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Abstract. We give the correspondence between instantons on S* and some repres-
entations of an associative algebra. For the given structure group, we get simultan-
eous imbeddings to € “ (the inductive limit) of the moduli spaces for instantons on
S* of all instanton numbers.

In this note we show that instantons on S* can be identified with some representa-
tions of an associative algebra.

Let A be the frec algebra over € generated by two elements ¢, p. We define
a new multiplication # in A4 as follows:

fixfo=filpg —ap)f2, fi.foreA.

Then (A4, *) 1s an associative algebra (with no unit), which is an extention of the
d . o . .

Weyl algebra C |:q, 20l We consider finite dimensional representations of (A4, ).
q

Let W be the complex vector space of dimension /, and h be a linear map from 4 to
End W. Then h induces a linear map h: AQ W — A*® W defined by

Ch(fi®@w). f2) = h(f2fD)w, fi.fo€ 4, we W.

We denote by Hg, k) the set of all algebra homomorphisms h: (4, %) > End W such
that the rank of his k. If h is an algebra homomorphism from (4, *) to End W, then

h(f1(pq — ap)f2) = h(f1)R(f2) ,

so the linear map h is determined by h(g’p®), i, j = 0.

_ Let P be the principal SU(I) bundle over S* = R*uU o with ¢, =k, and
M(SU(l), k) be the framed moduli space for anti-self-dual (ASD) connections on P:
{ASD connections on P}/% ., where %, stands for the group of all gauge trans-
formations on P fixing the points in the fiber over 0. M(SU(I), k) is a 4kl-
dimensional smooth manifold [1].
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Our main result is the following:
Theorem 1. The framed moduli space M(SU(1), k) is diffeomorphic to H(l, k).

This gives an algebraic affine imbedding of | |, M (SU(I), k) explicitly. We use
Donaldson’s theorem [1] to prove Theorem 1. In Sect. 1, we give a criterion in

terms of linear algebra for the stability condition in Donaldson’s theorem (Proposi-
tion 2). We prove Theorem 1 in Sect. 2.

1. Some Remarks on a Theorem of Donaldson

Let X = Mat(k, k; C) x Mat(k, k; €)x Mat(l, k; C)x Mat(k, [, C). We define the
action of G = GL(k, C) on X as follows:
p.(a17a2’a7b):=(palp-1>pa2pflsap_l>pb)

for pe G,(4y,%,,a,b) e X. We call a point x in X stable when the map
Gap > prx e X is proper. We denote by X* the set of all stable points in X. Let

(o, %, a, b) = tr(do; A doy, + db A da),
U= 00 — 00ty + ba .

The 2-form w is a holomorphic symplectic structure on X. We can show by easy
computation that

w(payp~tpoap™tiap™t, pb) = w(a1, %5, a,b) + tr(p~tdp A du)
+tr(p~tdp A p~tdprp) .
This means that G-action on X preserves o and that p is the holomorphic moment

map. (This is suggested to the author by H. Nakajima from the viewpoint of
hyperkéhler structure.)

Theorem (Donaldson [1]). The framed moduli space M(SU (1), k) is diffeomorphic to
G\ H0)n X5

So we deduce from geometric invariant theory [4] that M(SU(/), k) is a non-
singular quasiaffine algebraic variety. Theorem 1 gives an affine imbedding of
M(SU(I), k) explicitly and simultaneously for all k.

Donaldson gave a criterion for the stability in u~ ' (0):

Proposition (Donaldson [1]). The point x = (a1, %, a, b) € u~*(0) is stable if and
only if
o + 24
rank | oy + z, | =rank( — oy — 2z, oy +2z, b)=k (1)
a

forall zy,z, € C.

Here we seek a criterion for the stability in X.
Proposition 2. For any point x = (a1, o5, a, b) € u~1(0), the condition (1) is equival-
ent to the following:

() Keraf(uy,05) =0, Y Imf(ay,u)b=Ck. 2

fed fed
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Proof. 1tis clear that (2) implies (1). Suppose that the vector space generated by the
row vectors of af (o, a,)b(f€ A) is

{(x,0)eC'®C*}, j<k.
According to the splitting C* = C/@® C* 7/ we set

%11 Og2 %21 %22
oc1=< , O, = , a=(a 0).
O3 Oig %23 o4

Then for any f € A,
af (a1, 2) = (@'f (211, 921)  0),
a'flogy, 1), =0,
a'fogy, 021)022 =0
So we have o, = a5, = 0, then
* 0
alaz—azal—f-ba:( >
* Olyg4log — U2al14
This implies 014054 = %,4014. Thus there exists a nonzero common eigenvector

) 0\ . .
x' € C*77 of oy4,0,4. Then | ) is a nonzero common eigenvector of oy, o,
X

contained in Ker a. That contradicts with (1). It goes similarly in the case that the
column vectors of f (e, ,)b (f € A) does not generate whole C*. O

2. The Proof of Theorem 1

First we give the map ¢ from M(SU(I), k) to H(I, k). Let
h(f)= @01, %2, a,b)(f) = af (a1, a2)b
for (o, o2, a, b) € p~1(0) n X*. ¢ is G-invariant. Since (o, o5, a, b) = 0,
h(fi#f2) = h(f1(pq — qp) )
afy (o, oy) (a0 — oty %5) fo (o, %) b
= df1 (g, 2a)bafy(oy, 22)b
=h(f1)h(f2).
We give i: C* > 4*® Cj: AQ C' - C* by
i), [ ) = af (a1, 22) v,
Jf®w) = f(oy, %) bw
for fe A, ve V, we W. Then we have }Zz iej. Proposition 2 implies that i is
injective and that j is surjective, so rank h = k. Therefore h € H(L, k).
On the other hand, the inverse : H(l, k) —» M(SU(I), k) is defined as follows.
For h' e H(l, k), we set V' =Im h =~ C*. Let
oo, 12’: VoA*QW
JTAQW SV .
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For fe A we define < f| € Hom(V, W), |f> € Hom(W, V) by
Slw) =), [, velV,
/oW =j'(f®w), weW.

We set a' = (1], b' = [1). The multiplications by ¢, p in 4 induce linear maps
oy, o5 € End V respectively:

alf>=1laf> olf>=Ipf>

for fe A. If | f)> =0, then h(f'f) =0 for all f" € A. So «, 2, € End V are well-
defined. We get

Y(h') = (a1, 25,a,b") e X
by fixing the basis of V, W. Since

() Kerd' f(ay,05)= ) Ker {f| =0,

feAd feA
Y Imf(ay,05)b' = ) Im|f) =V,
fed feAd

we deduce from Proposition 2 that y(h') is stable. Since h': (4, x) > End W is an
algebra homomorphism, we have

{fildhoy —asoy + b'a'| fo0 = h'(filap — pa) f2) + <A1 (L f2)
= —W(fif2) + W(fi)h'(f2)
=0.
Therefore y(h') € G\~ ' (0) n X°.
If (oh, 05, d, b) = Y (h'),
a'flay, 0n)b" = (1] f(ah, a3)[1)

=1f>
=h'(f).

Hence oy (h') = h'.
Ifth = @y, 25, a,b), we can take i’ =i, j' = j by the stability. Then

Sfl=afloy,00), [f)=f(o1,0)b.
This implies that
{df=a, [1)=b,
laf > = oy flog, ox)b=a1lf),
Ipf > =oaflog, 02)b=05lf).
Hence o =id. [
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