordering
prescription. In Sect. 5 we shall study the same problem for the unmodified
quantization scheme, and in Sect. 6 we shall eventually make some conclusions and
remarks on the dependence on the particular quantization scheme.

2. Quantization via Generalized Weyl Ordering

The idea of this quantization method is to generalize the integral representation for
the Weyl ordering to arbitrary cotangent bundles: On Γ*IRΠ = R2", the matrix
element of the operator corresponding to an observable/(<y, p) e 3F(T* 1R") may be
expressed as [18]:

x - υ)ψ(x + v)e~2i<p-v>dvl . . . dυn

f(x,p)dxΐ ...dxndPl...dpn. (4)

While the measure dx1 . . . dxtιdp1 . . . dpn is the Liouville measure on phase space,
which is canonically defined on any cotangent bundle, the first integration does
a priori not make any sense on an arbitrary cotangent bundle. However, if one
chooses an arbitrary connection on the configuration space g, it may be identified
locally, in a suitable neighbourhood of any point q e g, with an open ball in TqQ,
and the integration can be done over TqQ.

More explicitly, the Hubert space H of states for a system with orientable
configuration space can be constructed as the space of half-densities with finite
norm. Choosing a connection on g, one may, for any q e g, pull back any half-
density with support in a sufficiently small neighbourhood of q to TqQ with the
exponential mapping. Hence, setting Iq:TqQ -> TqQ, vq i—• — vq, the expression
χ(q, vq)(Qxp*ψ)((Qxp°Iq)*φ) is a well defined density on TqQ for a suitable cutoff
function χ and any half-densities φ, ψ, and we may set

yielding a well defined function on Γ*g.
Therefore, the matrix element (φ, J£(f)ψ} may be defined as:

(5)

(6)

where dΩ denotes the Liouville measure on Γ*g. In [18], it is shown that J ( / ) is
a well defined partial differential operator of order degree (/) for any/polynomial
in the momenta, independent of the particular choice of the cutoff function /.

For an observable which is a polynomial in the momenta a rather explicit
coordinate representation of the matrix elements of the corresponding operator
can be derived: Denoting local coordinates in a neighbourhood of q e g by
(xι)ι = ι n and the induced coordinates on TqQ by (V)/ = i «> (6) yields for

i

, l(f)φ) = (2ϊ)-m$dxί . . . dxnΓ>-Ήx)dvh

 d

 dυimD(x,v)\υ = 0 , (7)

where D(x, v)dυι . . . dvn is the local expression of χ(q, vq)(Qxp*ψ)((Qxp°Iq)*φ).
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For the special class of observables compatible with the vertical polarization,
namely those at most linear in the momenta, which are of the form
f((xq) = oίq(Xq) + g(q) for a vector field X e 3C(Q\ this quantization scheme yields
the same standard expression as geometric quantization using the trivial line
bundle:

M(f)φ = {-iLx + g(q)}φ. (8)

Here, hxφ denotes the Lie-derivative of the half-density φ.
For an observable/(x, p) = TlJ(x)piPj quadratic in the momenta, the quantiz-

ation scheme yields:

In particular, if Fis the Levi-Civita connection of a Riemannian metric g, gιi{x)PiPj
is quantized by — A — ̂ R, where R is the scalar curvature.

The quantization ansatz presented above only depends on the choice of a con-
nection, not of a metric on the configuration space. (Without loss of generality, the
connection may be chosen torsion free as only the exponential map plays a role in
the whole construction.) However, due to the curvature terms arising by the
half-density character of φ, φ in (6), this scheme will prove not to be particularly
adapted to our purposes. If the covariant derivative V on Q is the Levi-Civita
connection to a Riemannian metric g, the quantization scheme may be suitably
modified without destroying the formal selfadjointness of the operators and with-
out changing the operators assigned to classical functions that are at most linear in
the momenta:

The metric g canonically induces a measure μ which in local coordinates (x;)
can be expressed as μ = y/det(gij)(x)dx1 . . . dxn. This measure induces an identi-
fication of the Hubert space of half-densities with finite norm with the Hubert space
H: = L2(Q, μ) of functions on Q which are square integrable with respect to μ: Any
half density with finite norm may be written as φ = φ\μ\* for a square integrable
function φ.

The Riemannian metric g on Q defines a Euclidian metric and hence a unique
canonical measure on any fibre TqQ, which we shall denote by dnv(q). In local
coordinates (x*) on Q and induced coordinates (V) on TqQ, this measure has the
form yjdet(gij(x))dv1 . . . dυn, where gijdxιdx] is the local expression of the
Riemannian metric. (In general, dnv(q) being translation invariant, this measure
does not coincide with the pullback of the measure μ via the exponential mapping.)

We may now define

i ( q ) (10)

and the matrix element of the operator ^ ( / ) by (6) with Φ replaced by Φ, yielding
f o r / = Tiι • • • itn(x)ptί . . . pίm the coordinate expression:

(φ,l(f)φ)=(2i)-"Wdet(gij(x))dx1 ...dx"Γ

(ii)
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where D(x,v) = χ(x, t;x)(exp*ψ)({expx°Iq)*φ). This modified quantization ansatz
assigns t o / = Tιjpιp] the operator

£){f\= —\ j1^y. y. _|_ ( y T ^ ) V H (V V T^) (12)

on H: = L2(Q, μ). In particular, gιjptPj is quantized by the Laplace-operator to the
metric g.

3. Dirac Quantization on Principal Bundles

In the following we assume that a compact connected Lie-group G acts freely and
properly on the extrinsic configuration space P, i.e., the extrinsic configuration
space P is a G-principal bundle over Q\ = P/G with projection π. In order to obtain
the usual sign conventions we assume that G is acting from the right. (Using the
inverse map g \-+ g~ι on G, this can be easily translated to a left action.) For
simplicity, we shall assume that Q (and hence P) is orientable. We shall use the
notation Rgq = q-g. Furthermore we choose a Riemannian metric g on P with
corresponding Levi-Civita connection V to define the extrinsic quantization, i.e.,

2g(F x 7, Z) = Xg(Y, Z) + Yg(X9 Z) - Zg(X, 7)

n Z) + g([Z, XI 7) + g(X, [Z, 7]). (13)

As we want G-invariant functions to be quantized by G-invariant operators, we
assume that g is G-invariant. Now we have the following well known lemma [2, 3]:

Lemma 2. There is a one-to-one correspondence between right G-invariant Rieman-
nian metrics g on P and triples (g, α, h), where g is a metric on Q = P/G, α is
a connection form on P as a principal G-bundle over Q and h is a smooth mapping
assigning to any q e Q an invariant metric h(q) on the orbit π~1(q).

The connection on P is constructed by defining the subbundle of TP consisting of
vectors orthogonal to the orbits as the horizontal distribution corresponding to α.
g is defined by g(X(q), Ϋ(q)) = g{Xh{q\ Ϋh(q)) for some qeπ'Hql where Xh

denotes the horizontal lift of X. For q e P we denote by J4?q the horizontal space at
q9 and for a vector field X by J^(X) its horizontal projection.

A particular simple choice for the function h is a "constant" metric in that sense,
that one chooses a G-invariant metric on G and defines the corresponding metrics
on the orbits by a local triviahzation of P. It is easy to check that the function
h defined in this way is independent of the triviahzation because of the invariance of
the metric on G.

The orbits are totally geodesic iSg(q)( VA*B*(q), Zh(q)) = 0 for arbitrary q G P,
A, B E^ and Z e 3£{Q). Using (13) one gets the equivalent condition

Choosing a triviahzation such that the coordinate vector fields of the coordinates
of the base manifold are horizontal in the point q, one easily sees that this condition
is equivalent to the constancy of h in the sense above.
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The G-invariance of the metric g implies the G-invariance of the measure μ,
yielding:

(divA*)μ = LA*μ = ^exp(ίA)*μ | t = 0 = 0 .

Hence, the components of the momentum map /A(%q) = Mq(A*) are quantized in
both quantization schemes presented in the preceding section by

= -i(A*φ)\μ\*

Thus, the half-densities on P fulfilling the Dirac condition correspond just to
the G-invariant functions on P:

eHtJi:φe&(P),R*φ = φ V g e G } . (14)

There is a canonical isomorphism of the "physical" subspace H p h y s and the intrinsic
Hubert space H i n t of half-densities on Q = P/G [8, 16]: Choosing an ad-invariant
scalar product on the Lie algebra ^, one may assign to any frame (v[q])i = ί . . .„-,.
on T[q](P/G) the set of frames on TqP which are of the form (Af(q\ . . . ,
A*(q\ υ\, . . . , vn

q~
r\ where (Ai)i=1.. r is an orthonormal basis of c§ and υ\ is

a vector in TqP projecting onto v[q]. All those frames are related by linear
transformations with determinant one. Hence, for an arbitrary half-density φ on
P/G one may define a half-density φ on P by

φ(Al[(q)9 . . . , A*(q)9 v\, . . . , υn

q'
r): = φivfa, . . . , vn

{q]

r) . (15)

Equation (15) indeed defines a bijection from H i n t to H p h y s , and if the group is
compact and one normalizes the scalar product on ^ in such a way that the volume
of the Lie group G with respect to the volume induced by the corresponding
biinvariant measure is unity, it is even an isometry and hence an isomorphism of
Hubert spaces.

On Q we define a function K by

for an orthonormal base {Ai)i=ί.. . r of ^ and q e π " 1 ^ ) . Since for a fundamental
vector field A*(q g) = TqRg(AdgA)*(q) and det(Ad^) = 1 for any g ε G by the
unimodularity of G, K is easily seen to be a well defined function independent of the
choice of q ε π " x (q). κ(q) obviously is just the volume of the orbit π ~x (q). With its
help and the identification of half forms with functions via |μ|^ and |μ|" a very
explicit form of the isomorphism can be derived:

(fo) (16)

By the theorems proved in [8] we know that this isomorphism of Hubert spaces
intertwines the operators corresponding to functions preserving the vertical polari-
zation, i.e., to functions at most linear in the momenta, as long as one restricts
oneself to G-invariant functions on T*P.
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4. Equivalence for Higher Order Polynomials

For polynomials in the momenta of order one the theorems mentioned above
guarantee that the Dirac equivalence condition is satisfied independent of the
choice of the representative of the equivalence class in έF (T* P)Q/((/}Q corres-
ponding to a given φ e $P (T* Q). Here, the restriction to G-invariant representat-
ives, i.e., the use of the isomorphism (3) and not of (2) is necessary, as one may easily
see by a simple example in which there are no ambiguities in the definition of Weyl
quantization:
Example. Choose P = Rw, G = R acting on P as α (x1 ? . . . , xn) : = (α + xu

x2, . . . , xn) (In order to avoid problems with normalizability and the need to use
generalized eigenfunctions in a Gelfand triple, one may consider the £/(l)-action on
a torus or a cylinder equally well.) The momentum mapping to that action
corresponds just to the first component pγ of ordinary momentum p. The observ-
ables xt are quantized in the standard way as multiplication operators, pt

d
as — ih—. Any function of the form Pi/(x, p) vanishes on the constraint surface

dxi
/?! = 0, hence the operator assigned to it via Weyl ordering should vanish on the
space of physical states, consisting of wave functions independent of the first
variable x1. However,

which does not vanish on the space of physical states. However, if one restricts
oneself to £/(l)-invariant representatives, i.e., if one uses the isomorphism

Pi/(x, p) is only admissible if / i s independent of x x . In this case, there are no
ordering problems for the operators Ά(pι). They may all be moved to the right,
whence the corresponding operator vanishes on the space of physical states.

As we have seen in the example, we have to restrict the class of admissible
functions on phase space at least to those which are G-invariant and not only
weakly G-invariant. Theorem 4 below will show that even with this restriction
there are very strong conditions on the admissible extended configuration spaces
and the metric g. Using the connection form α it is possible to further restrict the
class of admissible functions. In the rest of this section we shall prove three
theorems which give necessary and sufficient conditions for the Dirac equivalence
condition to hold for certain classes of functions on Γ*P:

The decomposition of TP into a horizontal and a vertical subbundle induces
a decomposition of T*P into vertical momenta, which vanish on horizontal
vectors, and horizontal momenta, which vanish on vertical vectors.

Definition 1. We call a polynomial f on T*P "horizontal" ("vertical") if it is
a polynomial only in the horizontal (vertical) momenta. We call a polynomial f on
Γ*P strongly admissible iff /ί is the sum of a "horizontal" and a "vertical" polynomial.

Theorem 3. A necessary condition for the Dirac equivalence condition for strongly
admissible quadratic observables to be fulfilled is that the orbits are totally geodesic
submanifolds of P. In this case, the Dirac equivalence condition is satisfied for strongly
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admissible polynomials of arbitrary degree, if one uses the metric g on Q induced by
gfor the intrinsic quantization.

Theorem 4. The Dirac equivalence condition for arbitrary invariant quadratic ob-
servables is fulfilled iff the orbits are totally geodesic submanifolds of P and the
connection form α on P induced by g is flat. Then it is satisfied for invariant
polynomials of arbitrary degree. In particular, if Q is simply connected, P admits
a metric such that the Dirac equivalence condition is fulfilled if and only ifP is a trivial
bundle over Q:P ^ β x G .

Proof. We denote by " v " the symmetrized tensor product. For any G-invariant
vector fields V, We 3£{P\ the polynomial/ = TίjPiPj with T— Vv Wis invariant.
If both Kand M^are horizontal (vertical), then/is "horizontal" ("vertical"), hence it
is strongly admissible in both cases.

For a G-invariant vector field X and a fundamental vector field A*: [X, A*~\
= 0. Thus, [_X,η^\ is an invariant vertical vector field for any invariant vertical
vector field η. By (13)

2g( Vχ*η, Zh) = g([ZΛ, Xhl η), 2g{Vξη, ξ) = 2g(K, η\ ξ) .

Hence, div/? = — tr ad^ = 0, by unimodularity of G, and for any G-invariant
vector field X follows: div(X) = div(Jf (X)).

For T= Vv WEq. (12) yields:

= - - Vv Vw + Vw Vv + (div V) Vw + (div W) Vv + -div Fdiv W

+ -((^divK+ Vάi\W) + ά\y{VvW) + άi\{VwV)) . (17)

Choosing V = η for some invariant vertical vector field η, and an invariant vector
field W, we get for any G-invariant function φ:

as [//, W] is an invariant vertical vector field and hence has vanishing divergence.
In particular, if W = ξ for an invariant vertical vector field ξ, f is a strongly

admissible polynomial corresponding to the function / = 0 on T*Q. Therefore,
J ( / ) must satisfy the condition ϊ{f)φ = 0, i.e., d i v ( t ^ ) = div{M"(Vξη)) = 0 for
all invariant vertical vector fields ξ, η and all invariant functions φ e 3F(P\ For any
invariant function g, gξ is again an invariant vertical vector field with

divpf ( Vgξη)) = gdiv(Jf ( Vξη)) + (Jf ( Vξη))g ,

which must vanish. Hence, necessarily J^(Vξη) = 0, so the orbits must be totally
geodesic submanifolds of P, and the first part of Theorem 3 is proved.

Choosing W = Xh, the horizontal lift of a vector field X on Q, in (17),/is an
invariant function corresponding to / = 0 on T*Q. If the Dirac equivalence
condition shall hold for invariant polynomials, £(f)φ — 0 for any G-invariant
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φe^(P), yielding div(VηX
h) = 0 for all η. Hence, in analogy to the preceding

argument, VηX
h has to be vertical for any η, yielding by (13):

0 = 2g(VηX\Ϋh) = g([Ϋ\Xhl η) ,

i.e., the horizontal distribution must be integrable and hence, the connection on
P has to be flat. The statement about the triviality of P for simply connected Q now
simply follows from [9, Corollary 9.2].

In order to prove the rest of the theorems we need the following lemma:

Lemma 5. For any G-ίnυarίant metric on P, the following statements hold:
1) For any horizontal vector XqeJ^qP9 the corresponding geodesic y(t) with
y(0) = Xq is horizontal and projects onto a geodesic on Q.
2) For arbitrary φe^(Q): exp*{π*φ)\jrq = {Tqπ)*(exv*{q)φ)\jrq.

If the orbits are totally geodesic and the connection a on P is flat, the following
stronger statements hold:
Γ) Any geodesic on P projects onto a geodesic on Q.
2') For arbitrary φ e & (β): exp*(π*φ) = (Γβπ)*(exp* ( ί )φ).

Proof of the Lemma. For any geodesic y there is a continuation of the vector field
y over y to a G-invariant local vector field. Using (13), it is easy to compute that
g(y, A*) is constant along any geodesic for any Ae^. Thus, a geodesic with
horizontal y(0) will stay horizontal. Now, using again (13) and

\ Ϋh~]) = IX, ? ] Λ for any X9Ϋe %{Q\ one gets:

For y:= π°y follows: (V^ήy(t)) = ̂ (V ^ήy(t)) = 0, i.e., the projection y of y is
a geodesic. Now, statement 2) follows immediately from π°expjjf
= expπiq)°Tqπ\jf which is an immediate consequence of statement 1).

If the orbits are totally geodesic and the connection α on P is flat, then VηX
h

and Vηξ are vertical for arbitrary X e 3C{Q) and arbitrary vertical vector fields ξ, η,
yielding:

for any G-invariant vector fields X, Y. This implies, again by G-invariant continua-
tion of the vector field y over y, that the projection of any geodesic to Q coincides
with the projection of the horizontal geodesic y with Λ/(0) = Jf7(Λ/(0)), so it is
a geodesic.
Statement 2') follows from π°exp^ = Qxpπ{q)°Tqπ which is again an immediate
consequence of statement Γ).

Now choose a local trivialization of the bundle P and adapted coordinates
(0α> Qμ)- ^ s S i s block-diagonal for a frame consisting of vertical and horizontal
vectors and the coordinate frames adapted to a local trivialization differ from such
frames by a matrix with determinant one, we get:

\dφx . . . dφ r λ /detg = \dφγ . . . #

(18)

Let the orbits of G on P be totally geodesic and the connection form α be
flat. Set φ = Uφ, ψ = Uφ for φ, ψ E H i n t . Using the lemma and the constancy of
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K following from the geodesic completeness of the orbits we get for arbitrary
aeTxP:

dk

As any operator 0 of the form Of =
dk

dvh . . . dv*
may be obtained as

a linear combination of operators of the form -j7^f(λa)\λ=z0 for suitable vectors α,

and as the G-invariant function (Xλ v . . . v I , ) ' 1 •h pix . . . pir for G-invariant
vector fields X1,...,Xr on P corresponds via (1) to the function (π^
X1v...v π^Xr)

μι • • • μrpμi . . . pμr, we may conclude:

dvlί . . . dυl

for any G-invariant function TH " 'trpiι . . . pir corresponding to Γ μ i βrpμi . . . pμr

on Γ*Q. Hence, using (18),

(UφJQXt(Γ^ -ph . . . pir)Uφ) = <φJint(T» --»'pμί . . . pjφ) (20)

and Theorem 4 is proved.
If we drop the assumption that the connection form α is flat, the argumentation

above goes through as long as one restricts oneself to vectors a which are
horizontal. Hence, one can prove in a completely analogous way, that for any
"horizontal" G-invariant function (20) still holds. On the other hand, as φ, ψ are
constant along the orbits and as the curves txp(λa) for vertical a do not leave the

dk ^^
orbit because the orbits are totally geodesic, —ηcD(xίλa)\λ = 0 = 0 for vertical a.

Thus any "vertical" function is quantized by an operator that vanishes on
H p h y s and we may conclude that the Dirac equivalence condition is satisfied for all
strongly admissible functions. Q.E.D.

Theorem 6. The Dirac equivalence condition for arbitrary "horizontal" quadratic
observables holds iff the volume K of the orbits satisfies the equation Vd log(κ ) = 0. //
Q is geodesically complete, this condition may be satisfied by a nonconstant volume
function iff there is a global isometric dijfeomorphism from Q to IR x Qfor a Rieman-
nian manifold (Q, g), where IR x Q is endowed with the product metric induced by
g and a constant multiple of the standard metric on IR. In particular, if Q is compact,
the condition is satisfied iff the orbit volume is constant.

Proof It is sufficient to restrict oneself to functions of the form (Xh v Ϋh)ιJPiPj for
X, Ϋe°X{Q), which correspond to functions (X v Ϋ)μvpμpv on T*Q. Using

+ — ), J^(Vχ" Yh) = (Vχ Ϋ)\ r{X) h = 0
K /
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for any X e %{Q\JC e &(P) and any G-invariant h, and the explicit form (15) of the
isomorphism of H p h y s cz H e x t and H i n t , a direct computation yields:

(U^ϊ^iφ v ΫhγjpiPj)U- i int((f v ΫΓpμpv))φint

(Xκ)(Ϋκ) X(Ϋκ) Ϋ{Xκ) (VγX)κ (VχΫ)κ_ 1/
_ _ I ^

The difference term, that has to vanish, is symmetric and bilinear in X, Ϋ. Hence, by
a polarization argument, it vanishes for all X, Ye %{Q) iff it vanishes for X = Ϋ,
i.e., iff

(Xκ)2 X(Xκ) (VχX)κ _
2 "" — U .

K K K

Setting K = ep for some function p yields in local coordinates:
XμXvΰ^dvp - XμXvΓ"vdωp = 0, hence, as X is arbitrary and the connection has
no torsion: Vdp = 0.

Now, assume that Q is geodesically complete and that there is a nonconstant
function p = log(κ ) satisfying Vdp = 0. Define a vector field X on Q by
X = g^(dp). Then, VX = 0, and in particular, if there is any point where^X does
not vanish (i.e., if p is not constant), then X vanishes nowhere. As VjζX = 0 by
Vdp = 0 and as Q is assumed to be geodesically complete, the vector field X is
complete. Since

g(X,X) = g ' ^ d p , dp) = const, φ 0 .

the surfaces of constant p are diffeomojphic submanifolds of Q, the diffeomor-
phisms being just given by the flow of X. As p increases monotonically along the
flow lines of X, Q is indeed diffeomorphic to R x β, where Q is p " 1 (c) for some c in
the range of p. (Q is connected, as P is connected, hence the diffeomorphism defined
in this way is indeed onto.)

Choosing local coordinates (r, qa) on IR x Q, the vector field X is mapped to
ρ

—. As X = g^(dp) is orthogonal to p ~ x (c) for any c e IR, and VX = 0, one easily
or
computes that the metric on IR x Q has to be of the form adr2 + gaβ(q)dqa dqβ for
some α e l and some Riemannian metric g on Q.

On the other hand, if IR x Q is endowed with a metric of this form, any function
of the form ar + b(a, b e IR) satisfies Vd(ar + b) = 0.

If Q is compact, then it is geodesically complete for any Riemannian metric on
Q, but certainly not diffeomorphic to IR x Q for any Q. Hence, the last statement
follows. Q.E.D

Remarks.

1. For the construction of the diffeomorphism only the completeness of the special
vector field X is needed, the geodesic completeness is only used to guarantee the
completeness of X.

2. For a generic metric g on g, there are no Killing fields on Q. On the other hand,
any covariant constant vector field is a Killing field. Hence, for a generic metric
g on Q, K has to be constant.
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3. Even if the vector field X is not complete, Q is locally diffeomorphic to IR x Q in
an open neighbourhood of any K ~x (c).

5. Weyl Ordering for Half-Densities

In the previous section we studied the equivalence problem for the modified Weyl
ordering method, which uses a fixed measure instead of half-densities. Although
there is no criterion by which one might a priori decide which quantization scheme
is "better", as different quantum theories may have the same classical limit, the
original version of the generalized Weyl ordering due to Underhill might seem
more appealing, as it is closer to usual geometric quantization. However, if one
studies the equivalence problem using this quantization scheme for extrinsic and
intrinsic quantization, the situation is much worse than for the ansatz studied in the
previous section:

The additional problems arise already for quadratic observables because of the
curvature term in (9). In general, the components of the Ricci-tensor on P are quite
complicated functions of the metric g on β, the metrics h on the orbits and the
connection α[2, 3]. Even in the nicest case, when P is a trivial bundle over Q, the
connection α is flat, and h is a constant metric, the vertical components of the Ricci
tensor of g do not vanish but are just the corresponding components of the Ricci
tensor of h on the respective orbit.

Hence, as the other terms in (9) vanish on H p h y s in analogy to the preceding
section for an invariant "vertical" function / = (η v ξ)ίjPiPJ9 £ext(f) a c t s o n

Hphys by multiplication with — γ^{rj v ξ)ιjRtj. Now, since a generic Lie group does
not admit a metric with vanishing curvature, the Dirac equivalence condition may
not even be satisfied for all strongly admissible quadratic functions. Thus, if one
considers the original quantization scheme using half-densities superior to the
modified ansatz using functions square integrable with respect to μ, one would like
to take it for the reduced quantization. (We are assuming that the symmetry is
a "redundancy symmetry"!) Hence, we have to modify the extrinsic quantization
scheme appropriately in order to ensure at least the validity of theorems analogous
to those of the preceding section. Essentially, we have to find a possibility of
treating the "horizontal directions" of a half-density as in the original quantization
scheme, the "vertical directions" however as in the modified scheme. This is
possible, indeed:

To this end, we define an appropriate map τq mapping a half-density on P to
half-densities on suitable open neighbourhoods of 0 in TqP for arbitrary qeP. (In
the original scheme, this was just the pull-back via exp, whereas in the modified
scheme this mapping was given by φ\μ\^ \-> (εxip*φ)\dnυ(q)\*.) As π°expg restricted
to JtfqP is a local diffeomorphism from M"qP to β, we can pull back the canonical
half density \μ\* on Q induced by g to an open neighbourhood U of 0 in Jf qP,
yielding a (non-constant) half-density p%> on U a j^qP. On the other hand,
we may define a constant half-density p-f on the vertical space i^qP with the
help of the Euclidean metric on the vector space 1^qP induced by h. Now, we
can define a half-density pq on U x Ψ\ a TqP as the "product" of p^ and pr, i.e.,
we set

pΛV, Krj! Xn-r) = Pjr{Xl9 . . . , Xn-r)Pr(Vl9 . . . , Vr)
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for special frames consisting only of vertical vectors Vt and horizontal vectors Xt.
On arbitrary frames ξ we may define pq by the property of half-densities:

Pq(ξ'Q) = j\g\pq{ξ) ϊoτgeGL(n, R).
Hence, we may set: τq(φ\μ\^) := (exp*φ)pq for φ e ϊF{?). In the extreme cases

that the orbits are either zero or n dimensional the resulting mapping coincides
with that for the unmodified quantization scheme using half-densities in the first
and with the modified scheme using functions in the latter case. Using that
function, we can again define for φ, φ e H e x t a function Φ(otq) as:

Φ(ocq):= \e-2i*«^χ(q,vq)(τqψ)((Iqrτqφ), (21)

and the operator &(f) to a function/by (6) with the new Φ(otq). Ά{f) can be again
easily seen to be a differential operator of the order of the degree of the polynomial
/ and to be formally selfadjoint (by the essentially symmetric appearance of φ, φ
in (21)).

For this quantization scheme, one can compute that quadratic functions
TιjpiPj are quantized by the operator (9) with the curvature term replaced by

^(TqπT(q)ΓRμv(π(q)) •

Hence, it is obvious that with the new extrinsic quantization scheme, and the
unmodified Underhill quantization scheme for the intrinsic quantization, just the
same necessary conditions for the validity of the Dirac equivalence condition for
strongly admissible, arbitrary and "horizontal" invariant quadratic functions fol-
low as in the last section. Furthermore, the proofs of the corresponding theorems
may be easily modified for this method, and Theorems 3, 4 and 6 may be seen to
hold with the new ansatz as well.

Remark. It might seem geometrically more natural to try to achieve the necessary,
different treatment of the horizontal and vertical directions of the half-densities by
choosing a fixed "vertical half-density" on P, using this to map a half-density on
P to a "horizontal half-density" on P by writing it as a product of this "horizontal
half-density" and the fixed "vertical half-density", and pulling it back to TqP via
exp. This can be done in a completely well-defined way, indeed. However, as two
vectors in TqP differing by a vertical vector are generally not mapped to the same
vector by T expg, there would arise additional terms already in the quantization of
quadratic functions containing in particular the curvature of the connection α.
Hence, the equivalence even for strongly admissible quadratic functions would
only hold if the connection α is flat.

6. Conclusions

In the preceding two sections we have proved equivalence theorems for the
extrinsic and intrinsic quantization of various classes of functions. Theorem 4 is
negative in character, as it asserts that extrinsic and intrinsic quantization for
arbitrary invariant functions can be equivalent essentially only on trivial bundles.
As, to the contrary, any principal bundle admits for any metric g on the base
manifold Q a compatible metric for which the orbits are totally geodesic,
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Theorem 3 ensures that for a restricted class of functions one may always obtain
equivalence by a proper choice of the metric g on P.

However, if one is interested in generalizations to cases where the isotropy
groups are not trivial and not conjugated, even Theorems 3 and 6 take a negative
character: Already when the generic isotropy groups are trivial, but some points
have nontrivial isotropy groups, the function K is zero on those points for any
smooth metric g, in contradiction to the needed constancy of K. Hence, even for the
extrinsic quantization, where the configuration space is smooth, those points have
to be cut out, resulting in the necessity of studying boundary conditions and
selfadjoint extensions. Hence, the ambiguities arising in intrinsic quantization due
to the singular structure of configuration space [7], cannot be remedied by using
a formally equivalent extrinsic quantization on the smooth extrinsic configuration
space.

Now, the question naturally arises, to what extent our results depend on the
particular quantization scheme. The main problem in answering that question is
that there seem to be no other general quantization schemes apart from BKS-
kernels which assign uniquely defined operators on some Hilbert-space to a suffi-
ciently large class of functions. (Using a different polarization in geometric quantiz-
ation only shifts the class of polarization preserving functions without sufficiently
enlarging it; star product quantization yields concrete star products only in
particular examples.) For the BKS-procedure the situation is expected to be even
worse: First, the class of functions quantizable in this way is rather obscure due to
the complicated regularity conditions necessary for its application and mainly due
to the fact that there is no general criterion to decide whether the constructed
operator will even be formally selfadjoint [15]. Secondly, this ansatz does not have
the property of mapping the sum of functions to the sum of the corresponding
operators. Hence, even if "vertical" polynomials are quantized by operators van-
ishing on H p h y s and the equivalence condition holds for a "horizontal" polynomial,
it is far from obvious whether this will still hold for the sum of the two.

This non-additivity property will be shared by any quantization scheme, which
has the property of quantizing every polynomial of the form TijpiPj for non-
degenerate Tιj by the corresponding Laplacian if the curvature of Ttj vanishes. This
problem is avoided by the quantization scheme studied by us, because it quantizes
TijPiPj only by the Laplacian if the chosen connection V is the Levi-Civita
connection to Tιj.

This, and the additional problems encountered for the unmodified quantization
scheme using half-densities, may be considered as a very strong hint that the
situation dealt with in Sect. 4 is the optimal one for any "natural" extrinsic
quantization scheme, not modified "by hand" to give a better agreement between
extrinsic and intrinsic quantization.

On the other hand, as we have seen in Sect. 5, one may always get rather strong
equivalence results if one modifies the extrinsic quantization scheme "by hand,"
using a splitting into "horizontal" and "vertical" directions and treating both
asymmetrically. The most extreme such possibility would be to define the quantiz-
ation of "horizontal" polynomials by just pulling back the corresponding intrinsic
operator via the isomorphism of H i n t and H p h y s (defining it to be zero on the
orthogonal complement of H p h y s in H e x t ), and to quantize any "vertical" poly-
nomial in such a way that it vanishes on H p h y s , for example by using standard or
antistandard ordering. Such an ansatz would be very much in the spirit of [10].
However, if one is really interested in dealing with redundancy symmetries (for real
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physical symmetries, relating physically different states, the equivalence question is

insignificant anyway, as in this case the intrinsic ansatz has no physical meaning),

the question arises whether such a modified ansatz is still of any value: The two

main advantages of extrinsic quantization mentioned in the introduction are both

of purely practical, computational character: They were the greater simplicity of

extrinsic configuration space in many applications and the greater ease of main-

taining manifest Lorentz covariance in relativistic theories. Both advantages will

obviously be spoilt by any ansatz needing a detailed splitting into horizontal and

vertical directions and an asymmetric treatment of both.
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